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Abstract

We investigate the relationships between local envi-
ronmental variables and the geochemical composition
of the Earth in a region spanning over 26,000 km?
in the lower South Island of New Zealand. Part
of the Southland-South Otago geochemical baseline
survey—a pilot study pre-empting roll-out across the
country—the data comprise the measurements of 59
chemical trace elements, each at two depth prescrip-
tions, at several hundred spatial sites. We demonstrate
construction of a hierarchical spatial factor model that
captures inter-depth dependency; handles imputation of
left-censored readings in a statistically principled man-
ner; and exploits sparse approximations to Gaussian pro-
cesses to deliver inference. The voluminous results pro-
vide a novel impression of the underlying processes and
are presented graphically via simple web-based appli-
cations. These both confirm existing knowledge and
provide a basis from which new research hypotheses in
geochemistry might be formed.
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1 | INTRODUCTION

The distribution of elements in soil, rock, water and atmosphere is of fundamental importance
to human health, animal well-being, plant growth and mineral formation and as such, affects
quality of life and economic prosperity. The study of the distribution, concentration and
circulation of chemical elements in the environment is known as geochemistry (Goldschmidt,
1954). Geochemistry studies are applied at all scales from atomic to planetary and have been
used to study the near-surface distribution and concentration of elements in soil at a regional
(<100,000 km?), national and even global scale (Plant et al., 2001). Such studies are commonly
referred to as geochemical baseline soil studies and were initially undertaken in support of mineral
exploration (Johnson et al., 2005). Geochemical baseline soil studies have since evolved to address
research questions relevant in areas of public health (Plant et al., 2001; Turnbull et al., 2019), envi-
ronmental regulation (Darnley et al., 1995), forensic studies (Reimann & de Caritat, 2012), soil
fertility (Clare, 1981), pollution (Deely et al., 1992; Martin et al., 2018), agriculture (Martin et al.,
2017; Webber, 1981), forestry, water supply and irrigation (Purchase & Fergusson, 1986) and trans-
port and urbanisation (Fergusson et al., 1980). They have now been undertaken on all continents
and at a variety of scales (Herselman et al., 2005; Matschullat et al., 2012; National Soil Survey
Office, 1998; Reimann & de Caritat, 2012; Rogers et al., 2017; Smith et al., 2013). In all these stud-
ies, a common aim is the provision of a spatial description of the geochemical variability within
the study area.

1.1 | Role of statistics and common challenges

Both parametric and nonparametric techniques are frequently used in the analysis of geochemi-
cal data. Multivariate exploratory techniques such as ANOVA, independent component analysis,
principal component analysis, linear discriminant analysis and multidimensional scaling are
popular (Grunsky & de Caritat, 2019; Lado et al., 2008; Singer & Kouda, 2001). Also commonly
used are inverse-distance weighted interpolation, kriging and regression-kriging (Bartier & Keller,
1996; Lado et al., 2008; Martin et al., 2016; Reimann, 2005a, 2005b). Establishing and attempting
to explain ‘class membership’, the identification of subgroups of similarly dispersed elements, is
often of interest. To that end, model-based clustering, logistic regression and machine learning
methods such as support vector machines, random forests and neural networks have also been
deployed (van den Berg et al., 2006; Grunsky & de Caritat, 2019; Rissmann et al., 2019).

Due to practical limitations, geochemical baseline soil survey data often contain samples with
element concentrations below the lower method detection limit (Farnham et al., 2002), yielding
left-censored observations. This is challenging for many statistical treatments which require a
complete dataset. Many studies use crude substitution, for example replacement by half the lower
limit value (Clarke, 1998) or simple imputation techniques such as mean substitution or marginal
regression on a subset of predictors (see Graham, 2012; Sanford et al., 1993; Singer & Kouda, 2001,
for examples in geochemistry). The potential bias inherent in such approaches is unappealing
from both inferential and predictive perspectives.

Other challenges to the interpretation of geochemical data include missing values, merg-
ing, levelling different datasets (reconciling soil samples analysed at different laboratories at
different times), adequate spatial coverage, sample design and closure (Grunsky & de Caritat,
2019). Perhaps more crucially, the previous statistical analyses have generally disregarded
comparing geochemical samples taken at multiple depths, despite the routine collection of those
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data. Depending on the specific research question of interest, this can be profoundly detrimen-
tal to making inference—information on geochemical variation between depths can shed light
on anthropogenic contamination from, for example, agricultural, vehicular or industrial sources.
Geochemistry studies typically assume a source of anthropogenic contamination when the top-
soil is rich in certain heavy metals (i.e. lead, arsenic, cadmium) relative to the subsoil. Such an
assumption may be based on expertly derived thresholds, for example, the topsoil-subsoil differ-
ence method (Kapicka et al., 2001), or an arbitrary figure such as readings above 1.5 times the
interquartile range of a regional dataset, designed to account for natural background variation
(e.g. the geoaccumulation index method; Miiller, 1979).

The high dimensionality of the response variable is also a challenge of note. Even those
methods that have readily available multivariate analogues (e.g. kriging) often become unwieldy
as the number of outcomes under examination grows. Many studies have therefore simply
restricted attention to a relatively modest subset of elements (e.g. <10 elements) and many mod-
els tend to be spatially coarse (e.g. grids of square-kilometres in interpolated models) due to
the increased computational expense associated with finer-scale, higher-dimensional modelling
(although exceptions do exist, e.g. Lado et al., 2008).

In part, the result of the aforementioned challenges of geochemical survey data has left a
need to consider models that can cope with the complexities therein in a more ‘self-contained’
fashion. While the breadth of research questions relevant to the analysis of geochemical
data does not support a one-size-fits-all approach, there remains tremendous inferential value
in constructing models that can simultaneously cope with high-dimensional response vari-
ables, multi-depth observations and censoring, while facilitating other desirable operations
such as point-specific predictions and the associated uncertainty in a statistically principled
manner.

1.2 | Current focus: The Southland-South Otago geochemical
baseline survey

In New Zealand, a geochemical baseline soil survey—the Southland-South Otago geochemical
baseline survey—was undertaken over the southern region of the country to map the dis-
tribution and concentration of dozens of chemical trace elements in soil for human health,
pollution and mineral exploration purposes (Martin et al., 2016; Rattenbury et al., 2014). It cov-
ers approximately 26,000 km?; encompassing an area marginally greater than Wales. Being a
single survey with samples analysed consecutively on one instrument at one laboratory, some
of the aforementioned limitations of studying regional geochemical baseline soil data, like
merging or levelling multiple datasets, are not present. Furthermore, by comparison to the
known bedrock geology, land use, mineralisation and anthropogenic pollution, the study is also
assumed to be of adequate spatial coverage to detect regional-scale element patterns (Martin
etal., 2016, 2018). However, other previously mentioned challenges—high-dimensional response,
multi-depth observations, censoring—remain. It is of interest to accommodate, not ignore, these
complexities.

Our overarching goal is to formulate a model capable of (a) quantifying to what degree the
extraneous variables (e.g. climate, rock type, urbanisation) control the spatial distribution of trace
elements in soil at two depths; and (b) confidently predicting element in soil patterns in data-poor
areas. Doing so is important for informing local planning and making science-based policy deci-
sions. For example, predictions of how element trends might evolve under changing rainfall
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expected with climate change, or how varying land use (agriculture, urban) and land cover (native
vegetation, pasture) will affect soil element concentrations at different depths, provides crucial
scientific insight. The other important point is spatial scale. Making predictions of how elements
in soil patterns vary at the regional scale has limited use with respect to making science-based pol-
icy decisions at a suburb scale, or even an individual property/paddock scale, which is a primary
goal of policy makers and geochemists. In this light, constructing a model capable of fine-scale
spatial predictions has obvious value.

Generally speaking, joint modelling of multiple spatially dependent outcomes requires devel-
oping multivariate spatial processes. If the number of outcomes is small or moderate, then the
linear model of coregionalisation (LMC—see Gelfand et al., 2004; Wackernagel, 2003) is a pop-
ular method for building valid multivariate spatial processes. The LMC forms each element
of a multivariate spatial process as a linear combination of a collection of latent spatial pro-
cesses that, while dependent over space, are independent of each other. The association among
the elements of the multivariate spatial process is determined by the coefficients in the linear
transformation.

If the number of outcomes is very large, then dimension reduction is sought. This leads to
spatial factor models. Spatial factor models have been explored in different contexts including
by Wang and Wall (2003), Lopes et al. (2008), Ren and Banerjee (2013) and Taylor-Rodriguez
et al. (2019). While the aforementioned approaches differ in the precise formulation of the mul-
tivariate process, they are all variants of extending the usual factor models to spatial models by
modelling the factors as independent spatial processes. This is equivalent to an LMC in spa-
tial modelling such that the number of latent spatial processes is much less than the number of
outcomes.

A unique complication of our current application is presented by the multi-depth nature of
geochemical survey data. The models we devise here will further extend the concept of the spa-
tial factor model in a ‘multistage’ or ‘multiresolution’ sense, with factors specific to each depth.
Of particular interest is precisely how one might design or impose any inter-depth relationship
between factors. As we shall see, this can be guided by both prevailing scientific knowledge and
the research objectives at hand.

1.3 | Article layout

The balance of the article is structured as follows. In Section 2 we provide some basic plots of
the data and perform some simple exploratory analyses. In Section 3 our focus turns to design
of a spatial factor model geared to explain the variation in the multiple elements across space
and depth. The fitting algorithm and some practical decisions needed to produce the final fit are
described in Section 4. Key results are reported in Sections 5 and 6 offers some concluding remarks
and details of future research objectives.

2 | DATA AND EXPLORATORY ANALYSIS

The dataset motivating the current work is drawn from the Southland-South Otago geochemical
baseline survey of New Zealand (Martin et al., 2016; Rattenbury et al., 2014), named after the
regions of the country the sampling sites straddle. Figure 1 shows the study region and n = 333
sampling locations in the South Island.
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FIGURE 1 Study region limits in the mainland South Island of Aotearoa/New Zealand (left), and spatial
locations of 333 sampling sites using the New Zealand Transverse Mercator coordinate system scaled to kilometres

2.1 | Response data

The survey grid design followed international protocols for regional geochemical baseline design
(Darnley et al., 1995; Rawlins et al., 2012). Gaps and minor irregularities in the survey design
were unavoidable due to geographic barriers (e.g. swamps, mountains) and land access permis-
sion challenges. Soil samples were hand-dug using a coring tool. At each site, extraction was
performed at m = 2 different depths, shallow (Depth A, 0-20 cm) and deep (Depth B, 50-70 cm).
Spatial locations were recorded using GPS, and subsequently projected to New Zealand Trans-
verse Mercator (NZTM) coordinates and scaled to kilometres. All soil samples were analysed for a
suite of major, minor and trace elements using the inductively coupled plasma mass spectrometry
(ICP-MS) technique on an aqua regia partial digest. Analyses were undertaken by Bureau Veritas
Minerals Laboratories (BVML) in Vancouver, Canada. Prior to analysis, each sample was sieved to
extract the sub-180 pm fraction, and a split of 0.5 g from this fraction was taken for acid digestion.
To ensure the quality and accuracy of the data, a comprehensive quality assurance/quality con-
trol (QAQC) programme was completed involving regular analysis of duplicates, replicates and
survey soil standards, as well as international reference materials and an in-house laboratory pulp
duplicate and blank. For a comprehensive outline of sample preparation and analytical method-
ology, and QAQC protocols, the reader is referred to Martin et al. (2016). A total of 65 elements
were measured which, for reasons noted below, we express in log-parts-per-billion (log-ppb).

As is typical in these surveys, the sensitivity of the equipment and procedures used to obtain
the measurements is not limitless, yielding a lower-bound limit-of-detection, or method detection
limit (MDL), which is specific to each element. In many cases the MDL is surpassed, resulting in
left-censored outcomes. For the purposes of our analysis, we cull from the dataset a small num-
ber of elements that are excessively (i.e. almost 100%) censored, and focus on readings of the
remaining g = 59 distinct elements.

Thus, N = mnq = 39,294 individual depth-site-element outcomes are targeted for modelling.
Of these Ncens = 1884 are left-censored due to the respective MDLs. There are only Npiss = 3
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FIGURE 2 Responses for arsenic, lead and lutetium (left to right respectively). Common colour scale
between depths; units in log-ppb. Filled dots (e) represent observed data and crossed circles (@) denote
left-censored values [Colour figure can be viewed at wileyonlinelibrary.com]

missing values, all of which correspond to carbon (C). The 59 elements of interest are listed in
greater detail in section 1 of Supplement A.

Figure 2 gives an example of the response data for arsenic (As); lead (Pb); and the rare-earth
element lutetium (Lu). Censoring is apparent in the latter, and each of these shows strong spatial
similarity between depths—a feature exhibited by all elements in the dataset.

To further investigate the scaling of the responses, Figure 3 provides comparative histograms
of the distributions of the untransformed uncensored Depth A readings of As and Lu and their
log-transformed versions. An additional histogram in Figure 3 shows the maximum-likelihood
estimates of the Box-Cox power parameter A*, computed separately for each element at both
depths (after omitting censored/missing values). This distribution of estimates is centred close to
zero with a mean of approximately 0.00593. As such, we settled for use of log-ppb in contrast to
something more general like the Box-Cox transform with a non-zero A*, as the log transform (a)
serves to satisfactorily remove notable right-skewness in the distributions of the element readings;
(b) estimation of the ‘power’ parameter A* for the Box-Cox function does not indicate a systematic
or substantial favour for non-zero values of A* (cf. Figure 3); and (c) the log transform is commonly
used and familiar in the geochemical sciences (see e.g. Aitchison et al., 2000; Gazley et al., 2020;
McKinley et al., 2016).

2.2 | Environmental variables

Alongside the trace element readings, various environmental variables are obtained at each sam-
pling site. Estimating the association between the response variables and these predictors forms
an important part of the analysis, both to provide an overall fixed-effect adjustment and to
quantify the relationships with the individual variables in their own right.

Figure 4 displays the seven variables at hand: stratigraphy; lithology; soil type; vegetation type;
terrain slope; mean daily air temperature; and mean annual rainfall. The first four of these are
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categorical variables and the remaining three are treated as continuous. In section 2 of Sup-
plement A we offer some commentary on their meaning and interpretation in the current
context.

2.3 | Principal component, hierarchical clustering and variogram
analyses

Visualisation of the raw data as in Figure 2 reflects existing knowledge in geochemistry. Not
only do we tend to observe very similar spatial variation between depths, but many different ele-
ments themselves share similar spatial distributions. This is due to a variety of reasons, both
environmental and anthropogenic.

Elementary exploratory techniques reveal such structure. A dendrogram resulting from
Euclidean-distance hierarchical clustering appears in Figure 5. This clearly illustrates the first
clusters are formed, for the most part, by the observations at both depths for a specific element.
The graph also shows that the mq = 118 elements at both depths collapse into relatively few
groups, relatively quickly thereafter.

Scree plots of a PCA appear in Figure 6. The PCA is performed separately on the
depth-specific residuals following a fixed-effect linear regression to remove the potential influ-
ence of the environmental variables detailed in Section 2.2. This analysis provides another
two pieces of useful information. First, it supports the interpretation of structure evident in
the dendrogram—relatively few components (up to around 10) describe a substantial propor-
tion of the (estimated residual) variance in the 59 responses. Second, the striking similar-
ity of the curves corresponding to the two depths—this hints at simplified or shared mod-
elling strategies for the between-depth relationship; ideas we pursue in the model design
itself.

Lastly, we interrogate several individual elements using variogram models. Unsurprisingly,
even after accounting for the environmental predictors (using the same linear regression trend as
in the PCA), all elements display lingering spatial dependence as judged by sustained breaches
of 95% envelopes computed via Monte-Carlo permutation—it is acknowledged in the geochem-
ical literature that the variables contributing to the spatial variation in these trace elements
are numerous and complex (Martin et al., 2016; Sparks, 2003). A typical example of this is
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350332 S e eyl
85633557788 22385055 TE22°

FIGURE 5 Cluster dendrogram of the response data
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FIGURE 6 Top left: Scree plots of PCA for each depth, after adjusting for the environmental variables in a
linear regression; unit variance is marked with a dotted horizontal line. Top right, bottom left, bottom right
respectively: Variogram analysis of the Depth A responses for arsenic, lead and lutetium [Colour figure can be
viewed at wileyonlinelibrary.com]

provided in the top-right, bottom-left and bottom-right panels side of Figure 6, which shows
the estimated empirical variogram of the data for As, Pb and Lu at Depth A (correspond-
ing to the data in the top row of Figure 2). Such analyses also permit simple explorations
of the nature of the spatial autocorrelation. Superimposed atop the empirical variogram for
each of the three elements are two variogram models fitted via least squares—one using an
exponential covariance function, the other using a Gaussian (squared exponential) covari-
ance. While both fitted curves succeed in picking up the overall dependence, the Gaussian
fit is somewhat better able to adapt to stronger dependence at small distances, resulting in
a better match to the empirical variogram—behaviour we note is mimicked by the other
elements.

As a check for anisotropy, we additionally explore directional variograms. The estimated
semivariances in the four cardinal directions are sufficiently similar such that the omnidirec-
tional curves are taken as sensible summaries of the underlying processes. Using the three
example elements discussed in this section, we provide their directional variograms in section 3
of Supplement A.
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3 | MODEL DESIGN

We propose a hierarchical model for multivariate geochemical observations as outlined in
Section 2.1, with g outcomes/elements each measured at m depths across n sites S = {sy, ... , S, }.
While censoring is permitted, as is missingness, for ease of notation we shall for the moment
ignore such entries—they are dealt with at the model fitting stage in a typical data augmentation
step described in Section 4.2. Furthermore, although our motivating dataset has particular fea-
tures of note (e.g. we need only deal with two depths, and environmental variables are the same
at each depth and for each element), here we present the model in a slightly more general form
for the sake of exposition.

We follow customary notations. Let N4(a, B) denote a normal distribution of dimension d
with mean and variance/covariance structures a and B respectively; and let Ny(x|a, B) be the
corresponding normal density evaluated at x. The quantity 0 denotes a vector of zeros with size
clear by context; I; the d x d identity matrix; 1[-] the indicator function; @ the matrix direct sum;
and ® the Kronecker product.

3.1 | A factor framework

Let Yl.(j)(s) represent the measurement corresponding to the ith element at the jth depth and
generic spatial location s. We assume the following observation equation

Y/(s) =x"(5)TpY + 2,1(1 &) +els);  i=1 ... j=1...m 1)

Here, each xgj)(s) is the p; x 1 vector of covariates (including an intercept) at site s with the hth
element giving the value of xﬁﬁ)(s) forh=1,2, ... ,p;. Indexing by i and j reflects the fact that we
could allow for the collection of explanatory variables to be different for each possible outcome
and each possible depth if necessary. This is paired with a corresponding p; X 1 vector of regres-
sion coefficients ﬂl@ . Given the large value of g, we achieve dimension reduction through latent
factors and their corresponding loads. Thus, variation beyond those explained by the covariates
are captured through a linear combination of r « g factors f;,j (s). The values for the #th factor at

depth j receive an outcome-specific load of A(j) These factors are considered in greater detail in
Section 3.2. Residual measurement error is left to e(f)(s) N(O, 52(’ )) assumed to be independent

across outcomes i and depths j.
Collecting (1) over the g elements yields the vector-valued model,

Y(j)(s) — X(j)(s)ﬂ(j) + A(j)f(j)(s) + e(j)(s); j=1,..,m, ()

where YO (s) = [Yl(j)(s), ,Y(;j)(s)]T isgx1,XV(s) =P, (j)(s)T is the g x p (with p = Zipi)

design matrix, gV = [,B(lm, e (’)T]T is the p x 1 vector of coefficients, AV = [/1(’) LAY

with 27 =49, ... ,A;’;]T is the g x r factor loading matrix, fV(s) = [f(s), ... (1) (s)]T is the

r x 1 collection of factor values and eY(s) = [e(j)(s) ..,eV(s)]T is the q x 1 vector of errors

with €Y(s) ~ Ng(0, DY), where DV = @7 5; &2 = dlag[éz(” ) ,53(”]. We also define 6V =
2(J) 2(j)

(620, . 620y,
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Proceeding with further concatenation over the locations in S, we obtain

YO = X(j)ﬁ(j) +1, ® A(j))f(j) +e; j=1,...,m, )
where YV = [YU(s))T, ... , YU(s,)T]" is the ng x 1 vector obtained by concatenating Y\ (sy) for
k=1,2, ..., n The ng x p design matrix is given by concatenating the X"(s;)s, namely X" =
XP(s))T, ... XY(s,)T]T, giving an ng x p structure. The factors are arranged similarly to form
the nr x 1 vector Y = [fV(s)7, ... ,£V(s,)T]7 operated on by the nq x nr block diagonal loading
matrix I, ® AY. Lastly we also concatenate the error terms to give €/’ = [eU(s)T, ... , eP(s,)T]T

as the nq x 1 vector of residuals, with € ~ N,4(0,I, ® D). Finally, we collect the responses
over depth to obtain

Y=Xﬁ+Af+ €, (4)

where Y (B) is mng x 1 (mp x 1) obtained by concatenating the YYs ( f“’s) in Equation (3),

X =@~ XVismngx mp, A = B, (I, ® AV} is mng x mar, £ = [fV7, . £ T ismnrx 1,
and € ~ Nynq(0, D), where & is mng X 1 formed by concatenating €"s in Equation (3), D =
@7, {I. ® DV} is mng x mnq diagonal comprising elements in & = {5V, ... , 5*"™}. For ease

of interpretation, in section 4.1 of Supplement A we provide some more explicit matrix diagrams
of the various structures defined here.

3.2 | Spatial factors and model identifiability

The preceding formulation presents a very flexible modelling framework. The dimension reduc-
tion, which manifests as the (g X ) X (r X 1) second term on the right-hand side of (2), offers
computational savings when r is small relative to q. More importantly, in the current appli-
cation where sub-groups of different elements are known to exhibit similar spatial trends, the
fundamental statistical premise of a factor model is also intuitively sensible from a scientific
standpoint.

We introduce spatially correlated factors in Equation (1) by specifying

D) ~GP(0.COC,1¢,):  £=1,....1n j=1,...m, (5)

where ‘GP’ denotes Gaussian process (a spatial process where, for any finite collection of spatial
sites 7 € R?, the vector f;j)(t) for t € 7 has a corresponding multivariate normal distribution),
following the notation of Banerjee et al. (2014), Finley et al. (2007). These processes are taken to
be mutually independent with respect to #. Centred about zero, we have Cov[ f;j)(s), f;j) sl =
CcUs,s’; ¢,), where CU(,-; ¢,) is a positive definite spatial covariance function controlled by
parameter ¢,. The r independent factors are therefore represented as a multivariate Gaussian
process (MVGP)

£7(s) ~ MVGP(0, CV'(:, 5 $)) (6)
with ¢ = {¢;, ... , ¢, }. Here, we have a matrix-valued multivariate cross-covariance function in

C, where CU(s, s'; ¢) yields the r x r dependence between the r factors at locations s and s’. The
aforementioned independence between different factors implies CY(s,s’; ) isan r x r diagonal
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matrix with Zth diagonal entry CU(s,s';¢,) for # =1, 2, ..., r. From Equation (6), we obtain
fU ~ N,.(0, Fg)) forj=1,2, ..., m, where Fg) is the nr x nr covariance matrix with the r x r

matrix CY(s , si,; @) as the (ki, kp)th block for ki, k, = 1,2, ... ,n.

However, the flexibility we are afforded by such a model is not without pitfalls. To wit,
the key issue of identifiability requires careful treatment; workarounds depend on the specifi-
cations for the various model components. Identifiability ensures substantive interpretation of
latent factors. Violation of identifiability means that certain latent factors cannot be uniquely
extracted from data casting questions on their substantive interpretation. It is well known
(see e.g. Anderson, 2003) that a latent factor model is not identifiable due to rotational inde-
terminacy, that is, the distribution of the zero-centred outcomes is invariant to orthogonal
transformations (rotations) of the latent factors and the loading matrix. With independent
factors, a widely used approach is to fix certain elements of the loading matrix to constant
values, usually to zeroes, such as restricting the loading matrix to be an upper or lower
triangular matrix with strictly positive diagonal elements (Lopes & West, 1999). When fac-
tors are modelled as spatial processes, Ren and Banerjee (2013) argue that non-identifiability
is restricted to sign-alternating reflectors and permutations and impose an ordering on the
spatial decay parameters to ensure identifiability in theory. In practice, however, such meth-
ods need not be effective in uniquely identifying the individual components when numer-
ical separation of some of the spatial decay parameters is violated. Predictive inference is
still robust, but interpretation of the underlying associations among the outcomes can be
unreliable.

Recent work by Zhang and Banerjee (2021) proposes classes of spatial factor models using a
Bayesian matrix-normal formulation. While computationally attractive for predictive inference,
such methods do not easily accommodate the richer structures in the factors that we desire in
our application. In our case prediction is naturally still of interest. However, it is also desirable
to gain a sense of the overall strength of between-depth association in these residual spatial
effects, owing to the scientific interest in both environmental and anthropogenic inputs. Hence,
in Section 3.3 we introduce additional structure in the spatial factors to account for associa-
tion across depths while recognising the challenges of identifying all the factor loadings from
such additional structure. Instead, we conduct a PCA analysis (cf. Figure 6) as a part of prelimi-
nary exploration and fix the factor loading matrix using the eigenvectors obtained from the PCA
analysis.

3.3 | Multi-depth construction

We offer further structure to the specification of the factors as we seek to leverage and quantify the
between-depth similarity. First, focus on the first (shallow) depth, j = 1, which from Section 3.2
we have as fV) ~ Ni,4(0, I‘;bl)). In

p
M _ [~ . _ ) .
F¢ = [C (Skl s sk2 ) ¢)] kl,k2=1, n - l@c (skl 5 Sk2 s ¢f)]
£=1 k=1, ... 1
we assign unit variance; that is, C1(s,s’; ¢,) is a spatial correlation function. In addition, we
assume stationarity and isotropy thereof; the latter assumption supported by the exploratory anal-
ysis (see the directional variogram examples in Supplement A). The Matérn class of functions (see
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e.g. Chilés & Delfiner, 2012) is popular in practice. Given the findings of our exploratory analysis,
we opt for the Gaussian correlation function of the form

Ch(s,s';¢,) =exp {—(dells—s'ID*}; ¢ >0, (7)

which we found to be better suited to the sample data than the exponential correlation function.
Note ||s — §'|| denotes Euclidean distance between s and s’ and, in such a case, the parameter
¢, = ¢, issimply a single scalar component. A slightly more relaxed approach would be to imple-
ment the general Matérn covariance function itself, although this would require an additional
smoothness parameter be sampled as part of the fitting algorithm. We prefer to avoid this route
in the current application given the computational cost of involving additional parameters in the
global dependence structure, coupled with the fact that this particular parameter is often poorly
identified in practice (see e.g. Stein, 1999).

‘We now propose to model the factors at subsequent depths j > 1 as a function of the values at
depth j = 1. Specifically,

£26) = af " (s) + 1 (s); £=1,....r j=2,...m
= £9(s) = gt V(s) + 1), (8)
where additional independent error is given by n(fj)(s) ~ N1(0, o;(j)). Hence,
1Y (s) ~ N,(0,5Y) ©9)
where nY(s) = [nij)(s), o onP(s)]T and SV = @;zlaim is r x r diagonal; note also that n)(s) is
independent of f(s) for all j and we write 62 = {62?, ... , 6™} where 620) = {af(j), oo,

Turn to the jth-depth factor values across all sites; that is, the nr x 1 vector fY used in the
model (3). Coupling (6) with (8) we have

Covl£”(s), £7(s))] = Cov o (s) + 1(5), (") + ()|
= ajZC(l)(s, s’ ) +SV1[s = §],
and therefore by considering s,s’ € S,
£9 ~ N, <o, T 41, ® s<f>); =2 ....m (10)
Thus, to complete the full covariance matrix for the entire collection of factor values at all
depths, f as appears in Equation (4), we must also obtain the between-depth factor dependencies

by applying Cov[f(jl)(s), f(jz)(s’)] forji,jo €1, ... ,r;j1 # j2. Doing so it is easy to show that

f~ Nmnr(oa 2(1,¢,62)7 (11)

0, ® { (I, ®SY) H (12)

where

1
Topor = aa’ ® I’;) +

P+

<.
I
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for @ =[1,a, ... ,az]" and O, denoting a nr X nr matrix of zeros. As we have done earlier,
Section 4.2 of Supplement A elucidates on the matrix structures and other quantities defined in
this section. We remark that our construction in Equation (8) bears similarities with dynamic
spatial-temporal models in which there is a substantial literature (see, e.g. Stroud et al., 2001).
While identifiability of the a;s for Bayesian inference will not require additional constraints as
long as proper priors are assigned, we will use proper priors with positive support to reflect the
plausibility of positive associations among the depth-specific spatial processes (see Equation (16)
in Section 3.5).

The culmination of the preceding design is a collection of spatial factors in f that are permitted
to co-vary in a particular way. The above definitions make it clear that for a given factor ¢, the
spatial effect at any depth j > 1 is linearly related (with slope controlled by ;) to the #th spatial
effect at the first depth j = 1. This relationship, however, does not extend to informing changes
to other factors (in other words, the #;th factor at depth j = 1 does not inform the #,th factor;
¢1 # ¢, at any depth).

As noted in Section 3.2, achieving practically meaningful identifiability with such struc-
ture in the factors f requires consideration of the loading matrix. In a purely non-spatial
unit-variance setting, that is, simply defining fg)(s) b N;(0,1) for any given depth j, the
within-site cross-covariance would be wholly determined by AYAYT. However, under the
between-depth prescription described above, the covariance structure evident in Equation (10) for
the factors £ at depths j > 1 confounds this relationship and ensuring identifiability while retain-
ing meaningful interpretation becomes challenging. Hence, we assume that the spatial effects for
any given element at depths subsequent to j = 1 are strongly associated, and fix A for all j using
the PCA analysis shown in Figure 6 at depth j = 1. Let E; be the n X q matrix of zero-centred
residuals following a standard fixed-effect regression of the j = 1 depth observations, with each
column scaled to have unit variance. Then, with V representing the g X g matrix whose columns
are the eigenvectors of EITEI, foreach j =1, ..., m we fix each g X r matrix AY to take on the
first  columns of V; each column multiplied by the square root of its corresponding eigenvalue.
This corresponds to an optimal choice for the loading matrix within the context of probabilistic
PCA (Tipping & Bishop, 1999); also see section 12.2 in Bishop (2006). This allows us to distil the
overall between-depth relationship for all elements using the parameters in o, where o; models
the association for the factors at depth j with that at depth 1 (taken as a baseline to construct the
joint distribution of the factors).

3.4 | Sparsity-inducing NNGP

Motivated by the computational intractability of geostatistical modelling problems with a large
number of observations, the work by Datta et al. (2016a) introduced the nearest-neighbour Gaus-
sian process (NNGP), which is designed as a direct approximation to a corresponding GP. The
NNGP offers massive computational savings and scalability while providing an accurate and pre-
cise representation of the full GP. The basic idea behind the technique is to approximate the
dependence structure of the full GP using only the measurements in the immediate spatial neigh-
bourhood of a given location s. This ‘immediate neighbourhood’ is defined in terms of a directed
acyclic graph (DAG)—Ilocations are ordered, then the spatially nearest v observations with indexes
less than that corresponding to s are identified. It transpires that the result is a sparsity-induced
‘reconstruction’ of the Cholesky decomposition of the target covariance matrix. See Datta et al.
(2016a, 2016b) for a detailed technical treatment.
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While the number of sites n in the present application is certainly modest, the high dimen-
sionality of the response g coupled with the fact we seek to model at m depths compounds the
computational task ahead. The key bottleneck lies in Equation (11), with repeated decomposition
of the mnr X mnr matrix X, 4 ,» required for in-turn access to all the parameters in {a, ¢, c2}.
Even for small r, we found this to be computationally prohibitive using the full specification. To
this end, we turn to the NNGP to assist in the model fitting.

Given the r-dimensional multivariate outcome for the factors, we seek to replace the MVGP
that leads to Equation (11) with a matching multivariate NNGP (MVNNGP). Ultimately, this per-
mits us to rewrite (11) as a product of independent r-dimensional normals—this is the backbone
of the computational savings.

We make use of the walkthrough provided in Banerjee (2017) for the univariate NNGP, as well
as the model definitions and justifications in Taylor-Rodriguez et al. (2019) for the MVNNGP,
to appropriately form the approximation for the current application. Specifically, the reader is
directed to Sections 3.1 and 3.2 of Banerjee (2017) and Sections 3.2 and 3.3 of Taylor-Rodriguez
et al. (2019). Additionally, Sections S2 and S3 of the online supplementary material of the latter
paper offer key guidance for the blueprint that follows here.

The multi-depth nature of our modelling problem requires a modified approach to defining
the local neighbourhood of a given observation. First, define the new index k* € £* with

K={k+(G-Dn:k=1,...,mj=1, ...,m}, (13)

which references spatial sites in blocks by depth. This augmented index is able to point uniquely
to both spatial site and depth. The reverse map to depth, j « k* is given by the function

1 for1<k*<n
2 forn<k*<2n

gk*) =1 - ,
m for (im—1)n <k* <mn

and the reverse map to spatial site, k « k* is found with

h(k*) = k* — (g(k*) — Dn.

Let
£ (ser) = £ (s3000)) = [fl(g(k*))(sh(k*)), . r(g(k*))(smk*))]T
refer to the r x 1 vector of factors for site-depth k*, and for any set U" = {uy, ... ,ur} satisfying
@cU CK,let
£ = [f(g(%))(sh(ul))'r’ ,f(gmr»(sh(uT))T]

be the rT x 1 vector of factors at the T site-depth locations in U".

Next, let N(k*) = {E* Ck* < k*} denote the full set of all directed neighbours of site-depth
k*, with cardinality [N(k*)|. From this, take k¥, ... ’Eﬁww to be the entries of N(k*) arranged in
increasing order of Euclidean distance to the target site k*, satisfying
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”sh(Ef) — Sh(k*)“ < ”Sh(E;) - Sh(k*)” < ... < ||Sh(E‘,;V(k*>I) - Sh(k*)“

Note that when equalities occur in the above sequence, we treat the offending positions as inter-
changeable. Indeed, due to the multi-depth nature of the data, it is quite possible to encounter
a h(k(’f)) = h(k*) (in which case the spatial distance is taken as zero, and the between-depth
correlation as per the definitions in Section 3.3 ultimately comes into play).

Now, suppose we restrict attention to, at most, the nearest v neighbours of site-depth k* from
its set N(k*). Define the reduced neighbour set as

Nty = {Je s e=1, ... min [v, INGOI] }, (14)

and let vix = | N, (k*)| = min[v, [N(k*)|] be the specific number of restricted neighbours of k*.
Due to Equation (14), note that vk~ is capped at v for all site-depths, that is, max(vy, ... , viun) = v.

The final quantities required for the MVNNGP approximation are the so-called kriging weights
and variances, which we find based on the reduced neighbour set. Let

Rk={rk* —=(r-1)+r :7¥=0,...,r=1)

identify the positions of the vector f that correspond to the k*th site-depth; similarly apply
R(N,(k*)) to identify the positions in turn for each member of the neighbour set. Then a standard
appeal to the properties of the multivariate Gaussian distribution yields the kriging weight for k*
as

B = Zgg.00 [RK*),R (N, (k)] z;}(b’az [R (M) . R (N(K)]

where for any matrix M, M[A;, A;] provides the |A;| X |A;| sub-matrix indexed by rows and
columns in the sets A; and A, respectively. The corresponding kriging variance is

Cir = Zagpor [RK*),RK®)| = BixZg p02 [R (NV(K™)) ,RKH)].

Computational accessibility now becomes apparent when we consider the following, based
on the density implied by Equation (11):

mn
Noar(£10, Zag02) & [ [ NAE (S6) 1B £y ) ). (15)
k*=1

Due to the enforced restriction on the number of directed neighbours of each site, the quantities
on the right-hand side of (15) can be kept to a manageable size for fast and efficient evaluation:
B+ iS ¥ X v T fj\/v(k*) is vixr X 1; and §« is r X r. These can be calculated on-the-fly with no need
to construct and invert the full £, 4 5> or requisition large chunks of computer memory, and the
independence reflected by the product over the k* further allows parallel computations if desired.
We consider the choice of v in Section 4.4.

3.5 | Posterior

We complete our model specification by placing priors on all unknown parameters. The full-data
joint posterior is written as
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p(B.£8 a ¢, 0% Y. X, A) & Nyyg(Y|XB + Af, D) X Ny (B0, cpLnp)

x ﬁN, (f*(sk*)|Bk*fj\/v(k*), Cie ) X ﬁﬁIG <5f(f>|a5z,b5z)

=1 =1 i=1
m m r
x [TUNIF (ajlaq, ba) x [T[TUNIF (037 [acz. bs: )
=2 j=2 =1
,
X HUNIF(q,')f lag, by), (16)
=1

where IG(-|a, b) is the inverse gamma density with shape and rate parameters a and b respectively;
and UNIF(:|a, b) the uniform density with limits a < b.

Choices of normal and inverse gamma priors for f and the 5i2(j) respectively were made for
reasons of conjugacy. We set a vague cg = 100 along with as = 2 and bg = 0.18; with a shape
of 2, the inverse gamma has an infinite variance with mean equal to the rate. The value of by
was gleaned from exploratory semivariograms and pilot runs of the algorithm. Uniform priors
are suggested for all remaining parameters. A wide a2 = 0 and b, = 100 interval is chosen for
all components of 62 in our analysis. The variable components of a are constrained to be pos-
itive, lying between a, = 0 and b, = 2; our decision on these bounds is to encompass values
evenly around 1 (which would indicate factors at depths j > 1 are merely a copy of the factors
at depth j = 1 with some random noise) while forbidding excessive values. Lastly, we choose the
range of the ¢s to be relevant to the spatial scale of the study region, following the same strat-
egy as in Wang and Wall (2003) and Ren and Banerjee (2013). Given the parametrisation of (7),
we set ag = 4/—10g(0.05)/dpo = 0.0114 and by = 1/—10g(0.01)/dy = 0.3480, where dy and doo
are, respectively, the minimum and 0.9th quantile of the collection of pairwise Euclidean dis-
tances between any two sampling sites. These limits provide the ‘strongest’ and ‘weakest’ values
for any given ¢, in terms of spatial dependency of the r factors, found as those which would
result in a correlation of 0.05 at dg g (ag), and effective independence with a correlation of 0.01 at

do (bg).

4 | IMPLEMENTATION

Here we discuss the necessary ingredients for fitting and predicting from the model described in
Section 3, and further discussion on other decisions made in our implementation.

4.1 | Sampling algorithm

We derive a typical Metropolis-within-Gibbs algorithm for model fitting. To start with, the regres-

sion coefficients  and the residual error variances in D are updated via Gibbs steps. Their full
conditionals are

Bl ~Nup (Vs {BTX'DUY — AD)}, Vj),

where V;l =X"D'X + cglp, and
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n

2
-
- n 1 - - - - -
5i2(/)| o~ 1Glag + > bs + EZ{YiU)(Sk) - xl@(sk)Tﬂ?) _ ngfg)(sk)}
=1

k=1

fori=1, ...,q;j=1, ...,m

The factor values in f are also updated using Gibbs steps; exploiting the MVNNGP represen-
tation permits each collection of r values to be updated in turn according to site-depth k* € K*.
To find the appropriate full conditional distribution, first define

B[C] B+[{1, ... ,r},{(c=Dr+1, ... ,(c=Dr+r}]

as the r x r sub-matrix of the kriging weight By« that relates the cth neighbour of k*, I_cc*, to
k* itself; c = 1, ... , vg=. Further define P(k*) = {k* : k* € N, (k*)} as the set of all site-depths
that have k* as one of its v;, nearest neighbours, and specifically identify z(k*|k*) as the
index of the set N,(k*) that yields the point of interest k* (i.e. using the notation of the

neighbours from Equation (13), we have k*(k*lk o= = k*). We can then re-write the mean of
[e]

the r-dimensional normal in Equation (14) as a sum involving the B,.,
expression

and recognise the

Ny (Y(g(k*))(sh(k*))

x N, <f*(sk* ZB[C]f*(s—*) ck*>

XEED (8100 BEED 4 ACKDEX (5., D(g(k*»)

Vk*

B[z(k*lk*)]f*(sk )+Z Bf* (8%.)» &e

u#z(k*)

x [ No|f s

kxePicr)

as the portion of the posterior distribution (15) that contains all instances of f*(sy+). It can
thereafter be shown that the full conditional for f*(sg«) is

Viek

* Tk T
£ sl o~ N Vie SE Y B (sp+ Y, (BRI gty

=1 k*ePc*)
* T * -1 * * *
" < AGK ))) <D<g(k )>) <Y(g(k D (Shery) — XEE (7 00) BEK >>> } ,Vk*> ’

where

X =Fsp)- D B/ (s;.)
u=1

u#z(k*|k*)
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and

* Tk T * | Tx * T . -1 .
vi¢ly Z (B[,Z(k Ik )]) g IRk ROT (A(g(k ))) (D(g(k ))) AEE)
k* kx kx ok
krePdc*)

The remaining parameters are updated using Metropolis steps. Per iteration, we require
m(r + 1) — 1 separate evaluations of the dependence structure of f to successfully update all
components in {a, ¢, 62}. Our MVNNGP approximation greatly eases the computational burden
involved.

4.2 | Dataaugmentation

The model permits handling of censored and missing values in a straightforward manner via data
augmentation. Essentially this involves treating any unknown values as additional parameters in
the model: we sample their values during fitting using the Gaussian distribution, and “fill-in’ the
relevant positions of Y with these imputed values, yielding the augmented-complete dataset Y*.
Fridley and Dixon (2007) offer a good description of this procedure for left-censored and miss-
ing values in spatial regression which we adapt to the current case. First, let {s;, ... ,sn .} C

{1, ... ,mng} and {fy, ... .ty } C {1, ... ,mnq} identify the Npy;ss and Neens missing and cen-
sored index positions of the observed data, respectively, as arranged in Y. Furthermore, let the
notation W{u] extract the uth element from any given vector W. Now consider the oth iteration
of the fitting algorithm. Once all the model parameters have been updated, we sample as

miss } ’

Y, 1) [s1 ~ Ni ({XB) } [s]+ {Afi) } [s]. Do) s, 51); SE {51, ... ,Sn

where the subscript (0) denotes the samples values at the oth iteration. The data augmentation
step is almost identical for the left-censored values, except we sample from the truncated normal
density

Y[t ~ NP OV (IXB o) L 8+ {Afi) ) [£], Do [, 2]); te{ty ... .tn, )

with limits (—oo, 7(¢t)], where z(t) provides the MDL of the observation indexed by ¢.
When all the required entries in Y;*O ) have been sampled, updating the model parameters
for the (o+1)th iteration then proceeds after treating this vector of responses as the full dataset
Y < Y in the algorithm described above. Further information on general theoretical and prac-
tical aspects of data augmentation techniques can be found in Gelman et al. (2013). Fridley and
Dixon (2007) also provide simulations assessing its performance in a spatial setting, finding it to
be far preferable than heavily biased ‘quick-fix’ options as noted in Section 1.1 (such as replacing
all censored entries by half their MDL).

4.3 | Prediction

Prediction of the response at a previously unmeasured location § ¢ S is a common goal for such
analyses. In our case, this is a two-step process, performed post-fit, which involves first generating
a sample for £(8) at a given depth j, followed by generating the desired YV(8).
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Let W) = {k*, ..., lAc:, } € K* represent the indexes of the w nearest site-depth neighbours of
location § from the original set of site-depths as identified by Equation (13), that is, ||sh(f€1*) —-§| <
. < ||sh(;(:)) — §]||. Under this prescription, the sequence of neighbours provides sub-sequences of
the identical spatial neighbours across the m depths. For each retained posterior sample of f, «,
¢ and 6%, we nominate a desired depth j and draw

£9) ~ Nr(ﬁg/)f;\;(g), Eo); j=1 ..,m,

where, using the definitions in Section 3.3, ﬁém = flgl,,(é)!l;ip -2 [ROV(8)), ROW(8))] and é‘gm =

. . ~() T
@ +80 — By {£756) | with

)]
8) = a: O (& o - cO (& At
Zagp®) = [“g(k?)c (8512211 8)- - vt €0 (5 Sh(k:,)"i’)]

providing the r X wr matrix of the cross-covariances for site §, at depth j, with each of the
site-depths in W(8). Note that @; = 1and S = O, are constant. Using the corresponding samples
of B and &, a realisation Y(§) may then be readily generated as

Y(j)(ﬁ) ~ Nq(x(j)(@)ﬁ(j) + A(j)f(j)(é)’ D(j)), 17)

which requires knowledge of the values of the covariates at §. Summary statistics may subse-
quently be swept out of the collection of generated predictions produced by Equation (17) across
all retained posterior samples of the model parameters. The mean and standard deviation serve
as suitable expected-value point predictions and prediction standard errors respectively.

4.4 | Number of factors, number of neighbours

The age-old issue of choosing the number of factors, r, remains crucial in our spatial factor frame-
work. Technically, model selection scores such as the deviance information criterion (DIC) and
the widely applicable information criterion (WAIC) might be used, but we have found these do
not tend to perform well for the sole purpose of finding r. Goodness of fit naturally improves as
r is increased, and this often overwhelms data-driven estimates of model complexity, leading to
steady declines in the scores even as r grows beyond computationally feasible values. Alterna-
tively, sophisticated dynamic factor selection might be considered as part of the model definition.
Ren and Banerjee (2013) proposed such a method, but the numeric stability thereof can be fickle
in practice, with no guarantees the dynamic selection will settle on a given r. There is also a sub-
stantial additional computational cost to the fitting algorithm for such steps, further burdening
an already expensive exercise.

A more heuristic approach to choosing r is therefore favoured for the current application.
We opt to inspect the root mean squared predictive error (RMSPE) for an increasing sequence of
factors, obtained using pilot runs of the fitting algorithm. Based on prevailing knowledge of the
geochemical variation, which suggests the number of factors ought to be modest relative to g,
‘candidate’ modelsbasedonr=2, ..., 15 factors are considered. The scree plot in Figure 6 suggests
15 factors ought to be more than capable of explaining the bulk of the residual variation in the
data. Of the N — Npiss — Neens Observations of the raw response data that are neither missing nor
censored, we randomly choose 1000 more (indexed, say, by the set U") and omit them. Pilot fits
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o MVNNGP proximity to exact covariance matrix (left axis)

RMSPE comparison with 15-factor model 4 Execution time relative to v =20 (right axis)
10 A
~ [ o
v 8 7 o ‘ °
= o
o
A
o 7 Lo~
e © o 4 ° é
& o ©
o = S 4 A 4
[*] [=} w 5 =
c n o o ©
I3 = A [ o
g ¥ o Sy
© A oS
c g
3 8 ™ ° A 2
2 S S | o s | o
IS o 9 A o
A °© o
7 A ° 5
£ S A B . LA o
s = LA oo, o
8 44"
T T T T T T T © T T T T
2 4 6 8 10 12 14 5 10 15 20
Factors (r) Neighbours (v)

FIGURE 7 Left: Mean difference and associated 95% confidence intervals in RMSPE estimates relative to
the r = 15 model based on pilot runs with 1000 artificial missing values. Right: Root mean square error between
exact covariance matrix and MVNNGP approximation thereto for a varying number of neighbours v, along with
approximate computation time relative to v = 20 [Colour figure can be viewed at wileyonlinelibrary.com]

of the candidate models are obtained using the fitting algorithm, and the 1000 artificially missing
values are imputed as described in Section 4.2. For u € U" we find RMSPEu ={H ‘120 1(Y )[u]
Y[u])?}%°, where the sum is evaluated over the H retained posterior samples of the model fit.

The left panel of Figure 7 summarises the results presented as the difference in the mean
RMSPE across all u € U, and associated 95% confidence interval, comparing all candidate models
with 2 < r < 15 with that of the most complex model at » = 15. The first interval to overlap zero
is that corresponding to the 11-factor model. Thus, we proceed with r = 11 for the final model fit
presented in the following section.

The other choice to be made concerns the MVNNGP approximation itself. Recall from
Section 3.4 that we must set the maximum number of neighbours v, which governs the extent of
the sparse approximation to the ‘exact’ dependence structure of the full MVGP. A greater v leads to
improved approximation accuracy but with an increased computational cost. Datta et al. (2016a,
2016b) and subsequent works (e.g. Banerjee, 2017) have noted the approximation (15) to be excel-
lent in many different cases with surprisingly few neighbours, such as 5, 10 or 20. It is instructive
to investigate this choice for the current application, which we do by way of comparing the over-
all proximity of the exact covariance matrix for the full MVGP, Z, 4,2 as in Equation (11), to that
recoverable from the MVNNGP approximation in Equation (15).

To do this, we first extract sensible parameter values for all of 62, ¢ and a from the r =11 pilot
run used above. We then construct the full mnr X mnr matrix X, ¢ »» using (12), and construct the

MVNNGP approximation thereto, Ea o2 by inverting Zfl)d);z = (Iyur — BN (X, — B), where
B[R(k*), RN, (k*))] = B and ¢ = @), &~ forallk* € K*, as per the notation in Section 3.4. We
repeat this for v =2, ..., 20, each time finding the element-wise root mean square error (RMSE)

between the two matrices as

2
RMSE, = _ | (mnr)=2 Z < f:)d,az [kf,k;] Zap.o? [kl’ 2]) :
ki ke


http://wileyonlinelibrary.com

DAVIES ET AL. | 1035

Results are given in the right-hand panel of Figure 7, showing the proximity to the full matrix
improving with increasing v. Overlaid on this plot is an impression of timing, with the approxi-
mate computational cost per iteration relative to the most complex approximation at v = 20 also
shown—increasing steadily with v. In terms of predictive performance, we found little difference
for different values of v. Based on these findings and the established literature on choosing v, we
set v=10. As can be seen in Figure 7, this appears to strike a good balance between approximation
accuracy and computational requirements.

5 | RESULTS

Three parallel Markov chains with varying starting values are run. Following a sizeable burn-in
period to ensure convergence, each of these proceeds for a long run of 100,000 iterations, thinning
by a factor of % to temper storage requirements. Results are based on the collated set of 30,000
retained iterations from these three independent runs. The R language (R Core Team, 2021) was
used for implementation, with computational bottlenecks farmed out to C++ via the ‘Rcpp’ and
‘ReppArmadillo’ packages (Eddelbuettel, 2013; Eddelbuettel & Sanderson, 2014). The running
time under these conditions on a local desktop machine (4.2 GHz Quad-Core Intel i7 CPU, 32Gb
RAM) was approximately 150 h, although we note from inspecting the output that meaningful
inference may be readily achieved with far shorter runs, that is, within 48-96 h. The dataset and
code are supplied as Supplement B.

To assist exploring the vast array of results, including the raw data (with imputed values for
censored and missing observations); predictive surfaces; and estimated posterior distributions
for the various model parameters, we have packaged up the output so that it may be easily pre-
sented using Shiny (Chang et al., 2021). The main application is accessible at https://www.stats.
otago.ac.nz/nzgeochem/ and provides drop-down menus where the user can select from the list
of modelled elements (c.f. Supplement A) as well as the desired output: the raw data (optionally
displaying imputed missing and censored values where applicable); pixel images of the model
prediction over the study region for both depths; estimated posteriors for all components of the
regression parameters f; the residual variances &%; the spatial correlation scale parameters ¢; the
inter-depth variances o2; and the inter-depth dependency parameter a; and finally, site-specific
posterior means for the 11 factors f.

To provide further inferential value we have also expanded upon the 2D predictive images
available in the above app. A secondary Shiny application located at https://www.stats.otago.
ac.nz/nzgeochem_3dpred/ provides mouse-rotatable 3D graphics of the predictive surfaces in
various forms, facilitated by the ‘rgl’ package (Murdoch & Adler, 2021).

We now make use of these visual applications to explore selected results. All estimates and
plots that follow may be obtained by accessing the above links.

5.1 | Fixed effects

An exhaustive geochemical examination of the full set of regression parameters will be pursued
elsewhere. To provide a glimpse of how these estimates may prove contextually useful, however,
we will briefly consider some estimated components of § for scandium (Sc), iron (Fe) and sodium
(Na). Figures 8-10 provide plots of selected regression parameters for these three elements respec-
tively. In each case, a solid vertical line marks the posterior mean and dashed lines delineate a 95%
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FIGURE 9 Noteworthy estimated posterior densities for regression parameters pertaining to Fe [Colour
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credible interval (with their numeric values listed in the titles of each panel). Refer to Supplement
A for further explanation of these predictors and the abbreviations used.

Beginning with Sc, we note significant positive effects at both depths for STRAT : Other Base.
Volc. with respect to the reference level of STRAT. This aligns with existing geological knowledge
that scandium is typically more enriched in mafic igneous rocks (captured by this category) in
comparison to other rock types in the survey area. A negative effect at both depths is also observed
for SOIL : Pallic. Pallic soils are typically derived from schist and sandstone rock sources (Hewitt,
2010), which have relatively low scandium in comparison to igneous rock types. Similarly, note
that a significant negative effect is observable at Depth A for VEGE : Tall Tussock but not at the
deeper Depth B; these grasslands are most abundant in areas with underlying schist rock.
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FIGURE 10 Noteworthy estimated posterior densities for regression parameters pertaining to Na [Colour
figure can be viewed at wileyonlinelibrary.com]

Examining Fe reveals a similar story. Pallic soils have a low content of iron oxide minerals rel-
ative to other soil types (Hewitt, 2010). This is a result of being derived mainly from Fe-poor schist
rocks in the study area and is reflected as the negative effects at both depths for SOIL : Pallic as well
as the Depth A negative effect for VEGE : Tall Tussock. Interestingly, we also observe significantly
positive effects for VEGE : Low. Prod. This type of vegetation traditionally has superphosphate fer-
tiliser added to it, which is rich in Fe (Marshall & Hill, 1952), reflecting an anthropogenic effect.
Native vegetation does not receive direct fertiliser application, and other types of vegetation such
as high producing grassland (VEGE : High Prod.) receives a mix of Fe-bearing superphosphate
and Fe-poor or Fe-free fertilisers.

Lastly, Na varies across the study. Rocks with Na-bearing minerals (e.g. Na-feldspar; pyroxene,
nepheline) are most prevalent in igneous rocks found in STRAT : Murihiku and STRAT : Other
Base. Volc., as can be seen by significant positive relationships at both depths, relative to other
STRAT types. The only exception is Depth B STRAT : Pakahi, where a weak, positive relationship
is observed. Rocks forming the Pakahi Supergroup are geologically young and often sourced from
the erosion and redeposition of other rock types along flood plains. The Depth B, weak positive
relationship with Na thus reflects the relationships in the source rocks from STRAT : Murihiku
and STRAT : Other Base. Volc. Recent soils form on surfaces that are morphologically young rel-
ative to others around them. In the study area, this typically occurs on Pakahi Supergroup rocks.
Thus, the positive relationship between Na and SOIL : Recent reflects the geological input from
igneous rocks represented by STRAT : Murihiku and STRAT : Other Base. Volc. It is interesting
to note that the location of STRAT : Murihiku and STRAT : Other Base. Volc. coincides with ele-
vated rainfall and lower air temperatures, and the correlation between Na, RAIN and ATEMP is
not causative. One exception is the positive relationship between Na and SOIL : Gley—gley soils
tend to be water-logged and may concentrate mobile forms of Na.

5.2 | Random effects

The factors are each found to exhibit moderate-to-strong spatial dependency through the
components of ¢. The minimum lower and maximum upper values across all eleven 95%
credible intervals corresponding to each component of ¢ are 0.086 and 0.135 respectively. Recall
from Section 3.5 that the uniform prior limits imposed on the correlation scale parameters
are (0.0114, 0.3480), strong to weak. The results therefore suggest there remains detectable
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FIGURE 11 Screenshots of interactive 3D graphics for predictive surfaces of Na. Left: model predictions
(top: Depth A/green; bottom: Depth B/red) with +2 prediction errors (blue surfaces). Right: Difference between
the Depth A and Depth B predictive surfaces; a grey plane marks zero [Colour figure can be viewed at
wileyonlinelibrary.com]

residual spatial variation in the data. We note a posterior expected value of 0.895 along with
a narrow credible interval of (0.874, 0.916) for a. As per Equation (8), this is indicative of
notable between-depth association among the residual spatial factors across all elements. This is
useful from a geochemistry perspective—a similarity of residual effects implies any
between-depth distinctions in the responses have been adequately described by the depth-specific
predictor variables.

5.3 | Predictions

The predictive surfaces, calculated as per Section 4.3 on a fine grid of spatial coordinates laid over
the study region, can also offer valuable insight. These are best viewed in the secondary (3D pre-
diction) Shiny application where the user can interact with the graphics for differing perspective.
For illustration we show screenshots for sodium (Na) in Figure 11.

The predictions at both depths follow similar overall features as visible on the left of Figure 11.
There is a noticeable upturned peak in sodium readings predicted around the populated centre
of Dunedin on the eastern border; a partial reflection of the positive effect of geology seen in
STRAT : Oth. Bas. Vol. Looking to the difference surface, we observe that concentrations of Na
are generally predicted to be higher in Depth A soils when compared to Depth B soils, although
there are clearly some sub-regions where the reverse is true.

6 | CONCLUSION AND FUTURE RESEARCH

Geochemical survey data form the basis of many and varied research questions, often revolving
around an understanding of the spatial variation in element concentrations. Among many
inherent complexities are a high-dimensional outcome variable, multi-depth observations that
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reflect different environmental and anthropogenic imperatives, and missing or censored records.
Standard tools of multivariate statistics and geostatistics are usefully deployed in simplified
scenarios, such as in analysing a subset of the survey data, although this naturally limits
inferential and predictive ability.

In this work we have demonstrated how one might construct a model to cope with these
complexities. We considered a spatial factor model to handle the multivariate response, whereby
predictors are permitted to have different effects on the observations of a given element for each of
the two depths, while simultaneously imposing a direct between-depth relationship on the indi-
vidual factors. The fitting algorithm imputes censored and missing values in a data augmentation
step, and we leverage methodological advancements in the approximation of Gaussian spatial
processes to further increase computational accessibility.

The model output is comprehensive, permitting inference and prediction at an
individual-depth /element/location level. As illustrated in the previous section, our results both
align with existing knowledge and lend support to other conjectures on the nature of the geo-
chemical composition of the region. For ease of interpretation we chose to present the results
in a mainly graphical way using a pair of web-based applications. These plots and predictions
offer chemists and policy makers a uniquely useful view of the chemical landscape. Using them,
researchers can objectively quantify which factors influence soil chemistry. Furthermore, they
facilitate the formation of new ideas regarding probable soil chemistry, and the factors influenc-
ing that soil chemistry, in data-poor areas of the survey region. For policy makers, the interactive
plots are a visual aid to understanding the variation in soil chemistry and factors influencing it
that are more effective than static plots alone.

Our design represents merely one possible way in which we might seek to model such data,
and we shall pursue alternatives in future work. In situations where the emphasis lies firmly on
prediction, for example, there is value in exploring a design similar to that of Groth et al. (2018),
in which each component of the multivariate response is regressed on the others. This in turn
opens up new options for capturing and describing between-depth relationships. Another option
would be to consider a model in terms of explicit 3D space (some forays into using 3D krig-
ing and interpolation for e.g. mineral deposits exist; see Wang & Huang, 2012), which in theory
could permit prediction in a continuous fashion below the soil surface. Such an approach would
at least require the exact depths of the individual soil samples be known (as opposed to being
assigned to categories); the curse of dimensionality would likely dictate a requirement of size-
able datasets for meaningful inference; and careful consideration of the form of the directional
dependence functions would be needed. A third avenue of pursuit could constitute leveraging
recent advancements, namely stitching, in specifying richer forms of spatial cross-covariance
structures to aid the subsequent parameter-heavy consequences of highly multivariate responses
(Dey et al., 2021).

As it stands, our ‘layered’ approach to the issue of depth retains the relative simplicity of 2D
dependence structures and aligns with the common focus of ‘inter-depth’ behaviours in geochem-
ical research studies; see for example, Lawrence et al. (2015) and Turnbull et al. (2019). As is also
particularly relevant to the current analysis, the model presented here could be readily extended
to incorporate samples from different surveys across the country, in which a data-driven levelling
of the various samples would make an appealing feature.
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