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Abstract10

This study examines the impact of carpool on network traffic in a highly idealized fu-11

turistic world, where all travelers are willing to participate in carpool arranged by a Trans-12

portation Network Company. We build a parsimonious carpool model that focuses on the13

trade-off between inconvenience costs and travel cost savings. Underlying the model is a non-14

linear bipartite matching problem that seeks to maximize commuters’ welfare. By assuming15

the congestion effect is negligible, we derive several useful analytical results. When the in-16

convenience cost is less than the median trip valuation of a rider, the platform could always17

achieve an almost perfect match while maximizing commuters’ welfare, which corresponds18

to a 50% reduction in vehicular traffic flow. In the case of perfect match, if there is an even19

number of travelers, we propose a pricing policy that possesses all desired properties of the20

Vickrey-Clark-Groves (VCG) policy–a benchmark truthful policy for achieving socially opti-21

mal solution–but runs a lower deficit. Otherwise, we show the VCG policy always generates22

a profit. If the inconvenience cost is too high, the perfect match is no longer socially opti-23

mal, but the VCG policy still yields a positive profit. Solutions from numerical experiments24

generally agree with the analytical results. They also suggest that matching across O-D pairs25

occurs only when it has a significantly lower inconvenience cost than matching within, an26

unlikely event in reality. Moreover, when cross O-D matching does become prevalent, it leads27

to higher vehicle miles travelled, hence worse congestion. Thus, from the point of view of28

traffic management, cross O-D carpool should not be encouraged.29
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1 Introduction32

Ridesharing allows several travelers who have similar itineraries and schedules to share a vehicle33

for an entire or a portion of a trip. Making such an arrangement necessarily introduces some34

inconvenience and delays for everyone involved, but it also saves the cost of travel, both for the35

travelers themselves (fuel, toll, parking fees, vehicle depreciation, etc.) and for the society at large36

(pollutants, carbon footprint, etc.). Ridesharing may be arranged in advance or in real time by37

either travelers (e.g. casual carpooling, Kelly, 2007) or an intermediate (e.g. employer vanpool38

programs, Ferguson, 1990). In the United States (US), the first oil crisis in the 1970s had shifted39

the focus of transportation planners from expanding highway networks to managing travel de-40

mand in multi-modal transportation systems (Boyce and Williams, 2015). Promoted as a form of41

travel demand management, ridesharing had gathered much enthusiasm in late 1970s and early42

1980s. Yet, by 1990, the tide had long receded. The share of carpool in US work trips declined43

32% within a decade, from 19% in 1980 to about 13.4% in 1990 (Ferguson, 1997). While this dis-44

appointing performance is largely attributed to the rising car ownership and declining gasoline45

price (Ferguson, 1997), the practical challenge of organizing large-scale ridesharing programs46

might have also played a role in dampening the interest of busy commuters.47

Thanks to the emerging industry of transportation network companies (TNCs), the popularity48

of ridesharing, as both a mode of travel and a research topic, has grown markedly in recent49

years (Furuhata et al., 2013; Mourad et al., 2019). The new ridesharing services created by TNCs50

largely fall into two categories: carpool such as Waze carpool1 and Didi Hitch2, and ridepool such51

as Uber Pool and Lyft Line. The carpool services are typically prearranged and provided by a52

driver who shares the trip with the passengers and whose primary goal is to fulfill his/her own53

travel need at a reduced cost. In contrast, ridepool is a form of taxi service that dynamically54

matches multiple passengers with a driver who sells the service exclusively for money. Fueling55

this renewed interest in ridesharing is the promise to make it flexible, user friendly, efficient56

and cheap. On a grander scale, ridesharing is seen as integral to the idea of Mobility-as-a-57

Service (MaaS), which has been touted as the inevitable future of transportation (Goodall et al.,58

2017), along with autonomous and electric cars (Mahmassani, 2016). It is plausible, in the era59

of MaaS, ridesharing in various forms would become a mainstream, if not dominating, mode of60

travel. Given this prospect, this study explores to what extent this trend can be expected to affect61

vehicular traffic distribution in transportation networks, and what institutional arrangement and62

policies can facilitate a socially beneficial outcome in the process. We focus on carpool in commute63

trips, because these trips largely shape urban traffic congestion patterns, which in turn drive64

transportation planning decisions (Vickrey, 1969).65

To be sure, the latest round of ridesharing innovations have yet to see any uptake from66

commuters. Quite the contrary, the 2016 American Community Survey found the carpool share67

among commuter trips hovers around 9%, and has been slowly declining since 2007 (Tomer,68

2017). This is hardly surprising. A transition towards MaaS, even if it does materialize in the end,69

is likely to take decades to complete. Yet, anticipating and planning for possible future scenarios70

like this is exactly the mission of long-range urban travel forecasting (Boyce and Williams, 2015).71

To this end, we envision and analyze a futuristic world, in which commuters rely on a TNC72

1https://www.waze.com/en-GB/carpool
2http://www.didachuxing.com/static/h5/didahome/index.html
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to arrange and price carpool rides. Commuters are free to choose a carpool role (driver or73

rider) or drive alone to maximize their own utility. Using auction as a price discovery tool, the74

TNC invites commuters traveling between different origin-destination (O-D) pairs to submit their75

preferences, and organize them into an “optimal” sharing pattern that not only assigns a role to76

each commuter but also determines the details of logistics (route, pickup and drop-off sequence77

etc.).78

While many had attempted to understand the effect of carpool on traffic patterns in the long79

term, few had adopted a similar institutional arrangement as considered herein. In particular,80

what is missing from most existing analyses is an intermediate that arranges and prices carpool81

for everyone through a two-sided market. Instead, they rely on indirect policy instruments, such82

as congestion pricing (e.g. Yang and Huang, 1999; Liu and Li, 2017), parking restriction (e.g. Xiao83

et al., 2016) and exclusive lanes for high occupancy vehicles (e.g., Qian and Zhang, 2011; Zhong84

et al., 2020), to influence carpool decisions. We shall show, using a parsimonious model, that the85

pricing mechanism in a two-sided market offers a powerful tool to not only discover travelers’86

preferences, but also maximize the potential of carpool in reducing vehicle miles traveled, even in87

the absence of these external interventions mentioned above. Under mild assumptions, a carpool88

ride can be priced for each O-D pair such that almost no traveler would find driving alone an89

attractive option. Moreover, while directing drivers from one O-D pair to pick up riders from90

another is possible in theory, it is unlikely that such an arrangement would lead to a mutually91

beneficial outcome. In other words, our analysis suggests that carpool within the same O-D pair92

should receive more attention from modellers.93

In what follows, Section 2 briefly reviews related studies. Section 3 presents the setting of the94

model used to conduct the analysis. Based on the model, Sections 4 and 5 examine the matching95

and pricing problems for single and multiple O-D cases, respectively. Section 6 reports results96

from numerical experiments. Finally, Section 7 concludes the study with a summary of findings97

and comments on possible future research directions.98

2 Related studies99

Our focus is on the carpool problem. The reader is referred to Furuhata et al. (2013) and Mourad100

et al. (2019) for comprehensive reviews on ridesharing, particularly those pertinent to ridepool.101

The existing carpool studies either adopt a dynamic or static modeling framework. The vast ma-102

jority in the former category is based on the bottleneck model (Vickrey, 1969), which simplifies103

traffic congestion as queuing behind a bottleneck between home and work. These dynamic anal-104

yses (e.g. Qian and Zhang, 2011; Xiao et al., 2016; Liu and Li, 2017; Ma and Zhang, 2017; Zhong105

et al., 2020) allow departure time and ridesharing choice to interact with time-varying traffic con-106

ditions, but are often limited in their ability to consider the effect of cross O-D interactions and107

network topology. Since the model adopted in this paper is static, we will only review the static108

models in what follows. For those who are interested in dynamic models, Zhong et al. (2020)109

provide a relatively up-to-date review.110

The static carpool studies usually adopt the modeling framework of the classic traffic as-111

signment problem (TAP, Beckmann et al., 1956). Daganzo (1981) proposes to use a multi-class112

TAP model to consider the carpool effect on traffic flow distribution in a network. Travelers are113
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classified based on the number of passengers in the car, and everyone sharing the same vehicle,114

regardless of their role, incurs exactly the same cost. The class-specific demands are assumed to115

be endogenously given. In other words, the choice of whether and how to carpool is not mod-116

elled. Yang and Huang (1999) study how congestion pricing may be used to promote carpool.117

Their analysis focuses on a two-road (a regular and an HOV road) network, and only considers118

two-person carpool. Travelers may choose carpool or solo-driving, depending on the tradeoff be-119

tween travel time, congestion toll and the inconvenience cost associated with carpool. They show120

that the HOV and regular roads require different tolls in order to decentralize a system optimal121

solution, and accordingly propose a second-pricing scheme that eliminates the difference. In a122

sequel to Yang and Huang (1999), Konishi and Mun (2010) assume the carpool inconvenience123

cost as a random variable that follows a given continuous distribution. Their analysis suggests124

that HOV lanes are socially beneficial and converting HOV lanes to HOT (high occupancy toll)125

lanes could further improve system efficiency. Xu et al. (2015a) consider a static carpool problem126

conceptually similar to that of Yang and Huang (1999), but extend it to a general network. They127

formulate the problem as an elastic demand TAP, in which the tradeoff between ridesharing128

price, congestion and the number of commuters willing to participate ridesharing is embedded129

in an aggregated elastic demand function. Because of the structure of the underlying model,130

carpool is limited to travelers from the same O-D pair.131

None of the above studies differentiates carpool drivers from riders in terms of their behaviors132

or costs: all carpoolers have exactly the same cost, and the matching process is not modelled at all.133

Among the first few studies that explicitly model the matching process is Xu et al. (2015b), who134

group travellers into solo drivers, carpool drivers or carpool riders. The resulting multi-class TAP135

model is built on the behavioral assumption that all travelers, regardless of their class, must have136

the same generalized travel cost, which, among other things, includes an exogenously given price137

of the shared ride (or a payment for caropool driver). Since matching is allowed to occur between138

drivers and riders from different O-D pairs, enforcing the consistency of class-specific flows at139

link level is a main challenge that requires the introduction of a number of side constraints and140

asymmetric interactions between class-specific flows. As a result, the model is formulated as a141

nonlinear complementarity problem (NCP) that is difficult to solve. To address this difficulty, Di142

et al. (2017) limit carpool to travelers from the same O-D pair. The simplification makes it possible143

to represent the inconvenience cost, user fee and carpool logistics constraints all at the path level,144

leading to a path-based nonlinear complementarity problem with side constraints. Like Yang and145

Huang (1999), they apply their model to analyze pricing strategies on HOT lanes. In a follow-up146

study, Di et al. (2018) formulate the optimal HOT lane design problem as a bi-level optimization147

problem, in which the upper-level problem determines the location and magnitude of the tolls.148

They formulate the lower level problem using a revised model of Xu et al. (2015b). In addition149

to allowing the revenue earned by carpool drivers to change with the number of passengers they150

carry, they also propose a node-link formulation that is easier to solve. Li et al. (2019) propose a151

RUE model that has a structure similar to that of Xu et al. (2015b) but can handle nonadditive path152

costs. Using the model, they analyze Braess paradox in the context of ridesharing equilibrium.153

Their numerical results confirm HOT lane can help promote ridesharing.154

As seen from the above, few had considered the issue of pricing (of shared rides) in the155

context of addressing the interaction between network traffic flow and ridesharing. Most studies156

that do consider pricing in ridesharing are primarily concerned with mechanism design, often157
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exclusively viewing it through the lens of bipartite matching. The central theme there is how158

to spilt the savings from ridesharing to ensure fairness and provide sufficient incentives, among159

other objectives. The reader is referred to Furuhata et al. (2013) and Li et al. (2020) for this line160

of work, from which our analysis draws some conceptual tools.161

3 Model setting162

We consider a simple trip-based traffic assignment model with two origin-destination (O-D)163

pairs, as shown in Figure 1. Let qw be the number of commuters traveling between O-D pair164

OD pair 1 OD pair  2

1 2 3

Figure 1: Illustration of the simple network
model.

w ∈ {1, 2}, and tw be the travel time between165

O-D pair w. We use π to represent the ve-166

hicle operating cost per unit time (inclusive167

of fuel, vehicle acquisition and maintenance,168

etc.). Hence the monetary cost of a trip is πtw.169

We assume all commuters are interested in
ridesharing, and they all have a car and can
play one of the three roles: solo driver (s-driver

for brevity hereafter), carpool driver (driver hereafter), or carpool passenger (rider hereafter). The
commuters participate in ridesharing through a TNC that helps match drivers and riders. Each
driver can take at most one rider. The flow of s-drivers, drivers and riders for O-D pair w is
denoted as f w

s , f w
d and f w

r . The topology of the network is such that drivers from O-D pair 1
could be matched with riders from O-D pair 2, but it would make no sense to have a driver from
O-D pair 2 pick up a rider from O-D pair 1. We denote the flow of the cross O-D drivers as f 1

c .
Thus, the total vehicular flow on each of three links of the network is

y1 = f 1
d + f 1

s + f 1
c , y2 = y1 + f 2

s + f 2
d , y3 = y1. (1)

Taking the conventional assumption that the travel time on each link is a nondecreasing and170

separable function of the vehicular flow on the link, it is easy to show that the travel time on171

each link would be minimized when f w
s = 0, ∀w, f 1

c = 0, i.e., there is neither solo driving nor172

cross-OD matching. This desired outcome would only be achieved by a perfect match, defined as173

follows.174

Definition 1 (Perfect match). A perfect match is an outcome in which every commuter from an O-D175

pair is matched with exactly one partner from the same O-D pair.176

The question central to our inquiry here is whether and how such a perfect match can be177

achieved. To begin, let us assume the TNC matches drivers with riders and discover the pricing178

strategy through an auction. To participate the auction, commuters must report their private179

preference to the TNC. In general, commuters preferences might include, among other things,180

the willingness to pay (WTP) for the trip, the value of time (VOT) and the inconvenience cost181

related to ridesharing. To simplify the analysis, we estimate the WTP as a commuter’s valuation182

of the trip if s/he has to drive alone, which depends on his/her VOT, the journey time and the183

operating cost (fuel, equipment, etc.). The inconvenience cost is assumed to be a publicly known184

constant, denoted as ∆, for any trip paired within the same O-D pair. Further, because each driver185
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can only take one rider, the rider is not subjected to any detours. As such, we assume only the186

carpool driver bears the inconvenience cost. Finally, for cross O-D ridesharing, the inconvenience187

cost is ∆′.188

We now discuss VOT, the only preference treated as independent private information in this189

study. Let β̃d and β̃r be the private valuation of driving and riding time, respectively, which190

are considered random variables, and define α̃ = β̃d − β̃r. Each commuter has a pair of private191

valuation (βd, βr), where βd and βr can be viewed as a realization of β̃d and β̃r, respectively, for192

the commuter ; and α = βd − βr is called the commuter’s value of productivity gain from riding193

(PGR). It is reasonable to assume that α ≥ 0 for a rational decision maker. Hence, the random194

variable α̃ has a nonnegative support. The cumulative distribution function for α̃ is denoted as195

Fα̃, which is assumed to be identical for both O-D pairs.196

Prior to their trip, commuters report the PGR values (i.e. α) to the platform. The set of all PGR197

values received by the platform is denoted as A. Let ᾱ, α̂ and α be the maximum, median and198

minimum in A, respectively. Using A, the platform assigns each traveler a role, and determines199

the price paid by the rider, pr, and the payment to the driver, pd, through a double auction. The200

focus is to show how the platform can design the assignment and pricing strategies to achieve201

a perfect match. In what follows, we will first analyze the auction problem with a single O-D202

(Section 4), and then extend it to the case with two O-D pairs (Section 5). The following two203

assumptions are introduced to further simplify the analysis.204

Assumption 1. qw is an even integer.205

Assumption 2. A contains no pairs of identical PGR values.206

Assumption 1 is introduced because, strictly speaking, a “perfect match“ is only possible207

when qw is an even number. Assumption 2 ensures the matching result be unique.208

4 Single O-D problem209

4.1 Formulation of bipartite matching problem210

Consider a set of commuters Iw = {1, · · · , qw} for O-D pair w. Each commuter i ∈ Iw is
associated with a tuple of VOT (βi

d, βi
r), and αi = βi

d − βi
r. Without loss of generality, we assume

that commuters in Iw are ranked in the descending order of αi, i.e., α1 > α2 > · · · > αqw
.

Accordingly, we can define the cost of being a driver, a rider and an s-driver, respectively, for
commuter i as follows:

ci
d = βi

dtw + πtw + ∆; ci
r = βi

rtw; ci
s = βi

dtw + πtw. (2)

Since ci
s represents the commuter’s WTP, the valuation of commuter i for each of the three roles

can be represented by

vi
d = ci

s − ci
d = −∆; vi

r = ci
s − ci

r = (αi + π)tw; vi
s = 0. (3)

Accordingly, the utilities are

ui
d = pd − ∆; ui

r = (αi + π)tw − pr, ui
s = 0, (4)
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where pd and pr are determined by the platform’s pricing policy. To characterize the platform’s211

decision, let xij be a binary assignment variable: xij = 1 if commuter i is assigned as a driver to212

a rider j; =0 otherwise. Then the bipartite matching problem can be formulated as213

max ∑
i∈I

(
∑

j∈I ,j 6=i

(
vj

r + vi
d

)
xij

)
(5a)

subject to:

∑
j∈I ,j 6=i

xij + ∑
k∈I ,k 6=i

xki ≤ 1, ∀i ∈ I , (5b)

xij ∈ {0, 1} , ∀i ∈ I , ∀j ∈ I , i 6= j, (5c)

where the objective (5a) is to maximize the total gains of all commuters from ridesharing (referred214

to as commuters’ welfare hereafter) and Constraints (5b) ensure the validity of matching. Strictly215

speaking, Problem (5) is a mixed nonlinear integer program, because vj
r depends on tw, which216

in turn depends on x = {xij}. To avoid the difficulty, we can solve (5) by enumerating all217

possible values of tw, each corresponding to a vehicular flow that ranges between [0.5qw, qw]218

(0.5qw corresponds to the perfect match while qw corresponds to no match at all). Since qw is an219

even number, the number of tw that needs to be tested is finite.220

Given the special structure of the problem, however, the solution to (5), along with its pricing221

strategy, can be obtained analytically. To facilitate the analysis, we introduce two additional222

assumptions.223

Assumption 3. The O-D travel time tw is a constant.224

Assumption 4. For any O-D pair w, given Assumption 3 and suppose k = max{k ∈ Iw|vk
r > ∆}, then225

k ≥ 0.5qw.226

Assumption 3 is necessary, because without it, Problem 5 becomes a nonlinear problem. If227

the objective is to achieve a perfect match, this assumption is not as restrictive as it appears, since228

at a perfect match, the travel time of the system is always the same and lowest. Assumption 4229

implies at least for half of the commuters, the benefit of being a rider outweighs the inconvenience230

cost. For most real-world applications, ∆ should be smaller than the operating cost twπ. Thus,231

Assumption 4 is easy to satsify in practice. In the following, Section 4.2 analyzes perfect match232

solutions and the corresponding pricing strategies under Assumptions 1 - 4. Section 4.3 discusses233

imperfect match solutions when Assumptions 1 and 4 are relaxed.234

4.2 Perfect match and pricing policies235

Figure 2 illustrates the utility of all travellers in the ascending order of PGR. Before compensation,236

a rider’s utility is represented by a straight line with a positive slope tw and an intercept πtw,237

whereas a driver’s utility is the horizontal line at −∆. For the purpose of illustration, suppose238

the compensation received by the driver equals the payment made by the rider, i.e., pd = pr ≡ p.239

With the compensation, the horizontal line representing the driver’s utility is pushed up by p,240

cutting through the rider’s utility line. The shaded areas highlight the total utility for drivers241
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and riders. The shaded rectangle indicates that each driver has the identical utility whereas the242

shaded triangle indicates each rider’s utility increases with α.243

a

U
ti

lit
y

Rider utility before compensation

0

Total utility gain 

by riders

Total utility gain 

by drivers

p

tw

ptw

D

Driver utility before compensation

p

p

a0

Driver utility after compensation

Rider utility after compensation

Figure 2: Utility of riders and drivers before and
after compensation.

Problem (5) can be solved using Algorithm244

1. The idea is straightforward: we check com-245

muters following a descending order of the246

value of vj
r, and if vj

r − ∆ ≥ 0, the com-247

muter is matched with a driver with the lowest248

PGR among all commuters who have not been249

matched. This process continues until either250

there is no more commuter left for matching,251

or the benefit of riding is no longer enough252

to offset the inconvenience cost. Since the al-253

gorithm always picks the rider with the high-254

est value of vj
r from the commuters left to be255

matched, the allocative efficiency (5a) must be256

maximized.257

Proposition 1. With Assumptions 1 - 4, the solu-258

tion to Problem (5) always leads to a perfect match.259

Proof: Assumption 4 implies that for at260

least half of the commuters, vj
r > ∆. Thus,261

when Algorithm 1 terminates, it should have262

matched exactly 0.5qw riders. Given Assump-263

tion 1, everyone must have been matched ei-264

ther as a rider or as a driver. 2265

Algorithm 1 Matching algorithm

1: Inputs: Iw = {1, · · · , i, · · · , qw} ranked in descending order of αi; vi
d, vi

r.
2: Output: Solution to Problem (5): xi,j.
3: Initialize j = 1, set xi,j = 0, ∀i, j.

4: while j ≤ 0.5qw and vj
r > ∆ do

5: Set x(qw+1−j),j=1, i.e., match rider j with driver qw + 1− j.
6: Set j = j + 1.
7: end while
8: return xi,j

Whether or not a perfect match can be achieved in practice depend on the platform’s pricing
strategy (pr, pd). First and foremost, the pricing strategy must ensure no individual is worse off
after ridesharing, commonly known as individual rationality (IR). Mathematically, this means the
utility of any driver or rider must be non-negative, i.e.,

ui
d ≥ 0; ui

r ≥ 0, ∀i ∈ Iw. (6)

Second, the prices must be such set that no commuters have the incentive to misreport their PGR
values, which is known as incentive compatibility (IC) in auction. Third, the platform may desire

8



to balance budget (BB), i.e.,

pd f w
d ≤ pr f w

r . (7)

We proceed to explore the pricing strategy that can both achieve a perfect match and satisfy the266

above three properties.267

0

N
u
m

b
er

 o
f 

co
m

m
u
te

rs

q w

q w0.5

Perfect match is achieved

when the price corresponding 

to the indifferent commuter 

lies in this range.

1

2

k

k+1

p

Figure 3: Illustration of a perfect
match. Each solid dot corresponds to
a commuter i, with the y value equal
to i, and the x value equal to g−1

0 (αi).

Let p be the base price used by the platform to adjust
the utility of drivers and riders. We note that this price
always corresponds to an imaginary commuter whose
PGR value is such that s/he is indifferent to his/her
role in ridesharing given p. That is,

ud = ur → α0 =
2p− ∆

tw − π, (8)

where α0 is referred to as the indifferent PGR value. Be-
cause α0 can be viewed as a linear function of p, we for-
mally define it as g0(·) : R → R. As g0(·) is invertible,
we define

p̄ = g−1
0 (ᾱ); p̂ = g−1

0 (α̂); p = g−1
0 (α),

respectively as the maximum, median and minimum268

base price, corresponding to the maximum, median and269

minimum PGR value in Aw. We shall focus on the me-270

dian base price p̂w hereafter. Because of Assumptions 1271

and 2, we can always find a commuter k = 0.5qw such272

that αk > α̂ > αk+1. See Figure 3 for an illustration.273

Proposition 2 (IR and BB). Given Assumptions 1 - 4 and a perfect match obtained by Algorithm 1, the
pricing policy

p∗r = p∗d = g−1
0 (αk), k = 0.5qw (9)

is IR and BB.274

Proof: (i) IR. According to Assumption 1 and Algorithm 1, any commuter i ≤ k will be
matched as a rider and commuter i ≥ k + 1 will be matched as a driver. For any commuter
i ≥ k + 1, the utility

p∗d − ∆ = 0.5(tw(αk + π) + ∆)− ∆ = 0.5(tw(αk + π)− ∆) > 0,

because of Assumption 4. For the rider i ≤ k, the utility is

tw(αi,w + π)− p∗r = 0.5(tw(αi + π) + ∆) + 0.5(tw(αi + π)− ∆)− p∗r
≥ 0.5(tw(αi + π) + ∆)− p∗r = g−1

0 (αi)− g−1
0 (αk) ≥ 0.

The first inequality is due to Assumption 4, the second equality is obtained from the definition275

of g0, and the second inequality is due to αi ≥ αk, ∀i ≤ k. This proves IR is satisfied at pw, since276
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no commuter would have a negative utility.277

(ii) BB. Because p∗d = p∗r and a perfect match is achieved, we have p∗d f w
d = p∗r f w

r . Thus, the budget278

is balanced. This completes the proof. 2279

The pricing policy given in Proposition 2 will not ensure IC, however. The next result provides280

an incentive compatible pricing policy.281

Proposition 3 (IC). With Assumptions 1 - 4, commuters have no incentive to misreport their PGR values
if

p∗r = g−1
0 (αk+1); p∗d = g−1

0 (αk); k = 0.5qw.

Proof: First, we note that, since αk > αk+1, we have p∗d > p∗r . That is, each driver is paid by282

the platform more than each rider pays the platform.283

For any matched driver i ≥ k + 1 who intends to manipulate the matching result by lying
about the PGR vale, there are only two possible consequences: s/he remains a driver; or s/he is
matched as a rider. In the first case, s/he can either report a higher or a lower PGR value. S/He
can never improve his/her utility if s/he reports a lower PGR value, because s/he is already
paid based on the highest PGR value of any drivers. If s/he tries to report a higher PGR value,
s/he can only change the utility if s/he reports a PGR value higher than αk (since s/he is paid by
g−1(αk)). If s/he does so, s/he would now become a rider and paid exactly at the same price as
before (since now commuter k would have become the driver with highest PGR value). We note
that

p∗d > 0.5((αk+1 + π)tw + ∆)→ (αk+1 + π)tw − p∗d < p∗d − ∆.

The first equality is due to αk > αk+1, and note that (αk+1 + π)tw − p∗d is the new utility of the284

former driver who is now matched as a rider. Thus, switching the role will only reduce the utility285

of commuter i.286

The case when i is a rider can be proved similarly, and omitted here for brevity. 2287

It is straightforward to show the pricing strategy given by Proposition 3 can also ensure288

individual rationality. To see this, note that the driver is paid exactly the same as the price given289

in Proposition 2, and the price that a rider must pay is lower. Thus, neither the driver nor the290

rider would be worse off under the incentive compatible pricing policy of Proposition 3.291

In order to achieve IC, the platform has to run a deficit equal to 0.5qw(p∗d − p∗r ). Thus, the292

requirement for budget balancing is violated. It is well known that in a double auction, it is293

impossible to achieve AE, IR, IC and BB in general (Myerson and Satterthwaite, 1983).294

4.3 Imperfect match solutions295

Achieving a perfect match is not always possible. Sometimes it may not even be desirable. We296

address these situations in this section.297

When Assumption 1 is not satisfied, it is impossible to achieve a perfect match. Since in this
case, qw is an odd number, the median α̂ = αl , l = 0.5(qw + 1). Intuitively, applying Algorithm
1 would yield a match result in which commuter l is the only s-driver. Because s-driver has a
utility of zero, an incentive compatible policy must ensure commuter l has the same utility for
other two roles (driver and rider). Thus,

ul
d = pd − ∆ = 0→ pd = ∆,
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and
ul

r = (αl + π)tw − pr = 0→ pr = (αl + π)tw.

Proposition 4. With Assumptions 2 - 4 and assume qw is an odd number, the solution to Problem (5)
leaves only commuter l = 0.5(qw + 1) unmatched. Also the following pricing policy satisfies IR, IC and
BB.

p∗d = ∆, p∗r = vl
r = (αl + π)tw, (10)

where l = 0.5(qw + 1).298

Proof: Using Algorithm 1, we will match everyone except l, because there are exactly 0.5(qw−
1) commuters whose PGR value is larger than αl and per Assumption 4, their valuation for the
rider role is higher than ∆. We next prove the pricing policy given in Eq. (10) satisfies IR, IC and
BB.
(i) IR. First, the policy has no effect on the utility of commuter l. For any driver i ≥ l + 1, the
utility

p∗d − ∆ = 0.

For the rider i ≤ k− 1, the utility is

tw(αi + π)− p∗r = tw(αi − αl) ≥ 0.

(ii) BB. Per Assumption 4, we have p∗r > p∗d. Hence f w
r p∗r > f w

d p∗d.299

(iii) IC. Let’s first consider commuter l. Clearly, s/he has no incentive to report a PGR lower300

than his/her true value, because if s/he does so, s/he would either remain a s-driver or become301

a driver. In both cases, his/her utility would still be zero. Suppose now that commuter l reports302

a PGR value so high that s/he becomes a rider. S/He would have to pay at p∗r = (αl−1 + π)tw,303

which is higher than the original price, because αl−1 > αl . Thus, commuter l has no incentive304

to misreport. For any driver i ≥ l + 1, we only need to check the case when misreporting can305

change his/her role to a rider. If that does happen, s/he has to pay at p∗r = (αl−1 + π)tw, which306

will give him/her a negative utility. Now consider rider i ≤ l − 1. S/He has a positive utility307

being a rider. Thus, s/he would have no interest in switching to a s-driver and rider role by308

lowering the reported PGR value. S/He cannot improve utility by reporting PGR higher than the309

true value, because by doing so s/he would always remain a rider, and pay the same price.310

This complete the proof. 2311

Interestingly, when qw is an odd number, the platform can actually make profit, even though312

one commuter will be left unmatched. For large qw, the real impact of this type of imperfect313

match on traffic conditions is negligible. However, if the inconvenience cost is so large relative314

to the operating cost that Assumption 4 no longer holds, the portion of unmatched commuters315

could become significant.316

To relax Assumption 4, let k = max{k ∈ Iw|vk
r > ∆}, and k < 0.5qw. In this case, a perfect

match cannot be achieved by Algorithm 1 because it will terminate at j = k, leaving qw − 2k
commuters unmatched. Thus, any commuter i ∈ {k + 1, · · · , qw − k} will be s-driver. In order to
ensure all s-drivers have no interest in riding or driving for ridesharing we need to set

p∗d = ∆, p∗r = (αk+1 + π)tw. (11)

11



Given the above pricing policy, an s-driver has no incentive to become a rider because every-317

one would have to pay a higher price than their valuation, except for commuter k+ 1, who would318

break even. They have no incentive to be a driver either, because their utility would remain to319

be zero. By the same token, drivers and riders have no interest in alternative roles, which can320

be shown similarly as in the proof of Proposition 3. Because riders pay a higher price than the321

payment received by the driver, the system will generate a positive profit.322

We close by noting that relaxing Assumption 4 implies

(αk+1 + π)tw < ∆, k < 0.5qw,

i.e., the inconvenience cost from ridesharing is significantly higher than the operating cost of the323

entire trip. This is certainly not likely to occur in reality. Nevertheless, if the inconvenience cost324

does rise to this level, ridesharing needs to be carefully planned to avoid hurt system efficiency.325

4.4 VCG pricing policy326

A standard approach to addressing incentive compatibility (also known as truthful reporting)327

in auction is to invoke the VCG policy (Vickrey, 1961; Clarke, 1971; Groves, 1973). Algorithm 2328

describes how the VCG policy sets prices pd and pr after the optimal matching is obtained from329

solving Problem (5). Note that V∗ and V∗−i denote, respectively, the optimal objective function330

value of the original Problem (5), and that of Problem (5) without commuter i.

Algorithm 2 VCG pricing policy

1: Input: Solution to Problem (5), xi,j, ∀i, j ∈ Ĩ , i.e., the set of matched commuters.

2: Output: A pricing policy pi
d and pj

r for any i, j ∈ Ĩ .
3: for every commuter i ∈ Ĩ do
4: Calculate V∗−i by re-solving Problem (5) without commuter i.
5: Set the bonus for commuter i as ρi = V∗ −V∗−i.
6: if Commuter i is a driver then
7: set pi

d = vi
d + ρi = ∆ + ρi.

8: else if Commuter i is a rider then
9: set pi

r = vi
r − ρi.

10: end if
11: end for
12: Return pi

d and pj
r.

331

Proposition 5. With Assumptions 2 - 4 and assume qw is an odd number, the pricing policy given by332

Proposition 4 equals the VCG policy.333

Proof. The basic idea of the VCG pricing mechanism is to have the winner who offers the highest
bid pay the price offered by the second highest bidder in a single round sealed auction. Under
Assumptions 2 - 4 and given qw as an odd number, the system achieves a perfect match except for
commuter l = 0.5(qw + 1). Thus, when a driver i is removed, the only s-driver l will be assigned
as a driver and the system will achieve a perfect match that provides the same commuters’
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welfare. This is because the contribution of any driver to the commuters’ welfare is always −∆.
Since V∗ = V∗−i, the bonus for driver i is

ρi = V∗ −V∗−i = 0.

According to Algorithm 2, pi
d = ∆. When a rider i is removed, the only s-driver l will be assigned

as a rider. Thus
ρi = V∗ −V∗−i = vi

r − vl
r.

Thus, the payment to the rider i is pi
r = vi

r − (vi
r − vl

r) = vl
r. Clearly, any commuter will pay the334

same price as long as his/her role is fixed, i.e., p∗d = ∆, p∗r = vl
r. The proof is completed.335

It is easy to prove that the pricing strategy given by Eq. (11) also equals the VCG policy for
the case when Assumption 4 is relaxed. However, the pricing policy given in Proposition 3 is not
a VCG policy. We leave it to the reader to verify in that case (qw is even and Assumptions 1 - 4
hold), the VCG policy would prescribe

p∗r = ∆; p∗d = v0.5qw

r , (12)

which may lead to a larger deficit than allowed by the policy given in Proposition 3.336

5 Two O-D Problem337

When the system has two O-D pairs, let I = {1, · · · , q1 + q2} represent the set of all commuters.
For each commuter i ∈ I , we use w(i) to map the commuter i to his/her O-D pair. We proceed
to define the cost for each role. For a driver i who is matched with a rider from the same O-D
pair, we have

ci
d = (βi

d + π)tw(i) + ∆. (13)

If the driver i is matched with a rider from a different O-D pair, then

ci
dc =

{
(βi

d + π)tw(i) + ∆′ w(i) = 1,
∞ w(i) = 2.

(14)

Here the subscript dc is used to differentiate from ci
d, highlighting the fact that the driver performs338

a cross O-D pickup. Note that in our setting, drivers from O-D pair 2 are forbidden to take riders339

from O-D pair 1. That is why the cost for doing so is set to infinity.340

If the commuter i is a rider or a solo driver, then his/her cost is, respectively

ci
r = βi

rtw(i), ci
s = (βi

d + π)tw(i). (15)

If a driver i is matched with someone from the same O-D pair, his/her valuation of the trip
becomes

vi
d = ci

s − ci
d = −∆; (16)
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otherwise, it is

vi
dc = ci

s − ci
dc =

{
−∆′ w(i) = 1,
−∞ w(i) = 2.

(17)

The valuation of the commuter i for being a rider and solo driver is respectively

vi
r = ci

s − ci
r = (αi + π)tw(i); vi

s = 0. (18)

With the above definitions, we can similarly define the bipartite matching problem for the341

two O-D problem, by introducing the same binary assignment variable xij. The new formulation342

reads:343

max ∑
i∈I

 ∑
j∈I ,j 6=i,w(j)=w(i)

(
vj

r + vi
d

)
xij

+ ∑
i∈I

 ∑
j∈I ,j 6=i,w(j) 6=w(i)

(
vj

r + vi
dc

)
xij


(19a)

subject to:

∑
j∈I ,j 6=i

xij + ∑
k∈I ,k 6=i

xki ≤ 1, ∀i ∈ I , (19b)

xij ∈ {0, 1} , ∀i ∈ I , ∀j ∈ I , i 6= j. (19c)

The formulation is identical to Problem (5) except its objective function is divided to account for344

the within O-D matching (the first term) and the cross O-D matching (the second term). Again,345

Problem (19) is a nonlinear integer program if tw, w = 1, 2 depends on xij. Even if we assume tw
346

is a flow-independent constant, obtaining analytical solutions and pricing strategies for Problem347

(19) is much more complicated. Instead, we will derive the VCG policy using Algorithm 2, and348

explore the properties through numerical experiments.349

6 Numerical experiments350

We first conduct a couple of numerical experiments to demonstrate and validate the analytical351

results obtained for the one O-D case (Section 6.1). In Section 6.2, we explore how flow-dependent352

travel time might affect matching results. Finally, Section 6.3 tests a two O-D example which is353

not amenable to analysis. The goal is to determine if and when cross O-D matching is necessary354

for welfare maximization.355

6.1 One O-D356

Consider a simple case with only four commuters, whose PGR values are reported in the second357

row in Table 1. We set the inconvenience cost ∆ = 4 and the flow-independent travel time tw = 2.358

The vehicle operating cost per unit time π = 5. Hence, we have ∆ < twπ.359

According to Eq. (3), the valuation of commuter i as a driver is vi
d = −4, ∀i ∈ I, and if s/he is360

matched as rider, his/her valuation vi
r is reported in the third row in Table 1.361

14



Table 1: Valuation in the four-commuter matching problem

i 4 3 2 1

αi 1 2 3 4
vi

r 12 14 16 18
vi

d -4 -4 -4 -4

Using Algorithm 1, it is easy to see that the solution to Problem (5) is to assign commuters 1362

and 2 as riders and commuters 3 and 4 as drives. The outcome obviously achieves perfect match363

and a vehicular flow of 2. According to Proposition 3, a rider should pay p∗r = 0.5(v2
r + ∆) = 9364

and a driver will receive p∗d = 0.5(v3
r + ∆) = 10. The system ends up with a deficit of 2.365

When commuter 3 truthfully reports the PGR value as 2, his/her utility is p∗d − v2
r = 12− 4 =366

8. When s/he reports the valuation 0 ≤ α2 < 3, s/he remains a driver and the payment is still367

10. When s/he reports the valuation α > 3, s/he will be assigned as a rider. Suppose s/he368

reports α as 3.5. In this case, the rider’s payment will become 10 (based on the valuation of369

commuter 2). The utility then becomes 14− 10 = 4, a loss compared to the utility under truthful370

reporting. Thus, under no circumstance, commuter 3 could improve the utility by misreporting371

the valuation.372

Let us now add a fifth commuter (i = 0) whose PGR value = 5 to the matching problem. The373

valuation for the driver role remains 4, and that for the rider role is 20. All the other parameters374

remain the same.375

In this case, Algorithm 1 will assign commuters 0 and 1 as riders and commuters 4 and 3376

as drivers. Commuter 2 will have to drive alone since s/he cannot find a match. Proposition 4377

dictates that each driver receives a payment of 4, and each rider pays the valuation of the solo378

driver, i.e., 16. Thus, the system generates a net profit of 24. The solo driver, whose utility is zero,379

would have no incentive to become a carpool driver, since that would not change the utility. If380

s/he is to report the PGR value as 4.5, commuter 4 would now become the solo driver, changing381

the rider payment from 16 to 18. This means by misreporting the PGR value as 4.5, the original382

solo driver would become a rider, and reduce the utility from 0 to -2.383

Finally, let us consider a case with an unusually high inconvenience cost, say ∆ = 18.5. Note384

that in this case v1
r < ∆ < v0

r . According to Algorithm 1, only commuter 0 will be assigned as385

a carpool driver in order to maximize the welfare. Attempting to match any other commuters386

would lead to a direct loss. Eq. (11) suggests that a driver receives a payment of p∗d = 18.5 and a387

rider pays at the highest rider valuation of any solo driver, in this case, that of commuter 1, i.e.,388

p∗r = 18. In total, the system leads to a total vehicular flow of 4, a welfare of 1.5, and a profit of389

-0.5.390

6.2 Congestion effect391

In the example presented in Section 6.1, tw is assumed to be flow-independent. The matching
problem always ensures, for any matched pair, the inconvenience cost of the driver not exceed
the valuation of the rider. This means certain matching would be forbidden in favor of welfare
maximization. However, if tw depends on flow, a lower matching rate means more vehicles
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on road, hence a larger tw. There is a clearly a trade-off between the welfare defined in the
matching problem and the cost of congestion. In this section, we explore the congestion effect
by constructing a slightly more realistic single O-D example. Let the distance between the origin

Algorithm 3 Matching algorithm with congestion effect

1: Inputs: Iw = {1, · · · , i, · · · , qw} and αi, ∀i;
2: Output: Solution to Problem (5): x∗ and maximal commuters’ welfare V∗.
3: Initialize: V∗ = 0, f ∗ = −1, x∗ = 0.
4: for qw

2 ≤ f ≤ qw do
5: Update tw using Eq. (20). Calculate vi

r for each commuter i ∈ Iw according to tw.
6: Rank vi

r in the descending order.
7: Set V = 0, l = 1, x = 0.
8: while l < qw − f do
9: Set l′ = qw − l + 1, xll′ = 1, and V = V + vl

r + vl′
r .

10: Update l = l + 1.
11: end while
12: if V∗ < V then
13: Set V∗ = V, x∗ = x, f ∗ = f .
14: end if
15: end for

and the destination be d = 11.5 miles and the free flow speed v0 = 40 mph, which leads to a free
flow travel time t0 = d/v0 = 0.2875 hour. Assume the travel time tw be a function of vehicular
flow f , which takes the following form

tw = t0(1 + 0.15( f /C)4), (20)

where C = 2000 vph (vehicle per hour) is road capacity. The total number of commuters qw =392

3000. Thus, a perfect match case yields tw = 0.3 hours and non-sharing case yields tw = 0.51393

hours.394

We estimate π as $8/hour 3. The value of time (VOT) (Lam and Small, 2001) is estimated395

based on the median wage rate (taken as $21/hour), and the mean PGR value is taken as 1/3 of396

the VOT, i.e., $7/hour. We assume α̃ follows a log-normal distribution with a mean of 7$ and a397

variance of 16 (this corresponds to lognormal(µ, σ), µ = 1.8, σ = 0.53). ∆ can be estimated based398

on the detour time valued at the median VOT. For a 5 minute detour (on top of a 17.25 minute399

trip without congestion), ∆ = $1.75 < π × t0 = $2.3. For a 10 minute detour, ∆ = $3.5 > $2.3.400

For a 15 minute detour, ∆ = $5.25 > (ᾱ + π)t0 = $4.3.401

To solve Problem (5) with congestion effect, we implement a simple enumeration method402

detailed in Algorithm 3. The idea is to examine commuters’ welfare corresponding to each403

possible matching result. The algorithm searches between a perfect match scenario (when the404

vehicular flow f = 0.5qw) and a no-match scenario (when the vehicular flow f = qw). For each405

matching scenario, the algorithm first updates the travel time and then compares the welfare406

associated with the scenario against the maximum welfare recorded so far.407

3It consists of both the fuel cost and vehicle depreciation for driving 11.5 miles using a car purchased at $ 20,000
with a lifetime millage of 200,000 miles. The fuel cost is estimated at $3 per gallon and the fuel efficiency of the car is
30 mile per gallon. Travel speed is assumed to be constant in this estimation.
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Figure 4: Objective function value of Problem (5)
corresponding to different matching results (de-
termined by vehicular flow f ) and different in-
convenience cost ∆ (qw = 3000). The high point
on each curve corresponds to the optimal solu-
tion.

.

Figure 4 illustrates how the welfare varies408

with f with different inconvenience cost ∆.409

When ∆ is within the “reasonable range” (e.g.,410

at or below $34), the perfect match is al-411

ways optimal and the platform can achieve412

it through the pricing scheme described in413

Proposition 3 or the VCG scheme. Thus, for414

modest ∆, the system can be analyzed as if there415

was no congestion effect, since the outcome is al-416

ways a perfect match. When ∆ reaches $3.5 (a417

ten minute detour and about 50% more than418

the operating cost), the perfect match is no419

longer the best choice for the system. Instead,420

the optimal number of matched pairs is re-421

duced by a third to about 1000 (for a vehicular422

flow of about 2000). As ∆ continues to rise,423

matching becomes less and less attractive. For424

∆ = $5, the number of matched pairs is just a425

little more than 500 at optimum.426

We repeat the above experiment 100 times427

(each time a 3000-traveler sample is drawn from the Log-normal distribution). In each exper-428

iment, we find the optimal vehicular flow, commuters’ welfare and profit based on the VCG429

pricing scheme. Figure 5 (a) shows the average optimal vehicular flow begins to rise above 1500430

(i.e., the value corresponding to the perfect match) after ∆ > $3. This trend is similar to that431

established in Figure 4. Thus, the actual PGR values of a sample does not seem to have much432

impact on the optimal traffic pattern in this case. The dominating factor is ∆.433

Figures 5 (b) and (c) show, as ridesharing becomes more inconvenient, the system’s com-434

muters’ welfare and profits both plunge. Importantly, when ∆ < $3, the welfare gain of the users435

is more than enough to cover the subsidy required to sustain the operation. When ∆ ≥ 3, the436

large deficit of the VCG scheme begins to exceed the welfare gain. Clearly, to run a sustainable437

ridesharing program in those cases is challenging and would require pricing mechanisms more438

sophisticated than what are considered herein.439

6.3 Two O-D pair440

Consider the network shown in Figure 1. Let q1 = 2000, q2 = 1000. For each link a, we denote
its length, travel time, and capacity by da, Ta and Ca, respectively. We set d1 = 2 mile, d2 = 8
mile, and d3 = 1.5 mile, and C1 = 1500 vph, C2 = 3000 vph, and C3 = 1500 vph. Similar to the
example reported in Section 6.2, the free flow speed v0 = 40 mph and the vehicle operating cost
π = $8/hour. The link travel time

Ta =
da

v0

(
1 + 0.15

(
ya

Ca

)4
)

, (21)

4An inconvenience cost of $3 roughly equals 8.6 minute detour time, about half of the free flow travel time.
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Figure 5: Relationship between inconvenience cost ∆ and average vehicular flow (a), commuters’
welfare (b), and profits (c) in 100 simulations.

Table 2: Test scenarios for the two O-D problem.

Scenario Description ∆ ∆′

1 Cross-OD matching is more expensive ∆0 2∆0

2 Within O-D matching is more expensive 2∆0 ∆0

3 Identical ∆0 ∆0

where yi is given in Eq. (1). The optimal solution to the two O-D matching problem (19) can also441

be obtained through a simple enumeration procedure, detailed in Algorithm 4.442

We set a base inconvenience cost ∆0 = $2, and consider three combinations of ∆ (within O-D443

inconvenience cost) and ∆′ (cross O-D inconvenience cost), as shown in Table 2. Table 3 reports444

the number of cross and within-OD matched pairs in the three scenarios. In the first scenario,445

in which ∆′ = 2∆, cross-OD matching never occurs, regardless of the value of ∆0. For ∆0 ≤ 2.5,446

both O-D pairs can achieve the perfect match on its own. As ∆0 continues to rise, the matching447

ratio at both O-D pairs begin to decline, as expected. Moreover, matching for O-D 1 is evidently448

less sensitive to the value of ∆0 than that for O-D 2. For example, when ∆0 increases from 2 to 5,449

the number of matched pair for O-D 1 is reduced to a little more than 1/3, whereas for O-D pair450

2, less then 10 percent of the matched pair remains. This discrepancy is clearly driven by the fact451

that it is twice as expensive to match cross O-D as within O-D.452

Matching within O-D 2 becomes completely unattractive in Scenario 2. Although there are453

still many matches within O-D 1, the number of cross O-D matches is always greater at every454

level of ∆0. Moreover, when ∆0 is larger, twice as many pairs are matched for cross O-D than455

within O-D 1. Again, this is expected since within O-D matching is more expensive than cross456

O-D matching.457

Compared to Scenario 1, the cross O-D inconvenience cost is reduced to the same level as458

that within O-D in Scenario 3. This change has surprisingly little impact on the results, however.459

For ∆0 up to 3.5, the matching results are identical in both scenarios. Only for ∆0 ≥ 4 do we460

observe the emergence of a small number of cross O-D matches. The travelers demonstrate a461

strong preference for matching within O-D pair 1, likely because O-D pair 1 has a longer travel462
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Algorithm 4 Matching algorithm for the two-OD problem with congestion effect

1: Inputs: I = {1, · · · , i, · · · , q1 + q2} and αi, ∀i;
2: Output: Solution to Problem (19): x∗ and maximal commuters’ welfare V∗.
3: Initialize: V∗ = 0, x∗ = 0.
4: Define: lw as the number of matched pairs within O-D pair w = 1, 2,
5: and l12 as the number of cross-OD matched pairs.
6: for l1 ∈ [0, 0.5q1] do
7: for l2 ∈ [0, 0.5q2] do
8: Calculate the maximum number of possible cross O-D matches as L12 given l1 and l2.
9: for l12 ∈ [0, L12] do

10: Update ya based on l1, l2 and l12,
11: Calculate link travel time Ta using Eq. (21) and update O-D travel time t1 = ∑3

a=1 Ta and
t2 = T2.

12: Compute vi
r, ∀i ∈ I and rank vi

r in descending order.
13: Set x and V based on l1, l2 and l12 using a similar procedure included in Algorithm 3 (line

7 -11).
14: if V∗ < V then
15: Set V∗ = V, x∗ = x.
16: end if
17: end for
18: end for
19: end for

Table 3: Matching outcome with different base inconvenience cost ∆0

∆0 ($)

Matched pair for O-D 1 Matched pair for O-D 2 Cross O-D matched pair

Scenario Scenario Scenario

1 2 3 1 2 3 1 2 3

2 1000 564 1000 500 0 500 0 872 0
2.5 1000 364 1000 500 0 500 0 626 0
3 1000 197 1000 352 0 352 0 375 0

3.5 1000 111 1000 188 0 188 0 238 0
4 706 75 706 111 0 105 0 155 6

4.5 506 48 506 65 0 48 0 103 17
5 384 27 384 42 0 32 0 62 10
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Figure 6: System performance of the two O-D example under different value of ∆0.

time, which gives riders a greater saving to offset the inconvenience cost.463

Figure 6 shows a rising inconvenience cost reduces system welfare and increases travel dis-464

tance because it discourages carpool. Also, Scenarios 1 and 3 lead to very similar commuters’465

welfare and travel distance, whereas the performance of Scenario 2 is much less desirable. A466

larger share of cross O-D matching (as in Scenario 2) implies that a greater number of drivers467

from O-D pair 1 would find it cheaper to share a ride with someone from O-D pair 2. Since these468

drivers must travel alone on links 1 and 3, the total travel distance is bound to increase, as well469

as traffic congestion, see Figure 6 (a). Evidently, this increase in the travel distance coincides with470

a decrease in the commuters’ welfare.471

In reality, it is more than likely that inconvenience cost incurred within the same O-D would472

be comparable to or lower than that incurred cross O-D. Thus, the amount of cross O-D matching473

should be relatively small at social optimum.474

7 Conclusions475

This study aims to examine the impact of carpool on network traffic in a highly idealized futur-476

istic world, where all travelers are willing to participate in carpool arranged by a Transportation477

Network Company. The parsimonious model built for this purpose centers on the trade-off be-478

tween the inconvenience cost imposed by carpool and the travel cost savings from (i) less vehicle479

miles travelled, (ii) driving relief and (iii) reduced congestion. Underlying the model is a nonlin-480

ear bipartite matching problem that seeks to maximize the commuters’ welfare of the system.481

By assuming the congestion effect is negligible, we obtained several useful analytical results482

for the single O-D problem. When the inconvenience cost is less than the median trip valuation of483

a rider, the platform could always achieve an almost perfect match while maximizing commuters’484

welfare. In this case, if there are an even number of travelers, we propose a pricing policy that485

possesses all desired properties of the VCG policy but runs a lower deficit; otherwise, we show486
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the VCG policy always generates a profit. If the inconvenience cost is too high, the perfect match487

is no longer socially optimal, but the VCG policy still yields a positive profit.488

Results from numerical experiments generally agree with the analytical solutions obtained489

without considering the congestion effect. Specifically, when the inconvenience cost is relatively490

low, the system can reach a perfect match among travelers from the same O-D pair, which cor-491

responds to a 50% reduction in vehicular traffic flow. Moreover, even when the system is forced492

to run a deficit, the welfare gain generated from carpool is large enough to offset it. The results493

also suggest that matching travelers from different O-D pairs is rarely desired by the system. It494

occurs only when matching across O-D has a significantly lower inconvenience cost than match-495

ing within, an unlikely event in reality. Also, when cross O-D matching does become prevalent,496

it leads to higher vehicle miles travelled, hence worse congestion. Thus, from the point of view497

of traffic management, cross O-D carpool should not be encouraged.498

The present analysis has several limitations that a future study could try to address. First and499

foremost, the current model assumes the inconvenience cost as a publicly known constant cost500

applied only to drivers. In reality, this cost not only is heterogeneous and private, but could also501

be shared by driver and riders. Second, the network considered in our model has a very special502

topology, which might affect the generalization of the results, especially those related to cross503

O-D carpool. Developing a nonlinear bipartite matching model over a general network is an504

intriguing challenge, both analytically and computationally. Finally, the study can be enhanced505

by considering other real world features such as traffic dynamics, multiple carpooling platforms,506

and one-to-many matching.507
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