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Abstract The importance of measuring the complex-

ity of shapes can be seen by the wide range of its ap-

plication such as computer vision, robotics, cognitive

studies, eye tracking, and psychology. However, it is

very challenging to define an accurate and precise met-

ric to measure the complexity of the shapes. In this pa-

per, we explore different notions of shape complexity,

drawing from established work in mathematics, com-

puter science, and computer vision. We integrate re-

sults from user studies with quantitative analyses to

identify three measures that capture important axes of

shape complexity, out of a list of almost 300 measures

previously considered in the literature. We then explore

the connection between specific measures and the types

of complexity that each one can elucidate. Finally, we

contribute a dataset of both abstract and meaningful

shapes with designated complexity levels both to sup-

port our findings and to share with other researchers.
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1 Introduction

The notion of shape complexity is a fundamental one,

which has been investigated in many different areas of

computer vision, computer science, mathematics and

psychology [3,16,26,34,36]. Definitions of complexity of

shape vary widely, sometimes depending on an applica-

tion domain, and sometimes depending on a particu-

lar theoretical framing, but rarely are these definitions

constructed in conjunction with human perception of

complexity.

In this paper, we build on prior work that attempts

to quantify various aspects of complexity by determin-

ing quantitative measures that agree with human eval-

uation of complexity, and then relating those measures

to different categories of complexity. In doing so, we

develop a theoretical foundation for shape complexity

that is rooted in human perception.

In [10], we identify categories of complexification –

adding parts to a shape, creating indentations, adding

noise to a shape boundary, and disrupting symmetry

– and conclude that no single quantitative measure is

likely to capture the full range of shape complexity. In-

stead, we propose aggregating measures, and explore an

extensive list of possible measures grouped by whether

they are local measures on the boundary of the shape,

local measures on the region of the shape, measures

based on the Blum medial axis of the shape[7], measures

that capture self-similarity, or global shape measures.

The complexity clusters we obtain using k-medoids clus-

tering on the groupings of measures, and on all mea-

sures together, do not indicate that shapes of simi-

lar perceived complexity are necessarily closer to each

other than they are to shapes of differing complexity in

the respective embedding spaces. In this paper, we build

on that prior work by conducting user studies of hu-
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Fig. 1 An overview of our approach. We apply 282 baseline
shape complexity measures from [10] to a dataset and then
apply a user study to identify three measures that are well-
correlated with human perception of complexity. We then ap-
ply those three measures to a small dataset of constructed
shapes and apply another user study in order to evaluate
which aspects of complexity the three measures are captur-
ing.

man perception of complexity and applying the results

to guide and refine our understanding of those quan-

titative measures, and to obtain measures that better

capture perceived complexity.

Contributions: This paper makes three main contribu-

tions. First, in Section 4, we apply results from a forced

choice user study to identify which of the 282 measures

from [10] correlate most strongly with human percep-

tion of complexity. We then apply those significant mea-

sures to three small datasetes of constructed shapes cre-

ated to have predetermined complexity levels to see how

well the selected measures distinguish between the pre-

determined levels. Finally, we apply results from two

additional user studies to determine if human percep-

tion of complexity matches with raw and user-weighted

rankings from our selected measures, and to identify

the relationship between types of complexity and val-

ues of specific measures. An overview of our approach

is depicted in Figure 1.

2 Related work

Shape complexity is studied across several fields such

as computer vision [26], design [16,36] and psychology

[3]. In the context of 3D shapes, the topic of shape com-

plexity has the potential to be useful in shape retrieval

[1,4], in measuring neurological development and dis-

orders [18,25], in determining the processes and costs

involved for manufacturing products [16], [35], and in

robotics for learning where to grasp objects [9]. 2D

shape complexity also has a wide range of applications

in cognitive studies and eye tracking [23]. The rela-

tionship between eye-tracking metrics and the psycho-

logical factors explored in [14] is used to obtain the

physiological and psychological indicators of the visual

complexity of art images from the perspective of vi-

sual cognition. Complexity has also been used in image

understanding, such as in [34] where visual complex-

ity is defined as an image attribute that humans can

subjectively evaluate based on the level of details in

the image. The authors then link attributes to deep

intermediate-layer features of neural networks. Shape

complexity measures are also applied in writer verifi-

cation techniques to analyse handwritten text in [6,

5]. In [6], the authors determine if two samples have

been written by the same person by evaluating the sim-

ilarity of the two most complex shapes extracted from

each word. In [5], the authors explore different notions

of shape complexity by applying them to a library of

shapes using k-medoids clustering, and then use the re-

sults to solve the handwriting similarity problem as a

particular case of a shape matching problem.

Human perception has been applied in various as-

pects of computer graphics in addition to shape com-

plexity studies [30,32]. The features from a human vi-

sual system (HVS) are applied for incorporating perception-

based computer graphics approaches as a computational

model [32]. ICTree [30] introduces an automated sys-

tem for realism assessment of the tree model based on

their perception. PTRM [32] introduces Perceived Ter-

rain Realism Metrics that assigns a normalized value of

perceived realism to a terrain represented as a digital

elevation model.

In [10], the authors explore a wide range of mea-

sures of shape complexity arising from information the-

ory [13], computer vision [28], computational geome-

try [12], and curve analysis [15,20,27,33], and intro-

duce new notions of complexity based on measurements

taken along Blum medial axis [7] and persistence of cer-

tain features under down-sampling. We discuss these

in more detail below. The authors apply k-medoids

clustering to values of those measures extracted from

shapes from the MPEG-7 database [8], providing an ini-

tial understanding of complexity neighbourhoods based

on the selected measures. Evaluating the clusters sub-

jectively, the authors conclude that no single measure

successfully captures complexity but rather that an ag-

gregation of measures is most likely to produce results

consistent with our human perception [10].

A few measures have been proposed since [10]. Au-

thors of [29] analyse the geometric basis of spatial com-

plexity. An index of total absolute curvature proposed

by [24] reflects the amount of concavity on a curved sur-

face as an index of the quantification of “complexity”

as defined by the cumulative area on the spherical sur-

face indicated by the Gauss map on the curved surface.

In 3D, an investigation of shape complexity measures

performed in [2] introduces a 3D dataset and evaluates
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the performances of the methods by computing Kendall

rank correlation coefficients both between the orders

produced by each complexity measure and the ground

truth and between the pair of orders produced by each

pair of complexity measures.

3 Background

The 282 measures explored in [10] group naturally into

three categories: boundary-based, regional, and skele-

tal. Some measures are global, and some are based on

persistence during down-sampling, which we denote sam-

pling based. We summarize these measures below, but

refer to [10] for full details.

3.1 Boundary-based measures

The boundary-based measures include ratio of peri-

meter to area, total curvature, and a number of sampling-

based measures: the ratio of down-sampled boundary to

length of original boundary, ratio of area enclosed by

the down-sampled boundary to area of original bound-

ary, L2 norm on the approximation error produced by

down-sampling, Hausdorff norm on the approximation

error produced by down-sampling, distribution of errors

between down-sampled boundary and original, distri-

butions of curvature at each sampling level, distribution

of tangent angles at each sampling level, distribution of

change in tangent angles at each sampling level, dis-

tribution of edge lengths in the Voronoi diagram at

each sampling level, distribution of triangle areas in

the Delaunay triangulation at each sampling level, and

percentage of Voronoi cell centers that lie inside the

shape versus outside at each sampling level. Note that

all sampling-based measures are normalized by corre-

sponding values in the full shape, and that values com-

puted locally are stored as histograms. Boundaries are

down-sampled until convex. The boundary is linearly

approximated using a steadily decreasing number of

points at five levels - 500, 100, 50, 25 and 8 points–

using arclength sampling at shifted starting points.

Fig. 2 Image of downsampled boundary with 500, 100, 50,
25, and 8 vertices.

3.2 Regional measures

The regional measures include the ratio of the area

of the down-sampled shape to the area of the origi-

nal shape, and the histogram of percentage of fill for

pixels at the 100% resolution after down-sampling. Ar-

eas are down-sampled by scan-converting the original

boundary curve into a 256 × 256 image I with 16 pix-

els of padding on all sides. Regions are down-sampled

by placing a grid with an n-pixel neighborhood (for

n ∈ [2, 4, 8, 16]) on top of I, resulting in four levels.

3.3 Skeletal measures

The skeletal measures are derived from the Blum me-

dial axis [7] computed for each shape using circumcir-

cles of the Delaunay triangulation. Centers and radii

of the circumcircles give skeletal points and radii for

the Blum axis. Following [19,22], the Extended Dis-

tance Function (EDF), Weighted Extended Distance

Function (WEDF), Erosion Thickness (ET) and Shape

Tubularity (ST) are computed for all skeletal points.

EDF computes the geodesic depth of a skeletal point

within a shape measured along the skeleton. WEDF

computes the area-based depth of a sk eletal point by

taking the area of the shape part subtended by a given

skeletal point. ET captures the local blobbiness of a

shape, while ST capture the local tubiness. Together,

they capture the fundamental geometric properties of a

given shape part [21]. Histograms of each of these mea-

sures are computed point-wise along the skeleton, and

also for the subset of skeleton points that are branch

points and neighbors of branch points, where two parts

of the shape join together.

3.4 Rank Support Vector Machine (SVM)

Rank SVM applies the framework for linear SVM clas-

sification to ranking problems [11,31]. Training data

for the system consists of items embedded into an n-

dimensional feature space, and ground truth pairwise

comparisons of ranks of those items – each item is ei-

ther ranked higher or lower than each other item, but

the full ordered ranking is not required. With a loss

function meant to optimize Kendall’s tau rank correla-

tion [17], rank SVM produces a vector of weights in the

feature space, w = {wi}ni=1, so that projection of items

onto w results in a ranking that is as close as possible

to the ground truth rank information. Originally devel-

oped for search result evaluations, where web pages in

response to a search query are the items to be ranked

and ground truth ranking is inferred from user click
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Fig. 3 Hand-edited images, ranked by the aggregation of
user responses in order of complexity (all questions combined,
all measures).

behavior, we apply it here to images of shapes with

ground truth ranking provided by a forced-choice user

study. Our feature space is defined by the complexity

measures.

4 Identifying human-linked measures: Forced

choice user study

Given the perceptually unsatisfying complexity clusters

presented in [10], we design and implement a small user

study to determine which of those 282 complexity mea-

sures correlate best with human perception of complex-

ity, and in which settings. Because the average user may

not have a well-developed notion of shape complexity,

we pose four different questions to address four poten-

tially different aspects of complexity.

4.1 Methods for forced choice study

We perform an initial forced-choice study with a small

subset of images from the MPEG-7 images [8]). This

generates, for each image pair, a complexity rank com-

parison based on majority vote of the users who com-

pared those two images. These rankings can then be

converted to a ranking scheme with associated weights

on the measures using rank SVM [11], as described in

Section 3.4.

For a follow-up study, we use a subset of this original

data set (see Section 4.1.2) and augment it with hand-

edited images that represent specific complexity edits,

such as removing a detail.

4.1.1 Initial forced-choice ranking

We use 69 images, one randomly selected from each cat-

egory of the MPEG-7 images. We ask four questions,

each capturing a slightly different notion of complexity

(familiarity of shape, smoothness of boundary, complex-

ity of boundary): (1) Which shape is more complex?

(2) Which would be harder to draw from memory? (3)

Which would be harder to cut out with scissors? (4)

Which would take longer to trace?

The questions are always presented simultaneously

in the same order and each participant answers all four

questions for each image pair. We do not randomize

these questions to avoid adding to the cognitive load the

participant. Each participant sees every image paired at

random with another image from the 69 images. All im-

ages are the same size, with a white shape on a black

background and no interior features. Using Mechanical

Turk, we gathered 242 responses, resulting in approxi-

mately four responses per ordered image pair. Average

completion time was around five minutes, ranging from

3 to 10 minutes. Note that our image question arrange-

ment results in both image orderings being present in

the survey, preventing left-right image bias.

Data validity was checked using comparisons of the

simple shapes (e.g., square) against complex shapes (e.g.

insect or animal). No evidence of unreliable users was

detected using these checks. See Figure 4 for user agree-

ment by question type.

We use the raw pairwise ranking data from user re-

sponses and rank SVM to create five weightings of the

measures: one for each question and one for the com-

bined answers to all questions.

4.1.2 Expanded study

Using the hypothesized editing operations from the prior

work [10], we next create a set of hand-edited images

that represent specific changes to the image: remov-

ing detail, thinning structures, editing the curvature of

the boundary, adding noise to the boundary. We apply

these changes to the image categories where there is a

natural edit — apples (2), bats (4), beetles (2), bells

(1), fly, fork, frog, hat, octopus. The complete set of

edited images (sorted by the rank SVM output ranking

for all questions combined) is shown in Figure 3. We

also hand-assign a ground-truth rank-edit measure for

each hand-edit by increasing (or decreasing) the rank

by 1 for each major edit (e.g., removing all detail), and

0.5 for a minor edit (shortening the legs by one-half).

All objects start with a score of 1 before editing.

Finally, we extract a curated set of image pairs based

on object type and rank proximity. We hand-label the
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Fig. 4 From left to right (first three images): Inter-person agreement by question type, for image pairs with a preference,
number of other questions that disagreed with that preference, distribution of that disagreement, and two examples of that
disagreement. The four shapes to the right- Top left: The helicopter was ranked as more complex and more difficult to draw
from memory, while the flower was more difficult to trace and cut out. Bottom left: The fish (more complex, difficult to cut)
versus the hammer (more difficult to draw from memory and trace). See Section 4.2.1 for full details.

entire MPEG-7 data set with type of object (manmade,

abstract, animal) and whether or not that image was

oriented “correctly” (several of the images are simply

rotated copies of other images). For each of these re-

duced sets we sort the images by their user rank from

the initial study (using one of the 5 possible rankings)

then randomly select two images that were within plus

or minus 10 ranking positions of each other, according

to the users, in an attempt to capture subtler complex-

ity shifts. We generate 10 pairs for each combination,

for a total of 80 curated image combinations. We do not

include both orderings of the images, but we do balance

whether the left image or the right is higher ranked.

The expanded study used the same question format

as the initial study, with all possible same object-type

pairs from the hand-edited images plus the 80 image

combinations from the curated image set for a total of

265 image comparisons. Each participant saw 50 ques-

tions and there were 50 participants, producing an av-

erage of four responses for each question.

4.2 Results from forced choice study

We present analysis and results related to how con-

sistently participants ranked the images, which mea-

sures were more correlated to user rankings for different

question types, and how well the measures weighted by

the first study predicted the results from the expanded

study. Note that user rankings of hand-edited images

can be seen in the ordering of the images in Figure 3.

See also Table 2, top row, for Kendall’s tau rank corre-

lation between the induced ranking resulting from rank

SVM computed on our images and the users’ pairwise

rank comparisons. We also note that the distribution of

rankings of all images is more uniform for the complex-

ity and memory questions than the scissor and trace

questions.

4.2.1 Question consistency

We analyzed the responses both for when the partici-

pants differed in their responses (inter-subject) and for

when they differed by response for one of the four spe-

cific complexity questions (intra-subject).

To make the inter-subject plot (left of Figure 4) for

each image pair, we recorded the number of votes for

the first image versus the second for each of the four

question types (“all” is the combined votes) then sorted

the values. Approximately 20% of the image pairs had

disagreement amongst participants, with <1% having a

roughly equal vote (between 0.4 and 0.6 percent agree-

ment).

To measure question agreement we counted the num-

ber of times one of the four study questions had more

votes for the first image for one question and more votes

for the second image for a different question. There

were 606 image-pair questions (of the over 9,000 total)

for which the votes were equal; they are not included

in the plots shown. Middle left of Figure 4 shows the

number of image pairs for which the questions were in

agreement (0), one question was different (1), or two of

the four questions were different (2). The memory ques-

tion was the most likely to vary from the other ques-

tions, with the complex question the least likely. Two

examples of image pairs that differ in two questions are

shown on the right of Figure 4.

4.2.2 Measure importance

Analyzing the overall importance of measures in our

large measures set as determined by the magnitude

of their corresponding rank SVM weights in the user

study, we find remarkable consensus among the top ten

measures for the four questions and the grouped ques-

tions. We find fifteen unique measures in the top ten.

See Table 1.
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The top measures, those in the top 10 for all ques-

tions, cover a range of shape qualities. The first bin

of the histogram of sampling-based boundary error at

the highest two levels of down-sampling captures large-

scale features that persist (i.e., have low error) for the

coarse boundary samplings. The first bin of histograms

of WEDF values for skeleton branch points and their

neighbors captures the proportion of shape parts (where

a part is defined by a branch in the medial axis) with

the smallest areas—the smallest details of the shape.

The middle bin of the sampling-based percent-filled his-

togram at the highest level of down-sampling captures

the proportion of pixels at the original pixelation level

that are half-filled by the image at the coarsest sampling

level. This again gives information about persistence of

boundary features in down-sampling, since a half-filled

pixel is necessarily one that contains a portion of the

boundary of the shape region. Finally, the middle bin

of the curvature histogram at the two coarsest sam-

pling levels captures the mid-range curvature features

that persist. Of these high-ranking measures, we be-

lieve only curvature has been extensively studied as a

complexity measure.

4.2.3 User ranking versus our ranking for hand-edited

shapes

For our hand-edited images we compare our hand-

assigned rank score to the user study results for the

edited pairs. We also compare the expanded user-study

rankings to the rankings from the initial user study for

all pairs of images. Our hand-ranking was in 70% agree-

ment with the user study rankings, with most of the

disagreement arising from the edits that changed shape

but did not remove detail. For example, our hand rank-

ing marked greater complexity given operations such as

making the bell asymmetric or fattening a stem on the

apple, which was not reflected in the user study. The

user rankings agreed with our explicit editing: remov-

ing detail reduced complexity, as did shortening legs,

whereas adding noise or curvature increased complex-

ity, see Figure 3). In general, bending, thinning, or curv-

ing shapes also increased complexity. The ground truth

rankings on the hand-edited images were in 80% agree-

ment with the initial user study user-weighted rankings.

As before, we compare inter-person agreement (see left

of Figure 5). There was more disagreement within this

dataset than the original (4% versus 1% between 0.4

and 0.6).

Results on image rankings for the full expanded

study data showed, on average, 90% agreement with

the results on image rankings of the initial user study

(by question type: 68/75, 65/75, 66/75, 77/75). Unsur-

Table 1 Importance of measures for each complexity ques-
tion in user study described in Section 4, as determined by
weight magnitude for rank SVM output weights. Values in
the table are the ordered positions of the absolute values of
the corresponding weights in w for those measures. Note that
the top measure is top for all questions. Note also that most
questions share the same measures in their top rankings. The
two questions capturing a different understanding of complex-
ity are the questions about cutting and drawing, whose top
measures are outside the top 50 for the other questions.

measures/questions complex draw cut trace all

boundary error,
bin 1, level 4

1 1 1 1 1

boundary error,
bin 1, level 5

2 2 3 3 2

neighbour WEDF,
bin 1

3 4 5 2 4

percent area filled,
bin 6, level 4

4 3 10 9 3

curvature,
bin 5, level 5

6 8 6 4 6

curvature,
bin 5, level 4

8 10 9 5 9

WEDF, bin1 7 5 17 6 8
curvature,
bin 5, level 3

10 9 11 8 12

boundary error,
bin 1, level 3

9 13 14 10 7

boundary length change,
level 4

11 11 7 30 5

boundary length change,
level 5

5 53 2 7 10

WEDF, bin5 43 6 58 110 123
percent area filled,
bin 3, level 4

20 7 37 57 133

EDF, bin 4 16 28 8 19 30
mean area,
level 5

44 58 4 25 25

prisingly, because the images were chosen to be “close”

to each other in ranking, the inter-person disagreement

is larger than for the initial study (see right of Figure 5)

with 7% versus 1% being between 0.4 and 0.6.
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5 Constructed shapes with controlled

complexity

Given the strong support by users for a small number

of complexity measures from the user study, as shown

in Table 1, we next explore the capacity of a subset

of those top measures to capture complexification in

shapes with a known complexity level.

5.1 Methods for constructed shapes

We select three of the high-ranking measures from the

user study that are likely to be unrelated: the first bin

out of 10 bins of the squared boundary error histogram

after four levels of downsampling (the top measure), the

first bin out of 5 bins of the histogram of the WEDF

values of branch points of the medial axis and their

neighbors (the second top measure), and the fifth bin

out of 10 bins of the pointwise curvatures of the bound-

ary at the highest level of down-sampling (ranked in the

top 5 and based on a heavily studied complexity mea-

sure). The total magnitude of user-based weights from

rank SVM for this subset of measures is 0.415, con-

tributing almost half of the total unit vector w. With

282 total weights comprising a unit-length weight vec-

tor, these three measures carry a substantial proportion

of the complexity ranking information, and their values

are highly uncorrelated. We will refer to these in what

follows as the boundary measure, the neighbor WEDF

measure, and the curvature measure. We note here that

we explored but discarded a fourth measure, the mid-

dle bin of the percent-filled measure at the top level of

down-sampling, because it was both correlated with the

curvature and boundary measures and also did not con-

sistently identify any specific form of complexification

in our experiments.

We then design two additional constructed shape

sets with controlled complexity to augment our hand-

edited set from Section 4. The two new shape sets are

abstract in form so that we may clearly separate geo-

metric complexity from perception of shape complexity

due to semantic interpretation.

5.1.1 Top measures

Boundary Our boundary measure is generated from

down-sampling, which reduces the number of vertices

used to create the shape and erodes long protrusions

first (Figure 2). At the highest level of downsampling,

the shape becomes convex and loses most protrusions.

The boundary measure, the first bin of the histogram

at the next-to-highest level of downsampling of dis-

tances between down-sampled boundary to the original

boundary, measures the proportion of the original shape

boundary points that remain after significant downsam-

pling and therefore have a small distance to the down-

sampled boundaries.

Curvature The curvature measure is also a sampling

measure. Taking the middle bin at the highest level

of downsampling gives the proportion of downsampled

boundary points in the middle of the curvature distri-

bution. This measures persistence of mid-scale shape

features. A circle, which has constant curvature and is

not thought of as complex, would have a value of 0.

A square, with curvatures of 0 and ∞ (or a discrete

approximation thereof), would also have a value of 0

since all its curvature measures would fall into the first

and tenth bins. A shape with some sharp corners, some

straight regions, and some variability in between would

have a non-zero value in the middle bin.

Neighbor WEDF The interior Blum medial axis gives

a skeleton of a shape where branch points on the skele-

ton indicate shape parts connecting. The WEDF at a

point measures the volume of the shape part supported

by that point, which is the volume of the part that

would be lost if the shape were truncated at that point.

The first bin of the neighbor WEDF histogram gives

the proportion of branch point neighbors that are sup-

porting very small shape parts. This value will be small

for very smooth shapes and shapes with primarily large

parts, and will be close to one for simple shapes with a

large amount of noise on the boundary creating multi-

ple small volume parts.

To further support the effectiveness of these mea-

sures, we repeat a rank SVM calculation using just these

three measures, see Table 2. Kendall-Tau rank corre-

lations with the raw user-rankings, with the top three

measures for each user study question, and with the full

measure rank SVM are shown in Table 2. Although the

correlation values drop a bit from the full measure set,

they are still high for the 3-measure set, indicating that

these three measures capture a considerable proportion

of the information in user rankings.

5.1.2 Constructed shape data

We generate two constructed shape datasets with con-

trolled complexity of different types. The first dataset

is a blob dataset, meant to generate shapes with salient

shape parts. We use interpolation between a set of ran-

dom points to create a smooth closed shape. This re-

sults in blob-like shapes with large protrusions. Start-

ing with a larger set of points for interpolation generally

produces more protrusions in the resulting shape, which

typically leads to increased complexity. See Figure 6.
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Table 2 Kendall’s tau rank correlation between user rank-
ings in the first user study, our full-measure rank SVM in-
duced ranking, and our 3-measure rank SVM induced rank-
ing. Note that our 3-measure ranking performs almost as well
as the full-measure ranking for Questions 1 (complex) and 3
(cut). For the other two questions, we are not capturing the
user rankings as well. Neither the full- nor the 3-measure
rankings perform well for the combined questions.

complex draw cut trace all Qs

full-measure to
user rank

0.856 0.849 0.878 0.886 0.900

3-measure
user rank

0.763 0.664 0.803 0.815 0.776

full-measure to
3-measure

0.851 0.766 0.863 0.880 0.838

Fig. 6 Examples of blob constructed shapes, with four levels
of complexity increasing from left to right.

Fig. 7 Example sequence of the eight levels of complexity for
noisy circles. Top row, L to R: complexity levels 1-4. Bottom
row, L to R: complexity levels 5-8.

The second dataset, noisy circles, is designed to cap-

ture noisy small protrusions rather than the salient

large protrusions of the blob dataset. We begin with

a circle, a shape that both our intuition and the con-

structive model of complexity outlined in [10] consider

to be the simplest shape. We then add noise by running

a pseudo-random walk on each point on the boundary

of a binary image of the circle and adding a pixel at each

step of the walk. The walk moves in a random cardinal

direction and for a random number of steps for each

point on the boundary. We add levels of complexity by

increasing the number of times that the circle cycles

through every point on the random walk. We generate

eight levels of complexity with ten shapes per level. See

Figure 7.

In addition, we extract all sequences of the hand-

edited shapes where parts are gradually added or length-

ened. See Figure 12.

5.2 Quantitative results for constructed shapes

We find from considering our constructed dataset that

the three complexity measures are sensitive to different

forms of complexification.

The boundary measure distinguishes well between

the most simplified and most complex of the hand-

edited shapes. See Figure 8. The measure is not sensi-

tive enough, however, to correctly identify the interme-

diate complexity stages, nor to identify the complexity

increases in the noisy circles.

Fig. 8 Boxplots of the boundary measure values for the sim-
plified hand-edited shapes (L) and the full complexity ver-
sions of the same shapes (R).

The curvature measure captures larger scale com-

plexification such as that found in the blob shape set.

Figure 9 shows the box plots for the blobs at each of

the four levels of increasing complexity and the corre-

sponding increases in the curvature measure. Because

the curvature histograms of the noisy circles are fairly

consistent across the complexity levels, the curvature

measure joins the boundary measure in failing to dis-

tinguish complexification in that dataset.

The neighbor WEDF measure distinguishes extremely

well between the small scale complexity of the noisy

circles and the larger scale complexity of the blobs.

See Figure 10. But again, the measure does not distin-

guish between complexity levels within the noisy circles

dataset.

Using the weighted rankings resulting from the three-

measure rank SVM applied to the dataset from Sec-
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Fig. 9 Boxplots of the curvature measure values of the blob
datasets at increasing levels of shape complexity (L to R).

Fig. 10 Boxplots of the neighbor WEDF measure values of
the blob (L) and circle (R) datasets at increasing levels of
shape complexity.

tion 4, we obtain a ranking that distinguishes well be-

tween the three shape categories of blobs, circles, and

hand-edited shapes, but not so well within each cate-

gory. See Figure 11. In particular, the weighted ranking

again does not distinguish between complexity levels

within the noisy circles.

While each measure identifies some forms of com-

plexity, none of these measures successfully distinguishes

the complexity levels for the noisy circles. We conjec-

ture that this is due to the randomness and more reg-

ular sizing of the shape parts in the noisy circles.

Fig. 11 Boxplots of weighted rankings from the three-
measure rank SVM applied to shape categories in the con-
structed dataset.

Fig. 12 Hand-edited shapes with growing complexity.

6 Final user studies with constructed shapes

We perform two final user studies to validate our quan-

titative findings in Section 5. The first study aims to

identify language non-experts use to describe the differ-

ent types of hypothesized complexity. The second study

uses this language to evaluate the user agreement with

our three measures, and link specific words to specific

measures if possible. For both studies, we use a curated

set of image pairs that exemplify the different types

of complexity changes with a mix of the hand-edited

shapes, blobs, and circles, as well as a small subset of

the original MPEG-7 set.

6.1 Methods for constructed shapes user study

Our first study is an open-answer Mechanical Turk study.

Participants are presented with two images and asked

to explain the difference between the two (natural lan-

guage response). We use three prompting questions: (1)

What words would you use to describe the differences
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between the two shapes? (2) What features make the

shape more complex? (after being asked to pick which

was more complex), (3) How would you describe the

difference between the two shapes? A subset of pairs

of images from the previous study (11 hand-edited, 15

MPEG) plus 4 constructed shapes (blobs and circles),

were used. Approximately half the pairs were “recog-

nizable” images. A total of 389 responses were collected

from 40 participants, approximately 12 image pairs per

participant. The text was analyzed for both anthropo-

morphic terms and common phrases.

For the second study we repeat the forced-choice

study design of Section 4, again using Mechanical Turk,

but also ask participants to pick what phrase best-

describes the complexity differences and to evaluate

how similar the shapes are in terms of complexity (very

similar, somewhat similar, not similar). The vocabulary

of the phrases is based on our results from the open-

answer study: (1) The boundary of the complex shape is

more bumpy, (2) The boundary of the complex shape

is more curvy, (3) The simpler shape is smoother (4)

The complex shape has more parts that stick out, (4)

The simpler shape is more symmetric, (5) The complex

shape has more bends in it. Although “parts” was only

used once in the first part of this study, named parts of

things (e.g., legs, petals) were used in all but the most

abstract shapes, so we also include it as an option in

our questions.

For the second study, we use 49 image pairs (6 low-

complexity hand-edited, 9 circle-circle, 21 blob-blob, 14

circle-blob). Pairs are chosen based on relative intended

complexity in the dataset construction. Some pairs are

chosen to be the same image type (e.g., both blobs)

with either intended complexity level far apart (e.g.,

level 1 and level 3) or closer together (e.g., level 2 and

level 3). Some pairs are chosen to be different image

types (e.g., blobs and circles) where one of our mea-

sures was effective at distinguishing between the types.

These questions are designed to determine if our mea-

sure ambiguity is reflected in user ambiguity, and if our

measure clarity is reflected in user clarity.

Twenty-three participants answered questions for 15

randomly selected image pairs, with an equal sampling

from each image pair type, for an average of 5 compar-

isons for each image pair.

6.2 Results from constructed shape study

Fig. 13 shows the most frequent words users in the first

part of the study, where users were asked to provide

vocabulary to describe why a shape is more complex

in comparison with another. For instance, having more

Fig. 13 A pie chart of the words provided by users to de-
scribe the complex shapes in the first part of the user study
in Section 6.

“edges” in a shape makes it more complex. The ma-

jority of these terms refer to the boundary with only

four terms (bend, symmetrical, straight, crooked) refer-

ring to the global shape. We choose bumpy, curvy, and

smooth for our questions. Although “edges”, “lines”,

and “angle” were commonly used, they are potentially

ambiguous and/or grammatically challenging. We also

select two overall shape-based terms (bend, symmetri-

cal). Finally, we note that there was a strong correla-

tion between how recognizable the shape was and the

use of anthropomorphic/descriptive terms (eg, has legs,

has rays), underscoring the importance of including ab-

stract shape sets in the user studies.

In our second part of the study, user vocabulary

preferences revealed some complexity category distinc-

tions. By far the most selected phrase for all categories

of image pairings was “parts” (approximately 30%),

followed by “curvy” and “smoother”. “Symmetrical”

was only used consistently with the hand-edited shapes

(20% of answers), though the second-most commonly

chosen word for the hand-edited shapes was ”smoother”

(24%). “Bumpy” was rarely selected for the blobs or

hand-edited shapes (< 7%), but was the second-most

commonly chosen for the circles-blob comparisons (23%,

as compared to 27% for “parts”), indicating that it is

preferred as a word that distinguishes fine-scale bound-

ary features from the larger scale features. “Curvy”,

like “parts”, appears to apply to both large and small

scales. It was, however, selected more for the blob-blob

comparisons than the circle-circles (30% vs 23%), and

was the second-most commonly chosen for blobs-blobs.

Linking this to our 3-measure results from Section 5.2,

we might conclude that “bumpiness” is captured by

the neighbor WEDF measure, “curviness” is (appro-

priately) captured by the curvature measure, “smooth-

ness” is captured by the boundary measure, and the
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3-measure rank SVM distinguishes between curviness,

bumpiness, and smoothness.

The second part of the study also shows that users

largely agree with our intended rankings in the con-

structed shapes, except for in the circles category. For

the 37 shape pairings where both shapes were from

the same category (e.g., circle-circle rather than circle-

blob), 32 pairings (86.5%) showed user agreement with

our intended ranking. Of the five pairings with disagree-

ment, two were blob-blob and three were circle-circle.

See Figure 14. Overall, the circle-circle category also

showed the most ambiguity in user ratings. For the

circle-circle shape pairs with an intended complexity

level difference, we consider pairings where average user

agreement is close to 50% to be those where users dis-

agreed with each other. Almost half of the circle-circle

image pairs showed user disagreement, which may ex-

plain why our user-motivated measures are not distin-

guishing intended complexity well in that class.

Fig. 14 Examples of shape pairings where our final user
study as described in Section 6 showed user disagreement
with our intended complexity levels. Top row shows shapes
of lower complexity and bottom row, same column, shows the
other shape in study pairing that was intended to have higher
complexity. Users flipped this ordering in their responses, so
users considered the bottom row to be less complex than the
top row.

7 Conclusion

We have interleaved results from user studies with quan-

titative analyses in order to identify and evaluate three

key measures, out of an initial group of nearly 300, that

capture important axes of shape complexity. We find

that these three measures distinguish between complex-

ity due to noise and due to salient parts, distinguish

complexity levels for abstract shapes with increasing

numbers of salient parts, and distinguish between cat-

egories of shape complexity. A final user study pro-

vides support for these quantitative results, as the users

select different words for different categories of shape

complexity that our measures are able to detect. We

also contribute a database of abstract and meaning-

ful shapes with designated complexity levels for further

study.

There are several questions that future work should

explore. Why are the top measures for the question

“Which shape is harder to draw?” in the first user study

so different from the other three questions? What role

does semantic shape meaning play for users’ interpreta-

tion of complexity in user study two? Is there a measure

that captures the variation in complexity in the noisy

circle database? And, of course, is there a larger set of

measures that encompasses a richer understanding of

complexity that can improve our comparison to user

perception, particularly when comparing shapes across

categories, such as comparing a beetle image to a blob?

Finally, we note that the data in the user studies can

offer up many more insights into human perception of

shape complexity than we require in this work.
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