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Abstract

The fashion sense—meaning the clothing styles people
wear—in a geographical region can reveal information
about that region. For example, it can reflect the kind of
activities people do there, or the type of crowds that fre-
quently visit the region (e.g., tourist hot spot, student neigh-
borhood, business center). We propose a method to auto-
matically create underground neighborhood maps of cities
by analyzing how people dress. Using publicly available
images from across a city, our method finds neighborhoods
with a similar fashion sense and segments the map without
supervision. For 37 cities worldwide, we show promising
results in creating good underground maps, as evaluated
using experiments with human judges and underground map
benchmarks derived from non-image data. Our approach
further allows detecting distinct neighborhoods (what is the
most unique region of LA?) and answering analogy ques-
tions between cities (what is the “Downtown LA” of Bo-
gota?). The supplementary can be found at: www.cs.cornell.
edu/∼utkarshm/underground maps/supplementary.pdf

“The map is not the thing mapped.”—Eric Temple Bell

1. Introduction
Cities are traditionally divided into multiple neighbor-

hoods, where neighborhood boundaries occur due to a vari-
ety of reasons, including city governance and management,
geographic separation of regions (e.g., by water, hills, etc.),
or historical factors (past city extension). However, a person
who knows a city well often has a different notion of neigh-
borhoods than what these boundaries provide. To take New
York City as an example, even though Manhattan is divided
into Downtown, Midtown, and Uptown by traditional maps,
a local person may see a region in Uptown (Columbia Uni-
versity) as similar to a region in Downtown (NYU), since
student populations live in both regions. Similarly, there are
tourists south of downtown and throughout most of midtown.
Lower Manhattan is not a monolithic neighborhood, but
rather a culturally diverse region, e.g., encompassing both
Chinatown and corporate offices near Wall Street. Often such
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Figure 1: Discovered underground map of New York City with
8 neighborhoods. Left: The photos show the top discriminative
styles from each neighborhood corresponding to the color of their
border. Right: Map produced from administrative boundaries
(“Traditional”, top) vs. the map produced by our method (“Un-
derground”, bottom). Traditional neighborhoods do not capture
information made apparent by an underground map, e.g., discover-
ing two far apart but similar tourist neighborhoods (red).

notions of neighborhoods can be more useful than traditional
neighborhood divisions, as they reveal how a neighborhood
actually is perceived and experienced. We call these kind
of neighborhood maps “underground” maps to differentiate
them from traditional neighborhood maps.

How can we get such underground maps? While no
prior work infers underground maps, past computer vision
work explores “urban perception” using street-view images
of buildings [29, 18, 11] and cars [12] to characterize a
location. While fascinating, such glimpses of a city remain
a step removed from the people who traverse it, and they
are static (e.g., buildings may persist unchanged for decades,
while the culture of a neighborhood evolves more rapidly).
Meanwhile, directly crowdsourcing for an underground map
is challenging to scale and requires city-specific expertise.

We propose to discover underground neighborhood maps
from fashion senses observed in public social media photos.
See Figure 1. The key insight is that people’s clothing is a

1

ar
X

iv
:2

01
2.

02
89

7v
1 

 [c
s.C

V
]  

4 
D

ec
 2

02
0

http://www.cs.cornell.edu/~utkarshm/underground_maps/supplementary.pdf
http://www.cs.cornell.edu/~utkarshm/underground_maps/supplementary.pdf


strong indicator of their personal style, interests, and current
activity, which in turn reveals a bottom-up grouping of the
regions within a city. For example, people in the vicinity of
a beach are likely to be found wearing beachwear, whereas
people preparing to jog may wear short-sleeved shirts and
shorts in warm weather. Similarly, students near a university
often wear shirts with their university colors, while sports
fans don the colors of their team, and others wear clothes
reflecting a social cause or pop culture element that may
be active in a part of a city. Unlike architecture or cars,
fashion images provide dynamic information. For example,
a person drives the same car in the whole city irrespective of
what they plan to do in a particular neighborhood, whereas
their clothes can change based on the activity (e.g., gym vs.
beach vs. work). Based on these observations, we believe
that fashion is an interesting yet unexplored indicator of the
underground map notion.

Our approach uses the distribution of fashion styles (we
call this fashion sense) at a place to discover an underground
map. We first detect clothing attributes in 7.7M public geo-
located social media photos spanning 37 cities worldwide,
and then discover typical combinations of those attributes, or
styles. Then, we use unsupervised clustering to detect pock-
ets of a city that are both spatially and stylistically coherent.
Finally, in addition to returning the generated neighborhood
map, we devise computational measures to identify a city’s
most unique neighborhoods and mine for “analogical” neigh-
borhoods between otherwise different cities (e.g., what is
the “Uptown” of Bogota?). In contrast to previous work on
urban perception, which requires supervision in the form
of image labels [29, 18, 11, 27] our method uses no under-
ground neighborhood labels. Figure 1 shows an example
underground map created by our method for New York City,
compared to a traditional administrative city map (cf. Sec 4).

There are many potential applications of underground
maps. A person unfamiliar with a city could find out what
neighborhoods might be suitable for them to visit, e.g., to
satisfy interests in outdoor activities vs. shopping vs. tourist
areas. A visitor could grasp at a glance how people typically
dress in a region, e.g., when choosing attire for a restau-
rant. Anthropologists could leverage the mined maps to infer
trends within a city and across time. A more obscure part
of a city could gain positive exposure for its distinct culture.
In any such case, an underground map addresses queries in
ways that go beyond traditional maps.

We evaluate our method quantitatively on two non-visual
benchmarks that capture notions of underground maps. One
benchmark captures how people perceive a neighborhood,
while the other captures the business distribution (indirectly
the activity distribution) in a neighborhood. Experiments
show that our model is able to produce accurate and coher-
ent neighborhood regions. Further, our qualitative results
and evaluation with human judges reinforce these findings

and illustrate the value of fashion images as a new tool to
interpret subtleties in the life of a city. Our work is the first
to discover unsupervised underground maps of a city and to
analyze fashion within individual cities at a large scale.

2. Related work
Visual understanding of clothing. Computer vision

techniques are actively used for fashion. Research has fo-
cused on the classification of clothing attributes [6, 5, 4, 39,
22, 26], segmenting clothing in images [36, 35, 37, 17], and
product identification to retrieve specific clothing products
in photos [8, 33, 13, 22]. There is also prior work on classify-
ing the ensemble of clothing a person is wearing (style), e.g.,
“hipster”, “goth” [19]. Clothing recommendation systems
build models for various requirements like occasion-based
dressing [21], occasion and location [24], or compatibility
and style coverage [16]. Our work uses attribute prediction
to create an embedding space for understanding the fashion
sense of a city. However, the goal is not just to classify
fashion attributes on images, but to use the embedding to
discover underground neighborhood maps for a city.

Visual style discovery. Some prior research uses vi-
sual analysis to discover styles and trends. Early work
used low-level image features or mined visually distinctive
patches [10, 32, 9] to discover unique architectural proper-
ties of a city without supervision. Discovering fashion styles
without style supervision has also been explored [26, 15, 2].
These methods leverage attribute predictions or embeddings
to discover distinct looking styles. Learning to detect ur-
ban tribes by using crowdsourced data has also been ex-
plored [20]. While these methods focus on discovering dif-
ferent styles, we leverage styles to discover neighborhoods
with different fashion senses.

Trend forecasting. Recent work in fashion trend fore-
casting trains temporal models to predict how a particular
fashion style will rise or fall in popularity in the future. This
was first addressed in [2], who make quantitative forecasts
of fashion trends with coarse yearly predictions for a year in
advance. Recent work looks at finer-grained trend forecast-
ing at a weekly granularity [25, 23, 1]. These models enable
discovery of unique events where people wear a specific
type of clothing with an anomalously high occurrence [25]
and detection of fashion influence of one city on another [1].
Unlike existing methods, our work aims to discover latent
maps of cities using the fashion sense of regions within a
city. This is a challenging task as we do not know the bound-
aries of neighborhoods a priori; our goal is to discover them
without any supervision. We are the first to discover latent
neighborhoods using fashion sense.

Urban perception. Prior work has focused on predicting
geo-spatial properties within an urban environment, using
the visual features at a geo-location. This includes properties
like the perceived safety of cities [3, 28, 29, 11], ecological
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properties such as snow or cloud cover [38, 34, 27], or the
distance to Starbucks [18]. Advances in visual recognition
have enabled more sophisticated analyses, such as modeling
demographics by recognizing the make and model of cars
in StreetView [12] or by recognizing structures in satellite
images [31]. Note that all these previous methods require
some form of labeling for the latent attribute they are trying
to perceive. For example, human annotators manually rank
images based on safety [29], or demographic data of poverty
is needed to predict poverty in an unseen region [31]. In
contrast, our approach does not use any such labels for the
segmentations it produces. To our knowledge, we are the
first to perceive such a factor without using any supervision,
and the first to address the problem of underground maps.

3. Method
Our goal is to segment the map of a city into regions

based on the fashion sense in the region. To do this, we need
a model that can understand fashion elements in an image.
We use this model with our framework to segment a city into
underground neighborhoods. Next we provide background
on the problem and the recognition model we use, and we
then discuss our method. Fig. 2 overviews our method.

3.1. Dataset and Style Discovery

To understand fashion sense within a neighborhood of a
city, we aim to understand the clothing in images of people
in that neighborhood. Therefore, we need a dataset that
can capture how people dress at different locations in a city.
To get a real-world unfiltered glimpse of what people are
wearing across a city, we use images sampled from social
media platforms; specifically, we use the 7.7M images from
the GeoStyle dataset [25] from Instagram and Flickr.

For a city, let {Ii} be the set of images of people. We
also know the geolocation tagged to each of these images,
li ∈ R2 for an image Ii. Following the method in [25],
we first train a representation by learning to classify basic
clothing attributes. The attributes consist of a variety of
fashion properties, like clothing type (suit, t-shirt, dress
etc.), presence of accessories (sunglasses, necktie), color of
clothing (red, blue), among others. We use these attribute
annotations on a small dataset of 27k images to train a multi-
task CNN, where each head classifies a particular attribute.
Using the multi-task CNN, we can predict the attributes for
new images. We denote an attribute vector for an image
Ii by ai ∈ RA, where A is the number of attributes. Note
that these attributes capture the properties of clothes, not the
identity of people wearing them.

We then learn a set of global styles that capture combi-
nations of basic attributes by leveraging all the images in
the dataset. We cluster the feature representation (from the
penultimate layer of the CNN) of all the images, using a
Gaussian Mixture Model (GMM) with K = 400 compo-

Figure 2: Pipeline to discover fashion neighborhoods. (a) Input:
large set of geo-tagged fashion images. (b) We perform unsu-
pervised style discovery to get styles. (c) Using the styles and
geo-tagged images, we describe a location x using its style his-
togram hx. (d) Finally, we cluster locations using the descriptors.
(e) Neighborhoods can be visualized by looking at their top styles.

nents. We denote the style prediction by this model for an
image Ii by si ∈ [1,K]. The number of styles is set to yield
visually coherent styles, following [2, 15, 25, 1].

3.2. Featurizing a Geolocation

We want to characterize locations in a city by the fashion
sense of their surroundings. The fashion in an image Ii with
location li can describe a location li. However, a location is
not described by a single style but a distribution over styles.
Therefore, we describe the fashion sense of a particular
location using the images in its vicinity. Specifically, to
describe a geolocation x we select all images within a radius
r from that geolocation. This formulation lets us capture the
distribution of fashion in a surrounding area. Additionally,
it ensures the fashion distribution changes smoothly from
one location to another, and implicitly enforces that nearby
locations should belong to the same neighborhood.

Let T (x) be the set of images that describes location x:

T (x) = {Ii : ||li − x||2 < r}. (1)

The images’ distribution over the different styles can de-
scribe the location. For example, a region near a beach
would have a higher distribution over the styles that are
unique to a beach (board shorts, tank tops, etc.). Therefore,
we compute a histogram hx ∈ RK over the K styles of the
images in T (x) to describe location x. Since the sampled
images will be biased towards a direction we compute an
unbiased location for each x (see Supplementary).

There are tradeoffs in choosing the radius r. A small
radius would let us create good local features, but would
result in a low confidence histogram as there would be very
few sampled images. A large radius would result in a high
confidence histogram, but would capture a larger portion of
the map. We set the radius so that the ratio of intersection
over union of adjacent sampling regions is close to 0.5.
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3.3. Sampling Locations and Clustering

Next, we use this local featurization at every point to
segment the map into different regions. We cluster regions
based on similarities in their histogram descriptors.

Locations are sampled from a uniform 2D grid over the
map, at a distance d. If (w, s) is the southwestern location of
the city’s bounding box and (W,H) is the width and height
of the bounding box, a sample location (xij) is defined by:

xij = (w + di, h+ dj)∀i ∈ [0,
⌊W
d

⌋
, j ∈ [0,

⌊H
d

⌋
]. (2)

We sample images around xij for all locations T (xij),
and obtain the histogram descriptor hxij . We use K-means
to cluster the histogram descriptors to get a label for each
location. Since the L1 norm for histograms is 1, we use L1
instead of the standard Euclidean distance when performing
the M-step of K-means.

The core of our approach is simple but effective—more
effective than other more elaborate variants we explored. For
example, we tried affinity propagation instead of K-means
for clustering, but its neighborhoods tended to perform worse
when adjusted to produce the same number of clusters on
our benchmarks. We also tried an exponential weighting
scheme for feature hx, where the contribution of an image
with location li to a histogram for location x is weighted
inversely by an exponentiation of ||li − x||2. This can be
thought of as a softer version of the features in Sec. 3.2. It
performed similarly to hard features, and hence we kept the
simple version for evaluation.

In the next three sections we discuss how these discovered
neighborhoods can be used for analysis and applications like
finding unique neighborhoods of a city, or finding similar
and “analogical” neighborhoods across cities.

3.4. Finding Unique Neighborhoods

Having computed the neighborhoods, we can calculate
which neighborhoods have the most unique fashion sense. A
unique neighborhood is defined in our framework as a neigh-
borhood most distinct from all other neighborhoods in that
city. Each discovered neighborhood is described by a his-
togram descriptor hn,c that is created by aggregating images
in that neighborhood. We use distances between these de-
scriptors to find out the most unique neighborhood, namely,
a unique neighborhood has the maximum L1 distance from
its most similar neighborhood in the same city:

nunique = argmax
n

min
m∈N,m6=n

||hn,c − hm,c||1. (3)

We also sort neighborhoods by this distance over all the
cities, so that we can rank the most unique neighborhoods
with their cities.

Bondi beach
hb,s

Coney Island beach
hc,n

New York City
hn

Sydney
hs Brooklyn hb,n

||hc,n-hb,s||1||h
b,n -h

b,s ||1

e b,s
e c,n

eb,n

||hc,n-hb,s||1 > ||hb,n-hb,s||1
eb,s.ec,n < eb,s.eb,n

Figure 3: Illustration of the usefulness of our analogy-inspired
encoding. The two beaches have similar relationships to their city,
hence they should be more similar than other neighborhoods—even
though their absolute similarity may be low.

3.5. Finding Similar Neighborhoods Across Cities

Inspired by applications noted in Sec. 1, we use the dis-
covered neighborhoods to find out similar neighborhoods
of two different cities. To know which neighborhood of a
city is like some other neighborhood in another city, we find
the L1 distances between histogram descriptors of all the
neighborhoods of all the cities and sort them by this distance.

3.6. Finding Neighborhood Analogies

Finally, we introduce a method to identify neighborhood
analogies. The above method is successful in finding simi-
lar neighborhoods within cities having similar weather and
culture. However, if the weather and culture are significantly
different for two cities, histogram distances between any of
their neighborhoods will be large and hence less meaningful.
To determine neighborhood analogies, instead of directly
measuring distances between neighborhoods, we encode
each neighborhood in the context of its city. By measuring
similarities of neighborhoods using this contextual encoding,
we recover analogical pairs of neighborhoods across cities.
An example of such a pair could be Bondi beach : Sydney
:: Coney Island : NYC, both with popular beaches. Since
we are encoding Bondi beach with respect to Sydney and
Coney Island with respect to NYC, the similarity between
these two would be a measure of this analogy.

Each neighborhood has a histogram descriptor hn,c, and
the city has an aggregate histogram descriptor hc. We define
the contextual encoding of a neighborhood n with respect to
its city c as:

en,c = sgn(hn,c − hc). (4)

This encoding contains information about which styles are
more popular with respect to other neighborhoods in the
city. It ignores the magnitudes of relative style popularity
and only considers direction, providing invariance to exact
style popularities. We measure the cosine distance between
pairs of neighborhoods across cities to find the analogically
similar pairs. Figure 3 illustrates how contextual encoding
can better capture analogies. If cities are geographically far
apart, there might be a shift in the overall distribution, and a
contextual encoding (blue) would produce better results than
a non-contextual encoding (red). Note that if the two cities
are similar, both will measure similar quantities.
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We implement our method on images from the GeoStyle
dataset where each city has 175k images. For experiments,
we use r = 0.02◦ and d = 0.01◦. Exploration of the impact
of these hyperparameters is done in the Supplementary.

Possible dataset biases. We employ the GeoStyle
dataset [25] because it is the largest publicly available dataset
of its kind and offers a real-world glimpse of what people
wear across the world. While powerful, it has certain limita-
tions. Images in Instagram (or from any other social media
platform) will have sampling biases. For example, Insta-
gram is known to be most popular amongst young users.
Given that the dataset is biased to particular age groups, the
neighborhoods we discover are also going to be influenced
by these age groups. The data also focuses on cities rather
than rural areas. Also, a region with tourist attractions is
likely to have a higher fraction of photos taken by tourists
as compared to non-tourist people in those regions. Hence,
the fraction of tourist vs. non-tourist images will likely not
reflect the true density of tourist vs. non-tourist populations
at a location, and we can expect our method to be influenced
by tourists and more photogenic places.

4. Results
We quantitatively evaluate our method’s ability to dis-

cover underground maps. Additionally, we look at qualita-
tive results and evaluate the methods with human judgements.
See Supplementary and video for many more examples.

4.1. Benchmarks

To judge our method’s ability to segment the city into
neighborhoods, we need to evaluate it against some notion
of ground truth. Note that it is impossible to obtain absolute
ground truth information of underground maps, as there is no
single concrete definition of what should be the property con-
stituting underground maps. Instead we consider multiple
approximations of such underground maps for evaluation.

We create two such benchmarks. The first benchmark is
obtained using an external, publicly crowdsourced platform
called HoodMaps1 and looks at how people from a city per-
ceive different neighborhoods. This benchmark captures sub-
jective impressions. The second benchmark is created using
business densities of different types using OpenStreetMap.2

This benchmark captures objective measures. Both segment
cities into regions based on differences in their properties.

HoodMap (HM) Benchmark: We create the HoodMap
(HM) Benchmark using information from the crowdsourced
public platform called HoodMaps. The users on this platform
can label regions of a city. The service aggregates the votes
to provide the majority-voted label for a region. Figure 4
(Left) shows the map of Chicago with the 6 associated labels.

1https://hoodmaps.com/
2https://www.openstreetmap.org/

Figure 4: We analyze our discovered neighborhoods against two
complementary non-visual sources for underground maps. Left:
HM benchmark labels and neighborhoods dividing Chicago into
6 neighborhoods based on how people perceive them. Right: BD
benchmark neighborhoods dividing the city into 5 regions based on
its business/amenity distributions. The legend shows 3 businesses
that are more frequent in that particular neighborhood.

HoodMaps has a granularity of 0.01
◦

along both latitude
and longitude. We collect this information for 37 of the 44
GeoStyle cities with enough data (see Supplementary).

The annotations in this dataset are based on perceptions
of people, and hence they can capture a notion of neighbor-
hoods beyond geographic boundaries. For the 37 cities, a
region is voted on by more than 70 voters on average, and
more than 55% of voters agree on a single label out of the 6
(chance would be 16%). This relatively high number of votes
and agreement indicates the labelling is consistent. However,
HoodMaps does come with certain limitations. The coarse
label set was selected by HoodMaps (not us) and is not nec-
essarily complete for all categories of interest. The labels
may also display certain stereotypes that conflict with the
ideal underground map. For example, one of the labels is
“wealthy”, yet our goal is to divide cities on popular activ-
ities or interests, not socio-economic status. There is also
a possibility of sampling bias amongst people who choose
to visit HoodMaps.com and vote for these labels. In short,
while the data is a useful non-visual source for perceived
neighborhoods, we also can expect our image-based results
to deviate meaningfully from those boundaries, possibly in
ways that challenge common stereotypes.

Business Distribution (BD) Benchmark: While the
HoodMap benchmark captures how people perceive a neigh-
borhood of a city, it need not capture what activities are
present in a neighborhood. Therefore, we create the Busi-
ness Distribution (BD) Benchmark that captures the distri-
bution of different types of businesses across a city. We
use OpenStreetMap to get geolocations of different business
types. There are a total of 1,446 different business types and
a total of 1.6M businesses/amenities. The distribution of the
frequency of business types is long-tailed, so we consider
businesses types with frequency at least 50 (we find 154 such
types). The distribution of businesses gives a more objective
measure of a neighborhood in contrast to HoodMaps. For ex-
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ample, a region with a higher distribution of pubs/nightclubs
is likely catering to a different crowd than a region with
libraries/schools. Similarly, a large density of museums in-
dicates a region popular amongst tourists. To create regions
over maps using business density, we follow our method
from Sec. 3. More details are in Supplementary. Figure
4 (Right) shows the BD map of Chicago, along with the
amenities/businesses that are more frequent in each region.

In short, the HM and BD benchmarks capture complemen-
tary notions of the underground map. The former captures
how people perceive a neighborhood, whereas the latter cap-
tures the activities one can do in a particular neighborhood.

4.2. Baselines

As the problem we have introduced is novel, we could not
find any prior work as baselines for evaluation. We evaluate
our method against the following set of baselines.
Random: is a naı̈ve baseline, where every point of interest
is assigned a random label.
Proximity: clusters on geographical proximity instead of
style histograms. This baseline uses the uniformly sampled
locations (lat. and long. pair) as the feature for clustering.
Proximity+Image Density (PID): clusters on xij and
hence leverages additional information about the image den-
sity at different locations. This baseline is stronger than
using proximity alone, as image density can tell a lot about a
neighborhood, e.g., a residential area is likely to have lower
density, unlike a tourist area with lots of photos.
Caption: clusters image captions. Image captions are clus-
tered using aggregated GloVe vectors [30] for each city and
we use histograms over these clusters as features. This base-
line is similar to our method but uses a non-visual modality
instead of visual or fashion-specific cues.
Full image: sees if the image background provides more
useful information about neighborhoods than just looking
at the clothing features. It uses features from a pre-trained
ResNet-18 [14] instead of fashion features to create style
histograms. It captures global information of people and
their background, such as architecture, vegetation, etc.
Administrative boundaries (Admin): represents tradi-
tional maps based on government issued boundaries. It
uses ordinance maps for the 8 GeoStyle cities for which we
could find publicly available data by the city.3 These bound-
aries are fine-grained, so we greedily merge them based on
proximity to match the granularity of the other baselines.

4.3. Quantitative Evaluation

We first evaluate how much neighborhoods discovered by
our method align with the neighborhoods of the benchmarks.
We use 3 unsupervised clustering metrics: (i) Normalized
Mutual Information (NMI) captures the mutual information

3See Supplementary for list of cities. Example for Los Angeles: [7]

Seattle
Underground

Traditional

Figure 5: Our discovered underground map for Seattle.

between the produced maps and benchmarks. (ii) Purity
captures the maximum precision of the produced maps w.r.t.
the benchmarks. (iii) Mean Maximum Intersection over
Union (MMIoU) measures the best matching Intersection
over Union (IoU). We report performance where the number
of clusters equals the number of labels in the benchmarks
(see Supplementary for sweeps over cluster numbers). For
HoodMaps, this number is 6, and for Business Distribution
this number is different for different cities, based on the
number of clusters produced by affinity propagation.

Table 1 shows the results. The left side compares our
method to all baselines except Admin aggregated over all
37 cities; the right side compares all methods on the 8 cities
for which the baseline Admin is applicable. Our method
outperforms all baselines on both benchmarks on all the
metrics for the “all cities” test, and also outperforms the
Admin baseline for every city it is available except for one
metric on BD. Figure 5 shows our discovered map for Seattle,
along with the Admin baseline’s map (see Supp. for more).

All cities. Table 1 (left) reveals a few things. First, the
proximity+image density baseline performs well and is a
very strong baseline. This shows that the similarity of a
region is strongly affected by the image density. Second,
our performance against the caption baseline shows that
visual fashion sense provides more useful cues than the
manually written captions of the images. While caption does
contain useful information, it also contains information not
necessarily related to location. Third, the full image baseline
performs worse than our method. This shows that fashion
specifically is indeed a useful factor for understanding and
discovering neighborhoods, beyond the surrounding visual
architecture, weather, etc. as captured in the full image.

Cities with administrative boundaries. Table 1 (right)
rescores all baselines and our method for the 8 cities where
Admin is possible. We see Admin is no better than the
proximity baseline. This accentuates that the “traditional”
measure of a neighborhood is different from the “under-
ground” notion. Figure 1 (bottom right) shows the Admin
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All Cities Cities with Administrative Boundaries Available
HM Benchmark BD Benchmark HM Benchmark BD Benchmark

Method NMI Purity MMIoU NMI Purity MMIoU NMI Purity MMIoU NMI Purity MMIoU

Random 0.079 0.464 0.172 0.092 0.359 0.173 0.084 0.431 0.171 0.090 0.545 0.170
Proximity 0.225 0.542 0.249 0.342 0.559 0.325 0.249 0.546 0.269 0.288 0.609 0.281
PID 0.242 0.550 0.262 0.353 0.579 0.336 0.277 0.597 0.281 0.303 0.665 0.294
Admin - - - - - - 0.235 0.570 0.256 0.282 0.686 0.260
Caption 0.222 0.607 0.235 0.332 0.561 0.313 0.207 0.644 0.215 0.299 0.731 0.278
Full image 0.246 0.592 0.242 0.327 0.581 0.296 0.279 0.623 0.271 0.305 0.737 0.269
Ours 0.260 0.635 0.272 0.369 0.597 0.339 0.291 0.652 0.281 0.323 0.742 0.281

Table 1: Comparison of our method against baselines on both the HM and BD benchmarks. The first six columns show results on all the
cities. The last six columns show the results on cities where administrative boundary (Admin) data is available. Our method performs better
than all the baselines and all the metrics except for one. Our gains over the Admin baseline accentuate how traditional maps (e.g., by city
ordinances) are distinct from the underground perceived maps of a city.

Wea. Hip. Tou. Stu. Nor. Cor.

PID 0.297 0.281 0.247 0.223 0.256 0.171
Ours 0.293 0.289 0.265 0.243 0.258 0.166

Table 2: Per class accuracy on HoodMaps (MMIoU). It is easier
to find student and tourist neighborhoods using fashion features,
whereas it is difficult to find corporate neighborhoods. Note that
the labels were chosen by HoodMaps, and may be associated with
stereotypes that we do not aim to discover (see Sec. 4.1).

boundaries for New York City for 8 regions: Admin’s manu-
ally demarcated neighborhoods cannot find distant similar
regions. For example, whereas we discover regions popular
among tourists (red, top right) that are similar to each other,
a “traditional” neighborhood map of a city will not find such
similarities. Underground maps offer significantly different
information than traditional maps.

Per-class performance. Next, to understand which un-
derground neighborhood types are best revealed by fashion,
we analyze the per-class performance. Table 2 shows the
results against the best baseline, PID.4 Our method finds it
easier to discover tourist and student classes, suggesting it
is possible to determine these neighborhoods by looking at
changes of particular styles. Interestingly, the image density
itself (PID) reveals cues about hipster and wealthy areas. Our
method finds it difficult to discover corporate neighborhoods.
We believe this is because fewer people are posting images
of themselves from a corporate environment.

4.4. Qualitative Results

Having showed that the discovered neighborhoods suc-
cessfully capture underground notions of a city, we now
show how we can use these discovered neighborhoods to get
useful information about a city and relationships between
cities (cf. Sec. 3.4 to 3.6).

Most unique neighborhoods. Figure 6 shows some
of the unique neighborhoods discovered by our method

4Here we measure MMIoU, as purity and NMI are aggregate measures.

Blue major color & wearing hat Wearing scarf & outerwear
Los Angeles Bogota

Figure 6: Two unique neighborhoods. Los Angeles (Left), Bogota
(Right). Each row shows the distinctive style of the neighborhood.

(Sec. 3.4). First, we find a neighborhood around Dodgers
stadium in Los Angeles where a very high number of people
can be seen wearing blue colored tops and baseball hats (the
team color). The second neighborhood in Bogota is popular
among tourists for hiking and outdoor activities, where peo-
ple can be seen wearing glasses and winter clothing. See the
Supplementary for more unique neighborhoods.

Similar neighborhoods across cities. Figure 7 shows
neighborhoods for Kyiv-Moscow and Chicago-NYC that are
similar to each other found using our method in Sec. 3.5.
For Kyiv and Moscow, both regions have an unusually high
fraction of people in winter clothes. This often signifies
tourists in our dataset. As expected these neighborhoods
are indeed popular tourist spots for the city of Kyiv (St.
Sophia’s Cathedral and Independence Square) and Moscow
(the Kremlin and Sokolniki Park). For Chicago and New
York City, the similar neighborhoods show a relatively high
fraction of people in party wear. Both the neighborhoods are
popular places for nightclubs as confirmed by the business
density data. (See Supplementary for other examples.)

Neighborhood analogy. Figure 8 shows example analog-
ical pairs of neighborhoods found across regions using the
proposed contextual encoding (Sec. 3.6). Our method is able
to discover similar neighborhoods across continents with
significantly different weather and culture. With contextual
encoding, we find two neighborhoods with popular beaches
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V-shaped neckline,  No head covering, Dresses, Solid pattern

Black and blue major color, Multiple layers, Folded neckline

Chicago New York City

Kyiv Moscow

Figure 7: Most similar neighborhood between Kyiv-Moscow (top),
and Chicago-NYC (bottom). Text on top shows the most popular
inferred attributes for the two similar neighborhoods.

Wearing glasses, Tanks tops, No sleeves, No collars Gray color, Sweaters, Wearing hats
Sydney New York City

Dress, Floral pattern, No sleeves, White color Red color, T-shirt, Round neck
Austin Los Angeles

↔

↔

Figure 8: Analogy neighborhoods between Sydney and NYC (top)
and Austin and Los Angeles (bottom). In each row, the first two
images show the analogy obtained with our contextual encoding,
and the rightmost image shows the (baseline) similar neighborhood
from the second city computed without the contextual encoding.
Text on top shows the most popular attributes.

in Sydney and New York City (NYC). Because the histogram
shift is too large from Sydney to NYC, if we do not use the
proposed contextual encoding an incorrect neighborhood
is found (see Figure 8 (top right)). The difference is fur-
ther exemplified by the discriminative cluster images shown
from the two regions, which highlight beachwear. Bottom
row shows analogical neighborhoods between Austin and
Los Angeles. Dresses can be seen in the analogical pair as
opposed to the neighborhood found without context (right).

Method Acc. ANA Confidence

Proximity+Image Density 14.28 15.00 0.57
Ours 24.90 27.50 0.61

Table 3: Human subjects are more frequently able to identify where
the neighborhood style comes from when using our neighborhoods.

Chicago London

Figure 9: Random samples from two sets of neighborhoods for
which all workers confidently point to the correct location on maps.

4.5. Experiments with Human Judges

A denizen of a city has a deeper understanding of the
neighborhoods. Does our technique match what that person
would say? Using Amazon Mechanical Turk to reach “lo-
cals” (see Supplementary), we display a set of images from
discovered neighborhoods, and ask the worker to select the
point on the map they think the images come from. Images
from neighborhoods of both our method and the strongest
baseline (PID) are shown. We measure both raw accuracy
and the Area Normalized Accuracy (ANA), where per re-
gion accuracy is weighted by the inverse of the area of the
region. The latter accounts for the fact that the areas of
neighborhoods produced by both methods could be unequal,
and clicking in the correct region by chance is more probable
for the larger region.

Table 3 shows the results, accumulated over all cities and
judged by at least three workers. Our method does signif-
icantly better than the best PID baseline. The confidence
number shows how confident MTurk users were when mark-
ing a region (0: no confidence, 1: very confident). Users
were more confident in figuring out the regions when im-
ages come from our method. This result is exciting as it
suggests that the neighborhoods discovered automatically
by our method are recognizable as coherent by people who
know the cities. Figure 9 shows examples for which all
workers confidently pointed to the correct place. Both these
neighborhoods contain famous stadiums of the cities’ teams
(Blackhawks and Arsenal) and are easily identified.

5. Conclusion
We introduced the concept of underground fashion maps

for cities and proposed the first method to create them.
Validating against two new external benchmarks for non-
traditional maps, as well as human judges, we showed that
our maps better capture the sense of a neighborhood. We
demonstrate various potential uses for such maps, including
finding distinctive neighborhoods and analogies across cities.
In future work, we plan to explore how underground maps
evolve over time as styles themselves change.
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