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Abstract

This article investigates when homotopies can be converted to
monotone homotopies without increasing the lengths of curves.
A monotone homotopy is one which consists of curves which are
simple or constant, and in which curves are pairwise disjoint. We
show that, if the boundary of a Riemannian disc can be contracted
through curves of length less than L, then it can also be contracted
monotonically through curves of length less than L. This proves a
conjecture of Chambers and Rotman. Additionally, any sweepout
of a Riemannian 2-sphere through curves of length less than L can
be replaced with a monotone sweepout through curves of length
less than L. Applications of these results are also discussed.

1. Introduction

The primary objects of study in this article are monotone homo-
topies, which we define below. Throughout the article, we consider
closed curves on Riemannian surfaces. If α is a simple closed con-
tractible curve, then D(α) denotes the closed disc that α bounds. If
the underlying surface has at least one boundary component, then this
disc is unique. If it is an oriented sphere, then the orientation of the
sphere and the orientation of α determines D(α); it is the unique disc
for which, given the orientation of the sphere, the induced orientation
of the boundary agrees with that of α. If α and β are two simple closed
contractible curves with D(β) ⊂ D(α), then let A(α, β) = A(β, α) de-
note the annulus between α and β, that is, D(α) with the interior of
D(β) removed. If β is a constant curve, then we extend the definition
of A(α, β) to denote D(α).

Definition 1.1. Let (M, g) be a Riemannian annulus with bound-
aries γ0 and γ1, and let H : S1 × [0, 1]→M be a homotopy between γ0
and γ1, that is, a smooth map such that H(t, 0) = γ0 and H(t, 1) = γ1.
We will say that H is monotone if every intermediate curve γτ := H(t, τ)
is a simple closed curve parameterized by t, and if the closed 2-annuli
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A(γτ , γ1) ⊆ M satisfy the inclusion A(γτ2 , γ1) ⊂ A(γτ1 , γ1) for every
τ1 < τ2. In this definition, γ0 and γ1 can be constant curves or simple
closed curves.

A monotone contraction of a Riemannian 2-disc is a monotone ho-
motopy from its boundary to a constant curve. We say that such a
monotone homotopy is outward if D(γ0) ⊂ D(γ1), and is called inward
if D(γ1) ⊂ D(γ0).

We prove the following two theorems, the first of which was a conjec-
ture by Chambers and Rotman [9, Conjecture 0.2].

Theorem 1.2. Suppose that (D, g) is a Riemannian disc, and sup-
pose that there is a contraction of ∂D through curves of length less
than L. Then there is a monotone contraction of ∂D through curves of
length less than L.

The techniques involved in the proof of this theorem also apply1 in
the setting of a Riemannian annulus and a homotopy between its two
boundaries through curves of length less than L, yielding a monotone
homotopy through curves of length less than L.

The second theorem concerns a similar monotonicity result for sweep-
outs of 2-spheres. A sweepout of a Riemannian 2-sphere is a map
f : S1×S1 → S2 of degree 1. We can regard a sweepout as a 1-parameter
family of connected closed curves f(t, ·) parametrized by t ∈ S1. These
curves might have self-intersections as well as pairwise intersections.

Theorem 1.3. Suppose that (S2, g) is a Riemannian 2-sphere, and
suppose that f is a sweepout of it composed of curves of length less
than L. Then there exists a diffeomorphism from the round sphere
(S2, round) = {(x, y, z) : x2+y2+z2 = 1} to (S2, g) such that the length
of the image of each parallel {(x, y, z) : z = constant} ∩ (S2, round) is
less than L.

The proof of this result holds also if we assume only that there exists
such a map of odd degree (which is not necessarily equal to 1).

Background and related work. These theorems have numerous ap-
plications to metric geometry, and to applied topology. In terms of met-
ric geometry, Theorem 1.2 improves known estimates of the lengths of
the shortest geodesics between pairs of points on Riemannian 2-spheres
from [11] and [13]. In particular, the two authors prove that there are
at least k geodesics joining any two points on a Riemannian 2-sphere
of length at most 22kd, where d is the diameter of the 2-sphere (if the
two points agree, then this improves to 20kd). These results improve
these bounds to 16kd and 14kd respectfully, and also greatly decrease
the complexity of the proofs in [11] and [13].

1The proof is even simpler in that case, since case b of Proposition 2.8 never
occurs.
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These results also allow the results from [12] to be generalized to
the free loop space of a Riemannian 2-sphere; a map from Sm → ΛM ,
where M is a Riemannian 2-sphere and ΛM is the set of closed curves
in M , can be homotoped to a map f̃ : Sm → ΛM consisting of curves of
lengths bounded by %(m, k, d), with % being an explicit function, d being
the diameter of M , and k being the number of distinct non-trivial pe-
riodic geodesics of M with length at most 2d. In [12], Nabutovsky and
Rotman proved the analogous statement for maps into the space of sim-
ple closed curves based at a fixed point; our results allow this restriction
to be removed. For more details, we refer to Chambers and Rotman [9,
Section 0.1]. Of special note is that Theorem 1.2 directly implies that,
if the boundary of a Riemannian disc is contractible through curves of
length less than L, then for any point q on the boundary of the disc,
the boundary is contractible to the point q through loops based at q
of length less than L + 2d. Here, d is the diameter of the Riemannian
2-disc.

The sweepouts described in Theorem 1.3 appear in minimal surface
and min-max literature. In [8], Chambers and Liokumovich show that
if there is a sweepout of a Riemannian 2-sphere through curves of length
less than L, then there is a sweepout of the same Riemannian 2-sphere
through simple closed curves and constant curves of lengths less than L.
They then use this result to answer a question of Freedman about the
minmax levels with respect to different classes of sweepouts. Our the-
orem is an improvement on this result, proving that such a sweepout
can be simplified to not only consist of curves which do not have self-
intersections (other than constant curves), but to consist of such curves
which are (mostly) pairwise disjoint as well.

From the computational topology literature, much recent work has
focused on computing a “best” homotopy between two curves as a means
of measuring similarity of the curves or determining optimal morphs
between them [4, 6, 10]. The main goal in this setting is to determine
the computational complexity of such a problem in the most common
settings, generally where the two curves are in the plane (possibly with
obstacles) or on a meshed surface, as typically produced by surface
reconstruction algorithms.

The type of optimality we study in this work has been investigated in
a combinatorial setting, where it was called the “height” of the homo-
topy [2, 3, 10], and in the graph theoretic setting, where it was called
a “b-northward migration” [1]. However, the exact complexity of this
problem remains open, and both papers include a conjecture that the
best such morphings will proceed monotonically. The monotonicity re-
sult we present in this paper is a key ingredient in showing that this
problem lies in the complexity class NP [5].
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Figure 1. A counter-example to Conjecture 0.3 of
Chambers and Rotman [9].

Finally, Chambers and Rotman formulated another conjecture [9,
Conjecture 0.3] on monotonicity, where the initial curve is not the
boundary of the disc. We say that a monotone contraction covers a
simple closed curve γ if γ is contained in the disc which is the image
of that contraction. They conjectured that if M is a Riemannian sur-
face and γ a simple closed curve contractible through curves of length
less than L, then there is a monotone contraction covering γ through
curves of length less than L. We observe that this conjecture is false by
exhibiting the counter-example in Figure 1.

In that example, the underlying surface is an annulus, and the metric
is the Euclidean one, except for two mountains, one taller than the other
one. The initial closed curve γ lies as shown in the first picture, half-way
up the tall mountain from both sides. An optimal contraction is pictured
in the following two pictures; it first climbs down the tall mountain for
both sides of the curve in order to reduce the length, before climbing
over the smaller one. On the other hand, any monotone contraction
covering γ must start at a closed curve α that also lies half-way up the
tall mountain from both sides. Then, by monotonicity, only one side of
the curve can climb down the tall mountain. Therefore, the maximum
length of the curves in such a monotone contraction will need to be
strictly larger than for a non-monotone one.

Acknowledgments. This work was partially supported by NSF grants
CCF-1614562 and CCF-1054779, NWO project no. 639.023.208, ANR
project ANR-16-CE40-0009-01 (GATO), NSERC Discovery Grant RG-
PIN 217655-13, and NSERC Postdoctoral Fellowship PDF-487617-2016.

2. Preliminaries

We begin by recalling several definitions. A Riemannian disc is a
closed smooth 2-dimensional Riemannian manifold with boundary that
is diffeomorphic to a closed unit disc D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}
with a smooth Riemannian metric; throughout this article, we will call

jdg5081.tex; 2021/04/16; 14:20 p. 4
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this simply a “disc”. A Riemannian annulus is a 2-dimensional smooth
Riemannian manifold with boundary that is diffeomorphic to an annulus
{(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4} endowed with a smooth Riemannian
metric; throughout this article, we will refer to such a manifold with
boundary simply as an “annulus.” A closed curve in a smooth manifold
with boundary M is a smooth map from S1 to M ; a simple closed curve
is a closed curve which is injective. An arc in a smooth manifold with
boundaryM is a smooth map from [0, 1] to M ; an arc of a closed curve in
M is simply the restriction of the smooth map from S1 to M to a closed
subinterval of S1. A homotopy of curves in a smooth manifold with
boundary M is a smooth map H : [0, 1] × S1 → M . We remark that,
at several points in this article, we will form a new curve taking a curve
and replacing an arc of that curve with a new arc. This will create at
most two points which are not smooth, however, the resulting curve can
be replaced by a smooth curve with length increased an arbitrarily small
amount, and such that the new curve agrees with the old curve outside
of balls of arbitrarily small radii centered at the two singular points. If
the original curve is simple, then the new, smooth, curve is also simple.
In this article, we implicitly assume that this smoothing procedure is
executed whenever we execute such a cut-and-paste operation; we don’t
explicitly mention it to simplify the exposition.

Throughout the article, a closed curve γ in a Riemannian annulus A
is called a minimizing geodesic if it is essential (homotopic to one of the
boundaries), and its length is minimal among the essential curves.

Definition 2.1. A zigzag Z is a collection of homotopies H1, . . . ,Hn

with the following properties:

1) Hi(1) = Hi+1(0)
2) Hi alternates between outward and inward monotone homotopies,

i.e., each of the Hi is a monotone homotopy, but for any i ∈
{1, . . . , n− 1}, the concatenation of Hi and Hi+1 is not.

We define γ0 = H1(0) and γi = Hi(1) for 1 ≤ i ≤ n.
Each Hi goes from γi−1 to γi. We define the order of Z, ord(Z), to

be n.

We will also need the following definitions and a theorem from the
article of Chambers and Rotman [9].

Definition 2.2 ([9, Definition 0.6]). Let α : [0, 1] −→ M and β :
[0, 1] −→M be two simple closed curves in a Riemannian manifold M .
If every two points of intersection between α and β are consecutive on α
if and only if they are consecutive on β, then α and β are said to satisfy
the simple intersection property.

When α, β defined in 2.2 do not satisfy the simple intersection prop-
erty, we will say that they are meandering with respect to each other.

jdg5081.tex; 2021/04/16; 14:20 p. 5
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∂D

α
β

∂D

α
β

λ

αi Di

(a) (b)

Figure 2. Meandering curves.

Definition 2.3. Let α and β be two simple closed curves in a
closed topological 2-disc D. Let αi = α|[ti,ti+1] be an arc of α, such
that the interior of the arc does not intersect β, while its endpoints
α(ti), α(ti+1) ∈ β. Then these points subdivide β into two arcs. Let
λ be an arc that together with αi bounds a disc in the closed annulus
A(∂D, β(t)) between ∂D and β. Then we will call λ a corresponding
arc. We will refer to the disc Di with the boundary αi ∪ λ as a corre-
sponding disc. (See fig. 2 (b), where the disc that corresponds to arc
αi is shaded.) Note that α and β may intersect an infinite number of
times; this definition still holds.

We first prove that any (non-monotone) homotopy can be approxi-
mated by a zigzag.

Proposition 2.4. Suppose that there is a contraction of ∂D through
curves of length less than L. Then there exists a zigzag of order n such
that γ0 = ∂D and γn is a constant curve, and such that all curves of all
homotopies have length less than L.

Proof. First, by a result of Chambers and Liokumovich [7, Theo-
rem 1.1], we know that there exists a contraction of ∂D through simple
closed curves of length less than L.

We say that a corresponding disc between two arcs α and α′ is δ-
thin if the homotopic Fréchet distance between the two curves is less
than δ, where the homotopic Fréchet distance between two curves is
defined by considering all homotopies H : [0, 1] × [0, 1] → D from
H(·, 0) = α to H(·, 1) = α′ (up to reparametrizations), and taking
infH sups∈[0,1] length(H(s, ·)). In other words, for each homotopy from α

to α′ (allowing reparametrizations), we consider the length of the longest
curve H(s, ·) in that homotopy; taking the infimum of this quantity over
all of these homotopies yields the homotopic Fréchet distance [4]. Sim-
ilarly, an annulus A(α, β) is δ-thin if the two boundary curves have
homotopic Fréchet distance less than δ. Now, we consider a discretized

jdg5081.tex; 2021/04/16; 14:20 p. 6
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contraction H; we consider an increasing sequence of n values t1, . . . , tn
in [0, 1] so that

• t0 = 0 and H(0) = ∂D,
• H on [ti, ti+1] is a homotopy through curves of length less than L,
• tn = 1 and H(1) is a constant curve, and
• for 0 ≤ i ≤ n − 1, if H(ti) and H(ti+1) intersect, they have the

simple intersection property and the corresponding discs are δ-
thin, for δ to be determined later. If they do not intersect, the
annulus A(H(ti), H(ti+1)) is δ-thin.

We begin with the original contraction H̃ produced by the theorem of
Chambers and Liokumovich. Without loss of generality, we may assume
that the only constant curve in the contraction occurs at t = 1. If this is
not the case, then we choose t0 to be the smallest element of [0, 1] such

that H̃(t0) is a constant curve, and we apply the rest of the argument

to the contraction formed by restricting H̃ to [0, t0].

Next, we select t∗ ∈ (0, 1) sufficiently large so that H̃(t∗) can be

contracted in D(H̃(t∗)) through disjoint closed curves of length less
than L, which are all simple except for the final constant curve. Let
this contraction of H̃(t∗) be denoted by K : [t∗, 1]× S1 → D.

Since H is smooth and the interval [0, t∗] is compact, there is a δ > 0
and an ε > 0 such that, for every s1, s2 ∈ [0, t∗], if |s1 − s2| < ε,

then H̃(s2) is contained in the δ-tubular neighborhood of H̃(s1). Fur-

thermore, there are parametrizations γ1 and γ2 of H̃(s1) and H̃(s2),
respectfully, such that γ2(x) = γ1(x) + f(x)v(x), where v(x) is the out-
ward unit vector to γ1, and f(x) is a real number with |f(x)| < δ (note

that outward is with respect to D(γ1)). Due to this property, if H̃(s1)

and H̃(s2) do not intersect, then A(H̃(s1), H̃(s2)) is δ-thin, and if they
do intersect, then they have the simple intersection property, and the
corresponding discs are all δ-thin.

To complete the proof, let n = d t∗ε e, and take our discretized sequence

to be ti = i t
∗

n for i ∈ {0, . . . , n}, and the contraction H is defined as

H = H̃ on [ti, ti+1] for all i ∈ {0, . . . , n − 1}. Since K is monotone,
we can find a sufficiently large positive integer m so that setting ti =
t∗ + (i− n)1−t

∗

m for i ∈ {n, . . . , n+m}, and setting H = K on [ti, ti+1]
for i ∈ {n, . . . , n+m− 1} completes the proof.

Now, if H(ti) and H(ti−1) intersect, for each 0 < i < n, we define
an auxiliary curve H(ti)

f from H(ti): H(ti)
f is obtained from H(ti)

by considering all of the arcs of H(ti) in D(H(ti−1)) and replacing the
other ones by the arcs they correspond to in H(ti−1). Then we claim
that there are monotone homotopies between H(ti) and H(ti)

f , and
between H(ti)

f and H(ti+1) such that the intermediate curves have
length less than L. Indeed, one can go from one to the other using
monotone homotopies that interpolate within the corresponding discs,

jdg5081.tex; 2021/04/16; 14:20 p. 7
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α1
α̃

α

Figure 3. Construction of α̃.

and if δ is chosen small enough, this interpolation can be done with
an arbitrarily small overhead on the lengths of the curves. If H(ti)
and H(ti−1) do not intersect, for δ small enough, the δ-thin assumption
implies that there exists a monotone homotopy between H(ti−1) and
H(ti), such that the intermediate closed curves have length less than L.

Gluing together all of these monotone homotopies, we obtain a zigzag
with curves of length at most L. q.e.d.

One of our main technical tools is a technique to modify a monotone
homotopy when it crosses a minimizing geodesic. The general setting
is when we have a monotone homotopy H between two curves α0 and
α1, and α is a third simple closed curve that is a minimizing geodesic
in A(α, α0). Then we can use α to “shortcut” the homotopy H. De-
pending on the relative positions of α1, there are three variants of this
shortcutting argument, leading to three different outcomes: they are
summarized in the following proposition.

Proposition 2.5. Let H be a monotone homotopy between simple
closed curves α0 and α1 such that the intermediate curves have length
less than L and let α be another simple closed curve, disjoint from α0

and such that α is a minimizing geodesic in A(α0, α). Then:

1) If α is entirely contained and essential in A(α0, α1), then there
exists a monotone homotopy between α and α1 where the interme-
diate curves have length less than L.

2) If α is entirely contained and non-essential in A(α0, α1), then there
exists a monotone homotopy between α and a constant curve p
where p is a point on α, and where the intermediate curves have
length less than L.

3) If α has the simple intersection property with α1, then if we denote
by α̃ the curve obtained from α1 by replacing segments of α1 in
A(α0, α) with the corresponding arcs (see Figure 3), there exists
a monotone homotopy between α and α̃ where the intermediate
curves have length less than L.

Although not explicitly stated in Chambers and Rotman [9], the first
case of this Proposition is implicit in the proof of their Theorem 0.7.

jdg5081.tex; 2021/04/16; 14:20 p. 8
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More precisely, their proof is divided in two steps, and this is the result
obtained in Step 1. The proof of the other two cases of Proposition 2.5
also follows closely the arguments of the proof of Theorem 0.7. For the
sake of completeness, we include the full proof below.

Proof. The general idea is that in all three settings one can take each
intermediate curve of the homotopy H and replace the portions that
are outside of the target annulus using α. More precisely, if we denote
by (αt)t∈[0,1] the curves of the homotopy H, we do the following in each
case:

1) Let t0 denote the first time t that αt intersects α. Then for all
t ≥ t0, we replace in each curve αt the segments that are in the
interior of the annulus A(α0, α) with their corresponding arcs and
consider the family A of the closed curves (αt)t∈[t0,1].

2) Let t0 and t1 denote respectively the first and last time t that αt
intersects α. Then for all t0 ≤ t ≤ t1, we replace in each curve αt
the segments that are in the interior of the annulus A(α0, α) with
their corresponding arcs. Note that αt1 is a contractible curve
of α (viewed as a set), and can thus be contracted to a point
p ∈ α while monotonically decreasing its length. This contraction
is realized through curves (αt)t∈[t1,1]. We now consider the family
A of closed curves (αt)t∈[t0,1].

3) Let t0 denote the first time t that αt intersects α. Then for all
t ≥ t0, we replace in each curve αt the segments that are in the
interior of the annulus A(α0, α) with their corresponding arcs and
consider the family A of the closed curves (αt)t∈[t0,1]. Note that
the new α1 coincides with α̃.

Now, the rest of the proof is the same in all three cases. Since α is
minimizing in A(α0, α), the corresponding arcs are always shorter than
the arcs that they replace. Thus, the families A that we obtain contain
intermediate curves of length less than L. Furthermore, αt0 and α1 are
the starting and ending curves of the target homotopy in all three cases.
However, the families A fail to be monotone homotopies because they
are neither homotopies (there can be discontinuities) nor monotone (the
curves are not even simple). The first issue is solved by interpolation
and the second one by perturbation.

Discontinuities only appear at times t when the intersection between
αt and α is not transversal. Figure 4 depicts such a situation. Here αt2
touches α at point Q. There are two ways to replace the segments of αt2
in the neighborhood of Q, (see Figure 5 (a) that depicts this situation
locally). One way is to replace the segment of αt2 that connects the
points Q1 and Q2 that lies in the annulus A(α0, α) by the path P1,
(see Figure 5 (b)). Let us call this replacement the type 1 replacement.
Another way is depicted in Figure 5 (c). Here we replace the segment
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Q

α

αt1

αt3
αt2

Figure 4. Discontinuities might occur. . . .

(a) (b) (c)

αt2

Q1 Q2

α

P1 P2Q
β̄

β

Figure 5. . . . but they can be fixed by interpolating with
a path homotopy.

of αt2 that connects Q1 and Q2 by P2. P2 is a path that consists of two
paths: the first one replaces the segment of αt2 that connects Q and Q2,
while the second one, β, replaces the segment of αt2 that connects Q1

and Q. Let us call this replacement the type 2 replacement. Since our
procedure only replaces segments in the interior of the annulus A(α0, α)
with their corresponding arcs, it always chooses the type 2 replacement.

Now, there is only one way to replace the relevant part of αt1 , with
a curve that is close to αt2 and is contained in A(α0, αt2) (Figure 4).
If we want the procedure to result in a homotopy, this fits well with
our choice of type 2 replacement on αt2 . On the other hand, there is
also only one type of replacement that can be performed on αt3 , with a
curve that is close to αt2 and is contained in A(αt2 , α1). And as t3 goes
to t2, this converges into a type 1 replacement for αt2 . Hence, we have a
discontinuity at t2. To avoid this discontinuity, note that P2 = β ∗ β̄ ∗P1

(see Figure 5 (c)). Here, β̄ denotes the path β traversed in the opposite
direction, and a∗b denotes the curve formed by concatenating the curves
a and b. Therefore, P1 and P2 can be connected by the obvious length
non-increasing path homotopy, which amounts to contracting β∗β̄ toQ1.
This path homotopy extends to a homotopy between the two curves
derived from the two replacement choices for αt2 . Thus, including the
homotopy between the two different resulting curves corresponding to
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type 1 and type 2 replacements solves the discontinuity problem at
time t2. Doing so for each time t when the intersection between αt and
α is not transverse makes A into a homotopy between αt0 and α1.

Finally, observe that while the curves in the homotopy A may not be
simple, they do not feature transversal intersections, since the shortcut-
ting procedure replaces all the segments outside of the annulus A(α0, α)
by their corresponding arcs. Furthermore, since H was a monotone
homotopy, there was no transverse intersection between αt and αt′ for
t 6= t′ before the replacement procedure, and thus by the same argu-
ment there are none afterwards either. Now, by applying an arbitrarily
slight perturbation to all of the curves in A in a continuous way, we
can make all the curves simple while still having no transverse intersec-
tion pairwise and all having length less than L. This yields a monotone
homotopy and concludes the proof. q.e.d.

The proof of Theorem 1.2 relies on Propositions 2.6 and 2.8, which
allow us to modify small portions of zigzags. The first one follows rather
directly from Proposition 2.5, but the second one requires more work.
The proof of Theorem 1.3 relies on Proposition 2.8 and a small variant
of Proposition 2.6, which is stated in Proposition 2.9.

Proposition 2.6. Suppose that Z is an order 2 zigzag through curves
of length less than L. If γ1 is not a minimizing geodesic in A(γ1, γ2),
and if a minimizing geodesic γ in this annulus also lies in the interior
of A(γ0, γ1) and is essential in it, then there is a zigzag Z ′ where the
intermediate curves have length less than L and such that

1) ord(Z ′) = 2.
2) γ′1 minimizes in A(γ′1, γ

′
2).

3) γ′0 = γ0, γ′1 = γ, and γ′2 = γ2.

Suppose that Z is an order 2 zigzag where the intermediate curves
have length less than L, and that γ0 is a minimizing geodesic in
A(γ1, γ2), or that γ2 is a minimizing geodesic in A(γ0, γ1). Then there
is an order 1 zigzag Z ′ (i.e., a monotone homotopy) through curves of
length less than L and such that γ′0 = γ0, and γ′1 = γ2.

Proof. The first part of the proposition follows from two applications
of Proposition 2.5(1). We first apply it to the reversal of the homotopy
H1 and the curve γ, and then to the homotopy H2 and the curve γ. This
yields two new homotopies H ′0 and H ′1, going respectively from γ0 to γ
and from γ to γ2; their concatenation satisfies the needed properties.

For the second part of the proposition, let us first deal with the
first case where γ0 is a minimizing geodesic in A(γ1, γ2). Then one
application of Proposition 2.5(1) to the homotopy H2 and γ0 yields the
homotopy from γ0 to γ2. The other case is obtained by applying the
theorem to the reversal of H1 and γ2 instead. q.e.d.
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Lemma 2.7. Suppose that Z is a zigzag of order 2, and that γ0 is a
minimizer in A(γ0, γ1). Then there exists an essential curve γ which is
a minimizer in A(γ1, γ2), and which has the simple intersection property
with γ0.

Proof. We begin by choosing an essential minimizing curve α in
A(γ1, γ2). Let % be a segment of γ0 whose endpoints are intersections
between α and γ0, and whose interior is contained in the interior of
A(γ1, α). Let the endpoints of % be %(0) and %(1).

From α and % we can define two auxiliary curves: one which goes from
%(0) to %(1) following α and then back to %(0) along %, and one which
goes from %(1) to %(0) following α and then back to %(1) along %. Let
the first curve be β1, and let the other one be β2. Note that both β1 and
β2 are contained in A(γ1, α) and are simple closed curves. Thus, in this
annulus, exactly one of β1 or β2 is essential; without loss of generality,
we may assume that it is β1. Since β2 is not essential, it bounds a disc
within A(γ1, α) which we call by a slight abuse of language its interior.
If % lies in the boundary of a portion of the interior of β2 outside of
A(γ0, γ1), as in the middle picture of Figure 6 then we do nothing.

If % lies on the boundary of a portion of the interior of β2 inside
of A(γ0, γ1), as in the right picture of Figure 6, we claim that β1 has
total length not greater than that of α. Indeed, let us first build an
auxiliary closed curve in the following way: take all the segments Σ of
β2 that lie in the interior of A(γ0, γ1) and have their endpoints on γ0.
The segments in Σ are also segments of α, and since γ0 is a minimizing
geodesic in A(γ0, γ1), any σ ∈ Σ is at least as long as its corresponding
arc on γ0. The closed curve α′ is obtained by replacing all the segments
in Σ from α by their corresponding arcs on γ0; it is not longer than α.
Now, α′ may not be simple, in particular there may be double points
on %(0) or %(1). Such a double point α′(t1) = α′(t2) for t1 6= t2 cuts α′

into two subcurves, one of which, say α′|[t1,t2], is contractible in A(γ1, γ2).

One can shortcut α′ even more by removing such a contractible portion,
i.e., replacing α′ by the closed subcurve α′|[t2,t1]. After removing all these

contractible subcurves, we obtain the curve β1, which is by construction
not longer than α′ and thus not longer than α.

We now build γ in the following way. Since γ0 has bounded length,
there are countably many segments of γ0 which satisfy the above prop-
erties. Let these segments be %1, %2, . . . ; we apply the above procedure
to α = ω0 and %1 to obtain a curve ω1. If a segment of γ0 satisfies the
above properties with respect to ω1, then it also satisfies those proper-
ties with respect to ω0 (= α). If %2 is still one of these segments, then
we apply the procedure to ω1 and %2 to form ω2. We continue to do this
for all %i to form a sequence of curves ω1, ω2, . . . . All of these curves are
minimizers in A(γ1, γ2), and so all lie in this annulus, all are smooth,
and all have length bounded by L. By the Arzelà-Ascoli theorem, there
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γ0
γ1

α

γ2

%
β2 β1 β1

β2
%

Figure 6. The different curves in the proof of
Lemma 2.7. For the % in the middle diagram, we do
nothing, while for the % in the right diagram we can
shortcut α by replacing it with β1.

is a curve to which these curves converge; we let this curve be γ. γ is
still a minimizer in A(γ1, γ2), and γ has the simple intersection property
with γ0. If it did not have the simple intersection property with γ0, then
there is a segment % of γ0 whose endpoints are also in γ, whose interior
is contained in the interior of A(γ1, γ), and which produces a β1 and a
β2 which are in the second case. However, then % = %i ∈ {%1, %2, . . . },
and so % = %i would not satisfy the above properties with respect to ωi,
and so it would also not satisfy the above properties with respect to γ,
yielding a contradiction. q.e.d.

Proposition 2.8. Suppose that Z is a zigzag of order 3 where the
intermediate curves have length at most L and such that γ1 is a mini-
mizing geodesic in A(γ1, γ2), but is not a constant curve.

Then one of the following two cases is true:
Case a. There is a zigzag Z ′ of order 3 such that

1) γ′0 = γ0, γ′3 = γ3, and γ′2 = γ2.
2) There exists a minimizing geodesic γ ∈ A(γ′2, γ

′
3) which is fully

contained in the interior of A(γ′1, γ
′
2).

3) γ′1 is a minimizing geodesic in A(γ′1, γ
′
2).

4) All curves in Z ′ have length less than L.

Case b. There exists a zigzag Z ′ of order 1 such that

1) γ′0 = γ0.
2) γ′1 is a constant curve.
3) All curves in Z ′ have length less than L.

Proof. We begin by applying Lemma 2.7 to the order 2 zigzag from γ1
to γ2 to γ3 to obtain an essential minimizing geodesic γ in A(γ2, γ3)
which has the simple intersection property with γ1.

If γ lies in A(γ1, γ2), and is essential in this annulus, then we are done
as Case a is satisfied.

We now divide the remainder of the proof into two cases:
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(i) If γ is not entirely contained in A(γ1, γ2), we will show that case
a. holds.

(ii) If γ is contained in A(γ1, γ2), and is non-essential there, we will
show that case b. holds.

Case (i) Suppose that γ is not entirely contained in A(γ1, γ2). Note
that one can always modify the homotopy H3 to obtain a new monotone
homotopy H ′3 between γ2 and γ3, such that the lengths of the curves in
H ′3 are less than L and γ is one of the curves of H ′3. One achieves this by
applying Proposition 2.5(1) to the reversal of the homotopy H3 and γ,
and then to H3 and γ and concatenating the two resulting homotopies.
Thus, without loss of generality, we assume that γ = (H3)t for some
t ∈ [0, 1].

Since γ is not entirely contained in A(γ1, γ2), the new zigzag Z ′ is
obtained in the following manner. We define a new curve γ̃ by replacing
the segments of γ in A(γ1, γ2) with the corresponding segments of γ1.
Then, using Proposition 2.5(3) on H3 and γ1, we form an auxiliary

monotone homotopy H̃ from γ1 to γ̃.
To form our new homotopy, we append the homotopy H̃ to the end

of H1, and we append H̃ in reverse direction to the beginning of H2.
Clearly, properties 1 and 4 are satisfied.

Property 2 follows from the fact that γ and γ1 have the simple inter-
section property.

To prove property 3, we fix any essential curve γ′ in A(γ′1, γ
′
2). If

we replace segments of γ′ which lie in A(γ1, γ2) with segments of γ1,
then replace segments of the resulting curve which lie in A(γ′2, γ) with
segments of γ, we obtain γ̃ = γ′1. This procedure does not increase the
length, so this shows that the length of γ′ is greater than or equal to
the length of γ′1, completing the proof.

Case (ii) Suppose that γ is contained in A(γ1, γ2), and is non-essential
in it. In this case, the disc bounded by γ does not intersect the disc
bounded by γ1. Thus, by monotonicity, the homotopy H3 “sweeps”
D(γ1) completely. Thus we are in the situation to apply case (2) of

Proposition 2.5 to the homotopy H3 and γ1. This yields a homotopy H̃
between γ1 and a point p on γ1. We then concatenate H̃ to the end of
H1 to form H ′1. Clearly, both properties are satisfied. q.e.d.

Proposition 2.9. Suppose that Z is a zigzag of order 2 on a Rie-
mannian sphere such that all curves have length less than L, and such
that γ0 is a constant curve, but γ1 and γ2 are not constant curves. Fur-
thermore, assume that the orientation of the sphere is such that the discs
bounded by curves close to γ0 in the first monotone homotopy are close
to the image of γ0. Then there exists an order 2 zigzag Z ′ where γ′0 is
a constant curve in D(γ1), γ

′
2 = γ2, and γ′1 is a minimizing geodesic in

A(γ′1, γ
′
2).
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Proof. Let γ be a minimizing geodesic in A(γ1, γ2). There are two
possibilities:

1) γ0 is contained in both D(γ1) and D(γ).
2) γ0 is contained in exactly one of D(γ1) and D(γ).

If the first condition is true, then the conclusion follows from Proposi-
tion 2.6. If the second condition is true, then H1 “sweeps” D(γ), and we
apply case (2) of Proposition 2.5 to the reversal of H1 and γ to obtain
a monotone homotopy from γ to a point. Furthermore, applying case
(1) of Proposition 2.5 to H2 and γ yields a monotone homotopy from γ
to γ2. Concatenating these gives the result. q.e.d.

3. Proof of Theorems 1.2 and 1.3

We first find a zigzag which starts at the boundary of the Riemannian
disc, ends at a constant curve, and traverses curves of length less than
L which minimizes the order of the zigzag.

Proposition 3.1. Suppose that there exists a contraction of ∂D
through curves of length less than L. Then there is a zigzag Z of finite
order, which consists of curves of length less than L, and which begins
on ∂D, and ends at a point. Furthermore, for every zigzag Z̃ with these
properties, the order of Z̃ is greater than or equal to the order of Z.

The proof follows directly from Proposition 2.4, and from the fact
that the order of a zigzag is a positive integer. We will need one more
lemma before we can prove our two theorems.

Lemma 3.2. Suppose that Z is a zigzag of order n ≥ 2 through curves
of length less than L, and suppose that at most the initial and final
curves are constant. Suppose further that γ1 is a minimizing geodesic
in A(γ1, γ2). Then one of the following is true. First, there exists a
zigzag Z ′ of order n with γ′0 = γ0 and γ′n = γn, every γi is a minimizing
geodesic in A(γi, γi+1) for all i ∈ {1, . . . , n − 1}, and some minimizing
geodesic in A(γi+1, γi+2) is contained and essential in A(γi, γi+1) for all
i ∈ {1, . . . , n− 2}. Second, there exist two zigzags, Z ′1 and Z ′2 of orders
m1 > 0 and m2 > 0 with m1 + m2 = n through curves of length less
than L, and such that the first curve of Z ′1 is equal to the first curve of
Z, the last curve of Z ′2 is equal to the last curve of Z, the last curve of
Z ′1 is a constant curve, and the first curve of Z ′2 is equal to the same
constant curve.

Proof. We will prove this lemma by induction on n, and by using
Proposition 2.8 and Proposition 2.6. If n = 2, there is nothing to prove.
If n = 3, then we apply Proposition 2.8 to Z, followed by applying
Proposition 2.6 to the final order 2 zigzag. If, during the process, we
produce a zigzag of smaller order which ends at a constant curve, then
we terminate this procedure.
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For the inductive step, we first apply the induction hypothesis to the
order n−1 zigzag at the beginning of Z. If we obtain a zigzag of smaller
order which ends at a constant curve, then we are in the second case
of the lemma and we are done. Otherwise, we obtain a new zigzag Z ′

where γn−2 is a minimizing geodesic in A(γn−2, γn−1). Thus we are in
a position to apply Proposition 2.8 to the order 3 zigzag at the end of
Z ′, from γn−3 to γn. If we are in case b of that proposition, we are done
since we obtain a zigzag of smaller order ending at a constant curve.

Otherwise, we obtain a new zigzag, which we replace into Z ′ to
yield Z ′′. Since γn−2 may have moved in the last step, it may be the case
that γn−3 is not a minimizing geodesic in A(γn−3, γn−2) anymore. In
order to fix this, we apply the induction hypothesis once again, this time
to the n− 2 zigzag at the beginning of Z ′′, yielding yet another zigzag
Z ′′′ (once again, we are done if we are in the second case of the lemma).
Since γn−2 and γn−1 have not been changed in this last step, we still have
that γn−2 is a minimizing geodesic in A(γn−2, γn−1), and some minimiz-
ing geodesic in A(γn−1, γn) is contained and essential in A(γn−2, γn−1).
Now, either γn−1 is a minimizing geodesic in A(γn−1, γn) and we are
done, or we can apply Proposition 2.6 to the final order 2 zigzag of Z ′′′.
The resulting zigzag fulfills all the properties of the lemma. q.e.d.

We now have all the tools to prove our main theorems.

Proof of Theorem 1.2. Let Z be a zigzag which satisfies the conclusion
of Proposition 3.1. If the order of Z is equal to 1, then the proof is
finished. As such, assume that ord(Z) > 1. Since the zigzag must
end at a constant curve, ord(Z) ≥ 3. We may further assume that
no other curve in the zigzag is a constant curve. Additionally, since
γ0 = ∂D, A(γ1, γ2) is contained in A(γ0, γ1). As a result, we can apply
Proposition 2.6 to replace Z with a zigzag with the property that γ1 is
minimizing in A(γ1, γ2) (this also uses the fact that we cannot produce
a zigzag of shorter order from ∂D to a constant curve). As a result, we
may assume that Z has this property.

We now apply Lemma 3.2 to Z. Since we cannot find a zigzag of
smaller order which begins at ∂D and ends at a constant curve, the
result is an order n zigzag satisfying the conclusions of the lemma. In
particular, γn−1 must be a minimizing geodesic in A(γn−1, γn), but must
not be a constant curve. However, γn is a constant curve, and so γn−1
must also be constant, having length 0. This is a contradiction, com-
pleting the proof. q.e.d.

We can use a very similar technique to prove Theorem 1.3:

Proof of Theorem 1.3. To prove Theorem 1.3, we proceed in a similar
way. We first apply Theorem 1.2 from [8], which tells us that we can
replace our sweepout f of our Riemannian sphere (S2, g) of curves of
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length less than L by a sweepout which contains only simple closed
curves and constant curves. Let this sweepout be parametrized by
[0, 1], where 0 and 1 are mapped to the same constant curve. Since
it is smooth, we can find a finite number of subintervals I1, . . . , Ik of
[0, 1] such that the boundaries of Ii are mapped to constant curves, the
interior of Ii is mapped to simple closed curves, and the degree of the
map of f restricted to Ii is di 6= 0. Furthermore, the sum of all of the
degrees of these maps is equal to 1, the degree of the map. As a result,
there is at least one such map that has odd degree.

We now apply Proposition 3.1 to this map to produce a zigzag which
starts and ends at constant curves, and contains no other constant
curves. Since this zigzag is homotopic to the original map, it also has
odd degree. Let Z be a minimal zigzag of odd degree on the sphere
which begins and ends at a constant curve, and only passes through
simple closed curves, and which has minimal order.

If Z has order one, we are done. Otherwise, Z has order at least 3,
and we first apply Proposition 2.9, and then Lemma 3.2 to Z; if we can
divide it into two zigzags (the second possibility of the lemma), then the
concatenation is homotopic to Z, and so has odd degree as a map, and
so one of the zigzags must have odd degree as a map but order smaller
than n, which contradicts the minimality of the order of Z. If we are
in the first conclusion of Lemma 3.2, then the result is homotopic to
Z, and so has odd degree as a map. As in the proof of Theorem 1.2,
γn−1 must be a constant curve, as it must be a minimizing geodesic in
A(γn−1, γn), and γn is a constant curve with length 0. Thus, the degree
of the last segment of Z is 1, which contradicts the minimality of the
order of Z. This completes the proof. q.e.d.
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