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Perceptually-grounded quantification of 2D shape complexity

Dena Bazazian -
Kathryn Leonard

Abstract The importance of measuring the complex-
ity of shapes can be seen by the wide range of its ap-
plication such as computer vision, robotics, cognitive
studies, eye tracking, and psychology. However, it is
very challenging to define an accurate and precise met-
ric to measure the complexity of the shapes. In this pa-
per, we explore different notions of shape complexity,
drawing from established work in mathematics, com-
puter science, and computer vision. We integrate re-
sults from user studies with quantitative analyses to
identify three measures that capture important axes of
shape complexity, out of a list of almost 300 measures
previously considered in the literature. We then explore
the connection between specific measures and the types
of complexity that each one can elucidate. Finally, we
contribute a dataset of both abstract and meaningful
shapes with designated complexity levels both to sup-
port our findings and to share with other researchers.
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1 Introduction

The notion of shape complexity is a fundamental one,
which has been investigated in many different areas of
computer vision, computer science, mathematics and
psychology [3,16,26,34,36]. Definitions of complexity of
shape vary widely, sometimes depending on an applica-
tion domain, and sometimes depending on a particu-
lar theoretical framing, but rarely are these definitions
constructed in conjunction with human perception of
complexity.

In this paper, we build on prior work that attempts
to quantify various aspects of complexity by determin-
ing quantitative measures that agree with human eval-
uation of complexity, and then relating those measures
to different categories of complexity. In doing so, we
develop a theoretical foundation for shape complexity
that is rooted in human perception.

In [10], we identify categories of complexification —
adding parts to a shape, creating indentations, adding
noise to a shape boundary, and disrupting symmetry
— and conclude that no single quantitative measure is
likely to capture the full range of shape complexity. In-
stead, we propose aggregating measures, and explore an
extensive list of possible measures grouped by whether
they are local measures on the boundary of the shape,
local measures on the region of the shape, measures
based on the Blum medial axis of the shape[7], measures
that capture self-similarity, or global shape measures.
The complexity clusters we obtain using k-medoids clus-
tering on the groupings of measures, and on all mea-
sures together, do not indicate that shapes of simi-
lar perceived complexity are necessarily closer to each
other than they are to shapes of differing complexity in
the respective embedding spaces. In this paper, we build
on that prior work by conducting user studies of hu-
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Fig. 1 An overview of our approach. We apply 282 baseline
shape complexity measures from [10] to a dataset and then
apply a user study to identify three measures that are well-
correlated with human perception of complexity. We then ap-
ply those three measures to a small dataset of constructed
shapes and apply another user study in order to evaluate
which aspects of complexity the three measures are captur-

ing.

complexity
measures

man perception of complexity and applying the results
to guide and refine our understanding of those quan-
titative measures, and to obtain measures that better
capture perceived complexity.

Contributions: This paper makes three main contribu-
tions. First, in Section 4, we apply results from a forced
choice user study to identify which of the 282 measures
from [10] correlate most strongly with human percep-
tion of complexity. We then apply those significant mea-
sures to three small datasetes of constructed shapes cre-
ated to have predetermined complexity levels to see how
well the selected measures distinguish between the pre-
determined levels. Finally, we apply results from two
additional user studies to determine if human percep-
tion of complexity matches with raw and user-weighted
rankings from our selected measures, and to identify
the relationship between types of complexity and val-
ues of specific measures. An overview of our approach
is depicted in Figure 1.

2 Related work

Shape complexity is studied across several fields such
as computer vision [26], design [16,36] and psychology
[3]. In the context of 3D shapes, the topic of shape com-
plexity has the potential to be useful in shape retrieval
[1,4], in measuring neurological development and dis-
orders [18,25], in determining the processes and costs
involved for manufacturing products [16], [35], and in
robotics for learning where to grasp objects [9]. 2D
shape complexity also has a wide range of applications
in cognitive studies and eye tracking [23]. The rela-
tionship between eye-tracking metrics and the psycho-
logical factors explored in [14] is used to obtain the
physiological and psychological indicators of the visual

complexity of art images from the perspective of vi-
sual cognition. Complexity has also been used in image
understanding, such as in [34] where visual complex-
ity is defined as an image attribute that humans can
subjectively evaluate based on the level of details in
the image. The authors then link attributes to deep
intermediate-layer features of neural networks. Shape
complexity measures are also applied in writer verifi-
cation techniques to analyse handwritten text in [6,
]. In [6], the authors determine if two samples have
been written by the same person by evaluating the sim-
ilarity of the two most complex shapes extracted from
each word. In [5], the authors explore different notions
of shape complexity by applying them to a library of
shapes using k-medoids clustering, and then use the re-
sults to solve the handwriting similarity problem as a
particular case of a shape matching problem.
Human perception has been applied in various as-
pects of computer graphics in addition to shape com-
plexity studies [30,32]. The features from a human vi-

sual system (HVS) are applied for incorporating perception-

based computer graphics approaches as a computational
model [32]. ICTree [30] introduces an automated sys-
tem for realism assessment of the tree model based on
their perception. PTRM [32] introduces Perceived Ter-
rain Realism Metrics that assigns a normalized value of
perceived realism to a terrain represented as a digital
elevation model.

In [10], the authors explore a wide range of mea-
sures of shape complexity arising from information the-
ory [13], computer vision [28], computational geome-
try [12], and curve analysis [15,20,27,33], and intro-
duce new notions of complexity based on measurements
taken along Blum medial axis [7] and persistence of cer-
tain features under down-sampling. We discuss these
in more detail below. The authors apply k-medoids
clustering to values of those measures extracted from
shapes from the MPEG-7 database [3], providing an ini-
tial understanding of complexity neighbourhoods based
on the selected measures. Evaluating the clusters sub-
jectively, the authors conclude that no single measure
successfully captures complexity but rather that an ag-
gregation of measures is most likely to produce results
consistent with our human perception [10].

A few measures have been proposed since [10]. Au-
thors of [29] analyse the geometric basis of spatial com-
plexity. An index of total absolute curvature proposed
by [24] reflects the amount of concavity on a curved sur-
face as an index of the quantification of “complexity”
as defined by the cumulative area on the spherical sur-
face indicated by the Gauss map on the curved surface.
In 3D, an investigation of shape complexity measures
performed in [2] introduces a 3D dataset and evaluates
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the performances of the methods by computing Kendall
rank correlation coefficients both between the orders
produced by each complexity measure and the ground
truth and between the pair of orders produced by each
pair of complexity measures.

3 Background

The 282 measures explored in [10] group naturally into

three categories: boundary-based, regional, and skele-

tal. Some measures are global, and some are based on

persistence during down-sampling, which we denote sam-
pling based. We summarize these measures below, but

refer to [10] for full details.

3.1 Boundary-based measures

The boundary-based measures include ratio of peri-
meter to area, total curvature, and a number of sampling-
based measures: the ratio of down-sampled boundary to
length of original boundary, ratio of area enclosed by
the down-sampled boundary to area of original bound-
ary, L? norm on the approximation error produced by
down-sampling, Hausdorff norm on the approximation
error produced by down-sampling, distribution of errors
between down-sampled boundary and original, distri-
butions of curvature at each sampling level, distribution
of tangent angles at each sampling level, distribution of
change in tangent angles at each sampling level, dis-
tribution of edge lengths in the Voronoi diagram at
each sampling level, distribution of triangle areas in
the Delaunay triangulation at each sampling level, and
percentage of Voronoi cell centers that lie inside the
shape versus outside at each sampling level. Note that
all sampling-based measures are normalized by corre-
sponding values in the full shape, and that values com-
puted locally are stored as histograms. Boundaries are
down-sampled until convex. The boundary is linearly
approximated using a steadily decreasing number of
points at five levels - 500, 100, 50, 25 and 8 points—
using arclength sampling at shifted starting points.

Fig. 2 Image of downsampled boundary with 500, 100, 50,
25, and 8 vertices.

3.2 Regional measures

The regional measures include the ratio of the area
of the down-sampled shape to the area of the origi-
nal shape, and the histogram of percentage of fill for
pixels at the 100% resolution after down-sampling. Ar-
eas are down-sampled by scan-converting the original
boundary curve into a 256 x 256 image I with 16 pix-
els of padding on all sides. Regions are down-sampled
by placing a grid with an n-pixel neighborhood (for
n € [2,4,8,16]) on top of I, resulting in four levels.

3.3 Skeletal measures

The skeletal measures are derived from the Blum me-
dial axis [7] computed for each shape using circumcir-
cles of the Delaunay triangulation. Centers and radii
of the circumcircles give skeletal points and radii for
the Blum axis. Following [19,22], the Extended Dis-
tance Function (EDF), Weighted Extended Distance
Function (WEDF), Erosion Thickness (ET) and Shape
Tubularity (ST) are computed for all skeletal points.
EDF computes the geodesic depth of a skeletal point
within a shape measured along the skeleton. WEDF
computes the area-based depth of a sk eletal point by
taking the area of the shape part subtended by a given
skeletal point. ET captures the local blobbiness of a
shape, while ST capture the local tubiness. Together,
they capture the fundamental geometric properties of a
given shape part [21]. Histograms of each of these mea-
sures are computed point-wise along the skeleton, and
also for the subset of skeleton points that are branch
points and neighbors of branch points, where two parts
of the shape join together.

3.4 Rank Support Vector Machine (SVM)

Rank SVM applies the framework for linear SVM clas-
sification to ranking problems [l1,31]. Training data
for the system consists of items embedded into an n-
dimensional feature space, and ground truth pairwise
comparisons of ranks of those items — each item is ei-
ther ranked higher or lower than each other item, but
the full ordered ranking is not required. With a loss
function meant to optimize Kendall’s tau rank correla-
tion [17], rank SVM produces a vector of weights in the
feature space, w = {w; }_;, so that projection of items
onto w results in a ranking that is as close as possible
to the ground truth rank information. Originally devel-
oped for search result evaluations, where web pages in
response to a search query are the items to be ranked
and ground truth ranking is inferred from user click
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Fig. 3 Hand-edited images, ranked by the aggregation of
user responses in order of complexity (all questions combined,
all measures).

behavior, we apply it here to images of shapes with
ground truth ranking provided by a forced-choice user
study. Our feature space is defined by the complexity
measures.

4 Identifying human-linked measures: Forced
choice user study

Given the perceptually unsatisfying complexity clusters
presented in [10], we design and implement a small user
study to determine which of those 282 complexity mea-
sures correlate best with human perception of complex-
ity, and in which settings. Because the average user may
not have a well-developed notion of shape complexity,
we pose four different questions to address four poten-
tially different aspects of complexity.

4.1 Methods for forced choice study

We perform an initial forced-choice study with a small
subset of images from the MPEG-7 images [8]). This
generates, for each image pair, a complexity rank com-
parison based on majority vote of the users who com-
pared those two images. These rankings can then be
converted to a ranking scheme with associated weights
on the measures using rank SVM [11], as described in
Section 3.4.

For a follow-up study, we use a subset of this original
data set (see Section 4.1.2) and augment it with hand-
edited images that represent specific complexity edits,
such as removing a detail.

4.1.1 Initial forced-choice ranking

We use 69 images, one randomly selected from each cat-
egory of the MPEG-7 images. We ask four questions,
each capturing a slightly different notion of complexity
(familiarity of shape, smoothness of boundary, complex-
ity of boundary): (1) Which shape is more complex?
(2) Which would be harder to draw from memory? (3)
Which would be harder to cut out with scissors? (4)
Which would take longer to trace?

The questions are always presented simultaneously
in the same order and each participant answers all four
questions for each image pair. We do not randomize
these questions to avoid adding to the cognitive load the
participant. Each participant sees every image paired at
random with another image from the 69 images. All im-
ages are the same size, with a white shape on a black
background and no interior features. Using Mechanical
Turk, we gathered 242 responses, resulting in approxi-
mately four responses per ordered image pair. Average
completion time was around five minutes, ranging from
3 to 10 minutes. Note that our image question arrange-
ment results in both image orderings being present in
the survey, preventing left-right image bias.

Data validity was checked using comparisons of the
simple shapes (e.g., square) against complex shapes (e.g.
insect or animal). No evidence of unreliable users was
detected using these checks. See Figure 4 for user agree-
ment by question type.

We use the raw pairwise ranking data from user re-
sponses and rank SVM to create five weightings of the
measures: one for each question and one for the com-
bined answers to all questions.

4.1.2 Ezpanded study

Using the hypothesized editing operations from the prior
work [10], we next create a set of hand-edited images
that represent specific changes to the image: remov-
ing detail, thinning structures, editing the curvature of
the boundary, adding noise to the boundary. We apply
these changes to the image categories where there is a
natural edit — apples (2), bats (4), beetles (2), bells
(1), fly, fork, frog, hat, octopus. The complete set of
edited images (sorted by the rank SVM output ranking
for all questions combined) is shown in Figure 3. We
also hand-assign a ground-truth rank-edit measure for
each hand-edit by increasing (or decreasing) the rank
by 1 for each major edit (e.g., removing all detail), and
0.5 for a minor edit (shortening the legs by one-half).
All objects start with a score of 1 before editing.
Finally, we extract a curated set of image pairs based
on object type and rank proximity. We hand-label the
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Fig. 4 From left to right (first three images): Inter-person agreement by question type, for image pairs with a preference,
number of other questions that disagreed with that preference, distribution of that disagreement, and two examples of that
disagreement. The four shapes to the right- Top left: The helicopter was ranked as more complex and more difficult to draw
from memory, while the flower was more difficult to trace and cut out. Bottom left: The fish (more complex, difficult to cut)
versus the hammer (more difficult to draw from memory and trace). See Section 4.2.1 for full details.

entire MPEG-7 data set with type of object (manmade,
abstract, animal) and whether or not that image was
oriented “correctly” (several of the images are simply
rotated copies of other images). For each of these re-
duced sets we sort the images by their user rank from
the initial study (using one of the 5 possible rankings)
then randomly select two images that were within plus
or minus 10 ranking positions of each other, according
to the users, in an attempt to capture subtler complex-
ity shifts. We generate 10 pairs for each combination,
for a total of 80 curated image combinations. We do not
include both orderings of the images, but we do balance
whether the left image or the right is higher ranked.

The expanded study used the same question format
as the initial study, with all possible same object-type
pairs from the hand-edited images plus the 80 image
combinations from the curated image set for a total of
265 image comparisons. Each participant saw 50 ques-
tions and there were 50 participants, producing an av-
erage of four responses for each question.

4.2 Results from forced choice study

We present analysis and results related to how con-
sistently participants ranked the images, which mea-
sures were more correlated to user rankings for different
question types, and how well the measures weighted by
the first study predicted the results from the expanded
study. Note that user rankings of hand-edited images
can be seen in the ordering of the images in Figure 3.
See also Table 2, top row, for Kendall’s tau rank corre-
lation between the induced ranking resulting from rank
SVM computed on our images and the users’ pairwise
rank comparisons. We also note that the distribution of
rankings of all images is more uniform for the complex-
ity and memory questions than the scissor and trace
questions.

4.2.1 Question consistency

We analyzed the responses both for when the partici-
pants differed in their responses (inter-subject) and for
when they differed by response for one of the four spe-
cific complexity questions (intra-subject).

To make the inter-subject plot (left of Figure 4) for
each image pair, we recorded the number of votes for
the first image versus the second for each of the four
question types (“all” is the combined votes) then sorted
the values. Approximately 20% of the image pairs had
disagreement amongst participants, with <1% having a
roughly equal vote (between 0.4 and 0.6 percent agree-
ment).

To measure question agreement we counted the num-
ber of times one of the four study questions had more
votes for the first image for one question and more votes
for the second image for a different question. There
were 606 image-pair questions (of the over 9,000 total)
for which the votes were equal; they are not included
in the plots shown. Middle left of Figure 4 shows the
number of image pairs for which the questions were in
agreement (0), one question was different (1), or two of
the four questions were different (2). The memory ques-
tion was the most likely to vary from the other ques-
tions, with the complex question the least likely. Two
examples of image pairs that differ in two questions are
shown on the right of Figure 4.

4.2.2 Measure importance

Analyzing the overall importance of measures in our
large measures set as determined by the magnitude
of their corresponding rank SVM weights in the user
study, we find remarkable consensus among the top ten
measures for the four questions and the grouped ques-
tions. We find fifteen unique measures in the top ten.
See Table 1.
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The top measures, those in the top 10 for all ques-
tions, cover a range of shape qualities. The first bin
of the histogram of sampling-based boundary error at
the highest two levels of down-sampling captures large-
scale features that persist (i.e., have low error) for the
coarse boundary samplings. The first bin of histograms
of WEDF values for skeleton branch points and their
neighbors captures the proportion of shape parts (where
a part is defined by a branch in the medial axis) with
the smallest areas—the smallest details of the shape.
The middle bin of the sampling-based percent-filled his-
togram at the highest level of down-sampling captures
the proportion of pixels at the original pixelation level
that are half-filled by the image at the coarsest sampling
level. This again gives information about persistence of
boundary features in down-sampling, since a half-filled
pixel is necessarily one that contains a portion of the
boundary of the shape region. Finally, the middle bin
of the curvature histogram at the two coarsest sam-
pling levels captures the mid-range curvature features
that persist. Of these high-ranking measures, we be-
lieve only curvature has been extensively studied as a
complexity measure.

4.2.3 User ranking versus our ranking for hand-edited
shapes

For our hand-edited images we compare our hand-
assigned rank score to the user study results for the
edited pairs. We also compare the expanded user-study
rankings to the rankings from the initial user study for
all pairs of images. Our hand-ranking was in 70% agree-
ment with the user study rankings, with most of the
disagreement arising from the edits that changed shape
but did not remove detail. For example, our hand rank-
ing marked greater complexity given operations such as
making the bell asymmetric or fattening a stem on the
apple, which was not reflected in the user study. The
user rankings agreed with our explicit editing: remov-
ing detail reduced complexity, as did shortening legs,
whereas adding noise or curvature increased complex-
ity, see Figure 3). In general, bending, thinning, or curv-
ing shapes also increased complexity. The ground truth
rankings on the hand-edited images were in 80% agree-
ment with the initial user study user-weighted rankings.
As before, we compare inter-person agreement (see left
of Figure 5). There was more disagreement within this
dataset than the original (4% versus 1% between 0.4
and 0.6).

Results on image rankings for the full expanded
study data showed, on average, 90% agreement with
the results on image rankings of the initial user study
(by question type: 68/75, 65/75, 66/75, 77/75). Unsur-

Table 1 Importance of measures for each complexity ques-
tion in user study described in Section 4, as determined by
weight magnitude for rank SVM output weights. Values in
the table are the ordered positions of the absolute values of
the corresponding weights in w for those measures. Note that
the top measure is top for all questions. Note also that most
questions share the same measures in their top rankings. The
two questions capturing a different understanding of complex-
ity are the questions about cutting and drawing, whose top
measures are outside the top 50 for the other questions.

measures/questions [[complex|draw[cut][trace[ all

boundary error,

bin 1, level 4 1 1 1 1 1
boundary error,
bin 1, level 5 2 2 3 3 2
nfglgthur WEDF, 3 4 5 9 4
bin 1
percent area filled,
bin 6, level 4 4 3110 9 13
curvature,
bin 5, level 5 6 8 6 4 6
curvature,
bin 5, level 4 8 10 9 5 9
WEDF, binl 7 5 17 6 8
curvature,
bin 5, level 3 10 9 1 8 12
boundary error,
bin 1, level 3 9 13 114 10 7
boundary length change, 1 1 7 30 5
level 4
boundary length change, 5 53 9 7 10
level 5
WEDF, binb 43 6 58 | 110 |123
percent area filled,
bin 3, level 4 20 7 37| 57 |133
EDF, bin 4 16 28 8 19 |30
nean area, 44 58 | 4| 25 |25
level 5

prisingly, because the images were chosen to be “close”
to each other in ranking, the inter-person disagreement
is larger than for the initial study (see right of Figure 5)
with 7% versus 1% being between 0.4 and 0.6.

Inter-person agreement
Follow-up Hand-edit

Inter-person agreement
Follow-up Curated

Percentage agreement
Percentage agreement

0 0.5 1 0 0.5 1
Question pair Question pair

Fig. 5 Question disagreement for follow-up study.
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5 Constructed shapes with controlled
complexity

Given the strong support by users for a small number
of complexity measures from the user study, as shown
in Table 1, we next explore the capacity of a subset
of those top measures to capture complexification in
shapes with a known complexity level.

5.1 Methods for constructed shapes

We select three of the high-ranking measures from the
user study that are likely to be unrelated: the first bin
out of 10 bins of the squared boundary error histogram
after four levels of downsampling (the top measure), the
first bin out of 5 bins of the histogram of the WEDF
values of branch points of the medial axis and their
neighbors (the second top measure), and the fifth bin
out of 10 bins of the pointwise curvatures of the bound-
ary at the highest level of down-sampling (ranked in the
top 5 and based on a heavily studied complexity mea-
sure). The total magnitude of user-based weights from
rank SVM for this subset of measures is 0.415, con-
tributing almost half of the total unit vector w. With
282 total weights comprising a unit-length weight vec-
tor, these three measures carry a substantial proportion
of the complexity ranking information, and their values
are highly uncorrelated. We will refer to these in what
follows as the boundary measure, the neighbor WEDF
measure, and the curvature measure. We note here that
we explored but discarded a fourth measure, the mid-
dle bin of the percent-filled measure at the top level of
down-sampling, because it was both correlated with the
curvature and boundary measures and also did not con-
sistently identify any specific form of complexification
in our experiments.

We then design two additional constructed shape
sets with controlled complexity to augment our hand-
edited set from Section 4. The two new shape sets are
abstract in form so that we may clearly separate geo-
metric complexity from perception of shape complexity
due to semantic interpretation.

5.1.1 Top measures

Boundary Our boundary measure is generated from
down-sampling, which reduces the number of vertices
used to create the shape and erodes long protrusions
first (Figure 2). At the highest level of downsampling,
the shape becomes convex and loses most protrusions.
The boundary measure, the first bin of the histogram
at the next-to-highest level of downsampling of dis-
tances between down-sampled boundary to the original

boundary, measures the proportion of the original shape
boundary points that remain after significant downsam-
pling and therefore have a small distance to the down-
sampled boundaries.

Curvature The curvature measure is also a sampling
measure. Taking the middle bin at the highest level
of downsampling gives the proportion of downsampled
boundary points in the middle of the curvature distri-
bution. This measures persistence of mid-scale shape
features. A circle, which has constant curvature and is
not thought of as complex, would have a value of 0.
A square, with curvatures of 0 and oo (or a discrete
approximation thereof), would also have a value of 0
since all its curvature measures would fall into the first
and tenth bins. A shape with some sharp corners, some
straight regions, and some variability in between would
have a non-zero value in the middle bin.

Neighbor WEDF The interior Blum medial axis gives
a skeleton of a shape where branch points on the skele-
ton indicate shape parts connecting. The WEDF at a
point measures the volume of the shape part supported
by that point, which is the volume of the part that
would be lost if the shape were truncated at that point.
The first bin of the neighbor WEDF histogram gives
the proportion of branch point neighbors that are sup-
porting very small shape parts. This value will be small
for very smooth shapes and shapes with primarily large
parts, and will be close to one for simple shapes with a
large amount of noise on the boundary creating multi-
ple small volume parts.

To further support the effectiveness of these mea-
sures, we repeat a rank SVM calculation using just these
three measures, see Table 2. Kendall-Tau rank corre-
lations with the raw user-rankings, with the top three
measures for each user study question, and with the full
measure rank SVM are shown in Table 2. Although the
correlation values drop a bit from the full measure set,
they are still high for the 3-measure set, indicating that
these three measures capture a considerable proportion
of the information in user rankings.

5.1.2 Constructed shape data

We generate two constructed shape datasets with con-
trolled complexity of different types. The first dataset
is a blob dataset, meant to generate shapes with salient
shape parts. We use interpolation between a set of ran-
dom points to create a smooth closed shape. This re-
sults in blob-like shapes with large protrusions. Start-
ing with a larger set of points for interpolation generally
produces more protrusions in the resulting shape, which
typically leads to increased complexity. See Figure 6.
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Table 2 Kendall’s tau rank correlation between user rank-
ings in the first user study, our full-measure rank SVM in-
duced ranking, and our 3-measure rank SVM induced rank-
ing. Note that our 3-measure ranking performs almost as well
as the full-measure ranking for Questions 1 (complex) and 3
(cut). For the other two questions, we are not capturing the
user rankings as well. Neither the full- nor the 3-measure
rankings perform well for the combined questions.

H complex [ draw [ cut [ trace [ all Qs

full-measure to 0.856 0.849 | 0.878 | 0.886 | 0.900
user rank

3-measure 0.763 0.664 | 0.803 | 0.815 | 0.776
user rank

full-measure to 0.851 0.766 | 0.863 | 0.880 | 0.838
3-measure

k.
)

| 4

Fig. 6 Examples of blob constructed shapes, with four levels
of complexity increasing from left to right.

Fig. 7 Example sequence of the eight levels of complexity for

noisy circles. Top row, L to R: complexity levels 1-4. Bottom
row, L to R: complexity levels 5-8.

The second dataset, noisy circles, is designed to cap-
ture noisy small protrusions rather than the salient
large protrusions of the blob dataset. We begin with
a circle, a shape that both our intuition and the con-
structive model of complexity outlined in [10] consider
to be the simplest shape. We then add noise by running
a pseudo-random walk on each point on the boundary
of a binary image of the circle and adding a pixel at each
step of the walk. The walk moves in a random cardinal
direction and for a random number of steps for each
point on the boundary. We add levels of complexity by
increasing the number of times that the circle cycles
through every point on the random walk. We generate
eight levels of complexity with ten shapes per level. See
Figure 7.

In addition, we extract all sequences of the hand-
edited shapes where parts are gradually added or length-
ened. See Figure 12.

5.2 Quantitative results for constructed shapes

We find from considering our constructed dataset that
the three complexity measures are sensitive to different
forms of complexification.

The boundary measure distinguishes well between
the most simplified and most complex of the hand-
edited shapes. See Figure 8. The measure is not sensi-
tive enough, however, to correctly identify the interme-
diate complexity stages, nor to identify the complexity
increases in the noisy circles.

Hand-edited sequences, boundary measure
T T

|
|
|
|
|
|
|
|
|

J \ /

I I
low complexity full complexity

Fig. 8 Boxplots of the boundary measure values for the sim-
plified hand-edited shapes (L) and the full complexity ver-
sions of the same shapes (R).

The curvature measure captures larger scale com-
plexification such as that found in the blob shape set.
Figure 9 shows the box plots for the blobs at each of
the four levels of increasing complexity and the corre-
sponding increases in the curvature measure. Because
the curvature histograms of the noisy circles are fairly
consistent across the complexity levels, the curvature
measure joins the boundary measure in failing to dis-
tinguish complexification in that dataset.

The neighbor WEDF measure distinguishes extremely
well between the small scale complexity of the noisy
circles and the larger scale complexity of the blobs.
See Figure 10. But again, the measure does not distin-
guish between complexity levels within the noisy circles
dataset.

Using the weighted rankings resulting from the three-
measure rank SVM applied to the dataset from Sec-
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Fig. 9 Boxplots of the curvature measure values of the blob
datasets at increasing levels of shape complexity (L to R).
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Fig. 10 Boxplots of the neighbor WEDF measure values of
the blob (L) and circle (R) datasets at increasing levels of
shape complexity.

tion 4, we obtain a ranking that distinguishes well be-
tween the three shape categories of blobs, circles, and
hand-edited shapes, but not so well within each cate-
gory. See Figure 11. In particular, the weighted ranking
again does not distinguish between complexity levels
within the noisy circles.

While each measure identifies some forms of com-
plexity, none of these measures successfully distinguishes
the complexity levels for the noisy circles. We conjec-
ture that this is due to the randomness and more reg-
ular sizing of the shape parts in the noisy circles.

3-measure rank SVM ranking of data categories
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Fig. 11 Boxplots of weighted rankings from the three-
measure rank SVM applied to shape categories in the con-
structed dataset.
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Fig. 12 Hand-edited shapes with growing complexity.

6 Final user studies with constructed shapes

We perform two final user studies to validate our quan-
titative findings in Section 5. The first study aims to
identify language non-experts use to describe the differ-
ent types of hypothesized complexity. The second study
uses this language to evaluate the user agreement with
our three measures, and link specific words to specific
measures if possible. For both studies, we use a curated
set of image pairs that exemplify the different types
of complexity changes with a mix of the hand-edited
shapes, blobs, and circles, as well as a small subset of
the original MPEG-7 set.

6.1 Methods for constructed shapes user study

Our first study is an open-answer Mechanical Turk study.
Participants are presented with two images and asked
to explain the difference between the two (natural lan-
guage response). We use three prompting questions: (1)
What words would you use to describe the differences
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between the two shapes? (2) What features make the
shape more complex? (after being asked to pick which
was more complex), (3) How would you describe the
difference between the two shapes? A subset of pairs
of images from the previous study (11 hand-edited, 15
MPEG) plus 4 constructed shapes (blobs and circles),
were used. Approximately half the pairs were “recog-
nizable” images. A total of 389 responses were collected
from 40 participants, approximately 12 image pairs per
participant. The text was analyzed for both anthropo-
morphic terms and common phrases.

For the second study we repeat the forced-choice
study design of Section 4, again using Mechanical Turk,
but also ask participants to pick what phrase best-
describes the complexity differences and to evaluate
how similar the shapes are in terms of complexity (very
similar, somewhat similar, not similar). The vocabulary
of the phrases is based on our results from the open-
answer study: (1) The boundary of the complex shape is
more bumpy, (2) The boundary of the complex shape
is more curvy, (3) The simpler shape is smoother (4)
The complex shape has more parts that stick out, (4)
The simpler shape is more symmetric, (5) The complex
shape has more bends in it. Although “parts” was only
used once in the first part of this study, named parts of
things (e.g., legs, petals) were used in all but the most
abstract shapes, so we also include it as an option in
our questions.

For the second study, we use 49 image pairs (6 low-
complexity hand-edited, 9 circle-circle, 21 blob-blob, 14
circle-blob). Pairs are chosen based on relative intended
complexity in the dataset construction. Some pairs are
chosen to be the same image type (e.g., both blobs)
with either intended complexity level far apart (e.g.,
level 1 and level 3) or closer together (e.g., level 2 and
level 3). Some pairs are chosen to be different image
types (e.g., blobs and circles) where one of our mea-
sures was effective at distinguishing between the types.
These questions are designed to determine if our mea-
sure ambiguity is reflected in user ambiguity, and if our
measure clarity is reflected in user clarity.

Twenty-three participants answered questions for 15
randomly selected image pairs, with an equal sampling
from each image pair type, for an average of 5 compar-
isons for each image pair.

6.2 Results from constructed shape study

Fig. 13 shows the most frequent words users in the first
part of the study, where users were asked to provide
vocabulary to describe why a shape is more complex
in comparison with another. For instance, having more

= edge
u curve
line
angle
= smooth
= bend
= bump
m symmetrical
m straight

= crooked

Fig. 13 A pie chart of the words provided by users to de-
scribe the complex shapes in the first part of the user study
in Section 6.

“edges” in a shape makes it more complex. The ma-
jority of these terms refer to the boundary with only
four terms (bend, symmetrical, straight, crooked) refer-
ring to the global shape. We choose bumpy, curvy, and
smooth for our questions. Although “edges”, “lines”,
and “angle” were commonly used, they are potentially
ambiguous and/or grammatically challenging. We also
select two overall shape-based terms (bend, symmetri-
cal). Finally, we note that there was a strong correla-
tion between how recognizable the shape was and the
use of anthropomorphic/descriptive terms (eg, has legs,
has rays), underscoring the importance of including ab-
stract shape sets in the user studies.

In our second part of the study, user vocabulary
preferences revealed some complexity category distinc-
tions. By far the most selected phrase for all categories
of image pairings was “parts” (approximately 30%),
followed by “curvy” and “smoother”. “Symmetrical”
was only used consistently with the hand-edited shapes
(20% of answers), though the second-most commonly
chosen word for the hand-edited shapes was ”smoother”
(24%). “Bumpy” was rarely selected for the blobs or
hand-edited shapes (< 7%), but was the second-most
commonly chosen for the circles-blob comparisons (23%,
as compared to 27% for “parts”), indicating that it is
preferred as a word that distinguishes fine-scale bound-
ary features from the larger scale features. “Curvy”,
like “parts”, appears to apply to both large and small
scales. It was, however, selected more for the blob-blob
comparisons than the circle-circles (30% vs 23%), and
was the second-most commonly chosen for blobs-blobs.
Linking this to our 3-measure results from Section 5.2,
we might conclude that “bumpiness” is captured by
the neighbor WEDF measure, “curviness” is (appro-
priately) captured by the curvature measure, “smooth-
ness” is captured by the boundary measure, and the
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3-measure rank SVM distinguishes between curviness,
bumpiness, and smoothness.

The second part of the study also shows that users
largely agree with our intended rankings in the con-
structed shapes, except for in the circles category. For
the 37 shape pairings where both shapes were from
the same category (e.g., circle-circle rather than circle-
blob), 32 pairings (86.5%) showed user agreement with
our intended ranking. Of the five pairings with disagree-
ment, two were blob-blob and three were circle-circle.
See Figure 14. Overall, the circle-circle category also
showed the most ambiguity in user ratings. For the
circle-circle shape pairs with an intended complexity
level difference, we consider pairings where average user
agreement is close to 50% to be those where users dis-
agreed with each other. Almost half of the circle-circle
image pairs showed user disagreement, which may ex-
plain why our user-motivated measures are not distin-
guishing intended complexity well in that class.

Fig. 14 Examples of shape pairings where our final user
study as described in Section 6 showed user disagreement
with our intended complexity levels. Top row shows shapes
of lower complexity and bottom row, same column, shows the
other shape in study pairing that was intended to have higher
complexity. Users flipped this ordering in their responses, so

users considered the bottom row to be less complex than the
top row.

7 Conclusion

We have interleaved results from user studies with quan-
titative analyses in order to identify and evaluate three
key measures, out of an initial group of nearly 300, that
capture important axes of shape complexity. We find
that these three measures distinguish between complex-
ity due to noise and due to salient parts, distinguish
complexity levels for abstract shapes with increasing
numbers of salient parts, and distinguish between cat-
egories of shape complexity. A final user study pro-
vides support for these quantitative results, as the users
select different words for different categories of shape

complexity that our measures are able to detect. We
also contribute a database of abstract and meaning-
ful shapes with designated complexity levels for further
study.

There are several questions that future work should
explore. Why are the top measures for the question
“Which shape is harder to draw?” in the first user study
so different from the other three questions? What role
does semantic shape meaning play for users’ interpreta-
tion of complexity in user study two? Is there a measure
that captures the variation in complexity in the noisy
circle database? And, of course, is there a larger set of
measures that encompasses a richer understanding of
complexity that can improve our comparison to user
perception, particularly when comparing shapes across
categories, such as comparing a beetle image to a blob?
Finally, we note that the data in the user studies can
offer up many more insights into human perception of
shape complexity than we require in this work.
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