
Materials In Paintings (MIP): An interdisciplinary dataset for
perception, art history, and computer vision

Mitchell J.P. Van Zuijlen* 1, Hubert Lin 2, Kavita Bala 2, Sylvia C. Pont 1, Maarten W.A.
Wijntjes 1

1 Perceptual Intelligence Lab, Delft University of Technology, Delft, The Netherlands
2 Computer Science Department, Cornell University, Ithaca, New York, United States of
America

* Corresponding author: m.j.p.vanzuijlen@tudelft.nl

Abstract
A painter is free to modify how components of a natural scene are depicted, which can lead to a
perceptually convincing image of the distal world. This signals a major difference between
photos and paintings: paintings are explicitly created for human perception. Studying these
painterly depictions could be beneficial to a multidisciplinary audience. In this paper, we capture
and explore the painterly depictions of materials to enable the study of depiction and perception
of materials through the artists’ eye. We annotated a dataset of 19k paintings with 200k+
bounding boxes from which polygon segments were automatically extracted. Each bounding
box was assigned a coarse label (e.g., fabric) and a fine-grained label (e.g., velvety, silky). We
demonstrate the cross-disciplinary utility of our dataset by presenting novel findings across art
history, human perception, and computer vision. Our experiments include analyzing the
distribution of materials depicted in paintings, showing how painters create convincing
depictions using a stylized approach, and demonstrating how paintings can be used to build more
robust computer vision models. We conclude that our dataset of painterly material depictions is
a rich source for gaining insights into the depiction and perception of materials across multiple
disciplines. The MIP dataset is freely accessible at materialsinpaintings.tudelft.nl.

Introduction
Throughout art history, painters have invented numerous ways to transform the
three-dimensional world onto flat surfaces [1–4]. These transformations can be described by the
geometry of the projection or in terms of two-dimensional drawing rules. Willats [5] noticed that
for each projection there exists a set of drawing rules, but not vice versa. This illustrates an
interesting and fundamental asymmetry that is characteristic to the visual perception of pictures:
a depiction does not necessarily have to originate from a physically correct projection [6]. On
one hand, this makes paintings unsuited as ecological stimulus [7]. On the other hand, as Gibson
acknowledges, paintings are the result of endless visual experimentation, and therefore,
indispensable for the study of visual perception.

In perception, distal refers to the outside world, while the related concept proximal refers to
the projection of the distal world experienced on our senses i.e., the retinal image. The process
of visual perception can be described as inferring properties of the distal stimulus from the
available proximal information [8]. For example, perceived reflectance (lightness) is a distal
property that is deduced from light on the retina (brightness) [9], or a distal circle is inferred
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from a proximal ellipse [10]. This is akin to ‘recovering intrinsic scene characteristics’ (which
are distal) from images (which are proximal) in computer vision [11] .

A painter might work with ‘2D drawing rules’, but the goal usually is not to create an
optically corrected projection, rather a painter strives to create a perceptually correct depiction.
The artist does not copy a retinal image [12] (which would make the painter effectively a
biological camera) but rather iteratively adapts templates until they ‘fit’ perceptual
awareness [13]. In essence, a painting depicts the perceived distal world through a proximal
stimuli.

The depiction and perception of pictorial space in paintings [1–5] has received much more
attention than the depiction and perception of materials. As with the depiction of space, a painter
is not concerned whether a material depiction is optically or physically correct. Instead, a
painting is explicitly designed for human viewing and is only intended to be perceptually
convincing. Human observers are able to visually categorize and identify depicted materials and
material properties [14], despite a painting consisting only of paint and oils, similar to how we
can perceive depth from a flat painting. Furthermore, for these painted materials, we can
perceive distinct material properties such as glossiness, softness, transparency, etc [15–17]. A
single material category (e.g., fabric) can display a large variety of these material properties,
which demonstrates the enormous variation in visual appearance of materials. This variation in
materials and material properties has received relatively little attention. In fact, the perceptual
knowledge that is captured in the innumerable artworks throughout history can be thought of as
the largest perceptual experiment in human history and it merits detailed exploration. The
starting point for such an exploration is the creation of datasets that relate artworks to material
perception. In this study, we introduce an accessible collection of material depictions in
paintings, with which we hope to facilitate both perceptual, computational, and art historical
research into materials.

A simple taxonomy of image datasets
In the current study we are primarily interested in the perception and depiction of materials and
material properties [8, 14, 18, 19]. However, the use and creation of art-perception datasets is of
broader interest. We propose a simple taxonomy of three image dataset usages: 1) perceptual, 2)
ecological and, 3) computer vision usage. We expand on each of these three usages below and
contextualize our dataset within this taxonomy.

Perceptual datasets. To understand the human visual system, stimuli from perceptual
datasets can be used in an attempt to relate the evoked perception to the visual input. We can
roughly categorize three types of stimuli used for visual perception: natural, synthetic and
manipulated. The first represent ‘normal’ images of objects, materials and scenes as they can be
found in reality. Experimental design with such stimuli often attempts to relate the evoked
perceptions to natural image statistics within the images or physical characteristics of the
contents captured in the images. Some examples of uses of natural stimuli datasets include the
memorability of pictures in general [20] or more specifically the memorability of faces [21]. In
another example, images of natural, but novel objects were used to understand what underlies
the visual classification of objects [22]. The second type, synthetic stimuli, are created
artificially. Synthetic stimuli might represent the real world, but often contain image statistics
that deviate greatly from natural image statistics. For example, [23] used a set of synthetic
stimuli to test for memorability of data visualizations. Both natural and synthetic images can be
manipulated, which leads to the third type of stimuli. Manipulated stimuli are often used to
investigate the effect of image manipulations by comparing them to the original (natural or
synthetic) image. Here the manipulations function as the independent variables. For
example [24] created a database of images that contain scene inconsistencies that can be used to
study the compositional rules of our visual environment. In another example, a stimulus set
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consisting of original and texture (i.e., manipulated) versions of animals found that perceived
animal size is mediated by mid-level image statistics [25].

The advantage of using manipulated or synthetic images is that perceptual judgments can be
compared to some independent variable, which is not available for natural images. Paintings are
a special case: while they are being created they are a synthetic image that is rendered using oils
and paints. However, when finished they are also real, physical objects. While retrieving the
veridical data is impossible for almost all paintings, the advantage of using paintings is that it
can often be seen, or (historically) inferred, how the painter created the illusory realism. Even if
it can not be seen with the naked eye, chemical and physical analysis can be performed. In [17] a
perceptually convincing depiction of grapes was recreated using a 17th century, explicitly
written-down recipe. In the reconstruction, the depiction was created one layer at a time, each
representing a separate and perceptually diagnostic image feature of the grape. In this way,
paintings can give access to proximal information. Therefore, studying paintings in addition to
more traditional stimuli like photos or renderings, can enrich our understanding of human
perception. It should be noted that in this paper we focus on the image structure of the painting
instead of the physical object. In other words, we focus on what is depicted within paintings and
our data and analysis is limited to pictorial perception. In the remainder of this paper, when we
mention paintings, we mean images of paintings.

Throughout history, painters have studied how to trigger the perceptual system and create
convincing proximal depictions of complex distal properties of the world. This resulted in
perceptual shortcuts, i.e., stylized depictions of complex properties of the distal world that
trigger a robust perception. The steps and painterly techniques applied by a painter to create a
perceptual shortcut can be thought of as a perception-based recipe. Following such a recipe
results in a perceptual shortcut, which is a depiction that gives the visual system the required
inputs to trigger a perception. Many of the successful depictions are now available in museum
collections. As such, the creation of art throughout history can be seen as one massive
perceptual experiment. Studying perceptual shortcuts in art, and understanding the cues, i.e.,
features required to trigger perceptions, can give insights into the visual system. We will
demonstrate this idea by analyzing highlights in paintings and photos.

Ecological datasets. To understand how the human visual system works it is important to
understand what type of visual input is given by the environment. Visual ecology encompasses
all the visual input and can be subdivided into natural and cultural ecology. Natural ecology
reflects all which is found in the physical world. For example, to understand color-vision and
cone cell sensitivities it is relevant to know the typical spectra of the environment. For this
purpose, hyperspectral images [26, 27] can be used, in this case to investigate color metamers
(perceptually identical colors that originate from different spectra) and illumination variation. In
another example, a dataset of calibrated color images were used to understand color
constancy [28] (the ability to discount for chromatic changes in illumination when inferring
object color). The SYNS database was used to relate image statistics to physical statistics [29].
Another dataset contains photos taken in Botswana [30] in an area that supposedly reflects the
environment of the proto-human and was used to investigate the evolution of the human visual
system. Spatial statistics of today’s human visual ecology are clearly different from Botswana’s
bushes as most people live in urban areas that are shaped by humans. For example, a dataset
from [31] was used to compute the distribution of spatial orientations of natural scenes [32].

It is important to note that the majority of paintings in our dataset are painterly
representations of the physical world around us that only loosely reflect the natural visual
ecology, but strongly represent visual cultural ecology. They have influenced how people see and
depict the world and have influenced visual conventions up to contemporary cinematography
and photography. The recent surge in publicly available digitized art works, combined with the
availability of advanced image analysis algorithms such as neural networks, has lead to a new
branch of Art History: Digital Art History. Similar to the analysis of the human physical
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environment, Digital Art History concerns itself for example with the digitized analysis of
artworks, artistic style [33] and beauty [34], or local pattern similarities between artworks [35].

Computer vision datasets. Today, the majority of image datasets originate from research in
computer vision. One of the first relatively large datasets representing object categories [36] has
been used to both train and evaluate various computational strategies to solve visual object
recognition. The ImageNet and CIFAR datasets [37, 38] are regarded to be standard image
recognition datasets for the last decade of research ifn deep learning vision systems.
Traditionally most visual research has been concerned with object classification but recently
material perception has received increasing attention [39–42].

Within vision science, paintings are considered as representing a special class of images,
which deviate from natural photographs, as they are explicitly designed for viewing by
humans [43]. The visual difference introduced by painterly depiction does not pose any
significant difficulties to the human visual system, however it is more challenging for computer
vision systems as a result of the domain shift [44–46]. Differences between painting images and
photographic datasets include for instance composition, textural properties, colors and tone
mapping, perspective, and style. As for composition, photos in image datasets are often
‘snapshots’, taken with not too much thought given to composition, and typically intended to
quickly capture a scene or event. In contrast, paintings are artistically composed, and prone to
historical style trends. Therefore, photos often contain much more composition variation relative
to paintings. Within paintings, composition can vary greatly between different styles. The
human visual system can distinguish styles – for example, Baroque vs. Impressionism – and also
implicitly judge whether two paintings are stylistically similar. Research in style or artist
classification, as well as neural networks that perform style transfer, attempt to model these
stylistic variations in art [47, 48]. Humans can also discount stylistic differences, for example,
identifying the same person or object depicted by different artists. Similarly, work in domain
adaptation [44–46] focuses on understanding objects or stuff across different image styles.

Depending on the end goal for a computer vision system, it can be important to learn from
paintings directly. When the end goal is to detect pedestrians for a self-driving car, learning from
real photos, videos, or renderings of simulations can suffice. However, if the goal is to simulate
general visual intelligence, multi-domain training sets seem essential. Furthermore, if the goal is
to create computer vision systems with a perception that matches human vision, training on
paintings could be very beneficial. Paintings are explicitly created by and for human perception
and therefor contain all the required cues to trigger robust perceptions. Therefor, networks
trained on paintings are implicitly trained on these perceptual cues.

The multifaceted nature of datasets. While we have distinguished the broad purposes of
datasets and exemplified each with representative datasets, it is important to keep in mind that
these datasets can serve multiple goals across the taxonomy. For example, the Flickr Material
Database [49] was initially created as a perceptual dataset to study how quickly human
participants were capable of recognizing natural materials. However, since then it has also often
been used as a computer vision dataset, including by the original authors themselves [50]. The
dataset presented in this paper is explicitly designed with this multidisciplinary nature in mind.

Dataset collection and annotation
Our dataset consists of 19K paintings with crowd-sourced bounding box annotations over 15
material categories. We further distinguish these coarse material categories into over 50
fine-grained categories. Finally, we automatically extract polygon segments for each bounding
box. The annotated dataset will be made publicly available. All paintings, bounding boxes,
labels, and metadata are available at materialsinpaintings.tudelft.nl
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The data collection was executed in multiple stages. Here we give an itemized overview of
each stage and subsequently we discuss each stage in depth. The first two stages were conducted
as part of a previous study [15], but we provide details here for completeness. Participants were
recruited via Amazon Mechanical Turk (AMT). A total of 4451 unique AMT users participated
in this study. Data collection was approved by the Human Research Committee of the Delft
University of Technology and adheres to the Declaration of Helsinki.

1. First, we collected a large set of paintings.

2. Next, human observers on the AMT platform identified which coarse-grained materials
they perceived to be present in each painting (e.g., “is there wood depicted in this
painting?”).

3. Then, for paintings identified to contain a specific material, AMT users were tasked with
creating a bounding box of that material in that painting.

4. Lastly, AMT users assigned a fine-grained material label to bounding boxes (e.g.,
processed wood, natural wood, etc.).

Collecting paintings
We collected 19,325 paintings from 9 online, open-access art galleries. The details of these art
galleries are presented in Table 1. Images were downloaded from the online galleries, either
using web scraping or through an API. For the majority of these paintings we also gathered the
following metadata: title of the work, estimated year of creation and name of the artist.

For 92% of boxes, we also have an estimate of the year of production. These estimates were
made by the galleries from which the paintings were downloaded. The distribution of the year of
production for all paintings are plotted in Fig. 1, in bins of 20 years. Clearly, the data is not
equally distributed over time. Museums, being cultural institutions, attempt to create a curated
collection of art of cultural importance and not every year or time period is of equal cultural
importance.

Gallery Name Country Count
The Rijksmuseum Netherlands 4672
The Metropolitan Museum of Art USA 3222
Nationalmuseum Sweden 3077
Cleveland Museum of Art USA 2217
National Gallery of Art USA 2132
Museo Nacional del Prado Spain 2032
The Art Institute of Chicago USA 936
Mauritshuis Netherlands 638
J. Paul Getty Museum USA 399

Table 1. List of galleries, the country in which the museum is located, and the number of
paintings downloaded from that gallery.

Image-level coarse-grained material labels
Next, we collected human annotations to identify material categories within paintings. We
created a list of 15 material categories: animal, ceramic, fabric, sky, stone, flora, food, gem,
wood, skin, glass, ground, liquid, paper, and metal. Our intention was to create a succinct list,
that would nevertheless allow the majority of stuff within a painting to be annotated, and was
partially based on [49, 51]. These categories primarily represent prototypical physical materials,
as well as less typical, overarching categories that contain multiple materials such as food and
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Fig 1. Histogram of the distribution of paintings over time. Each bin equals 20 years.

animal. Note that we added the material category of skin directly, instead of a more overarching
‘human’ category as one might expect considering food and animal. We made this choice
because of the scientific interest in the artistic depiction [52], perception [53, 54], and rendering
of skin [55, 56]

In one AMT task, participants would be presented with 40 paintings at a time and one target
material category. In the task, participants were asked if the painting depicted the target material
(e.g., does this painting contain wood?). They could reply ‘Yes, the target material is depicted in
this painting.’ by clicking the painting and inversely, by not clicking the painting, participants
would reply with ‘No, the target material is not depicted in this painting.’. Each painting was
presented to at least 5 participants for each of the 15 materials. If at least 80% of the responses
per painting claimed that the material was depicted in the painting, we would register that
material as present for that painting. In total, we collected 1,614,323 human responses in this
stage from 3,233 unique AMT users participating.

Extreme click bounding boxes
In the previous stage, paintings were registered to depict or not to depict a material. However,
that stage does not inform us (1) how often the material is depicted, nor (2) where the material(s)
are within the painting.

We gathered this information on the basis of extreme click bounding boxes. For extreme
click bounding boxes, a participant is asked to click on the 4 extreme positions of the material:
the highest, lowest, most left-, and most right-wards point [57]. See Fig. 2 for an example. In the
task, participants were presented with paintings that depicted the target material and tasked to
create up to 5 extreme click bounding boxes for the target material.

To make bounding boxes within the task, the participants would use our interface, which
allows users to zoom in and out, and pan around the image. The interface furthermore allowed
participants to finely adjust the exact location of the extreme points by dragging the points
around. Initially, the tasks were open to all AMT workers, but after around 2000 bounding boxes
were created by 114 AMT users, with manual inspection, we found that the quality of bounding
boxes varied greatly between participants. Therefore, we restricted the work to a smaller number
of manually selected participants who were observed to create good bounding boxes. After this
restriction, new boxes were manually inspected by the authors, and in a few cases additional
participants were restricted due to a deterioration of bounding box quality. Simultaneously
additional participants were granted access to our tasks after passing (paid) qualification tasks.
As a result, the number of manually selected participants varied between 10 and 20 participants.
In total, 227,810 bounding boxes were created by participants.

Automatic bounding boxes. While we consider our dataset to be quite larger, it only covers a
small but representative portion of art history. It might be required to access materials in
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Fig 2. An example of four extreme clicks (marked in green) made by a user on a piece of fabric.
These points correspond to the most left, most right, highest and lowest points on the annotated
item. The red-line displays the resulting bounding box.

paintings that are not part of our dataset. To allow for this, we have trained a FasterRCNN [58]
bounding box detector to localize and label material boxes in unlabelled paintings. The model
was finetuned from a model trained on COCO with the COCO hyperparameters from [59]. First
we trained the detector on 90% of annotated paintings in the dataset. In section 2 below, we
show our evaluation of the network, which was performed on the remaining 10% of annotated
paintings. While we created this network to be able to detect paintings outside our dataset, we
decided to apply the network on our dataset in order to more densely annotate our paintings.
Therefor, after the evaluation, we ran the detection network on the entire set of paintings, i.e.,
training and testing data, in an attempt to more exhaustively annotate materials within paintings.
From the automatic detected bounding boxes we first removed all boxes that scored <50%
confidence (as calculated by FasterRCNN). Next, we filtered out automatic boxes that were
likely already identified by human annotators, be removing automatic bounding boxes that
scored ≥ 50% on intersection over union, i.e., automatic boxes that shared the majority of it’s
content with human boxes. This resulted in an additional 96k bounding boxes, all of which are
also available on materialsinpaintings.tudelft.nl.

Fine-grained labels
In this step we supplemented the previously collected material labels with fine-grained material
labels (see Table 2). For example, a bounding box labelled as fabric could now be labelled as
silk, velvet, fur, etc.. We excluded bounding boxes that were too small (e.g., width in pixels ×
height in pixels ≤ 5000) and boxes that were labelled as sky, ground or skin for which
fine-grained categorizations were not annotated. We collected fine-grained labels for the
remaining 150,693 bounding boxes. Note that this only concerns the bounding boxes created by
human annotations as no automatically detected boxes were assigned a fine-grained material
label. For each of these 150,693 bounding boxes, we gathered responses from 5 different
participants. If the 5 responses reached an agreement of at least 70%, we would assign the
agreed upon label to the bounding box. To guide the workers, we provide a textual description
for each fine-grained category for them to reference during the task. We did not provide visual
exemplars as we did not want to bias the workers into template matching instead of relying on
their own perceptual understanding.

We found that it is non-trivial to define fine-grained labels in such a way that they are
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concise, uniform and versatile (i.e., useful across different scientific domains) while still being
recognizable and/or categorizable by naive observers. We applied the following reasoning to
select fine-grained labels: first, we tried to divide the materials into an exhaustive list with as
few fine-grained labels as possible. For example, for ‘wood’, each bounding box is either
‘processed wood’ or ‘natural wood’. If an exhaustive list would become too long to be useful, we
would include an ‘other’ option. For example, for ‘glass’ we hypothesized that the vast majority
of bounding boxes would be captured by either ‘glass windows’ or ‘glass containers’. However,
to include all possible edge cases such as glass spectacles and glass eyeballs, we included the
‘other’ option.

A possible subset for ‘metal’ we considered was ‘iron’,‘bronze’, ‘copper’, ‘silver’, ‘gold’ ,
‘other’. However, we feared that naive participants would not be able to consistently categorize
these metals. An alternative would be to subcategorize on object-level, e.g. ’swords’, ’nails’, etc.,
but as we are interested in material categorization, we tried to avoid this as much as possible.
Thus, for ‘metal’, and for the same reason ‘ceramic’, we required a different method. We chose
to subcategorize on color, as often the color for these materials are tied to object identity.

Participants are shown one bounding box at a time and are instructed to choose which of the
fine-grained labels they considered most applicable. Additionally, they are able to select a ‘not
target material’ option.

We collected over one million responses from 1114 participants. This resulted in a a total of
105,708 boxes assigned with a fine-grained label. See Table 2 for the numbers per category.

Results and applications
We conducted a diverse set of experiments to demonstrate how our annotated art-perception
dataset can drive research across perception, art history, and computer vision. First, we report
simple dataset statistics. Next, we organized our findings under the proposed dataset usage
taxonomy: perceptual applications, ecological applications and computer vision applications.

Dataset statistics
The final dataset contains painterly depictions of materials, with a total of 19,325 paintings.
Participants have created a total of 227,810 bounding boxes and we additionally detected 96k
using a FasterRCNN. Each box has a coarse material label and 105,708 also have been assigned
a fine-grained material label. The total number of instances per material categories (coarse- and
fine-grained) can be found in Table 2. Further analysis of spatial distribution of categories,
co-occurences, and other related statistics will be discussed in a following section in the context
of visual ecology.

Coarse-grained Fine-grained # Labels

animal 11606
birds 1822
reptiles and amphibians 144
fish and aquatic life 289
mammals 7752
insects 155
other animals 10

ceramic 3641
brown or red 1088
white 381

Continued on next page
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Continued from previous page

Coarse-grained Fine-grained # Labels

decorated 289
other ceramic 14

fabric 31557
velvety 261
lace 491
silky/satiny 1354
cotton/wool-like 5712
brocade 96
fur 27
other fabric 12

flora 26693
trees 12851
vegetables 96
fruits 1238
flowers 2515
plants 3699

food 3690
cheese 11
vegetables 107
fruits 1536
meat or poultry 183
bread 127
seafood 183
nuts 8
other 14

gem 10525
pearls 719
gemstones 715
other gems 1

glass 5546
glass window 2243
glass container 1003
other glass 171

ground 2552
liquid 5737

body of water 4583
liquid in container 458
other liquid 172

metal 27708
colorless metal 2933
yellowish metal 4435
brownish or reddish metal 510
multicolored or other colored metal 215

paper 3167
paper book 1380
paper sheets 585
paper scrolls 114

Continued on next page
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Continued from previous page

Coarse-grained Fine-grained # Labels

other paper 19
skin 32323
sky 12734
stone 23157

processed stone 9226
natural stone 9429

wood 26953
processed wood 12810
natural wood 10751

Table 2. The number of annotated bounding boxes for each coarse- and fine-grained category.
Note that not every bounding box is associated with a fine-grained label since participants were
not always able to arrive at a consensus. See main text for details.

Perceptual applications
We believe that the materials in this dataset can be useful as stimuli for perceptual experiments.
We demonstrate this in this section by performing an annotation experiment to study
perception-based recipes.

Perception-based recipes in painterly depictions

As previously argued, we believe that painterly techniques are a sort of perception-based recipe.
Applying these recipes results in a stylized depiction that can trigger a robust perception of the
distal world. Studying the image features in paintings can lead to an understanding of what cues
the visual systems needs to trigger a robust perception.

Here we explore a perceptual shortcut for the perceptions of glass by annotating highlights in
paintings and comparing these with highlights in photos. For input stimuli, we use bounding
boxes from our dataset and photographs sourced from COCO [60]. Participants for this study
included 3 of the authors, and one naive lab-member.

Stimuli. We used 110 images of drinking glasses. First, we selected all bounding boxes in the
glass, liquid container category in our dataset. From this set, we manually selected drinking
glasses, since this category can also contain items such as glass flower vases. Next, we removed
all glasses that were most occluded, were difficult to parse from the background - for example
when multiple glasses were standing behind each other, and removed images smaller then
300x300 pixels. This resulted in a few hundred painted drinking glasses.

Next, we downloaded all images containing cups and wineglasses from the COCO [60]
dataset, from which we removed all non-glass cups, occluded glasses, blurry glasses and glasses
that only occupy a small portion of the image, and small images. This left us with 55 photos of
glass cups and wineglass. Next, we randomly selected 55 segmentations from our painted glass
collection. Each stimulus was presented in the task at 650 × 650 pixels, keeping aspect ratio
intact.

During this selection phase, we did not base our decision on the shape of the glass. After the
experiment, as part of the analysis, we divided the glasses into three shapes, namely spherical,
cylindrical, and conical glasses. See Fig. 3 for an example of each shape.

Task. Participants annotated highlights on drinking glasses using an annotation interface. In
the annotation interface, users would be presented with an image on which the annotated
geometry was visible. This made it clear which glass should be annotated, in case multiple
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Fig 3. Examples of the three glass shapes. From left to right: spherical, cylindrical and conical.
The red geometry annotations were manually created by the authors, and were used to
standardize across glasses for the highlight analysis.

glasses were visible in the image. Users were instructed to instruct all visible highlights on that
glass. Once the user started annotating highlights, the geometry would no longer be visible.
Annotations could be made by simply holding down the left-mouse button and drawing on top of
the image. Once a highlight was annotated a user could mark it as finished and continue with the
next highlight, and eventually move to the next image.

Results. To compare the highlights between photos and stimuli, we resized each glass to have
the same maximum width and height, and then overlaid each stimuli on the center. When all 110
stimuli are overlaid (not visualized) the resulting figure is appears noisy. However, when we
split the stimuli on media and shape, a clear pattern emerges for painted stimuli Fig. 4.

As can be seen, painters are more likely to depict highlights on glasses adhering to a stylized
pattern, at least for spherical and conical glasses. This pattern of highlights is perceptually
convincing, but is perhaps surprisingly uniform in comparison with the variation found within
reality. Furthermore, we calculated the agreement between each pair of participants,as the ratio
of pixels annotated by both participants (i.e., overlapping area) divided by the number of pixels
that was an annotated by either participant (i.e., total area). Averaged across participants, the
agreement on paintings (0.33) was around 50% higher relative to the average agreement between
participants on photos (0.21). This means that for our stimuli, highlights in paintings are less
ambiguous when compared to photos.

Ecological applications
The ecology displayed within paintings are representative of our visual culture. Our dataset
consists of paintings spanning 500+ years of art history. This provides a unique opportunity to
analyze a specific sub-domain of visual culture, i.e., that of paintings. We first analyze the
presence of materials in paintings in the Material presence section and in the next section we
analyse this over time. In The spatial layout of materials , we visualize the spatial distributions
of materials in our dataset. In the last section, we analyze the automatically detected bounding
boxes.

Material presence. Within the 19,325 paintings, participants exhaustively identified the
presence of 123,244 instances of 15 coarse materials. In other words, for each painting,
participants indicated if each material is or is not present. The distribution of unique materials
per painting is normally distributed with an average of 5.7 unique coarse materials present per
painting (std = 2.8 materials). The most frequent materials are skin and fabric. The least
frequent are ceramics and food. The relative frequency of each coarse material is presented in
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Paintings, Spherical-shape, n=23

Fig 4. The overlaid highlights created by users, split on media and glass shape. In general, the
photographic glass shapes display more variability and do not display a clear pattern. Note that
for photos, no stimuli existed with a conical shape in our set which leads to a black image, since
there were no highlight-annotations. On the right, for painted glasses, we see clear patterns in
the placement of highlights for each glass shape.

Fig. 5. We did not exhaustively identify fine-grained materials within paintings, so we will not
report those statistics here.

Based on prior knowledge of natural ecology, one might assume that some materials, such as
skin and fabric might often be depicted together in paintings. To quantify the extent to which
materials are depicted together, we create a co-occurrence matrix presented in Fig. 6, where each
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Fig 5. The proportion of paintings in our dataset that depict at least one instance of each
material.

cell is the co-occurrence for each pair of materials as the number of paintings where both
materials are present, divided by the number of paintings where either (but not both) materials
are present. We can see for example, that if skin is depicted, there is a 94% change to also find
fabric in the same painting.

skin
fabric wood

stone sky
metal

flora
ground

animal
liquid gem glass

paper
ceramic food

skin

fabric
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flora

ground
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liquid

gem

glass

paper

ceramic

food

1 0.94 0.53 0.49 0.47 0.56 0.39 0.42 0.24 0.2 0.2 0.12 0.13 0.1 0.05

0.94 1 0.53 0.48 0.46 0.57 0.39 0.4 0.24 0.2 0.2 0.13 0.13 0.1 0.05

0.53 0.53 1 0.6 0.6 0.44 0.56 0.57 0.3 0.32 0.11 0.17 0.12 0.13 0.08

0.49 0.48 0.6 1 0.63 0.42 0.55 0.61 0.31 0.32 0.12 0.16 0.1 0.12 0.07

0.47 0.46 0.6 0.63 1 0.36 0.64 0.73 0.33 0.38 0.11 0.12 0.07 0.08 0.04

0.56 0.57 0.44 0.42 0.36 1 0.3 0.31 0.23 0.18 0.23 0.18 0.13 0.15 0.08

0.39 0.39 0.56 0.55 0.64 0.3 1 0.65 0.33 0.32 0.12 0.11 0.06 0.12 0.09

0.42 0.4 0.57 0.61 0.73 0.31 0.65 1 0.35 0.37 0.09 0.11 0.05 0.07 0.04

0.24 0.24 0.3 0.31 0.33 0.23 0.33 0.35 1 0.21 0.08 0.11 0.05 0.09 0.08

0.2 0.2 0.32 0.32 0.38 0.18 0.32 0.37 0.21 1 0.05 0.13 0.04 0.09 0.07

0.2 0.2 0.11 0.12 0.11 0.23 0.12 0.09 0.08 0.05 1 0.05 0.08 0.07 0.04

0.12 0.13 0.17 0.16 0.12 0.18 0.11 0.11 0.11 0.13 0.05 1 0.12 0.21 0.14

0.13 0.13 0.12 0.1 0.07 0.13 0.06 0.05 0.05 0.04 0.08 0.12 1 0.1 0.04

0.1 0.1 0.13 0.12 0.08 0.15 0.12 0.07 0.09 0.09 0.07 0.21 0.1 1 0.25

0.05 0.05 0.08 0.07 0.04 0.08 0.09 0.04 0.08 0.07 0.04 0.14 0.04 0.25 1
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Fig 6. Co-occurrence matrix. Each cell equals the number of paintings where both materials are
present divided by the number of paintings where one or the other material is present.
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Furthermore, one might expect that the presence of one material can have an influence on
another material. For example, one might expect that gem might almost always be depicted with
skin, but that skin is only sometimes depicted with gem. To quantify these relations, we
calculated the occurrence of a material given that another material is present. We visualize this
in Fig. 7. Here we see that if gem is present, then skin is found in 99% of the paintings, but that if
skin is present, then gem is found in only 20% of the paintings. The same relationship is true for
gem and fabric. This implies that gems are almost always depicted with human figures, however
that human figures are not always shown with gems. Another example, when liquid is present, in
85% of the paintings, wood is also present. One might be reminded of typical naval scenes, or
landscapes with forests and rivers. Inversely, when wood is present, only 34% of the paintings
depict liquid. For food and ceramics, two materials which are present in less then 10% of
paintings, we see that if food is present, ceramics has a 53% change to be present as well, but the
inverse is only 33%. This implies that food is served in, or with, ceramic containers half of the
time, but that this is only 1/3rd of what ceramics is used for.

skin
fabric wood

stone sky
metal

flora
ground

animal
liquid gem glass

paper
ceramic food

skin

fabric

wood

stone

sky
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flora
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liquid

gem

glass

paper

ceramic

food

1 0.97 0.59 0.55 0.53 0.58 0.45 0.46 0.25 0.21 0.2 0.12 0.13 0.1 0.05

0.97 1 0.59 0.54 0.52 0.59 0.44 0.45 0.25 0.21 0.2 0.13 0.13 0.1 0.06

0.83 0.83 1 0.72 0.71 0.58 0.65 0.65 0.33 0.34 0.13 0.17 0.13 0.13 0.08

0.83 0.82 0.79 1 0.76 0.58 0.67 0.71 0.35 0.35 0.13 0.17 0.11 0.13 0.07

0.82 0.81 0.79 0.78 1 0.52 0.74 0.8 0.37 0.4 0.13 0.13 0.08 0.09 0.05

0.92 0.94 0.66 0.6 0.53 1 0.45 0.45 0.28 0.22 0.25 0.19 0.14 0.16 0.09

0.77 0.75 0.8 0.76 0.82 0.49 1 0.78 0.38 0.36 0.14 0.13 0.07 0.13 0.09

0.81 0.78 0.81 0.82 0.89 0.5 0.8 1 0.4 0.41 0.11 0.12 0.06 0.08 0.04

0.83 0.82 0.77 0.75 0.77 0.58 0.72 0.75 1 0.33 0.12 0.15 0.07 0.12 0.09

0.74 0.73 0.85 0.8 0.88 0.49 0.73 0.8 0.35 1 0.07 0.17 0.06 0.12 0.08

0.99 0.99 0.46 0.45 0.41 0.8 0.41 0.31 0.19 0.11 1 0.09 0.13 0.1 0.05

0.84 0.88 0.85 0.77 0.59 0.81 0.52 0.48 0.31 0.35 0.12 1 0.2 0.32 0.18

0.95 0.96 0.69 0.56 0.37 0.68 0.31 0.28 0.16 0.12 0.19 0.22 1 0.18 0.06

0.79 0.84 0.76 0.7 0.44 0.79 0.59 0.37 0.3 0.29 0.16 0.38 0.19 1 0.33

0.62 0.72 0.75 0.61 0.39 0.7 0.69 0.33 0.38 0.31 0.13 0.35 0.11 0.53 1

0.2

0.4

0.6

0.8

1.0

Fig 7. Likelihood matrix. This matrix visualizes the influence a material has on the likelihood of
finding another material within the same painting, i.e., if one material on the y-axis is present,
then how does this impact the presence of other materials on the x-axis? Calculated as the
number of paintings where both materials are present, divided by the number of paintings that
contain only one of the materials.

Material presence over time. We have previously shown the distributions of materials in
paintings in Fig. 5. When we created similar distributions (not visualised) for temporal
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fabric, n=59211

gem, n=13733

liquid, n=8697 ground, n=4995 wood, n=31013 stone, n=28120paper, n=6533

ceramic, n=6966 flora, n=32077 food, n=6857 glass, n=8987

metal, n=32529 skin, n=38400 sky, n=17857 animal, n=16807

Fig 8. Material heatmaps, which illustrate the likelihood at any given pixel to find the target
material at that pixel. Brighter colors indicate higher likelihoods.

cross-sections, for example for a single century, we found that these distributions were
remarkably similar to the average distribution in Fig. 5. We used t-tests, to see if the distribution
for any century was significantly different from the average distribution in Fig. 5 and found no
significant effect. This means that despite the changes in stylistic and artistic techniques over
time, the distribution of materials (such as in Fig. 5 remained remarkably stable over time for the
period covered in our dataset.

The spatial layout of materials. Paintings are carefully constructed scenes and it follows that
a painter would carefully choose the location at which to depict a material. For example, [61]
reported a strong spatial convention to center one eye within portraits. With the knowledge that
spatial conventions exists within paintings, it makes sense to assume these might extend to
materials. The average spatial location and extent of materials is visualized by taking the
(normalized) location of each bounding box for a specific material and subsequently plotting
each box as a semi-transparent rectangle. The result is a material heatmap, where the brightness
of any pixel indicates the likelihood to find a material at that pixel. In this section, we limit the
material heatmaps to only include the bounding boxes created by human annotators. In the next
section, we visualize the material heatmaps for automated boxes too.

Material heatmaps for the 15 coarse materials are shown in Fig. 8. The expected finding that
sky and ground are spatially high and low within images serves as a simple validation or
sanity-check of the data. It is interesting to see how skin and gem are both vertically centered
within the canvas. It appears to suggests a face, with necklaces and jewelry adorning the figure.
In general, each material heatmap appears to be roughly vertically symmetric. For glass, there
does however appear to be a minor shift towards the top-left. This might be related to an artistic
convention, namely that light in paintings usually comes from a top-left window [62]. When we
look at the heatmaps for the sub-categories for glass in Fig. 9, we see that it is indeed glass
windows that show the strongest top-left bias.

Automatically detected bounding boxes. Besides the bounding boxes created by humans,
we also trained a FasterRCNN network to automatically detect bounding boxes with 90% of the
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glass window, 
n=3770

glass container, 
n=1776

other glass, 
n=291

Fig 9. Material heatmaps for glass sub categories. For glass windows, it is interesting to see the
clustering in the top-left corner, which is in agreement with the artistic convention of having
light come from the top left.

data as training data. On the remaining unseen 10% of paintings, the network detected 90,169
bounding boxes. We removed those with a confidence score below 50%, which resulted in
24,566 remaining bounding boxes. In the section below, all references to the automated
bounding boxes refer to these 24,566 bounding boxes.

FabricLiquid Wood Stone

Paper

Fig 10. Examples of detected materials in unlabeled paintings. Automatically detecting
materials can be useful for content retrieval for digital art history and for filtering online
galleries by viewer interests.

A qualitative sample of detected bounding boxes is given in Fig. 10. Our human bounding
boxes are non-spatially exhaustive in nature meaning that not every possible material has been
annotated. As a result, the automatically created bounding boxes can not always be matched
against our human annotations and thus we can not use this to evaluate their quality. In order to
validate the automatic bounding box detection, we performed a simple user study to get an
estimate of the accuracy per material class, which is visualized in Fig. 11. In the user study, a
total of 50 AMT participants judged a random sample of 1500 bounding boxes. The bounding
boxes were divided into 10 sets of 150 stimuli, each set contain 10 boxes per course material
class. Each individual participant only saw one set, and each set was seen by 5 unique
participants. The order of stimuli was randomized between sets and participants. A participant
was instructed to rate each stimuli was either a good or a bad bounding box. This leads to a total
of 7500 votes, 500 per material classes. The ratio of good to bad votes per material classes can
serve as a measure of accuracy, which has been visualized in Fig. 11.

As a result of the user study, we found a mean average accuracy of 0.55. While not high,
these results are somewhat interesting in that they show that a FasterRCNN model is capable of
detecting materials in paintings, without any changes to the network architecture or training
hyperparameters. It is certainly promising to see that an algorithm designed for object
localization in natural images can be readily applied to material localization in paintings. Likely,
the accuracy could be further improved by finetuning the network which we have not done in
this paper.

It is interesting to note that the spatial distribution of automatically detected bounding boxes
looks very similar to the spatial distribution of the human annotated bounding boxes. We have
visualized the material heatmap for one material, fabric, for the automated bounding boxes to
show the similarity with the material heatmap for the same material created from human
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Fig 11. In the bar graph, the accuracy for automatically detected bounding boxes is displayed in
the same order as in Fig. 5. The values were derived from human quality votes. On the right, we
compare the material heatmaps for fabric between the automated and the human annotation
bounding boxes.

annotation bounding boxes. This has been visualized in the right side of Fig. 11

Computer vision applications
In this section, we will first apply existing segmentation tools designed for natural photographs
to extract polygon segmentations. Next, we perform an experiment to demonstrate the utility of
paintings for automated material classification.

Extracting polygon segmentations

A natural extension of material bounding boxes is material segments [40–42]. Polygon
segmentations are useful for reasoning about boundary relationships between different semantic
regions of an image, as well as the shape of the regions themselves. However, annotating
segmentations is expensive and many modern datasets rely on expensive manual annotation
methods [40, 42, 60, 63, 64]. Recent work has focused on more cost effective annotation methods
(e.g. [65–68]). One broad family of methods to relax the difficulty of annotating polygon
segmentations is through the use of interactive segmentation methods that transform sparse user
inputs into a full polygon masks.

For this dataset, we apply interactive segmentation with the crowdsourced extreme clicks as
input. To evaluate quality, we compared against 4.5k high-quality human annotated
segmentations from [15], which were sourced from the same set of paintings. We find that both
image-based approaches like GrabCut (GC) [69] and modern deep learning approaches such as
DEXTR [66] perform well. Surprisingly, DEXTR transfers quite well to paintings despite being
trained only on natural photographs of objects. The performance is summarized in Table 3. The
performance is summarized using the standard intersection over union (IOU) metric. IOU is
computed as the intersection between a predicted segment and the ground truth segment divided
by the union of both segments. IOU is computed for each class, and mIOU is the mean IOU over
all of the classes. Samples are visualized in Fig. 12. Segments produced by these methods from
our crowdsourced extreme points will be released with the dataset.

Learning Robust Cues for Finegrained Fabric Classification

The task of distinguishing between images of different semantic content is a standard
recognition task for computer vision systems. Increasing attention is being given to
“fine-grained” classification where a model is tasked with distinguishing images of the same
broad category (e.g., distinguishing different species of birds or different types of flora [70–72]).
Fine-grained classification is particularly challenging for deep learning systems. Such a task
depends on recognizing specific attributes for each finegrained class; in comparison, classifiers
can perform well on coarse-grained classification by relying on context alone. We hypothesize
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mIOU (%)
Grabcut

Rectangle
Grabcut

Extr
DEXTR

Pascal-SBD
DEXTR
COCO

DEXTR
Finetune

44.1 72.4 74.3 76.4 78.4

DEXTR Finetune IOU By Class (%)
Animal Ceramic Fabric Flora Food

76.9 86.8 79.1 77.0 87.5
Gem Glass Ground Liquid Metal
74.4 83.2 69.6 73.0 75.5

Paper Skin Sky Stone Wood
86.1 78.9 78.5 81.7 67.4

Table 3. Segmentations from extreme clicks. Grabcut [69] rectangles use bounding-box only
initialization as a reference baseline. Grabcut Extr is based on the improved GC initialization
from [57] with small modifications: (a) we compute the minimum cost boundary with the cost
as the negative log probability of a pixel belonging to an edge; (b) in addition to clamping the
morphological skeleton, we also clamp the extreme points centroid as well as the extreme points;
(c) we compute the GC directly on the RGB image. DEXTR [66] Pascal-SBD and COCO are
pretrained DEXTR ResNet101 models on the respective datasets. Note that Pascal-SBD and
COCO are natural image datasets of objects, but DEXTR transfers surprisingly well across both
visual domains (paintings vs. photos) and annotation categories (materials vs. objects).

Fig 12. Segmentation visualizations. Left to right: Original Image, Ground Truth Segment,
Grabcut Extr Segment, DEXTR COCO Segment. Both Grabcut and DEXTR use extreme points
as input. For evaluation, the extreme points are generated synthetically from the ground truth
segments. The IOU for each segmentation is shown in the bottom right corner.

that the painted depictions of materials can be beneficial for this task. Since some artistic
depictions focus on salient cues for perception through perceptual shortcuts, it is possible that a
network trained on paintings is able to learn a more robust feature representation by focusing on
these cues.

Task. We experimented with the task of classifying cotton/wool versus silk/satin. The latter
can be recognized through local cues such as highlights on the cloth; such cues are carefully
placed by artists in paintings. To understand whether artistic depictions of fabric allow a neural
network to learn better features for classification, we trained a model with either photographs or
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paintings. High resolution photographs of cotton/wool and silk/satin fabric and clothing (dresses,
shirts) were downloaded and manually filtered from publicly available photos licensed under the
Creative Commons from Flickr. In total, we downloaded roughly 1K photos. We sampled
cotton/wool and silk/satin samples from our dataset to form a corresponding dataset of 1K
paintings. We analyzed the robustness of the classifier trained on paintings versus the classifier
trained on photos in two experiments below. Taken together, our results provide evidence that a
classifier trained on paintings can be more robust than a classifier trained on photographs.

Generalizability of classifiers. Does training with paintings improve the generalizability of
classifiers? To test cross-domain generalization, we test the classifier on types of images that it
has not seen before. A classifier that has learned more robust features will perform better on this
task than one that has learned to classify images based on more spurious correlations. We tested
the trained classifiers on both photographs and paintings.

In Table 4, the performance of the two classifiers are summarized. We found that both
classifiers perform similarly well on the domain they are trained on. However, when the
classifiers are tested on cross-domain data, we found that the painting-trained classifier performs
better than the photo-trained classifier. This suggests that the classifier trained on paintings has
learned a more generalizable feature representation for this task.

Human agreement with classifier cues. How indicative are the cues used by each classifier
to humans? We produced evidence heatmaps with GradCAM [73] from the feature maps in the
network before the fully connected classification layer. We extracted high resolution feature
maps from images of size 1024 × 1024 (for a feature map of size 32 × 32). The heatmaps
produced by GradCAM show which regions of an image the classifier uses as evidence for a
specific class. If the cues (i.e., evidence heatmaps, such as in Fig. 13) are clearly interpretable,
this would imply the classifier has learned a good representation. For both models, we computed
heatmaps for test images corresponding to their ground truth label. We conducted a user study
on Amazon Mechanical Turk to find which heatmaps are judged by human to be more
informative. Users were shown images with regions corresponding to heatmap values that are
above 1.5 standard deviations above the mean. Fig. 13 illustrates an example. Users were
instructed to ’select the image that contains the regions that look the most like ¡material¿’, where
¡material¿ was either cotton/wool or silk/satin. We collected responses from 85 participants, 57
of which were analyzed after quality control. For quality control, we only kept results from
participants who spent over 1 second on average per trial.

Overall, we found that the classifier trained on paintings uses evidence that is better aligned
with evidence preferred by humans (Fig. 14). Due to domain shifts when applying classifiers to
out-of-domain images, we would expect the cues selected by the painting classifier to be
preferable on paintings, and the cues selected by the photo classifier to be preferable on photos.
Interestingly, this does not hold for photos of satin/silk (see last column of Fig. 14) – found that
users have no preference for the cues from either classifier, i.e., the cues from the painting
classifier appears to be equally informative as the cues from the photo classifier for categorizing
silk/satin in photos. This suggests that either (a) the painting classifier has learned the “key”
human-interpretable cues for recognizing satin/silk, or (b) that the photo classifier has learned to
classify satin/silk based on some spurious contextual signals that are difficult to interpret by
humans. We asked users to elucidate their reasoning when choosing which set of cues they
preferred. In general, users noted that they preferred the network which picks out regions
containing the target class. Therefore, it seems that the network trained on paintings has learned
better to distinguish fabric through the appearance of such fabrics in the image over other
contextual signals (see Fig. 13).

December 14, 2020 19/29



Fig 13. Visualization of cues used by classifiers. Left to right: Original Image, Masked Image
(Painting Classifier), Masked Image (Photo Classifier). The unmasked regions represent
evidence used by the classifiers for predicting “silk/satin” in this particular image. See main text
for details.

Photo→ Photo Painting→ Painting
MEAN F1 Score 79.6% 80.5%

Photo→ Painting Painting→ Photo
MEAN F1 Score 49.5% 57.8%

Table 4. Classifier performance across domains. Classifiers are trained to distinguish
cotton/wool from silk/satin. The first column represents the classifier trained on photographs,
and the second column represents the classifier trained on paintings. In the first row, the
classifiers are tested on images of the same type they were trained on (i.e., trained and tested on
photos, and trained and tested on paintings). In the second row, the classifiers are tested on the
other medium, i.e., trained on photos and tested on paintings and vice versa.

Discussion and conclusion
In this paper, we presented the Materials in Paintings (MIP) dataset – a dataset of painterly
depictions of different materials throughout time. The dataset can be visited, browsed and
downloaded at materialsinpaintings.tudelft.nl.

The MIP dataset consists of 19,325 high resolution images of painting, in which we have
annotated material information. Various datasets exists that contain artworks, for example, the
Painting-91 dataset from [74] consists of around 4000 paintings from 91 artists and was
introduced for the purpose of categorization on style or artist. More recently, Art500k was
released, which contains more than 500k low resolution artworks which were used to
automatically learn to identify content and style [75] in paintings. Object recognition, while
much more popular on natural photographs, also has been performed on paintings such as
in [76] and [77]. It is worth mentioning the WikiArt dataset, which is created by a non-profit
organisation, with the admirable goal “to make world’s art accessible to anyone and
anywhere” [78]. The WikiArt dataset has been widely used for a variety of scientific
purposes [47, 79–82].

What makes the MIP dataset unique is the availability of information on material depiction.
To our knowledge, no datasets exist that provide annotations on material depictions in paintings,
however a few datasets exists that provide material information for natural images. A notable
example is OpenSurfaces [40], which contains around 70k crowd-sourced polygon
segmentations of materials in photos. The Material In Context database improved on
OpenSurfaces by providing 3 million samples across 23 material classes [41].

The availability of materials in paintings is beneficial to the research of material depiction
and perception. In contemporary material perception (see [83] for a review) paintings are rarely
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Fig 14. Human preference for classification cues used by each classifier. The y-axis represents
how often humans prefer the cues from a classifier trained on the same domain as the test
images. For example, the first bar indicates that in 73.2% of the cases, humans preferred cues
from the classifier trained on paintings when classifying wool/cotton paintings (and thus, the
inverse, that in 26.8% of the cases, humans preferred cues from the photo classifier.)
Interestingly, note the last column – humans equally prefer cues used by both classifiers for
classifying silk/satin photos despite the painting classifier never seeing a photo during training.

used. A few noteworthy exceptions have already been mentioned within this paper, such as the
work of Di Cicco [17] in which the authors studied the depiction of grapes in 17th century and
used an explicit recipe written by a 17th century painter to recreate painterly depictions of
grapes. An explicit, written-down recipe is not required for perceptual research as we have
shown with our annotated highlights on glass. By only annotating pictorial cues the
perception-based recipe can be revealed. Our findings raise an interesting question: what other
perception-based recipes could generate insights into material perception? Does our finding of
stylized highlights on glasses extend to other shiny materials? Within material perception, the
perception of glossiness has received much attention [84–87], and a better understanding of
painterly depiction of glossy materials could be very beneficial. Of course, there is no reason
why perception-based recipes should be limited to glass or glossiness, as painterly depictions are
capable of conveying robust perceptions for many more perceptual attributes and materials [15]

For art history, the ability to easily access a large number of paintings that depict a material
might be interesting. Crowley and Zisserman [88] pointed out that art historians often have the
unenviable task of finding paintings for study manually. With the release of MIP, this task might
now become slightly easier for art historians that study the artistic depiction of materials, such as
for example stone [89, 90]. The fabric category, and it’s fine-grained subclasses such as velvet,
silk and lace could be used for the study of fashion and clothes in paintings in general [91, 92],
for paintings from a specific cultural context, such as Italian [93], English and French [94] or
even for the clothes worn by specific artists [95]. The human body and it’s skin, which clothing
covers, is often studied within paintings [52, 91, 96]. For example, the Metropolitan Museum,
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published an essay on anatomy in the Renaissance, for which artworks depicting the human
nude were used, many of which are incorporated in MIP [97]. In this work on anatomy, only
items from the Metropolitan Museum were used but with the MIP this could be extended and
compared to other museum collections. Furthermore, through for example the food and flora
category, the MIP could give access to typical artistic scenes such as stillives [98, 99] and floral
scenes [100] respectively.

The usages of large sets of images has been a common practice for computer vision research.
The usage of art datasets has been less common, but paintings have nevertheless been used in
various ways. Models that learn to convert photographs into painting-like or sketch-like images
have been studied extensively for their application as a tool for digital artists [48]. Recent work
has shown that such neural style transfer algorithms can also produce images that are useful for
training robust neural networks [101]. In a related paper, we more explicitly discuss specific
applications of the MIP dataset for computer vision [102]. Similarly, other domains of computer
vision research might benefit from painterly depictions. The finding of our perception-based
recipe for the stereotypical depiction of highlights on glasses could be useful for the generation
of images. Current image generation algorithms are capable of generating novel images, based
on learned statistics from a dataset [103, 104]. While a specific category of generated images,
e.g., faces, [105] is rapidly becoming indistinguishable from reality, a larger set of categories is
still proving difficult to generate due to the lack of sufficient training data. Moreover, it would
be interesting to see if applying explicit painterly techniques, e.g., perceptual shortcuts, or
stereotypical depictions could be leveraged in image generation. Perceptual shortcuts do not
mimic the statistics of the real world, but instead capture image cues in a stylized depiction that
explicitly trigger convincing human perceptions. Image generation algorithms that learn to use
perceptual shortcuts might more efficiently capture image features that trigger perceptions.

Although the findings reported in this study are valuable for their own sake, we hope that the
MIP dataset can support research in multiple disciplines, as well as promote multidisciplinary
research. We have shown that depictions in paintings are not just of interest for art history, but
that they are also of fundamental interest for perception, as they can illustrate what cues the
visual system may use to construct a perception. Furthermore, paintings are explicitly created
for human perception, which might be beneficial for algorithms trained on paintings. We have
shown that computer vision algorithms trained on paintings appear to use cues more aligned
with the human visual system, relative to algorithms trained on photos. The benefits of this
might also extend to learning perceptually robust models for image synthesis.

Our findings support our hope that the MIP dataset (freely accessible at
materialsinpaintings.tudelft.nl) will be a valuable addition to the scientific community to drive
interdisciplinary research in art history, human perception, and computer vision.
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• Fig. 2: Samuel Barber Clark, by James Frothingham. 1810, Cleveland Museum Of Art
• Fig. 3, left: Portret van een jongen, zittend in een raamnis en gekleed in een blauw jasje,

by Jean Augustin Daiwaille. 1840, Het Rijksmusuem.
• Fig. 3, middle: Still Life with Roemer, Silver Taza and Bread, by Pieter Claesz, 1637,

Museo Nacional del prado.
• Fig. 3, right: The White Tablecloth, by Jean Baptiste Siméon Chardin. 1731, The Art

Institute of Chicago
• Fig. 10, liquid: Lake George , by John William Casilear. 1857, The Metropolitan

Museum of Art
• Fig. 10, fabric: Man with a Celestial Globe , by Nicolaes Eliasz Pickenoy. 1624, The

Metropolitan Museum of Art
• Fig. 10, wood: The Monkey Sculptor, by Teniers, David. 1660, Museo Nacional del

Prado
• Fig. 10, stone: Thomas Howard, 2nd Earl of Arundel, by Anthony van Dyck. 1620, J.

Paul Getty Museum
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• Fig. 10, paper: Portrait of Mr. Storer, by Archer Shee, Sir Martin. 1815, Museo
Nacional del Prado

• Fig. 12, top: Dance before a Fountain , by Nicolas Lancret. 1724, J. Paul Getty Museum
• Fig. 12, bottom: Still life with fish, by Pieter van Noort. 1660, Het Rijksmusuem.
• Fig. 13: Interior of the Laurenskerk at Rotterdam, by Anthonie De Lorme, with figures

attributed to Ludolf de Jongh. 1662, J. Paul Getty Museum
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