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Figure 1: Reconstruction results rendered in global illumination for both synthetic (left three objects) and real data (right
three objects). For the synthetic data, we show jointly reconstructing the shape and subsurface scattering material of a bumpy
object (first from left); a spatially varying extinction coefficient texture (left bunny) and a spatially varying single scattering
reflectance texture (right bunny). On real data, we show reconstruction of a slice of soap and cut cubes of kiwi and dragonfruit.

ABSTRACT
Inverse rendering is a powerful approach to modeling objects from

photographs, and we extend previous techniques to handle translu-

cent materials that exhibit subsurface scattering. Representing

translucency using a heterogeneous bidirectional scattering-surface

reflectance distribution function (BSSRDF), we extend the frame-

work of path-space differentiable rendering to accommodate both

surface and subsurface reflection. This introduces new types of

paths requiring new methods for sampling moving discontinuities

in material space that arise from visibility and moving geometry.

We use this differentiable rendering method in an end-to-end ap-

proach that jointly recovers heterogeneous translucent materials

(represented by a BSSRDF) and detailed geometry of an object (rep-

resented by a mesh) from a sparse set of measured 2D images in a

coarse-to-fine framework incorporating Laplacian preconditioning

for the geometry. To efficiently optimize our models in the presence

of the Monte Carlo noise introduced by the BSSRDF integral, we

introduce a dual-buffer method for evaluating the L2 image loss.

This efficiently avoids potential bias in gradient estimation due to

the correlation of estimates for image pixels and their derivatives
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and enables correct convergence of the optimizer even when using

low sample counts in the renderer. We validate our derivatives by

comparing against finite differences and demonstrate the effective-

ness of our technique by comparing inverse-rendering performance

with previous methods. We show superior reconstruction quality

on a set of synthetic and real-world translucent objects as compared

to previous methods that model only surface reflection.
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1 INTRODUCTION
Accurate reconstruction and efficient rendering of objects with

highly scattering translucent materials is challenging and important

in the fields of digital prototyping, architecture, entertainment, and

even the biological sciences. This kind of material, with subsurface

scattering, is ubiquitous in real life, ranging from organic tissues

like fruits, vegetables, meat, juice and milk, to vast categories of
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inorganic materials such as gems, soap, ceramics and plastics. They

share common features like heterogeneity, surface microstructure,

and short scattering mean free paths.

Subsurface scattering effects can be described by the Bidirec-
tional Scattering-Surface Reflectance Distribution Function (BSSRDF),
which directly models the light transport between pairs of surface

points [Nicodemus et al. 1977]. The BSSRDF encodes non-local

illumination due to the underlying volumetric light transport, and

it is the basis for various methods to compactly represent and ef-

ficiently render translucent objects [Chen et al. 2004; d’Eon and

Irving 2011; Frisvad et al. 2014; Goesele et al. 2004; Habel et al. 2013;

Peers et al. 2006; Song et al. 2009; Tong et al. 2005; Vicini et al. 2019].

These works have mainly assumed known geometry, and many rely

upon special lighting setups. However, the geometry of translucent

objects can be difficult to measure by standard computer vision

methods, and the need for special setups limits the applicability of

translucent object capture. Jointly recovering the geometry and ap-

pearance of translucent objects under ordinary lighting in a robust

way remains an unsolved problem, especially from sparse views.

In this paper we propose a way forward by applying an inverse

rendering approach using a differentiable subsurface-scattering ren-

derer. Building on the considerable recent progress in differentiable

rendering theory, algorithms and systems [Bangaru et al. 2020; Li

et al. 2018; Loubet et al. 2019; Nicolet et al. 2021; Nimier-David et al.

2020, 2019; Vicini et al. 2021; Zhang et al. 2021a, 2020, 2021b], we

extend the state of the art to support BSSRDF materials. Previous

differentiable renderers support translucency only by representing

the material as a participating medium and using costly volumetric

path tracing, typically requiring thousands of samples per pixel,

per optimization iteration, for an acceptable amount of noise in the

estimated gradients. Ours, in contrast, uses the BSSRDF to model

translucency for object capture. This empirical model approximates

large-scale simulations of volume scattering by a physically-based

diffusion model with closed-form solutions, which allows us to ren-

der and optimize using significantly fewer samples per iteration.

By fitting renderings of mesh geometry with a spatially varying

BSSRDF material to photographs in an end-to-end optimization

that finds both the surface geometry and the material properties,

we recover models that match real objects under lighting conditions

similar to the capture. Using the relevant goal—similarity of final

renderings—to drive the fitting process, and recovering geometry

and material jointly, means that our approach gets the best results

out of the representation without needing the data to perfectly

reveal either the geometry or the material in isolation. Including

translucency in inverse rendering is also important because at-

tempting to recover translucent geometry using an opaque shading

model is problematic, as shown by our comparisons.

Concretely, our contributions include:

• A new formulation of Monte Carlo differentiable rendering

for BSSRDF models that handles geometric discontinuities

in an unbiased way.

• A new analysis-by-synthesis optimization pipeline that en-

ables high-quality joint reconstruction of heterogeneous

translucent materials and mesh-based object geometry.

• A dual-buffer solution for estimating gradients of an L2 loss

that ensure better convergence even at low sample counts

when the path distribution used by the differentiable ren-

derer depends on the scene parameters.

Through validations and evaluations of individual steps, we demon-

strate that our method significantly advances 3D reconstruction

of translucent objects using low-cost handheld acquisition setups,

which can be beneficial for many applications. Our results show

that it is important to include translucency in the model when

using inverse rendering on surfaces that exhibit translucency, even

if only the shape is desired, since methods assuming an opaque

surface will converge to less accurate geometry. Code and data for

this paper are at https://github.com/joyDeng/InverseTranslucent.

2 RELATEDWORK
Subsurface Scattering. Subsurface scattering is a mechanism of vol-

umetric light transport in which light that penetrates the surface

of a translucent object is scattered inside the material before either

being absorbed or leaving the material at a different location. This

process is generally modeled using the radiative transfer equation

(RTE) [Chandrasekhar 1960] and involves long sequences of scat-

tering interactions within a medium that fills the object’s interior.

In rendering, this scattering can be simulated directly; existing

techniques include volumetric path tracing and photon mapping

algorithms [Novák et al. 2018]. Although it can produce accurate

results, the volumetric approach is computationally expensive due

to the large number of subsurface scattering events, especially for

highly scattering materials, and the BSSRDF is an alternative ap-

proach that is often much faster.

For highly scattering materials, the RTE can be usefully approx-

imated by a diffusion equation, and many BSSRDF models have

been proposed based on approximate analytical diffusion solutions.

Jensen et al. [2001] presented a practical dipole model to compactly

represent homogeneous subsurface scattering materials, and later

work has proposed more accurate though generally more complex

models [d’Eon and Irving 2011; Frisvad et al. 2014; Vicini et al. 2019].

To add heterogeneity, early research extended the Jensen et al.

dipole model to heterogeneous skin BSSRDFs by fitting dipoles for

each surface point [Donner et al. 2008; Tariq et al. 2006] or per

region [Ghosh et al. 2008; Weyrich et al. 2006]. Tong et al. [2005]

improved the representation for a large class of quasi-homogeneous
materials. Goesele et al. [2004] decomposed general BSSRDFs into

a local filtering kernel and a low-res global term. Fuchs et al. [2005]

fitted a sum of radial exponential kernels and represented spatially-

varying parameters in textures. Peers et al. [2006] used a data-

driven representation and factorized spatial variations via a modi-

fied matrix factorization algorithm. Donner et al. [2009] presented

an empirical diffusion model derived from a large-scale Monte

Carlo simulation. Song et al. [2009] decomposed the BSSRDF into a

two-dimensional collection of scattering profiles to enable intuitive

editing while maintaining consistency, and we follow their general

approach in this paper.

Inverse scattering and Differentiable Rendering. Many projects

have recovered parameters of media or BSSRDF models by solv-

ing inverse problems. Some techniques rely on single-scattering

approximations [Fuchs et al. 2007; Hawkins et al. 2005; Narasimhan

et al. 2006], which are appropriate for optically thin media; others

on diffusion-based models [Dong et al. 2014; Jensen et al. 2001;

https://github.com/joyDeng/InverseTranslucent
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Mukaigawa et al. 2009; Munoz et al. 2011; Papas et al. 2013; Song

et al. 2009; Wang et al. 2008], suitable for optically thick media.

In more general settings where these approximations do not

apply, one can resort to numerical optimization guided by differ-

entiable models of light transport. This approach has been used

to solve for specific transport effects in contexts such as volumet-

ric scattering [Che et al. 2020; Gkioulekas et al. 2016, 2013], cloth

rendering [Khungurn et al. 2015], volume prefiltering [Zhao et al.

2016], translucent fabrication [Elek et al. 2017; Nindel et al. 2021;

Rittig et al. 2021; Sumin et al. 2019], human teeth modeling [Veli-

nov et al. 2018], material and lighting estimation [Azinovic et al.

2019], cloud modeling [Levis et al. 2015], and time-gated render-

ing [Wu et al. 2021; Yi et al. 2021]. Many of these methods are

specialized to specific types of scene parameters and most of them

avoid discontinuities.

Accommodating discontinuities in general-purpose differentiable

rendering is challenging and generally requires additional bound-

ary integrals to account for moving discontinuities. Li et al. [2018]

proposed to solve this problem by explicitly sampling the disconti-

nuities via a Monte Carlo edge-sampling method, yielding unbiased

estimates of the boundary integrals. Zhang et al. [2020, 2019, 2021b]

further generalized the idea to handle participating media and path-

space rendering. Loubet et al. [2019] proposed an approximate

algorithm that avoids edge sampling through reparameterization,

achieving lower variance at the cost of increased bias. Bangaru et al.

[2020] then extended this technique using the divergence theorem

to convert the boundary integral into an area integral for unbiased

estimation. Nimier-David et al. [2019] introduced the Mitsuba 2

system that enables general-purpose differentiation with millions

of parameters on GPU, with follow-up improvements on efficient

reverse-mode differentiation schemes [Nimier-David et al. 2020;

Vicini et al. 2021]. Finally, recent work [Zeltner et al. 2021; Zhang

et al. 2021a] has investigated specialized Monte Carlo sampling

strategies to reduce the variance of the derivative estimate.

These methods can handle translucent materials in principle,

by representing them as scattering volumes, but in practice they

cannot efficiently handle joint optimization of geometry and hetero-

geneous translucent materials, due to high variance in the estimated

derivatives of volumetric path tracing integrals. In this work, we

focus on heterogeneous translucent materials that can be repre-

sented by diffusion-based BSSRDF models, and compute end-to-end

derivatives while allowing for geometric discontinuities caused by

shadow edges and silhouettes. Unlike volumetric path tracing that

relies on Monte Carlo sampling of path integrals, these analytical

models are computationally efficient, and we show that our deriva-

tive estimates work in practice to solve inverse rendering problems

with heterogeneous translucent materials.

3 OVERVIEW
Our main goal is to accurately reconstruct shape and heterogeneous

translucent materials from photos, producing a physically-based

model that can be directly used in a conventional renderer. In this

section we explain the problem setup and the basic solution method;

in Sections 4 and 5 we will provide further details about how we

compute derivatives and use them in optimization.

Camera. We assume the input images are captured by known

cameras and illumination comes from point sources at known lo-

cations. The camera and light position can be reconstructed us-

ing standard camera calibration or multi-view stereo tools (e.g.,

COLMAP [Schönberger and Frahm 2016]).

Lighting. Previous research on BSSRDF acquisition usually used

numerous spatially varying lighting patterns together with camera

grids, which is so time consuming that target objects like fruits

and vegetables may dry out during the capture. While projecting

special patterns on the surface is very revealing of the subtleties

of BSSRDFs, we want to be able to render objects under relatively

normal lighting to make capture easier for an end user, so in an

inverse rendering setting we should be able to recover all that is

needed without elaborate lighting conditions. Therefore we use

point lighting and direct illumination for the capture process. Pre-

vious research [Luan et al. 2021; Nam et al. 2018] on reconstructing

opaque materials used light sources co-located with the camera,

which is easily accomplished when using a hand-held device and

avoids casting shadows. However, co-located lights provide little

information about translucency, which is better revealed by shadow

and terminator edges. Therefore, we allow the point lights to move

independently of the camera.

Appearance Model. We focus on reconstructing highly scattering

translucent objects, and rendering subsurface scattering by volu-

metric path tracing is expensive in a participating medium under

a rough dielectric surface due to long paths. Therefore, instead of

differentiable volumetric path tracing [Zhang et al. 2021b], we use

the BSSRDF and formulate the subsurface light transport problem

as a surface integral:

𝐿𝑜 (x𝑜 , 𝜔𝑜 ) =
∬

𝜌s (x𝑜 , x𝑖 , 𝜔𝑜 , 𝜔𝑖 )𝐿𝑖 (x𝑖 , 𝜔𝑖 ) |cos𝜃𝑖 | d𝐴 d𝜔𝑖 , (1)

+
∫

𝜌r (x𝑜 , 𝜔𝑜 , 𝜔𝑖 )𝐿𝑖 (x𝑜 , 𝜔𝑖 ) |cos𝜃𝑖 | d𝜔𝑖 (2)

where the outgoing radiance 𝐿𝑜 is computed as a sum of contri-

butions from subsurface light transport and surface reflection at

x𝑜 ; 𝜌s is the BSSRDF model and 𝜌r is the BRDF model. The contri-

bution from subsurface light transport at x𝑜 is a convolution of the

incident illumination 𝐿𝑖 and the BSSRDF 𝜌s over incident position

x𝑖 and direction 𝜔𝑖 . Most models factor 𝜌s into three terms:

𝜌s (x𝑜 , x𝑖 , 𝜔𝑜 , 𝜔𝑖 ) = 𝑆𝑤 (𝜔𝑜 )𝑅𝑑 (x𝑜 , x𝑖 )𝑆𝑤 (𝜔𝑖 ), (3)

where 𝑆𝑤 (𝜔𝑖 ) and 𝑆𝑤 (𝜔𝑜 ) are transmission factors across the ma-

terial boundary at x𝑖 and x𝑜 , and 𝑅𝑑 (x𝑜 , x𝑖 ) describes how much

of the subsurface light that enters at x𝑖 arrives at x𝑜 .
As discussed in Section 2, diffusion-based models are often used

for 𝑅𝑑 , and we use the model of Jensen et al. [2001], which models

scattering at an infinite flat surface over a subsurface medium

with extinction coefficient 𝜎𝑡 and scattering albedo 𝛼 . To allow

for heterogeneity in 𝜎𝑡 and 𝛼 , we borrow an idea from Song et al.

[2009] and further factorize the transmittance term as follows to

allow for local parameters at x𝑖 and x𝑜 :

𝑅𝑑 (x𝑜 , x𝑖 ) =
√
𝑅x𝑜 (∥x𝑖 − x𝑜 ∥)

√
𝑅x𝑖 (∥x𝑖 − x𝑜 ∥). (4)
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For the surface reflectance, we use a rough dielectric model with

GGX distribution [Walter et al. 2007], which is parameterized by

a roughness 𝛽 and the index of refraction 𝜂 of the surface. The

parameters of BSSRDF and BRDF can be represented using texture

maps on the surface or a uniform value.

Loss Function. We formulate our reconstruction problem as find-

ing a parameter vector 𝜋 , which includes the vertex positions of the

mesh, the surface roughness, and the subsurface albedo 𝛼 and ex-

tinction coefficient𝜎𝑡 , byminimizing a loss function𝑔 that describes

the difference between renderings I (𝜋) and reference images I
ref
:

argmin

𝜋
𝑔(I (𝜋)) . (5)

We measure the difference as a sum of squares, but instead of using

the conventional 𝐿2 loss we define the loss function as

𝑔(I (𝜋)) = (I1 (𝜋) − I
ref
) (I2 (𝜋) − I

ref
), (6)

where I1 (𝜋) and I2 (𝜋) are two statistically independent Monte

Carlo estimates of the noise-free image I(𝜋). We show in Section 5

that our loss function efficiently provides the required unbiased

estimate.

Differentiable Renderer. Efficiently solving (5) requires the gra-

dient of 𝑔 with respect to 𝜋 , computed via the derivatives of pixel

valueswith respect to each of the parameters. Previouswork [Zhang

et al. 2020] shows how to differentiate path tracing under the as-

sumption of area lights and surface reflection modeled by the Bidi-
rectional Scattering Distribution Function (BSDF) without ideal spec-

ular materials using a path integral framework.

4 DIFFERENTIABLE TRANSLUCENT
RENDERING

In this section we extend the path integral framework of Zhang

et al. [2020] and generalize the image derivative estimates to the

setting of subsurface scattering.

4.1 Path Integral Framework with BSSRDF
In the path integral formulation [Veach 1998] a pixel value is:

𝐼 =

∫
Ω (𝜋 )

𝑓 (z)d𝜇 (z) . (7)

where z = y0 . . . y𝑛 is the complete light path with its ends y0
and y𝑛 at the camera and the light source respectively. We define

two categories of path segment y𝑖y𝑖+1: subsurface segments go-

ing through translucent material and vacuum segments that pass

through empty space. We refer to the two vertices on a subsurface

segment as subsurface transmission vertices and other vertices as

surface reflection vertices.

A measure on a path with length 𝑛 is usually written as a product

of area measures 𝜇 (z) = ∏𝑛
𝑖=1 d𝐴(y𝑖 ), and all the paths with length

𝑛 form an integration domain Ω𝑛 ; this domain depends on 𝜋 so

we write it as Ω𝑛 (𝜋). The space of paths with all possible lengths

forms the path space Ω(𝜋) = ∪∞
𝑛=1

Ω𝑛 (𝜋).
The integrand of (7) is the contribution of a single light path,

𝑓 (z) =𝑊e (y0, y1)𝐶 (z)𝐺 (z)𝐿e (y𝑛, y𝑛−1), (8)

where𝑊e (y0, y1) and 𝐿e (y𝑛, y𝑛−1) are the camera importance and

the light radiance; 𝐶 (z) is the product of a contribution at each

vertex along the path:

𝐶 (z) =
𝑛−1∏
𝑖=1

𝜌 (y𝑖−1, y𝑖 , y𝑖+1), and 𝐺 (z) =
𝑛−1∏
𝑖=0

𝐺 (y𝑖 , y𝑖+1) (9)

is the product of a contribution at each segment along the path. We

accommodate both surface reflection and subsurface transmission

vertices by defining the vertex contribution as

𝜌 (y𝑖−1, y𝑖 , y𝑖+1) =
{
𝜌r (y𝑖−1, y𝑖 , y𝑖+1), y𝑖 is surface refl.
𝑆𝑤 (y𝑖−1, y𝑖 , y𝑖+1), y𝑖 is subsurface trans.

(10)

and we accommodate both vacuum and subsurface segments by

defining the segment contribution as

𝐺 (y𝑖 , y𝑖+1) =
{
𝑅𝑑 (y𝑖 , y𝑖+1), y𝑖y𝑖+1 is subsurface
𝑉 (y𝑖 , y𝑖+1)𝑇 (y𝑖 , y𝑖+1), y𝑖y𝑖+1 is vacuum

(11)

where

𝑉 (y𝑖 , y𝑖+1) =
{
1, no surface between y𝑖y𝑖+1
0, otherwise,

(12)

𝑇 (y𝑖 , y𝑖+1) =
| cos(𝜃𝑖 ) | | cos(𝜃𝑖+1) |

∥y𝑖+1 − y𝑖 ∥2
, (13)

and 𝜃𝑖 and 𝜃𝑖+1 are the angles between the surface normals at y𝑖
and y𝑖+1 and the segment joining them.

4.2 Differentiating the Path Integral with
BSSRDF

The gradient of the path integral (7) with respect to scene param-

eters 𝜋 is not necessarily the integral of the gradient of the path

contribution (8), both because the path contribution with respect to

geometric parameters like mesh vertex positions can be discontinu-

ous due to the visibility changes in (12) and because the integration

domain itself also depends on 𝜋 . Zhang et al. [2021b] took the

surface analog of the generalized Reynolds transport theorem [Cer-

melli et al. 2005], which computes the derivatives of an integral on

a deforming domain, and defined parameter dependent functions

on a fixed domain, making it possible to differentiate the path inte-

gral using the standard transport theorem with a non-deforming

domain Γ and its boundary 𝜕Γ:

d

d𝑡

∫
Γ
Φ(𝑡)d𝑉 =

∫
Γ

𝜕Φ(𝑡)
𝜕𝑡

d𝑉 +
∫
𝜕Γ

ΔΦ(𝑡)v · nd𝐴. (14)

They refer to this parameter independent domain as material space.

We will first review this material space and then apply it to our

problem. Material space 𝑀̂ is independent of 𝜋 but connected to

the moving surface𝑀 by a deformation 𝜒 that does depend on 𝜋 :

p = 𝜒 (y, 𝜋) (15)

maps a surface vertex y to a point p in material space; p = p0 . . . p𝑛
is a complete light path in Ω̂𝑛 ⊂ Ω̂, where Ω̂𝑛 is the set of all

the paths of length 𝑛 in material space and Ω̂ = ∪∞
𝑛=1

Ω̂𝑛 is the

material path space. The measure on this domain is defined as the
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y0
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y2
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Figure 2: Our reconstruction process considers the path of
length three (left) with a subsurface segment in the middle,
and length two (right) for the specular BRDF lobe.

area product in material space 𝜇 (p) = ∏𝑛
𝑖=1 d𝐴(p𝑖 ), and the path

integral on material space becomes

𝐼 =

∫
Ω̂

ˆ𝑓 (p)d𝜇 (p), (16)

where

ˆ𝑓 (p) = 𝑊̂e (p0, p1)𝐶 (p)𝐺 (p)𝐿e (p𝑛, p𝑛−1); (17)

𝐶 (p) =
∏𝑛−1

𝑖=1 𝜌 (p𝑖−1, p𝑖 , p𝑖+1) and 𝐺 (p) =
∏𝑛−1

𝑖=0 𝐺 (p𝑖 , p𝑖+1) are
the products of all scattering and geometry terms, in which

𝜌 (p𝑖−1, p𝑖 , p𝑖+1) = 𝜌 (y𝑖−1, y𝑖 , y𝑖+1) 𝐽 (p𝑖 ) (18)

𝐺 (p𝑖 , p𝑖+1) = 𝐺 (y𝑖 , y𝑖+1), (19)

and 𝐽 (p) = |𝑑𝐴(y) |
|𝑑𝐴(p) | is the Jacobian of the map 𝜒 () between Ω and

Ω̂.
The boundary 𝜕Ω̂ in this space is defined as the set of all paths

that have at least one vacuum segment y𝑘y𝑘+1 on a visibility bound-
ary: 𝜕Ω̂ = ∪∞

𝑛=1
∪𝑛−1
𝑘=0

𝜕Ω̂𝑛,𝑘 , where 𝜕Ω̂𝑛,𝑘 is the set of paths of length

𝑛 with the 𝑘-th segment on the visibility boundary. Then the mea-

sure on the domain 𝜕Ω̂𝑛,𝑘 is 𝜇 ′
𝑛,𝑘

(p) = 𝑑𝑙 (p𝑘 )
∏𝑛

𝑖≠𝑘
𝑑𝐴(p𝑖 ).

In this fixed domain, we can apply the Reynolds transport theo-

rem Eq. (14) to write the gradients of the path integral in material

space Eq. (16) as the sum of an interior part that integrates the

gradient of Eq. (17) and a boundary part that integrates the change

of path contribution along the discontinuity boundary:

𝜕𝐼

𝜕𝜋
=

d

d𝜋

∫
Ω̂

ˆ𝑓 (p)d𝜇 (p) =
∫
Ω̂

𝜕( ˆ𝑓 (p))
𝜕𝜋

d𝜇 (p)

interior

+
∫
𝜕Ω̂

Δ ˆ𝑓 (p)v𝐵d𝜇 ′(p)

boundary

.

(20)

where v𝐵 is the normal velocity with respect to scene parameters

of the path point on the boundary edge and the Δ ˆ𝑓 (p) is the change
of path contribution across the boundary.

4.3 Differentiable Rendering for BSSRDF
Capture

For our capture setup, shown in Fig. 2, which always has one point

light, one pinhole camera, and a subsurface material object with

indirect illumination neglected, we specialize Eq. (16) to

𝐼 =

∫
Ω̂3

ˆ𝑓 (p)d𝜇 (p) +
∫
Ω̂2

ˆ𝑓 (p)d𝜇 (p) (21)

=

∫
𝑀̂

∫
𝑀̂

ˆ𝑓 (p0p1p2p3)d𝐴(p1)d𝐴(p2)

𝐼3 with BSSRDF

+
∫
𝑀̂

ˆ𝑓 (p0p1p2)d𝐴(p1)

𝐼2 with BRDF

,

(22)

where the contribution
ˆ𝑓 (p0p1p2p3) from a path with a subsurface

segment in the middle is

𝑊e𝑉 (y0y1)𝑆𝑤 (y1) 𝐽 (p1)𝑅𝑑 (y1, y2)𝑆𝑤 (y2) 𝐽 (p2)𝑉 (y2y3)𝐿e, (23)

and similarly, the contribution from the path consisting of two vac-

uum segments is
ˆ𝑓 (p0p1p2) =𝑊e𝑉 (y0y1) 𝐽 (y1)𝜌r (y0y1y2)𝑉 (y1y2)𝐿e.

Then differentiating the BSSRDF part of Eq. (22) with respect to

scene parameters 𝜋 using Eq. (20) gives us

𝜕𝐼3/𝜕𝜋 =
d

d𝜋

∫
Ω̂3

ˆ𝑓 (p)d𝜇 (p) (24)

=

∫
𝑀̂

∫
𝑀̂

𝜕 ˆ𝑓 (p0p1p2p3)/𝜕𝜋d𝐴(p1)d𝐴(p2)

interior

(25)

+
∫∫

Δ ˆ𝑓 (p0p1p2p3)v𝐵 (p2)d𝐴(p1)d𝑙 (p2)

boundary on p2p3

(26)

+
∫∫

Δ ˆ𝑓 (p0p1p2p3)v𝐵 (p1)d𝑙 (p1)d𝐴(p2)

boundary on p0p1

, (27)

where v𝐵 (p) is the velocity (gradient w.r.t 𝜋 ) of the visibility bound-
ary in the direction of the normal to 𝑑𝑙 (p), shown in Fig. 3.

4.4 Monte Carlo Estimation of the Derivatives
The path integral and the differentiable path integral are both esti-

mated by a Monte Carlo algorithm: ⟨𝐼 ⟩ = 1

𝑁

∑𝑁
ˆ𝑓 (x)
𝑝 (x) ; and in our

problem setup, particularly,

⟨𝐼3⟩ =
1

𝑁

𝑁∑ ˆ𝑓 (p0p1p2p3)
𝑝 (y1)𝑝 (y2)

, ⟨𝐼2⟩ =
1

𝑁

𝑁∑ ˆ𝑓 (p0p1p2)
𝑝 (y1)

, (28)

where the path with three segments contains one subsurface seg-

ment in the middle. Then the interior term in Eq. (25) is estimated

by

1

𝑁

𝑁∑ 𝜕 ˆ𝑓 (p0p1p2p3)/𝜕𝜋
𝑝 (y1)𝑝 (y2)

, (29)

where the path is sampled just as in conventional path tracing.

To estimate the integrals in Eq. (27) and Eq. (26), paths are sam-

pled on the discontinuity boundaries, including the primary visi-

bility boundary (27) which relates to silhouette edges in the image,

and the secondary visibility boundary (26), which relates to shadow

edges cast on the mesh surface. Unlike previous work with opaque

surface materials, where the discontinuity caused by the shadow

edge is directly projected back to the camera, in our case this dis-

continuity is blurred by the BSSRDF on the surface and its motion

indirectly affects the outgoing radiance at surface points near the

shadow edge.
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Figure 3: Illustration of interior and boundary contributions
to the derivative. A fixed point light x0 and triangular oc-
cluder cast a shadow on a homogeneous translucent square
which is moving rightward within its plane. Away from the
square’s boundary, the blurred shadow in the image is un-
affected by this motion. A ray from the camera y0 hits the
plane at y1 which is close to the shadow edge and far from
the boundary. This path has zero derivative but neither (25)
nor (26) is zero. Rather the interior contribution is negative
and the boundary contribution is positive, and they balance
to zero.

Fig. 3 shows an example of gradient estimation with a secondary

visibility boundary (see caption for details). We use this example to

validate our gradient estimations in Sec. 6.

5 OPTIMIZER
5.1 Variance Analysis of Loss Function
SGD requires an unbiased estimate of the gradient of the loss func-

tion 𝑔(𝜋). It is tempting to apply the loss to an unbiased estimate of

I(𝜋) at each iteration, then compute its derivative, but this produces

biased results.

For instance, if we use the 𝐿2 difference between an unbiased

rendering Ĩ(𝜋) and I
ref

as the loss, SGD will minimize the expected

value of this quantity, which is

⟨(Ĩ(𝜋) − I
ref
)2⟩ = ⟨Ĩ(𝜋)2⟩ − 2⟨Ĩ(𝜋)⟩I

ref
+ I2

ref
. (30)

The loss we really want is the difference between the exact render-

ing I(𝜋), which is the expected value of Ĩ(𝜋), and the reference:

(⟨Ĩ(𝜋)⟩ − I
ref
)2 = ⟨Ĩ(𝜋)⟩2 − 2⟨Ĩ(𝜋)⟩I

ref
+ I2

ref
. (31)

The difference (30) − (31) is exactly the variance of Ĩ(𝜋), and for

noisy estimates this error dominates (30), biasing the solution to-

wards parameters that produce lower variance. One example of

this problem could be found in Fig. 8 (d) where using L2 loss at low

sample rate per iteration converges to a wrong value. This problem

can be avoided by taking care to compute an unbiased estimate of

the loss derivative. One approach is to unwrap the loss function and

back propagate the gradient to the parameters using
𝜕𝑔 (𝐼 (𝜋 ))
𝜕𝐼 (𝜋 )

𝜕𝐼 (𝜋 )
𝜕𝜋

[Nimier-David et al. 2020], which requires computing independent

estimates for 𝜕𝑔/𝜕I and 𝜕I/𝜕𝜋 by computing the image and its de-

rivative in two passes. An alternative, used in this work, is to define

the loss itself using two independent renderings as in Eq. (6). This

approach is slightly more efficient because it effectively computes

a two-sample estimate of the loss with two differential renderings,

rather than a one-sample estimate with one rendering and one

differential rendering.

5.2 Large Step Optimization
Mesh-based geometry optimization can be challenging due to tri-

angle self intersections during surface evolution. Previous methods

either rely on additional Laplacian smoothing losses [Ravi et al.

2020] or specific geometry processing software [Brochu et al. 2009]

to avoid self intersections, but this can be costly in optimization.

Recently, Nicolet et al. [2021] introduced a new parameterization

of vertex positions and second-order preconditioned gradient de-

scent, so called large steps, demonstrating superior performance in

reconstructing both geometry and texture. We implemented this

algorithm for optimizing geometry and textures in our pipeline.

total

Surface evolution. Starting from a sphere or a roughly aligned mesh,

we downsample the geometry to a low-polygon initial mesh. During

the optimization we apply a remeshing step [Botsch and Kobbelt

2004] periodically to produce a coarse-to-fine sequence of meshes.

Combined with this isotropic remeshing, we apply the precondi-

tioned gradients (via the large steps algorithm) on vertex positions

to evolve the surface and refine geometric details.

Material optimization. We apply a total variation smoothing prior

on top of large steps for material texture optimization, defined as

Ltv (𝛼) := 𝜆tv
∑
𝑖, 𝑗 ( |𝛼 [𝑖+1, 𝑗]−𝛼 [𝑖, 𝑗] |+ |𝛼 [𝑖, 𝑗+1]−𝛼 [𝑖, 𝑗] |), where

𝛼 [𝑖, 𝑗] indicates the value of the (𝑖, 𝑗)-th pixel in the texture map.

6 IMPLEMENTATION DETAILS AND
EXPERIMENTS

Differentiable Renderer. We implemented our inverse hetergeneous

BSSRDF model based on the open-source PSDR-CUDA [Zhao and

Yan 2021] differentiable renderer, leveraging GPU raytracing and

automatic differentiation as well as its reference implementation

for opaque surface reconstruction for comparison. For importance

sampling the BSSRDF over surfaces, we follow the importance

sampling strategies in [King et al. 2013]. To estimate the gradient

contribution from secondary discontinuity boundaries, we sample

points on shadow edges. This is done by sampling points on the

triangle edges, connecting them with the point light, and tracing

rays back against the surface; the resulting intersection points are

right on the shadow edges.

Validation of autodiff derivatives. In Fig. 4, we validate the deriva-

tives calculated via automatic differentiation in our path integral

framework with BSSRDF.
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Figure 4: Validation of differentiable path integral frame-
work with BSSRDF. In each row we show a scene configura-
tion, the rendered image, our interior and boundary deriva-
tives, which sum up to match the finite difference (last col-
umn). The changing scene parameters is marked by a red
arrow (translation, rotation) or circle (vertex position).

Reconstructing with opaque BSDF vs. translucent BSSRDF. We com-

pare geometry reconstruction quality with different material as-

sumptions. As shown in Fig. 5, opaque assumption breaks when

target object is more translucent, while our method handles both

cases robustly due to the subsurface scattering material assumption,

yielding more faithful shading and reconstruction of shape.

Reconstructing with volumetric path tracing vs. BSSRDF. In Fig. 7

we show an equal-sample comparison of reconstruction quality

between differentiable volumetric path tracing [Zhang et al. 2021b]

and our method. The bunny scene with a rough dielectric surface

and highly scattering subsurface comes from [Zhang et al. 2021b].

The reference is rendered with volumetric path tracing using Mit-

suba [Jakob 2010]. We initialize the optimization with the same

learning rate and optimize until the loss converges or diverges. We

experimented on 32spp and 128spp per optimization iteration for

both methods. The previous work [Zhang et al. 2021b] failed to

converge at such a low sample rate while ours stably converges to

reference values.

Reconstruction of real-world translucent objects. We further examine

the effectiveness of our approach on real data. As shown in Fig. 6, we

captured 51 multi-view photographs of a bar of soap, which exhibits

visibly translucent appearance under point-light illumination. We

start from a perfect cube mesh, and initialize the single scattering

albedo texture and spatially-varying surface roughness map from

constant values, both at resolution 512×512. We optimize a uniform

extinction coefficient for the soap and dragon-fruit, and a 512x512

extinction texture for the kiwi. Besides the image loss, we also use

the total variation loss to ensure smoothness of the texture and

a silhouette loss to ensure convergence of the bottom part of the

shape. Our end-to-end differentiable rendering framework jointly

Appearance

Opaque Ours Reference

Shape

Opaque Ours

D
e
n
s
e

S
p
a
r
s
e

dist: 1.00x dist: 0.60x

dist: 1.50x dist: 0.77x

Figure 5: Comparison between an opaque BRDF (baseline)
and a BSSRDF (ours) fit to synthetic images. Initialized from
a gray sphere, we jointly optimize the shape and homoge-
neous translucent materials. We ran the optimization at the
same learning rate and equal number of iterations for both
methods. With the opaque BRDF model, the reconstruction
quality of the geometry decreases when the target object is
more translucent (i.e., Dense vs. Sparse), while our method
robustly reconstructs the shape and translucentmaterials in
both cases. We use Hausdorff distance to measure the differ-
ence between reconstructed shape and the reference shape.

recovers their shapes and heterogeneous translucent materials. We

show global illumination of these results in Fig. 1.

7 DISCUSSION & CONCLUSION
We have presented a technique for jointly recovering heteroge-

neous subsurface scattering materials and geometry of real-world

translucent objects and shown that a diffusion-based BSSRDF repre-

sentation is more efficient and robust than volumetric path tracing

for this problem. Compared to prior methods that require expensive

capture systems and specific lighting patterns, our work advances

the practical goal of capturing of translucent objects, and our meth-

ods can enable low-cost handheld acquisition of objects that exhibit

translucency as an important aspect of their appearance.

However, there are still limitations. First, our method fails to

reconstruct some high-frequency specular details from real-world

data. This is due to the limited and fixed mesh resolution that

our current implementation can afford. A possible future direction

is to optimize a normal or displacement map along with other

textures. Second, our current BSSRDF representation is a one-layer

model, which we observed to have difficulties in reconstructing

fruits with seeds beneath the surface where parallax presents a

challenge. This indicates the necessity of a multi-layer subsurface

model for handling these more complex objects. Finally, extending

the framework to support capturing under environment lighting

would be beneficial for more practical consumer-level applications.
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Figure 6: We demonstrate our end-to-end reconstruction framework on real data (column 1-2: bar of soap; column 3-4: cube
cut from dragon fruit; column 5-7: cube cut from kiwi fruit) which are captured using a calibrated camera with a point light.
Fifty-one views are used. We jointly recover the shape, from a cube, and the material parameters including the scattering
albedo texture, surface roughness texture, both at resolution 512 × 512, and a uniform single scattering extinction coefficient
(soap and dragon fruit) or a scattering extinction coefficient texture (for kiwi fruit).

(a) Reference (b) Our BSSRDF (c) Error map (d) 32-spp comparison (e) 128-spp comparison

Figure 7: Equal-sample comparison on inverse rendering of a translucent bunny (a) by optimizing using our BSSRDFmodel vs.
brute-force volumetric path tracing [Zhang et al. 2021b]. We show the (b) rendered image with converged parameters that are
optimized with our BSSRDFmodel and (c) its corresponding error map w.r.t. the ground truth. The differences around the ears
are mainly due to global illumination that is ignored in our method. In (d) and (e), we visualize the parameter error during the
inverse rendering process between ours and Zhang et al. [2021b] at 32spp and 128spp, respectively. Note that with our BSSRDF
representation the optimization converges stably towards the target value while [Zhang et al. 2021b] diverges due to the noise
of gradient estimation and bias in loss function. We see it diverging here at sample counts where ours works, but note that as
demonstrated in their paper, it does converge at around 1k samples per pixel.

(a) Reference (b) L2 loss (c) Our loss (d) Parameter RMSE (e) Image Loss

Figure 8: Equal-sample comparison of the L2 loss vs. our proposed dual-buffer loss. The reference image (a) is a path-traced
translucent bunny, andwe run optimizations using both losses to recover the RGB attenuation coefficient. At each iterationwe
render a 64spp image for the L2 loss and two 32spp buffers for our loss.Wefix theBSSRDF importance sampling distribution for
all iterations, making it easier to analyze the variance of the L2 loss (this doesn’t change the overall result of the comparison).
In (b) and (c), we show the residual error images using the converged parameters from each optimization. As shown in (d)
and (e), optimizing with our loss (purple) converges to match the reference better both in parameter error and image loss,
compared to using L2 loss (yellow) which converges to a biased value



Reconstructing Translucent Objects using Differentiable Rendering SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

REFERENCES
Dejan Azinovic, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. 2019. Inverse

path tracing for joint material and lighting estimation. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased warped-area

sampling for differentiable rendering. ACM Trans. Graph. 39, 6 (2020).
Mario Botsch and Leif Kobbelt. 2004. A remeshing approach to multiresolution model-

ing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geome-
try processing. 185–192.

Tyson Brochu et al. 2009. El Topo: Robust Topological Operations for Dynamic Explicit

Surfaces. https://github.com/tysonbrochu/eltopo.

Paolo Cermelli, Eliot Fried, and Morton E. Gurtin. 2005. Transport relations for surface

integrals arising in the formulation of balance laws for evolving fluid interfaces.

Journal of Fluid Mechanics 544 (Dec. 2005), 339–351. https://doi.org/10.1017/

S0022112005006695

Subrahmanyan Chandrasekhar. 1960. Radiative transfer. Courier Corporation.
Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020.

Towards learning-based inverse subsurface scattering. In The IEEE International
Conference on Computational Photography (ICCP).

Yanyun Chen, Xin Tong, Jiaping Wang, Stephen Lin, Baining Guo, and Heung-Yeung

Shum. 2004. Shell texture functions. ACM Trans. Graph. 23, 3 (2004).
Eugene d’Eon and Geoffrey Irving. 2011. A quantized-diffusion model for rendering

translucent materials. ACM Trans. Graph. 30, 4 (2011).
Bo Dong, Kathleen D Moore, Weiyi Zhang, and Pieter Peers. 2014. Scattering parame-

ters and surface normals from homogeneous translucent materials using photo-

metric stereo. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Craig Donner, Jason Lawrence, Ravi Ramamoorthi, Toshiya Hachisuka, Henrik Wann

Jensen, and Shree Nayar. 2009. An empirical BSSRDF model. In ACM SIGGRAPH
2009 papers. 1–10.

Craig Donner, Tim Weyrich, Eugene d’Eon, Ravi Ramamoorthi, and Szymon

Rusinkiewicz. 2008. A layered, heterogeneous reflectance model for acquiring

and rendering human skin. ACM Trans. Graph. 27, 5 (2008).
Oskar Elek, Denis Sumin, Ran Zhang, Tim Weyrich, Karol Myszkowski, Bernd Bickel,

Alexander Wilkie, and Jaroslav Krivanek. 2017. Scattering-aware texture reproduc-

tion for 3D printing. ACM Trans. Graph. 36, 6 (2017).
Jeppe Revall Frisvad, Toshiya Hachisuka, and Thomas Kim Kjeldsen. 2014. Directional

dipole model for subsurface scattering. ACM Trans. Graph. 34, 1 (2014).
Christian Fuchs, Tongbo Chen, Michael Goesele, Holger Theisel, and Hans-Peter Seidel.

2007. Density estimation for dynamic volumes. Computers & Graphics 31, 2 (2007).
Christian Fuchs, Michael Goesele, Tongbo Chen, and Hans-Peter Seidel. 2005. An

empirical model for heterogeneous translucent objects. ACM SIGGRAPH Sketches
(2005).

Abhijeet Ghosh, Tim Hawkins, Pieter Peers, Sune Frederiksen, and Paul Debevec. 2008.

Practical modeling and acquisition of layered facial reflectance. ACM New York,

NY, USA, 1–10.

Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An evaluation of computational

imaging techniques for heterogeneous inverse scattering. In European Conference
on Computer Vision (ECCV).

Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.

Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32, 6
(2013).

Michael Goesele, Hendrik PA Lensch, Jochen Lang, Christian Fuchs, and Hans-Peter

Seidel. 2004. Disco: acquisition of translucent objects. ACM Trans. Graph. 23, 3
(2004).

Ralf Habel, Per H Christensen, and Wojciech Jarosz. 2013. Photon beam diffusion: A

hybrid monte carlo method for subsurface scattering. In Computer Graphics Forum,

Vol. 32. Wiley Online Library.

Tim Hawkins, Per Einarsson, and Paul Debevec. 2005. Acquisition of time-varying

participating media. ACM Trans. Graph. 24, 3 (2005).
Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. 2001. A

Practical Model for Subsurface Light Transport. ACM Trans. Graph. (2001).
Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.

2015. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph.
35, 1 (2015).

Alan King, Christopher Kulla, Alejandro Conty, and Marcos Fajardo. 2013. BSSRDF

Importance Sampling. In ACM SIGGRAPH 2013 Talks (Anaheim, California) (SIG-
GRAPH ’13). Association for Computing Machinery, New York, NY, USA, Article

48, 1 pages. https://doi.org/10.1145/2504459.2504520

Aviad Levis, Yoav Y Schechner, Amit Aides, and Anthony B Davis. 2015. Airborne

three-dimensional cloud tomography. In IEEE International Conference on Computer
Vision (ICCV).

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable

monte carlo ray tracing through edge sampling. ACM Trans. Graph. 37, 6 (2018).
Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing

discontinuous integrands for differentiable rendering. ACM Trans. Graph. 38, 6

(2019).

Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. 2021. Unified Shape and

SVBRDF Recovery using Differentiable Monte Carlo Rendering. Computer Graphics
Forum 40, 4 (2021).

Yasuhiro Mukaigawa, Kazuya Suzuki, and Yasushi Yagi. 2009. Analysis of subsurface

scattering based on dipole approximation. IPSJ TCVA 1 (2009).

Adolfo Munoz, Jose I Echevarria, Francisco J Seron, Jorge Lopez-Moreno, Mashhuda

Glencross, and Diego Gutierrez. 2011. BSSRDF estimation from single images. In

Computer Graphics Forum, Vol. 30. Wiley Online Library.

Giljoo Nam, Joo Ho Lee, Diego Gutierrez, and Min H Kim. 2018. Practical svbrdf

acquisition of 3d objects with unstructured flash photography. ACM Trans. Graph.
37, 6 (2018), 1–12.

Srinivasa G. Narasimhan, Mohit Gupta, Craig Donner, Ravi Ramamoorthi, Shree K. Na-

yar, and HenrikWann Jensen. 2006. Acquiring Scattering Properties of Participating

Media by Dilution. ACM Trans. Graph. 25, 3 (2006).
F.E. Nicodemus, J.C. Richmond, J.J. Hsia, I.W. Ginsberg, and T. Limperis. 1977. Ge-

ometrical Considerations and Nomenclature for Reflectance. National Bureau of

Standards.

Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large steps in inverse

rendering of geometry. ACM Trans. Graph. 40, 6 (2021).
Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob. 2020. Radia-

tive backpropagation: an adjoint method for lightning-fast differentiable rendering.

ACM Trans. Graph. 39, 4 (2020).
Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:

A retargetable forward and inverse renderer. ACM Trans. Graph. 38, 6 (2019).
Thomas Klaus Nindel, Tomáš Iser, Tobias Rittig, Alexander Wilkie, and Jaroslav

Křivánek. 2021. A gradient-based framework for 3D print appearance optimization.

ACM Trans. Graph. 40, 4 (2021), 1–15.
Jan Novák, Iliyan Georgiev, Johannes Hanika, Jaroslav Krivánek, and Wojciech Jarosz.

2018. Monte Carlo methods for physically based volume rendering.. In SIGGRAPH
Courses.

Marios Papas, Christian Regg, Wojciech Jarosz, Bernd Bickel, Philip Jackson, Woj-

ciech Matusik, Steve Marschner, and Markus Gross. 2013. Fabricating translucent

materials using continuous pigment mixtures. ACM Trans. Graph. 32, 4 (2013).
Pieter Peers, Karl Vom Berge, Wojciech Matusik, Ravi Ramamoorthi, Jason Lawrence,

Szymon Rusinkiewicz, and Philip Dutré. 2006. A compact factored representation

of heterogeneous subsurface scattering. ACM Trans. Graph. 25, 3 (2006).
Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin

Johnson, and Georgia Gkioxari. 2020. Accelerating 3d deep learning with pytorch3d.

arXiv preprint arXiv:2007.08501 (2020).
Tobias Rittig, Denis Sumin, Vahid Babaei, Piotr Didyk, Alexey Voloboy, Alexander

Wilkie, Bernd Bickel, Karol Myszkowski, TimWeyrich, and Jaroslav Křivánek. 2021.

Neural Acceleration of Scattering-Aware Color 3D Printing. In Computer Graphics
Forum, Vol. 40. Wiley Online Library, 205–219.

Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion

Revisited. In Conference on Computer Vision and Pattern Recognition (CVPR).
Ying Song, Xin Tong, Fabio Pellacini, and Pieter Peers. 2009. Subedit: a representation

for editing measured heterogeneous subsurface scattering. ACM Trans. Graph. 28,
3 (2009).

Denis Sumin, Tobias Rittig, Vahid Babaei, Thomas Nindel, Alexander Wilkie, Piotr

Didyk, Bernd Bickel, J KR, ivánek, Karol Myszkowski, and Tim Weyrich. 2019.

Geometry-aware scattering compensation for 3D printing. ACM Trans. Graph.
38, 4 (2019).

Sarah Tariq, Andrew Gardner, Ignacio Llamas, Andrew Jones, Paul Debevec, and

Greg Turk. 2006. Efficient estimation of spatially varying subsurface scattering

parameters. Vision, Modeling, and Visualization (VMV2006) (2006), 129–136.
Xin Tong, Jiaping Wang, Stephen Lin, Baining Guo, and Heung-Yeung Shum. 2005.

Modeling and rendering of quasi-homogeneous materials. ACM Trans. Graph. 24, 3
(2005).

Eric Veach. 1998. Robust Monte Carlo methods for light transport simulation. Stanford
University.

Zdravko Velinov, Marios Papas, Derek Bradley, Paulo Gotardo, Parsa Mirdehghan,

Steve Marschner, Jan Novák, and Thabo Beeler. 2018. Appearance capture and

modeling of human teeth. ACM Trans. Graph. 37, 6 (2018).
Delio Vicini, Vladlen Koltun, and Wenzel Jakob. 2019. A learned shape-adaptive

subsurface scattering model. ACM Trans. Graph. 38, 4 (2019).
Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path replay backpropagation:

differentiating light paths using constant memory and linear time. ACM Trans.
Graph. 40, 4 (2021).

Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. 2007.

Microfacet Models for Refraction through Rough Surfaces. Rendering techniques
2007 (2007), 18th.

Jiaping Wang, Shuang Zhao, Xin Tong, Stephen Lin, Zhouchen Lin, Yue Dong, Baining

Guo, and Heung-Yeung Shum. 2008. Modeling and Rendering of Heterogeneous

Translucent Materials Using the Diffusion Equation. ACM Trans. Graph. 27, 1
(2008).

Tim Weyrich, Wojciech Matusik, Hanspeter Pfister, Bernd Bickel, Craig Donner, Chien

Tu, Janet McAndless, Jinho Lee, Addy Ngan, Henrik Wann Jensen, et al. 2006.

https://github.com/tysonbrochu/eltopo
https://doi.org/10.1017/S0022112005006695
https://doi.org/10.1017/S0022112005006695
https://doi.org/10.1145/2504459.2504520


SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Xi Deng, Fujun Luan, Bruce Walter, Kavita Bala, and Steve Marschner

Analysis of human faces using a measurement-based skin reflectance model. ACM
Trans. Graph. 25, 3 (2006).

Lifan Wu, Guangyan Cai, Ravi Ramamoorthi, and Shuang Zhao. 2021. Differentiable

time-gated rendering. ACM Trans. Graph. 40, 6 (2021), 1–16.
Shinyoung Yi, Donggun Kim, Kiseok Choi, Adrian Jarabo, Diego Gutierrez, and Min H

Kim. 2021. Differentiable transient rendering. ACM Trans. Graph. 40, 6 (2021),

1–11.

Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. 2021. Monte

Carlo estimators for differential light transport. ACM Trans. Graph. 40, 4 (2021).
Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. 2021a. Antithetic

sampling for Monte Carlo differentiable rendering. ACM Trans. Graph. 40, 4 (2021).

Cheng Zhang, Bailey Miller, Kan Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020.

Path-space differentiable rendering. ACM Trans. Graph. 39, 4 (2020).
Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and

Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Trans. Graph.
38, 6 (2019).

Cheng Zhang, Zihan Yu, and Shuang Zhao. 2021b. Path-Space Differentiable Rendering

of Participating Media. ACM Trans. Graph. 40, 4 (2021).
Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016. Downsampling

scattering parameters for rendering anisotropic media. ACM Trans. Graph. 35, 6
(2016).

Shuang Zhao and Kai Yan. 2021. Path-Space Differentiable Renderer. https://psdr-

cuda.readthedocs.io/en/latest/.

https://psdr-cuda.readthedocs.io/en/latest/
https://psdr-cuda.readthedocs.io/en/latest/

	Abstract
	1 Introduction
	2 Related Work 
	3 Overview
	4 Differentiable Translucent Rendering
	4.1 Path Integral Framework with BSSRDF
	4.2 Differentiating the Path Integral with BSSRDF
	4.3 Differentiable Rendering for BSSRDF Capture
	4.4 Monte Carlo Estimation of the Derivatives

	5 Optimizer
	5.1 Variance Analysis of Loss Function
	5.2 Large Step Optimization

	6 Implementation Details and Experiments
	7 Discussion & Conclusion
	Acknowledgments
	References

