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Abstract

We investigate identifying the boundary of a domain from sample points in the domain. We
introduce new estimators for the normal vector to the boundary, distance of a point to the
boundary, and a test for whether a point lies within a boundary strip. The estimators can be
efficiently computed and are more accurate than the ones present in the literature. We provide
rigorous error estimates for the estimators. Furthermore we use the detected boundary points
to solve boundary-value problems for PDE on point clouds. We prove error estimates for
the Laplace and eikonal equations on point clouds. Finally we provide a range of numerical
experiments illustrating the performance of our boundary estimators, applications to PDE on
point clouds, and tests on image data sets.
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Notation

Q bounded domain in R?. We denote the volume of €2 by |2].
R lower bound for the reach of 9€2.

do the distance function do = dist(x, 92) : 2 — R .

0,2 boundary region 9, = {x € Qdist(x, Q) < a} fora > 0.
wg volume of the unit ball in RY.
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P probability density function p : 2 — [Omin, Pmax] Where pmin and Pmax
satisfy 0 < pmin < Pmax < 00.

L Upper bound for the Lipschitz constant of p.

X set X = {x!, ..., x"} of i.i.d. sample points drawn from density p.

n total number of sample points considered.

r neighborhood radius.

& thickness of the boundary region we seek to identify.

v inward unit normal vector to 9€2, extended to dg<2 by (1.1).

U, Uy population-based estimator of the normal vector, and its unit normalization,
(1.3).

Uy, Dy first-order empirical estimator of the normal vector, and its unit normal-
ization, (1.2).

02, D2 second-order empirical estimator of the normal vector, and its unit nor-

malization, (1.5).

c?,! %, a7r2 (x%  first and second-order estimators of the distance to boundary of €, (1.12)
and (1.17).

Cy,Cy, G dimensionless constants explicitly stated in Appendix D.

1 Introduction

We focus on determining the boundary of a domain given sample points in the domain.
By determining the boundary we mean identifying the points which lie within an ¢ > 0
neighborhood of the boundary; see Fig. 1 for illustration. Our aim is develop an algorithm
that is efficient to compute, accurate (so that the boundary strip can be identified even for
& > 0 which is smaller than the typical distance between neighboring sample points), and
guarantees that we identify a high percentage of points that are within distance ¢, while
misidentifying as few points as possible that are at distance greater than 2¢ as boundary
points. Having such a set is sufficient for imposing boundary values for computing solutions
of PDE on point clouds.

Estimating the boundary of the support of an unknown distribution and the normal vector
to the boundary are important and basic tasks with many applications. Identification of
boundary points are crucial to solving partial differential equations (PDEs) on data clouds
[24, 57, 69, 77], and have applications such as detecting anomalies in a point cloud [38]
or assigning a notion of depth to each point (Sect. 6.3). Estimation of the distance of each
point to the boundary is also used to improve the accuracy of kernel distance estimators
near the boundary [11]. When the distribution is supported on a lower dimensional manifold,
identifying points close to the boundary is important for estimation of the manifold itself.
See [1] and references therein. While identifying the boundary of a point cloud is a basic
problem, there are relatively few works that investigate the question in depth, see Sect. 1.5,
and none satisfied the desired criteria above. In this work we introduce an approach that is
simple, efficient, accurate and has the desired guarantees.

Our approach is to first estimate the approximate normal vector to the boundary using a
kernel average. In fact, in Sect. 1.2 we develop two such estimators: a first-order estimator,
given in (1.2), which estimates the normal vector to first-order with respect to the kernel
bandwidth, and a second-order estimator, given in (1.5). We use these normal vector estima-
tors in Sect. 1.3 to define estimators for the distance to the boundary, (1.12) and (1.17), which
are, respectively, first and second-order accurate for points near the boundary. This allows
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Fig. 1 Boundary points identified using the proposed test (1.20)

us to define in Sect. 1.4 the statistical test for the boundary strip in (1.20). See Fig. 2 for
illustration of the test setup. We implement our boundary test using MATLAB and Python,
and make our code available on Github !

In this work we provide rigorous non-asymptotic error bounds of the first-order estimators
and only asymptotic estimates for the second-order estimators. We focus on the first-order
estimators in this paper, since nonasymptotic bounds for the second-order versions would
be highly complicated, involving nontrivial dependence on a large number of parameters,
including higher order derivatives of the density p and the boundary of €2, which the first-order
estimators do not require.

In Sects. 1.2 and 1.3 we motivate and define the normal vector and distance-to-boundary
estimators. The estimates on the normal vector estimators are provided in Sect. 2. Section 3
then establishes nonasymptotic estimates for the first-order test. In particular, the nonasymp-
totic error bounds on the distance estimator are provided in Theorem 3.3, and Corollary 3.5
establishes the nonasymptotic estimates for the first-order test. Asymptotic error estimates
for the second-order distance test are given in Sect. 6.2.

In Sect. 5 we state our boundary tests in the form of a practical procedure, see Algorithms
1 and 3. We conduct a number of experiments that illustrate the qualitative and quantita-
tive performance of the algorithms. We also discuss the optimal selection of parameters, in
particular the bandwidth of the kernel.

In Sect. 6 we turn to applications of the boundary test towards solving PDE boundary value
problems using graph-based approximations, which is one of the problems that motivated
our work. Since we estimate both the boundary points and the normal vector to the boundary,

1 https://github.com/sangmin-parkO/BoundaryTest.
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Fig.2 Illustration of the test setup: x0 is the point tested (Color figure online)

we are able to assign Dirichlet, Neumann, and Robin boundary conditions. In particular, we
study the eikonal equation with Dirichlet boundary conditions and Poisson equations with
Robin conditions on point clouds, and prove quantitative convergence rates to the solutions of
the continuum PDE:s. It is important to point out that not all methods for detecting boundary
points will lead to convergent numerical approximations of PDEs. If too few points are
identified, the boundary conditions may not be attained continuously as the mesh is refined
[24]. Similar problems can occur if points far inside the interior of the domain are falsely
identified as boundary points. The purpose of this section is to illustrate that our boundary
detection method is compatible with setting boundary conditions for PDEs on point clouds.
Our results cover only some preliminary examples, with much investigation left to future
work.

Finally, in Sects. 6.1.1 and 6.2.1 we implement numerical schemes for solving the eikonal
and Robin equations on point clouds and conducted a number of experiments to both illustrate
the solutions and numerically investigate the rate of convergence. Solving the eikonal equation
enables us to estimate the distance to the boundary of any point in the dataset, which gives a
notion of data depth on a point cloud. While our boundary test is not designed for working
with manifolds in high dimensional spaces, Sect. 6.3 include experiments with notions of
data depth based on the eikonal equation and Dirichlet eigenfunctions of the graph Laplacian
on MNIST and FashionMNIST, using our boundary detection method to set the Dirichlet
boundary conditions. The results are intriguing and agree with intuition; the boundary images
are clearly outliers while the deepest images are good representatives of their class.

1.1 Setting
Consider a domain 2 C R¢ such that both €2 and R? \  has reach at least R > 0, where reach

is the maximal distance such that for all x with dist(x, ) < R there exists a unique point
y € Q such that |x — y| = dist(x, ). Denote by p : R? — [0, 00) a probability density
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function, which we assume satisfies pmin < p < pmax on 2 for some positive numbers
Pmin < Pmax and p = 0 outside of 2. We assume that on €2, the function p is Lipschitz
continuous with Lipschitz constant L. Given a set of i.i.d. points X distributed according to
p, our goal is to identify the points that are close to the boundary 92 with high probability;

namely, we aim to approximate the set
0:QNX ={x e X :dqgx) < e}
of e-boundary points, where dg : 2 — R is the distance function
do(x) := dist(x, 9S).

Our approach is as follows: we approximate inward normal vectors, use these to estimate
the distance of each point to the boundary, and threshold the distance to obtain a boundary
test. For x € 9Q2 we denote by v(x) the unit inward normal to 9<2 at x. We extend the unit
normal to a vector field on the set 92 by setting

v(x) = v(x"), (1.1)

where x* € 92 is the closest point to x on d€2. Note that x* is uniquely defined on dg 2. We
can also equivalently set v(x) = Vdgq(x).

1.2 Estimation of the Inward Normal Vector

We now introduce the first and second-order estimator of v(x?). These estimators are accurate
when x? is near the boundary. This is sufficient as our test does not require any accuracy of
the estimated normal vectors in the interior. In fact, even in the continuum case the normal
vectors are not necessarily well-defined for points outside of 9z €2.

First-order normal vector estimator. Let » > 0 and X = {x!, x2,---, x"} be the set
of i.i.d. points distributed according to p. For each x € X’ we define the first-order normal
vector estimator

0, (x9)
[0, (x| |

1 & o
0 (%) =~ Y Mo p@HG =20, G0 = (12)

i=1

If 9,(x%) = 0 then we set D,(x?) = 0. In this case, our test will identify x%asa boundary
point. Note that this can happen with nonzero probability only when x? is an isolated point.
We also define the corresponding population level estimator

U, (x°)
|9, (x0)|”

B, (x%) = f x —xNp@)dx, 5% = (1.3)
QNB(xY.r)

Theorem 2.6 establishes precise error bounds on the normal estimator, which in particular
imply that

n3

1
P(|ﬁ,(x0)—v(x0)| >c<l°§”)d”) L (1.4)

for r ~ (logn/n)'/@+2 where C > 0 is a constant independent of n, with scaling C ~ d?.
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Second-order normal vector estimator. In addition to the assumptions for the first-order
test, we now assume that p is a C 2 function and that the boundary of Qisa C 3 manifold. To
reduce the bias that arises from the fact that p is not constant near x° we weight the points
by the inverse of a kernel density estimate of p. For each x” € X we define the second-order
normal vector estimator

1 L g0 () 52 (x0)
2.0 BG:O,r) i 0 <20 r
vy (x7) = — — ' =x"), V(X)) =" (L.5)
n ; 6 (x1) 102 (x9)]
where
By = 2d§n11 () (1.6)
x)=—"1/|- 2y (x7). .
wgn \ r = Bx.r/2)

Similarly, we set Grz % =0if f)r2 (xY) = 0. We note that the radius for estimating 6, namely
5 is somewhat arbitrary. Using r instead of 5 results in the error of the same order, however
in practice using r /2 resulted in smaller error than using r.

At the population level our estimator takes the form

=2/.0
3200 = fB - Zg)) o —x0dx, P60 = % (1.7)
where
2d
() = —— / p()dz. (1.8)
@dtr® JB(x,r/2)n2

In Sect. 2.1 we provide a proof that the error is indeed of size r2 when r 2 (logn/n) 1/@d+4)
for n large enough. In contrast to our results for the first-order test (Theorem 2.6) we did not
carry out a careful analysis of the second-order estimator to determine the exact constants
appearing in the error bounds, and only determined the asymptotic scaling law. A more
careful analysis of the second-order estimator is a nontrivial undertaking that we leave to
future work.

We note that in addition to its use for distance estimation and the boundary test, the
estimation of normal vectors is itself important to PDEs on graphs. It allows for the solution
of PDEs on point cloud with not only Dirichlet boundary conditions but also Neumann,
oblique, and Robin boundary conditions, which we study in Sect. 6.

1.3 Estimation of the Distance to the Boundary

The distance to 92, dq : Q2 — R, is differentiable in dg 2; see for example Lemma 2.21 in
[12]. Furthermore, the gradient of the distance function conicides with the extension of the
inward normal vector, that is, for x € 02 we have

Vdq(x) = v(x). (1.9)

We exploit this relationship to approximate the distance function using the normal vectors
near the boundary. First, we observe that dq, satisfies

do(x) = max {do(x) —da(y)} (1.10)
yeB(x,r)NQ
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provided B(x, r) N 92 is not empty. Indeed, the maximum is attained at y € 92 where
dq(y) = 0. Suppose dg € C? near the boundary. Then we can use the Taylor expansion

do(y) = dg(x) + Vdg(x) - (y — x) + 0(?)
in (1.10), along with (1.9), to obtain

do(x)= max {v(x)-(x —y)}+ 0F>). (1.11)
yeB(x,r)NQ

Replacing the true normal v(x) in (1.11) with our first-order normal estimator b, (x9), and
restricting the maximum to the point cloud, leads to our first-order estimator of the distance
to the boundary.

First-order estimator for the distance to the boundary of Q2. Let r > 0and X =
{xl, x2, ... x"} C Q. We define the first-order distance function estimator dr1 : X — Rby

d'% = max (% —xH)-0,(0). (1.12)
x’EB(xo,r)ﬂX

In Sects. 2 and 3, we show that the assumption that 92 has positive reach guarantees the
error rate O (r?) of the first-order distance estimator near the boundary.
The associated population based estimator d! defined by

d'x% = max  (x"—x) 5. (1.13)
xeB(x0,1HNQ

Note that the population based estimator has a positive bias, meaning dq x% < d-(x%. In
Lemma 2.4 we obtain explicit bounds on the bias which establish that d-(x%) — do(x%) =
O(r?) as r — 0. We combine this with variance bounds on 7, — D, established in Lemma 2.5
to show, in Theorem 3.3 that when r 2 (log n/n)l/(d+2) we have |c§,1 =" —dg (x0)| = O(rz),
with high probability, for x* sufficiently close to the boundary. The dependence of the error
bounds on the parameters is explicitly stated.

Second-order estimator for the distance to the boundary of . If the boundary of €2 is
C3, and thus dg is C3 within the a sufficiently small tubular neighborhood of the boundary
[46], then we can use the second-order estimator D) of the unit normal vector to obtain a
second-order accurate estimator for the distance.

To derive a second-order distance function estimation near the boundary, we proceed from
(1.10), as before, except now we use the higher order Taylor expansion

1
do(y) = dg(x) + Vdg(x) - (y = x) + 5 (y = %) - V2o (x)(y — x) + 0(7). (1.14)

To handle the second-order terms, which cannot be easily estimated from the point cloud,
we use the Taylor expansion

Vdgo(y) = Vdg(x) + V3dg(x)(y — x) + O ().
Taking dot products of both sides with y — x yields
(v — x) - V2o (x)(y — x) = (Vda(y) — Vda(x)) - (y — x) + O(r).

Combining this with the first expansion (1.14) yields

1
do(y) = do(x) + 5 (Vda(x) + Vdo () - (v = %) + o).
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Inserting this into (1.10) and using that Vdg (x) = v(x) we obtain

1
do(x) =  max {(x -y -5+ v(y))} +0(). (1.15)

yeB(x,r)NQ 2
Hence, the second-order distance estimator simply involves averaging the normals at x and
y. When discretizing to the point cloud, this yields the distance function estimation

Comax (0 —xf)- l(ﬁ,(xo) + D,(x") (1.16)
xieB(x0,r)NX, 2
The above test is second-order accurate when applied to points that are closer to boundary
than %, however at far away points, in particular those further than r, 13,2 (xo) and 13,2 (xi) are
to large extent random and can be almost opposite to each other. This can lead to the distance
being severely underestimated by the test above.
To avoid this problem, we define the second-order estimator with cutoff

A20viy _ 0520..0
dr ) = | max (x°—xf>’[‘°3<x°)+w

Tg, (D2(x') - a3<x°>)] :
xieB(x0, nnx

(1.17)

The rationale for the particular cutoff function is as follows. We need a highly accurate
estimate of the distance, for example, to determine the points in a boundary strip, only when
do(x%) < %r < R. The point where the right-hand side of (1.16) is maximized is on the
boundary. Thus the point where (1.17) is maximized, provided the normals are accurate, are
close to the boundary. Points far away from the boundary can only maximize the right hand
side if there is cancellation between the normal vector estimates. So we just need to discard
the points where the normal is very poorly estimated, or rather, where the normal estimation
is irrelevant as B(x?, r) N 92 = @. Selecting the points where D, (x’) - D, (x%) > 0 provides
a convenient way to do so. We note that instead of discarding such points, we simply resort
back to the first-order test, which provides another layer of robustness, in the case that the
assumptions under which the second-order test was derived do not hold.

Henceforth, by the second-order estimator we refer to the estimator with cutoff (1.17),
unless stated otherwise. In practice, we recommend the use of the second-order estimator.
The estimates of Sect. 2.1 imply that for r > (logn/n)'/@+% the test (1.17) provides a
second-order estimator of the normal vector. We note that unlike for the first-order test, our
analysis for the second-order test is in the asymptotic regime, without precise estimates in
the non-asymptotic regime. Developing the full error analysis of the second-order estimators
remains a future task.

1.3.1 Extension to Manifolds

We can generalize both the first and the second-order distance estimators to the case where p
is supported on an m-dimensional manifold M with m < d. We simply replace the normal
vectors by their projection onto the relevant tangent spaces approximated using PCA locally.
Using such projections in boundary estimation for manifolds has been exploited in [1]. Let
us denote by 77 the m-dimensional subspace spanned by the largest m eigenvectors of the
sample covariance matrix from the observations xt — x/ for x! € B(x7,r), and T1/ the
projection onto such a subspace. Thus we may define the first-order distance estimator in the
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manifold case as

d'% = max OG0 —x)) - 9.(9), (1.18)
xieB(x0,r)nx

and the corresponding second-order estimator as

) 820 iy _ 5200 )
d? p = o (M0G0=xh) - [ﬁf(x°)+WnR+(n0(a,2(x’)) : no(a}(xo)))}.
xteB(xY,r

(1.19)

Note we have the equivalent distance estimators when we replace every vector w that appear
in the above definitions with TT%w, which we avoid to keep notation simple. When M itself
has positive reach, T1/ approximates the projection onto the true tangent plane at x/ with an
error of O(r) in the operator norm with high probability; when M is a C3 manifold, the error
is of order O(r?) (see Theorem 2 of [2]). In fact, this is also true in the presence of small
additive noise. Further, Aamri and Levrard [2] suggest the same order of accuracy in the
presence of small additive, possibly non-random noise of order O (r2). This means that the
error rates for the estimated normal vector carry over, hence we can expect similar bounds
on the distance estimators. However, the analysis required in this case is more intricate. One
would need to bound the additional errors due to curvature and empirical estimation of the
tangent plane. Thus we do not include the analysis in the current paper, and instead leave it
to future work.

1.4 The New Boundary Test

Now we are ready to present our boundary test. Our aim is to create a test such that given
& > (0 small the test would recognize as boundary points all of the points within the distance
& from the true boundary of 2 and none of the points which are further than 2¢ from 9<2.

The boundary test we introduce depends on the empirical estimator of the distance to the
boundary.

Boundary region test. Let X = {x] X2 ,x"} C Q be an i.i.d. random sample of
the density p. Let &, 7 > 0 and x° € X. Given an empirical estimator of the distance to the
boundary cfr we define the test T"g,,. X — {0, 1} by

o5 3
et =l e <3 (1.20)
o 0 otherwise.

We denote by il , the estimator that uses the first-order estimator for the distance c?,l %
definedin (1.12) and by /T\2 the estimator that uses the second-order estimator for the distance
d*(x®) defined in (1.17).

Our theoretical guarantees focus on Tl In particular we show that T1 identifies the e-
boundary points with high probability, even when ¢ is much smaller than the typical distance
between nearby points. In particular Theorem 3.3 shows that, for ¢ > (logn/n)*/@*2) under
appropriate assumptions,

P(T!, (") = 01do(x°) < &) + P(T,,(x") =1 |do(x°) = 2¢) < 2d + Hn™3. (1.21)

The assumptions we make on the geometric parameters are as follows.
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i £~ 1
Assumption 1.1 < WL
Assumption 1.2 7> < Re.
Assumption 1.1 assures that r is sufficiently large so that distances to boundary of size

& can be detected. In particular it ensures that there are points x € B(x’, r) for which
(x = x%) - 9,(x% < —3£. Assumptions 1.1 and 1.2 together imply

()=t

which bounds the rate of growth of constant C in Lemma 2.2 in d. Assumption 1.2 is needed
in Lemma 3.1 to ensure that d ,1 (x9) does not underestimate the distance for positively curved
domains. Assumptions 1.1 and 1.2 imply

R
< —.
3Jd

This guarantees that at least one third of B(xo, r) is in €2, which is crucial for establishing
the lower bound in Lemma 2.1. Finally, r < g follows easily from the assumptions. This
implies the estimate

r<RE (1.23)
r

2

X
R—+VR?2—-x2< = for |x|<r,
which is used in the proof of Lemmas 2.1 and 2.2.
Now we summarize our result on the accuracy of the boundary test. Corollary 3.8 states
that under suitable conditions 9, ,X = {x € X : Ta{,(x) = 1} satisfies

082 C 0g,, X C 022

with probability at least 1 — 2dn =3 if

2
logn '\ d+2
e>C 8 (1.24)
n

for some constant C = C (d, R, L, Pmin, Pmax)- For our second-order boundary test, our
analysis in the asymptotic regime suggest that we can identify e-boundary points with & 2
(log n/n)3/@+% with high probability. Please see Sects. 2.1 and 4 for precise statements.

We can compare the above result with that from Cuevas and Rodriguez-Casal [36], which
gives the best available theroetical guarantee the authors are aware of. Theorem 4 of [36]
states that with probability one, the estimated set of boundary points 9€2, based on the
Devroye-Wise estimator [38] satisfies

logn

1
1 a
dy (992, 02) < (25w, 1)d ( ) eventually. (1.25)

Here, s denotes the standardness constant, which in our case is at least % Further, Theorem
5 of [36] states that the rate in n in (1.25) is optimal for the Devroye-Wise estimator. Let us
temporarily denote the right hand side of (1.25) by ¢,. Note that this allows identifying all
points within g, of the boundary and none farther than 2¢ via taking the points within ¢, of
09,.

@ Springer



Journal of Scientific Computing (2022) 92:56 Page 110f59 56

Note that our test satisfies, under suitable choices of ¢, r,

2
logn\d+2 . - -3
dp (0, X,0Q2) <2e =0 | —— with probability at least 1 — 2dn™",
n

provided we choose ¢ at the lower bound in (1.24). Thus for d > 3 our rate in n compares
favorably to the optimal rate of the Devroye-Wise estimator (1.25). However, the constant
in (1.24) is of order C ~ O(d>/?), while the constant (2s~'w; ")/ in (1.25) is of order
0(d"/?). Details on the dependence of the constants on d can be found in Remark 3.4.

Another notable difference is that identifying the boundary points through [36] does not
seem computationally tractable in higher dimensions. The points corresponding x’ whose
balls B(x’, r) contribute to the boundary correspond exactly to points on the boundary of the
a-shape [41] of X . However, computing this involves Delaunay triangulation and may be
difficult in dimensions higher than 3. See Sect. 1.5 for more details.

In contrast, our proposed boundary test is easy to implement and computationally efficient,
as can be seen in Algorithms 1 and 3. The range search task of identifying B(x?, r) N X for
each x¥ € X is the computational bottleneck of our test. This is computationally equivalent
to performing a k-nearest neighbor search for each point in X (all-kNN) for suitable k.
Empirically, k-nearest neighbor search (kNN) can be done in almost linear time with high
accuracy [10, 39]. For further details, we refer the reader to the discussions in Sect. 5.

Finally, our test does not require the knowledge of the intrinsic dimension of supp p. For
instance, if €2 is an m-dimensional disc, the proposed boundary test will perform exactly the
same when 2 is embedded in RY for any d > m, besides the slightly higher computational
cost of performing range search or kNN in higher dimensions. This is because our test is
based on estimation of the distance dg, which is intrinsic.

1.5 Related Works

One of most studied approaches to boundary and support estimation is via the Devroye-Wise
estimator, which approximates the support of p by a union of balls:

n

Q. =B (x", rn) . (1.26)

i=1

Devroye and Wise [38] establish the convergence of 2, to Q := suppp asn — occandr, —
0, at a suitable rate, in the following sense: p(2AS2,) — 0 in probability if r, > n1/d
while r,, 3> (logn/n)'/? implies almost sure convergence.

Cuevas and Rodriguez-Casal [36] established that, under certain smoothness assumptions,
the Hausdorff distances dy (2, Q) , dy (92, 9Q2) ~ (logn/n)'/¢, and that the rate is
optimal. Furthermore, it is possible to compute the points x? contributing to the boundary
0€2,, using «-shapes, introduced in [41]. However, a-shapes are a union of a certain subset of
simplicies of the Delaunay triangulation. This poses challenges as the Delaunay triangulation
ind > 3 dimensions is itself not an easy computational problem, as the number of simplices
can be large, up to O (n [4/21) [59]. Thus, while efficient O (n?) algorithms are established
for d < 3 [42], less is known for higher dimensions.

We also note that the Devroye-Wise boundary estimators have been used to estimate the
Minkowski content of the boundary of S, which for sufficiently regular sets approximates the
surface area ((d — 1)-dimensional Hausdorff measure). This is shown to be Lj-consistent
for general dimensions in [34] and convergent at O(n_l/ (2”’)) ford =2, 3 in [35].
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Casal [67] defines an estimator called r-convex hull, based on the Minkowski sum and dif-
ferences of sets and closely related to «-shapes, to approximate the support 2 with improved
rate of (log n/n)%/ @+ in the Hausdorff distance with high probability.

We note that the while the works of Devroye-Wise and Casal propose different estimators
for the boundary of the set, the data points x’ which are identified as being near the boundary
are the same for both estimators, see Sect. 5.1 for explanation.

Another family of approaches are associated with the kernel density estimators (KDE).
Estimating the density level set via the kernel density estimator is well-studied [29, 65].
Cuevas and Fraiman [33] approximate the support by the super-level sets { f > ap} of
the KDE f , where tuning parameter o, — 0 as n — 00, and establish dg almost at the
aforementioned optimal rate.

On the other hand, Berry and Sauer [11] approximates the distance dg of points to the
boundary of the manifold to improve accuracy of KDE near the boundary. To do so, they use
the graph Laplacian to estimate the normal vectors, and compute dg, by solving an expression
it satisfies in relation to the expectation of the said graph Laplacian.

For self-similar but possibly non-smooth 9€2, such as the von Koch snowflake, Lachieze-
Rey and Vega [52] use Voronoi cells to define an estimator that converges to €2 at the optimal
rate in dy when p is uniform.

Several further works, [1, 3, 30, 66, 74], have focused on identifying the boundary when
p is supported on a lower dimensional manifold M. Aamari, Aaron, and Levrard [1] gen-
eralize the result of Casal [67] to the manifold setting. They project the relevant geometric
quantities onto the approximate tangent space estimated using principal component analysis
(PCA) to identify the set ) C X of points such that with high probability, for all y/ € )
we have dy (v, 9M) < (logn/n)*@+D  Based on Y, they use the weighted Tangential
Delaunay Complex to provide an estimator approximating d M with rate (log n/n)?/@+1 in
the Hausdorff distance with high probability. Further, they establish that this rate is minimax
over the class of convex submanifolds (i.e. those diffeomorphic to a convex subset of R%),
thus showing not only that their upper bound is tight, but also that estimation of boundary
under the assumption of positive reach is not more difficult than that in the convex case.

Our first-order test identifies the set of boundary points such that with high probability
each point is at most (logn/n)%/ @2 While our theoretical results are established for flat
domains, we believe the same rate would apply to the generalized first-order estimator (1.18)
in the manifold case. Through the same boundary reconstruction process as stated in [1],
we may construct boundary estimators with the same rate, which is slightly slower than the
minimax rate proven by [1]. However, we note that our test identifies w.h.p. all points within
such tubular neighborhood of the boundary, which is stronger than obtaining the same bound
in the Hausdorff distance, and is important for application to PDEs on graphs.

It is also interesting to note that the asymptotic error rate for our second-order test (1.20)
based on distance estimator (1.17) in the Euclidean case is (log n/n)3/(d+4), see Sects. 2.1
and 4. This estimator however requires that manifolds are of class C3 and that p is C2, while
the rates in [1] hold for manifolds which are merely C? and bounded densities. Determining
minimax rates for estimators for C2, and more regular manifolds and densities, remains an
open problem.

Aaron and Cholaquidis [3] devise a statistical test to determine whether a random sample
supported on a manifold has a boundary, along with heuristics to identify some of the points
closer to the boundary. While their test uses k-nearest neighbor search instead of range search,
the suggested test statistic for each point x° is similar to the size of the projection of ,(x?)
onto the approximate tangent space at x°. Thus, loosely speaking, this statistic exploits that
the normal vector is of order O (r) near the boundary, while O(r?) in the interior. We note
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that this approaches only use the size of the estimated normal, while we utilize the normal
vector itself.

‘Wu and Wu [74] use the behavior of the locally-linear embedding (LLE) near the boundary
to identify boundary points. Interestingly, their test statistic is a quadratic function of a kNN-
analogue of our normal vector v, where the coefficients take into account the curvature of
d$2 and density fluctuations. Further, they provide theoretical guarantees for their test statistic
(see Proposition 5.1 of [74]).

A couple other methods try to use the normal vectors, but approximated in a different
way. BORDER algorithm [30] uses that, given a fixed k € N and sufficiently many points,
the number of points of which x is a k-neighbor of will be roughly half when x? is near the
boundary, compared to that when x° is in the interior. BRIM algorithm introduced in [66],
exploits the fact that given a suitable approximation of the inward normal at x°, say v(x), the
number of points x? such that (x’ —x°) - v(x?) is positive is greater than the number of points
for which the inner product is negative, when x° is near the boundary. BRIM approximates
the inward normal by identifying the point y € B(x°, r) N X such that |B(y, r) N X| is
largest, then using y — x© as the estimator. However, for both approaches, such difference is
of the same order as the statistic, which is weaker than the dichotomy used in [74]. Moreover,
none of the approaches above use the normal vector to measure the distance to the boundary,
which is one of the key elements for the improved accuracy.

Our convergence proofs for the solutions of PDEs on point clouds in Sect. 6 utilize the
maximum principle, building upon previous related works in the field [15, 17, 44, 50, 80]. We
also expect that recent advances in the studies of PDEs on point clouds [22, 23, 49] can also
be applied in this setting, to obtain, for example, spectral convergence for the Dirichlet graph
Laplacian. There are many methods in the numerical analysis literature for solving PDEs
on unstructured meshes or point clouds. Methods with rigorous convergence results include
the wide stencil schemes for Hamilton-Jacobi equations and elliptic PDEs [62], which were
originally defined on regular grids and have subsequently been extended to unstructured point
clouds [43, 47], and the point integral method [55]. Other works without convergence guar-
antees include upwind schemes for Hamilton-Jacobi equations on unstructured meshes [68],
mesh-free generalized finite difference methods [71, 72], least squares manifold approxima-
tion methods [56, 75, 78], the local mesh method [53], radial basis function methods [45,
48, 63, 64], and a recent approach using graph Laplacians and deep learning [57]. A general
survey of meshfree methods in PDEs is given in [28].

Regarding data depth, the ordering of multivariate data is an old problem in statistics [6,
58]. The goal is generally to extend robust statistical notions, like quantiles and the median,
to multivariate data. For point clouds, there are notions of depth like the Tukey halfspace
depth [76], which has been extended to graphs [70] and metric spaces [27], and the Monge-
Kantorovich depth [31]. There are also notions of depth for curves [37] It was recently shown
in [61] that the Tukey depth satisfies a non-standard eikonal equation in the viscosity sense,
at the population level. To the best of our knowledge, the eikonal equation on a graph has not
been used for data depth previously. Two forthcoming papers will study the graph eikonal
depth in more detail [21, 60]. Other examples of connections between data depth and PDEs
include convex hull peeling [25], non-dominated sorting [20], and Pareto envelope peeling
[13].

Outline. The remainder of this paper is organized as follows. In Sect. 2 we establish
preliminary estimates and error estimates on normal vectors estimators that will be useful
in proving the main results, which are presented in Sects. 3 and 4. Section 3 rigorously
establishes nonasymptotic error bounds for the first-order test, which is the theoretical basis
for applications to PDEs on graphs presented later in the paper. Section 4, under some
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additional regularity assumptions, establishes asymptotic error bounds for the second-order
test, which we recommend for practical use. Then we present the algorithm and discuss the
computational aspects of the boundary test in Sect. 5. Turning to applications, in Sect. 6 we
will apply the boundary test to solving PDEs on graphs with various boundary conditions.
Particular attention is paid to computing data-depth using PDEs in two ways: by solving the
graph eikonal equation, and considering the first eigenfunction of the graph Laplacian. We
also demonstrate these to MNIST and FashionMNIST data sets; see Sect. 6.3.

2 Preliminary Results and Error Bounds for Normal Vector Estimators

In this section we establish several results on the geometry of the empirical estimates we use,
most importantly the error bounds for the normal vector estimators. Nonasymptotic O (r)
error bound for the first-order normal vector estimator is given in Theorem 2.6, and Sect. 2.1
establishes asymptotic O (r2) error bound for the second-order normal vector estimator. All
the constants introduced in this and the following sections can also be found in Appendix D,
and are non-dimensional. That is, they are invariant under the change of length-scale.

First we derive useful bounds on f BGO.r) p(x) dx from the assumptions. We note that the
following lemma is closely related to the ‘standardness constant’ in [36], which denotes the
constant s > 0 in such that for all x € Q

0
BGO,nNel

B0 2.1)

This constant is of importance as it gives a lower bound on the number of points in B(x?, )N
with high probability. Our first lemma asserts that the Assumptions 1.1, 1.2 imply that s > % .

Lemma2.1 Letr > 0. Then

d
Pmin@Wd

< / p(x)dx < pmax@ar® 2.2)
3 B(xo,r)

Proof As the upper bound is obvious, we focus on the lower bound, which easily follows
from s = 1/3. We claim that (2.1) holds for s = § (1 — ). Note that B(=", 1) N @ at

least consists of the hemisphere minus the area between the tangent hyperplane at x0. As
the assumption r < g implies that the height of the region between the tangent hyperplane

and 2 with reach R is bounded above by %. Therefore, we may upper bound the area of the
region by considering the cylinder with base (d — 1)-dimensional hypersphere of radius r

. 2 . . 1,2 A+l
and height % Thus its area is wq_| rd 1% = @B Therefore

1 wig_1r wig_1 "
s> 1 d—1 _ _ @d-1 71 2.3)
2 wgr wg R
We introduce the notation
w4—
g = 247t (2.4)
wq

and claim that k; < +/d. Note that since I is a logarithmically convex function

r d+1 2<r d_1+1 r d+1+1
2 = 2 2 :
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Therefore, wfi > wi—1w4+1, and k441 > k4. On the other hand,

akas = L = FEs +1) _dr3
wg+1 nl (%—l—l) 2

Combining with k11 > kg, We get kg < Y4 < \/d asd + 3 < 4nd. Similarly, we have

a lower bound «44+1 > ‘%3 > %«/ d + 1, which will be of use later. Hence

«/3<wd—1 - Jd

3 Sy S (2.5)

Combining the upper bound of (2.5) with (2.3), we have s > % (l - */gr). This, along with
(1.23), implies that s > §. O

In the following two lemmas we examine the bias of the population-based estimators.

Lemma 2.2 (Bias of the estimated normal) For every x° € Q with dg(x°) < r/2 we have

C 0
50 — a0 £ LI, 2.6)
provided | — | < 1, where
LRw,
Cy =2wq-1 + d
Pmin
d+1
2\ 2 2.7
(1= (555 )

€% = d+1)

In particular, whenever do (x°) < 2/(3+/d), we have Cy x% > 2?)5_;11).

|~
N—"
[\ )

IA

Remark 2.3 (Lower bound on Cy) Suppose do(x9 < 2r/(3\/3). Then (dg(fxo) —

dg (x°)? 4 1
Qr); =54 = 771

N d+1 2

do(x*) do (")
(-(s2-5)) = (g =y e
and so
Wd—1
C,(x% > < 2.9
y(X)_Z(dJrl) (2.9

This lower bound will be important for results to follow. Observe that dg (x®) < r/+/d allows
a similar bound C, % > wy_1/d.

Note also by Assumption 1.1, do(x%) < 2¢ is a sufficient condition. As this is more
intuitive and sufficient for theoretical results on the boundary test, we henceforth state the
condition as dg (x%) < 2, but note here that all such conditions can be replaced by dg x% <

2r/(33/d).
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Proof of Lemma 2.2 We write

0,(x%) = E1 4+ p(x*) Ea, (2.10)
where
E = / x —xN(p(x) — p(x%)) dx, @2.11)
QNB(x0,r)
and
Ey = / (x — x%) dx. (2.12)
QNB(x0,r)

Since p is Lipschitz with constant L, the term E| is bounded by

,
|E1|§L/ |x—x0|2dx:L/ / t2dSdtdx
B(xY,r) 0 JaBxO,1)

r Ld
= L/ degtt' dr = =222 pd 42, 2.13)
0 d+?2
We now estimate E,. Without loss of generality, we may assume x = (0,0, ...,0, o)

for o = dist(x?, 3Q2). By the assumption that the reach of 32 is greater than R > 0, we have
2
0 0 r
QN Bx",r) C {x € B(x",r) : |xq] < E}’

provided r < R/2. Therefore

2wy_qrdt?
EZ—/ 2(x—)co)d)c -1
B(x0.nN{xg>"%}

5/ |x0—x|dx§7.
0 2 R
B(Y, nN{lxal<F}

(2.14)

We now change variables z = (x — x%)/r and write

/ , (g —x)dx = ! / zadz
BGO.IN(xa= ) BO.DN{za= 5~ %)

— rd+1/ zq4dz,
B0,DN{zg=|%—% |}

where the last inequality comes from symmetry of the integrand. We now compute for any
0<r<l1

1 yud=1
zgdz=wq-1 | za(l—2z3) 7 dz
B(0,1)N{zg>t} t

1
:w"“/ (1—5)7" ds
[2

2

Wd—1 PNES
= 1—¢t7) 2.

d+1( )

Due to symmetry of the integrand, we have

40 _
/ , - (xj xj)dx—O
B(x0,nN{xg> "2 )
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forall j =1,...,d — 1. Combining this with (2.14) we find that

‘Ez - ;"i‘l (1-(2- %)2)% M) < M, 2.15)
provided |2 — 5| < 1, since v(x%) = e4. Thus
-0y @d-1 o 2\ T dr1 0 2w4-1 o d+2
v,(x)—d+1(l—(7—§)> 7 v(x)f(Tp(x)—i—Lwd)r .
We complete the proof by noting

m}

Based on the bias of the estimated normal, we can approximate the bias of the distance
estimator.

Lemma 2.4 (Bias of the distance estimator) Let x0 € Q with do(x?) < 2e. If

RC,
r<—2 (2.16)
2C,
then
_ 7C 1
do(x%) < d} (x°) < do(x") + ( m C*y + E) r. (2.17)

Proof (1) Recall
] n
A0 i 0
(%) = - _X;ﬂBuO,r)(X’)(xl —x7)
1=
and
Ed, (x%) = / (x = xNp () dx = 5,(x").
B(x%,r)
We consider the population based statistic

dh® = max  {(°—x)- 5}
xeQNB0,r)

) -0
where 7, (x¥) := H;ZSO;H'

(2) By Lemma 2.2 we have
_ 1
v,(xo) = (Iy,o(xo)rd 11)()(0) + -0 ((pr(xo)rd 2) .

Here, we can use the big-Oh notation very precisely, to mean that f € O(g) if | f| < g
(without any implicit constant). Therefore

1
15, = CypO)r®* 4+ =0 (Cop®r®*?) .
’ R
We also have

@ —x) - 5, = Cyp)r* T —x) v + %O(cxp(x%rd”). (2.18)
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We now write
o 1
15,0 Cypx0)rdtl 4+ LO(Cp(x0)rd+2)
1

o0ttt (14 10 (%1))

‘We now use that

1 1
—— =14 0O@]|t]) for |x| < 5

141t
Hence, if
RC,
r< , (2.19)
2C,
L. . Cyr 1
which implies that RC, <7 then we have
1 1 4Cyr
= 1+0 . 2.20
10,(x0)]  Cyp(x0)rd+! ( * (Rcy>) 220
Recall from (2.9) that Cy, > %. Thus
C LR
Y < 2(d+ 1)<2+ K").
Cy Pmin

(3) Inserting (2.20) into (2.18) we have
o°—x) - 5,(:%)
10, (x0)]

R N cxiﬂ 4C,r
= (= a0 (Z2)) (10 (7))

Cor? | ACr?  4CEP7
RCy = RCy,  R2C3

" —x) 0 (%) =

:(xo—x)~v(x0)+(9<

2.21)

5C, 2 4C% 3
:(xo—x)'v(xo)—i-O( x! x! ,

RC, ' R2C?

where x € QN B0, r). '
(4) To obtain the lower bound we simply observe that max,,i _ Xo‘sr(xo —x') - vis smallest

when v = v(x?), in which case max|x;_xo‘§,(x0 —x) - v(x% = dq(x%). Thus
do(x%) < dh(x") (2.22)

(5) For the other direction, by the assumption that the reach of d€2 is greater than R, we
have

2
QNBGY, ) C {x e B, : x¥—x) v(x%) <do(x®) + %} . (2.23)

provided r < R/2. It follows that

1 4C33
) 2 x" (2.24)

- 5C
dh(°) < do(x° R ~
Q) =do(x”) + RCy+R R2C2
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(6) Now combining (2.22) and (2.24)

we have
- 5C 1 4C? 7C 1
do (%) < dl (x0) < x LY s x 3~ x Ly 2
) =do) = (%o T3 "t wrcr” =\ke, TR)"
as desired, where the last inequality follows from the condition r < Izeng . Finally, as kz ~ Jd
by 2.5), & ~ d3. o

Next, we bound the variance of D, the empirical estimator of the normal vector.

3
Lemma 2.5 (Bound on the variance) Let y > 0 and ¢ < %@T‘M. Ifda(x°) < 2e and r
satisfies )

1
2 a+2
3y Pmaxd”®q logn << RC, 2.25)
c? n 2C,
then
P (|f)r(x0) — 5,0 > 7“) <2dn77. (2.26)
Cyp(x0)
Proof Let us first fix x? € X. For eachj=1,2,---,dlet
St =Y gt —x9).
i=1
Note
0% = Var (]lB(xo’,)(xi)(x; - x?)) < / . Ix' — x°Pp(x) dx < pmaxwar®™>.
B(xY,r)

By Bernstein’s Inequality C.3, we have

d
1 i _
> crd+2> < ZI]P <‘ES,4 — vr(xo)j
-

Crd+2
>
d
d
- Z 5 |: _nC2r2d+4 :|
< exp | —
= 2d2/Omalxwzl7'd—~_2 + ﬁrd+3

P <|ls,, - 5,(x%
n

d 2,.d+2
ncer
<2) exp| - 2 ¢RC,
j=1 Pmax@d + 6dC,
<24 netrdt?
X —_—
- P 3d2:0maxwd

where the second last inequality follows from (2.16), and the last inequality from the condi-
tion

c < 6d* Cx Pmax@d
- RCy '
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The exponent is smaller than —y logn when

1
3VPmaxd20)d logn\ 2
r > _—
- c? n

which is (2.25). Thus

IP(m,(xO) — 5G] > crd+2) <2dn”" 2.27)
Now, note that
DO N S I V2 € 30 B /2 € 30 .0 1
() = ool = 55 o T 0| = ”’(x)<|ﬁr(x°)| |ﬁr(x°)|)‘
19, (x0) — 0,(x0)]
[0, (x0)]
Then (2.27) implies
ﬁ<x°>< S >‘= L 16,015, %) = 15, (O
' 10,(x0)]  [0,(x0)] [0, (x0)] ' '
1 _ 0+ 0 Crd+2
< mh)r(x ) —0,(x7)] < m
and
d+2
f 0y -0 cr
5,00 ) T IS T
Therefore, we have
d+2
P(w,(xo) 50 > 2T ) <2dn”7. (2.28)
[0, (x0)]

Finally, from (2.20) and the condition r < I;TC; we can deduce (2.26) as

2crdt2 - 2crdt2 1+0 4C,r _ 6cr
|1_)r(x0)| - C)’p(xo)rd+1 RCy N Cyp(xo).

Theorem 2.6 (Error estimates for the estimated normal vector)
Let x° € X with dg(x®) < 2¢. Let y > 2 and &, r > O satisfy Assumption 1.2. Let r and n
satisfy

1

2 2 a+2
3]/,omaxd2 wqgR” logn << RCy' (2.29)

C2piin n 2C,
Then

13C
P (15, — v = —r) <2dn™ (2.30)

RC,
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1
. . [ 3ypmaxd?wy R? logn a2
Remark 2.7 Observe thatif r satisfies (2.29), then we may choose r = P ,
X Fmin

which means
1
1 d+2
P (wr(x‘)) —vxY = C (ﬂ) ) <2dn™"
n

with

_ Cx [ 3YPmax d*wyR? 2
C = 272 ~d ,
C)’ Cx Prin

where the asymptotics in d can be derived using Stirling’s formula. For a more detailed

analysis of the how the constants scale with dimension, please see Remarks 3.4 and 3.6.
Further, we note that the above result holds for x° € €2, — i.e. the reference point need

not be one of the samples. The same applies to following results on the distance estimator.

Proof The upper bound of (3.4) allows us to apply Lemma 2.4, which we will combine with
Lemma 2.5. The lower bound in (2.5) implies that

3 3
6d° wy - 12d°(d + 1) -
¢, - Kd -

12

0 3 0
from which easily follows C*pR(x ) < & er“*‘CX‘”"C*. Thus we may set ¢ = %. Then
S

Lemma 2.5 implies that if

R
- 3y pmaxd>wg R? logn \ 77
B C)%prznin n

then, by (2.20),

2C AC,r 6C
5% -0, < == (1+0( =2 — 2.31
[V (x7) — vy (x )l—Rcy< + (Rcy»r_RCyr (2.31)
with probability at least 1 — 2dn~", where the last inequality follows from the condition
r< o
Next we bound |7,(x%) — v(x?)|. Again by (2.20)
_ 0, (x0) 0
19, (x%) — v (x| =‘ . —v(x¥)
! |0, (x0)]|
1 - 0 4Cyr 0y,.d+1. .0
= 1+0 -C .
Cyp(xo)rd“ Ur(x )( + (RCy )) yp (X v (x")
By Lemma 2.2
4C
500 (140 (220)) = €t o)
RC,
4C, v, (x°
< 150 — Cyp (Ot u(a0)) 4 2E O
RC,
Thus

C 4C 4C%r 7C
15,(:%) — v (x| < == U L

2.32
=%®e," T ke, TR = Re," (2:32)
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where the last inequality follows from (2.19). Combining (2.31) and (2.32) we have

13C
19, (x%) — (x| < chr

with probability at least 1 — 2dn™7 . O

2.1 Second-order Estimators: Asymptotic Error Scaling

Here we analyze the asymptotic error of the “second-order” estimator of the normal vector,
13,2 (x9), defined in (1.5), and show that the error is indeed second-order in r, for points x0
sufficiently close to the boundary, namely dg (x%) < r/+/d, which allows us to use (2.6) with
a reasonable lower bound on C), (x9) (see Remark 2.3). We note that in this section, in order
to simplify expressions we use radius r for estimating 6, instead of the radius /2 as in (1.6)
and (1.8). However, a similar argument works when we set the radius to be r/2.

For simplicity, we first assume the boundary is the graph of a quadratic function near x°.
That is that near x* = [x%|e; and the boundary is given by

xa = Hx)TAH ()
where Aisa (d — 1) x (d — 1) symmetric matrix and
H(x) = (1,0 xa-D)"

We also introduce the symbols for projection of a vector to the e, direction and for central
symmetry with respect to the first d — 1 variables

Nix)=x-eqeq and S(x) = (—H(x), xq).

Furthermore let U(x) = B(x, r) N Q.
Since v2(x")-e; > Cri*! by estimate (2.6) it suffices to show that | H (v (x?))| < Crd+3.
We start by noting that due to symmetry of the quadratic function near x°

2.0 _1/ px) o, PSM)) 0
H (v (x ))_2 U(xO)H<9(X)(x X )+9(S(x))(S(x) X ))dx

- 1/ lp()B(S(x)) — p(S(x))0(x)]
2 Juan 0(S(x))0(x)

|H(x)|dx

8
T sup [p()AS()) — p(S())B ()]

Prin xeU(x0)

=

For x € U(x") we now estimate, assuming 47 < R and using that S is isometry between
U(x) and U(S(x))

lp(X)O(S(x)) — p(S(x))0(x)]

p(X)/ p(z) — p(S(x))dz — ,O(S(X))/ p(z) — p(x)dz
U(S(x)) U(x)

ward

d

< p(x) Vo(N(@©0)) - (z — Sx))dz — ,O(S(x))/ Vo(N0)(z —x)dz
wqr U(S(x)) U(x)

+ 4|l I D*plloor?
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1
= —— |(p(S(x)) = p(x)) / Vo(N(0))(z — x)dz| + 4llpllz | D*pll oor?
wqr U(x)
<4(IVollZe + ol D*pliLee)
Combining with the estimate above we obtain
|H (@2 (x°))| < Ccrit3

where C depends on p alone.

We now relax the assumption that the boundary of €2 is a graph of a quadratic function.
Namely note that since the boundary of © is C3 there exists C” > 0 such that near x°
the boundary of 2 is between the graphs of x; = HXTAH®x) — Cr|H(x)|3 and x; =
H(x)T AH (x) 4+ C,|H(x)|3. Note that neglecting the part of 2 between the graphs produces
an error of size 743 and that all of the estimates above carry over to the part of  where
x4 > H(x)TAH(x) + C,|H(x)|>. Thus it still holds that |T (8" (x°))| < Cr¢*3, only that
C depends both of p and 2.

‘We now outline the argument at the level of the sample. One can use standard concentration
inequalities to control the variance and obtain the regime in which the empirical estimator
9" is within Cr? of the population based estimate .

Applying Bernstein’s inequality to the random variables Y/ = Klrd]l‘x J—x|<rj2 ONC
obtains

10(x"y — 0| < r? (2.33)

with high probability provided that r 2 (logn/n) 1/(d+4 Using the union bound the estimate
holds uniformly for all i. Thus

1< 1 X .
P — 1y ) (i 0y

) < rd+3
i=1 o(x")

~

Using the Bernstein inequality once more one obtains that

n

I Teeon@) i 0 o
nZ o) (x' —x7) —v7(x")

i=

S rd+3

with high probability if r > (logn/n)'/ @+
Combining with v2(x?) - ¢4 > r¥*! and |H (22 (x?))| < r¢*+3 we conclude that |2 (x°) —
v(x?)| < r2, as desired.

3 Nonasymptotic Error Bounds for First-Order Distance and Boundary
Estimators

In this section we establish the main results. Namely in Theorem 3.3 we show that the

estimator c?,l (x% has O(@?) error, provided that r 2 (logn /)l @+2) We then use this

. 2
estimate to show that when %

points.
We start with establishing a lower bound on error of the distance estimator d!.

< & < r then we can accurately identify the e-boundary
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Fig. 3 Geometry relevant to the lower bound on ﬁ,l (xO). o =dg (xo) A % (Left) Case where dg (xo) < %;

(Right) case where dg (x0) > 5

Lemma 3.1 (Lower bound on the distance estimator) Let y > 2, 0 < t < do(x9), and
suppose Assumption 1.1 holds. If n and A > 0 satisfy

n>dv(1+4h

and t, r satisfy

d22(d—])/2 1
1Y ( Og">, 3.1)
Pmin®Wd—1 n
then
4} = (1= )daG®) A 5) =1 (32)

with probability at least 1 —n~7.

Remark 3.2 In fact, the lemma holds for any unit vector « that may depend on X'. Recall that
the second-order distance estimator dr2 defined in (1.17) is of the form
% = max (% —x).a,
x€B(xO0,r)nx

where |i| can be as small as % in the interior, when & is an average of orthogonal unit

vectors. Thus a slight modification allows us to obtain a similar result to the second-order
distance estimator d?.

Sketch of Proof As the proof involves lengthy elementary calculations, we delay the full proof
to Appendix A, and only present the main ideas here. The idea is to ensure that for any unit
vector u € S, possibly depending on the samples X, there is a point in the spherical
segment S* N € that contains points at least (1 — 1) (dg @ A %) — t away in the opposite
direction of u. See Fig. 3 for the illustration in the case u = v. As there are infinitely
many choices of u, we shrink the spherical segment slightly so that we have a finite family
{5‘1, cee S‘N} such that for any u € S9=1 we can find S' C S“. This means it suffices to
show that each §' is nonempty fori = 1, --- , N, and

P! (x%) < (1 — 1) (da(x°) A % —1) < P($* N Q is nonempty for all u € S~ 1)

N
< Z]P’(Si N @ is nonempty foralli = 1,---, N).

i=1
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1k . Yot . d gk . @
- 05 0 05 1 05

0 0.5 1
Fig. 4 Boundary test on an annulus with inner and outer radii 0.5 and 0.8, respectively. n = 2000 points are
drawn from uniform density on the left and sinusoidal density with L = 2 on the right. The point cloud is
represented by black dots, while blue and green dots are the points whose true distance to the boundary are in
[0, &) and [¢, 2¢) respectively, for ¢ = 0.03. The red circles show the points identified by the 2nd order test,
with r = 0.18, as boundary points. Observe that most blue dots are indeed correctly identified, and almost all
points identified by the test are either blue or green dots (Color figure online)

For suitably chosen spherical segments, we may observe that S N 2 contains a cone K with
the same base and height as the spherical segment. Thus the proof comes down to obtaining
a lower bound for the volume of this cone, and an upper bound on the number N. O

We now state the nonasymptotic error bounds on the first-order distance estimator.

Theorem 3.3 (Error bounds for the distance estimator) Let ¢, r > 0 satisfy Assumptions 1.1
and 1.2. Let constants Cy and Cy be as in (2.7), and

paes e
3Ypmaxd?@aR?\ [ 4yCyd?2@=D/2\

C, = — max )
' Cx2,012nin 13 pmin®a—1Cx
Suppose y > 2, and n, r satisfy
RC,
>dv (1 2! 33
"= ( 1, ) G-
and
1
RC, (@)”’” << RS (3.4)
n 2C,
Then, for x° € X we have
r  13C n
do(x%) A i Tc:rz <d'(x% (3.5)
with probability at least 1 — n¥. Moreover, if dg(x°) <2¢ <r,
A 13C 1
d} (x) < da(x%) + (RC:‘ + E) r? (3.6)
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with probability at least 1 — 2dn™" .

Remark 3.4 We make two brief remarks. Firstly, (3.3) is a much weaker condition than the

1
lower bound of (3.4), as r > RC, (k’g ") e implies

n

RC, . RC 4 [ n \7m
Yl < L (RCH) T TR :
13C, ~ 13C, logn

which is much smaller than » for reasonably large 7.
Secondly, we note that C, ~ wgl/d. Using Stirling’s formula d! ~ «/2wd(d/e)? one

obtains wg ~ (1/v/7d)(2me/d)?2. Therefore C, ~ w,;'/* = 0(J/d)

Proof We first prove the upper bound (3.6). Suppose dg (x% < 2¢ < r. Condition (3.4)
allows us to apply Theorem 2.6 to obtain (2.31) —i.e.

13C
50y (0] < 28x
[V-(x7) —v(x?)| < RC, r
with probability at least 1 — 2dn~". Thus
Al = max {(xo — Xy (5, (%) — v(x®) + v(xo))}
x'eB(xg,r)NX
<  max " —xH - GaY —vE%) + ~ max @0 —xy v
x'eB(xg,r)NX x'eB(xg,r)NX
13C;

A

1
2 0 2
+d X))+ —
_RCyr () Rr

with the same probability. The last inequality uses the bound on |, x% — v(x0)| and that
positive reach condition implies (2.23). Thus we have the upper bound (3.6).

Next, suppose x” € X, not necessarily close to the boundary. Letting t = ISCCJ r? in
Lemma 3.1, if r satisfies V
I 4y Cyd*2@=D/2 Jogn
13pminwi—1Cx 1
then Lemma 3.1 implies that
A0 o T 13C ,
d.(x7) = (I = M) (da(x") A 5) - ZC:r (3.7

with probability at least | —n~7, givenn >d v (1 + 4A_1). Further, choose A = 1R3CC: r, SO

that by Assumption 1.1

r Ar 13C,
AMdaO A Dy <20 = 2,
(o)A F) =3 2RC,

Then (3.3) implies

13C_x 2
r
RC,,

)

d}(x%) = do(x%) A 26 — A(da(x") A g) — 1> do(x") —
hence we obtain (3.5). ]
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Corollary 3.5 (Accuracy of the boundary test) Let x° € X, y > 2 and &, r > 0 satisfy
Assumptions 1.1 and 1.2. Let C, be as in 3.3.
Ifn > d v 33 and r, n satisfy

logn ™ RC,
RC, <r< : (3.8)
n 2C,
and ¢ satisfies
1 /26C
- T+2)rt<e 3.9)
R\ Cy

then

P(7!,(x%) = 11do(x%) = 26) + (T, (x") =0 [de(x*) < &) < 2d + Dn"7.  (3.10)

In particular, choosing the optimal r, &

2

| [26C, ) , (26Cy logn \ 72
- 2) 2 = RC 2 : 3.11
ER(C),+>r "\ n G-10)

the test identifies the e-boundary with probability at least 1 — 2d + 1)n™7.

Remark 3.6 Recall that (1.22) implies

Cx
<2d+ 1|1

RL 3
kg )| = 0(d?)
Pmin

as kg ~ Jd by (2.5). Also, recall from Remark 3.4 that C, = 0(\/3 ). Therefore the constant
for the optimal choice ¢ = C(log n/n)z/(d+2) in (3.11) satisfies C ~ C,?CX/C_v ~d32,

Proof Supposen >dV (1 +4-8)=dvVv33and do(x%) > 2¢. Then we may choose A = %
in (3.7) and apply Lemma 3.1 to deduce

7 r 13C
—(do(x) A 2) — -
b A g) -2
Te  13Cx , 3¢

> r- >
=4 2RC, 2

13C,
2RC,

d'(x%) 2

A%

7
P> g(dg(xo) A2¢) —

with probability at least 1 —n ™", where last inequality follows from the condition (3.9). Note

# < %.Thus we deduce

that we have used that Assumption 1.1 implies 2¢ <
P(7}, (%) = 11da(:°) > 2¢) <n 7.

On the other hand, if do (x®) < &, then the upper bound in (3.6) applies. Thus, again using
(3.9)

A 13C 1 3¢
dl 0 <d 0 X = 2< ,
L (x7) < do(x”) + RCy+R s

with probability at least 1 — 2dn~7. Hence
P(T},(x°) = 0]da(x*) <&) <n”7.
Combining this with the bound for the probability of false positive occurring, we obtain

(3.10). o
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For application to solving boundary value problems on graphs [24], it is crucial to limit
the number of false positives, while the false negatives are not as detrimental. If we are only
interested in bounding the probability of false positives, we may obtain the improved rate

1
e = C(222)™ with € ~ .

Theorem 3.7 (One-sided accuracy of the boundary test) Let y > 2, and x° € X. Suppose
e, r > 0 satisfy Assumptions 1.1 and 1.2. If n > d v 33 and ¢, r satisfy

_1
(ya'22(d_1)/2 logn)dﬂ 5

<r <

oo

Pmin®d —1 n
then

P(T,,(x°) = 1]da(x°) > 2¢) <n7.

Proof Again, recall that Assumption 1.1 implies 2¢ < 5. Applying Lemma 3.1 with r = r?
and A = é, we have 3,1 % > %(d@ x% A r/2) — r? with probability at least n~7. Thus if

472 <e¢
then, with probability at least | —n™"

N 7 7 7 3
drl(xo) > 3 (dQ(XO) A %) -t > 3 (dQ(xO) A 28) - > Zg - = > ;

&
4
This implies that 7, (x%) = 0 by (1.20). O

Corollary 3.8 Letx° € X, y > 2. Letn > d Vv 33 and be sufficiently large such that

2 1
1 T 1 T
g=RC5(0gn> ,r=c,(°g”> (3.12)
n n

satisfy Assumptions 1.1 and 1.2. Recall the definitions

3.2 = {x* € X :do(x”) < a)
d,X = ("X T} (x9) =1
Then, with probability at least 1 — (2d + D)n' 7.
0:2 C 0g , X C 02:92. (3.13)

In particular, by the Borel-Cantelli lemma, the test identifies a set between 0,$2 and 02,2
eventually with probability 1.

Proof By Corollary 3.5, applying the test to all n points we have (3.13) hold with probability
atleast 1 — 2d + Dn™Y -n=1—Q2d + Dn'~7. |

Remark 3.9 (Reconstruction of boundary from boundary points) Based on the set d,X of
boundary points we can reconstruct the boundary strip that approximates 92 in the Haus-
dorff distance. See for instance Theorem 3.11 of [1] and the comment preceding it on the
reconstruction process using Delaunay Complex, and [2] for further details.
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4 Asymptotic Error Bounds for Second-Order Distance and Boundary
Estimators

In this section, we use the O (%) bound on the second-order normal estimator f)rz from Sect.
2.1 to obtain O (r?) error bound on the second-order distance estimator c?rz in the asymptotic
regime, additionally assuming 9<2 is of class C3 and p € Cg(Q). Namely, we show that we
can find some constant C > 0 independent of  such that

(% > do(®) A L — 3, and
R 2 4.1)
d?(x%) < do(x%) + Cr? if do(x%) < 2¢

with high probability under the scaling » 2 (logn /m)Y/ @+ Note that the lower bound
holds for general x € X, not just those close to the boundary. Given the estimates above,
we may set ¢ = Cr3/2 ~ (log n/n)3/ @49 1o see that our test (1.20) will identify the e-
boundary points with high probability. For a detailed argument deducing accuracy of the
boundary estimator from that of the distance estimator, please see the the proof of Corollary
3.5; while the corollary applies to the first-order estimator, the same argument carries over
to the second-order estimator.

For simplicity, we will show (4.1) for a slight modification of the estimator (1.17). Namely,
instead of the cutoff T+ (D2 (x?) - D2 (x0)), we use Ly x<cr (192 (x7) — D2 (x0)]) for suitably
large c, say, twice the Lipschitz constant of dg(-). Note that this is a reasonable cutoff, as

1921y = D2(x0)] < D2(xD) — v+ () — v+ (%) — D20

From Sect. 2.1 we know that the first and third terms are small are of order O (%) when
r 2 (logn/ n)1/@+4): the second term is of order O (r) as v(x) = Vdg (x) near the boundary,
which is a C? function as we assumed 9% to be of class C3. Thus, for sufficiently small r
we have

570 = D760 = S = x4+ 00 =er.
Upper bound. For the upper bound, suppose dg (xO) <2¢.Fixc,C' > 0andr > 0, and
denote by E the event
Ey = {Iﬁf(xi) —v(xh| < C'r? forall x; € B(x°, ) N X such that dg(x') < r/\/g}.

Recall from Sect. 2.1 that Eo occurs with high probability when r > (logn/n)'/@+% and
C’ > 0is chosen suitably large. ‘
For simplified notation, let us temporarily define ' (x) foreachi = 1, --- , n by

D2(x') — D2 (x0)

it (x%) = [af(xo) + 5

T xzer (1D2(x7) — ﬁ%(xo)n} : 4.2)

so that d2(x%) = max,i cg(,0 ynx (+° — x7) - i (x%). Define the set X by
X={lex:x"—xH-i'x% =0}
Then we may write

%= max O—xH-a'(% = max (" —x")-a'(x0).
xieB(x0,rnx xieB(x0,r)NX
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Indeed the right-hand side is the nonnegative part of c?,z(xo), while cfrz(xo) > 0 due to that
x% € B(x?, r) N X. Thus the above equality holds.
Due to the cutoff, note

i’ (x°) ' (x°)
|4 (x0)] |l (x0)]
for sufficiently small r. Thus, if x' € X, it is in the half plane opposite of 4 (x?), which
is closely approximated by the half plane opposite of v(x?). As do(x?) < 2, collecting

the errors due to curvature of the boundary and the difference between 7l (xo) / |t (x0)| and
v(x9), we see

— v(xo) < — f)rz(xo) + |v2(x0) v(x0)| <cr+ 0(r2) < 2cr

do(x') <2 +12+2 2o D
X & Cr
. R JVd

when & < r and r is sufficiently small. Thus, by Eo we have |07 (x") — v(x)| < C’'r? for all
x' e X, and

Ny 820 0
~ . vo(xt) +vi(x
d?(x%) = max (" —x)- M
r . ~
X eB(x0,HNX 2

Now, when 9 is of class C3, recall (1.15) holds. Thus, we have

dg(xo) >  max {%(v(xo) +v(x))) - (xo — xj)} + 0(r3).

x/eB(x0,r)

Then we have the upper bound on a7r2

ﬁrz(xo) — dg(xo) < max {1 (ﬁrz(xi)
xieB(x0nnx (2
0,9 = () = v(e) ) - (0 = 2D | + 007 = 067,

as [x% — x| < rand [D2(x") — v(x")| + [D2(x0) — v(x0)| <72,

Lower bound. Recall the elementary equality ‘”er' =1 lb=wl w' that holds when
|u| = |w| = 1. This implies the following lower bound on the magmtude of & (x%) defined
in (4.2)

L N e i (4.3)

Writing o = dg(x%) A 5, under the assumptions of Lemma 3.1, we have

P@?*(x%) < (1 — Mo —1) :]P’( max (0 —x).ql <1 —A)a—t)
xieB(x0,rnx

=

=IP’< max (xo—xi)' i < Al A)a—t)).

xieB(x0,HNX i |at

1 < 1+ Cr? when r is sufficiently

1
lal] — V1=c'r?

By (4.3), we can fix C > 0 such that
small. Ast < a < r, we have

P@?(x%) < (1 — Aa —1)

Al
51@( max (% —x) o <A —=MNa—1+Cr ((l—k)a—t))
xieB(Y,)NX it |
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Al
SIF’< max (xo—x")'éf(l—k)a—t—i—Cﬁ)Sn_y.
xfeB(xO,r)ﬁX |ul|

The last inequality follows when s > Cr3 by Lemma 3.1, as its proof only uses that | D, (x0)| =
1. Choosing t = 2Cr3 and A < Cr? for instance, we obtain that 62,2 *x% > do(x% —3Cr3
with high probability, and the condition (3.1) becomes r > (logn/n)'/@*2) Note that this
is less restrictive than the scaling r = (logn/ )1/ @+4  required for the upper bound. While
Lemma 3.1 also requires n > d A 42! but this is a much milder condition when A ~ rZ2.
Thus we deduce that (4.1) holds with high probability when r > (logn/n)!/(@+9,

5 Algorithms and Experiments

We now turn to the algorithms for our boundary tests and related numerical experiments.
After presenting the pseudocode for the boundary tests and briefly commenting on the com-
putational complexity, we demonstrate the efficiency and accuracy of our results, focusing
on domains with constant positive or negative curvatures. Again we stress that, while the
rigorous theoretical results in Sect. 3 are established for the first-order test, we recommend
the second-order test for practical purposes. As we will see, the second-order test takes into
account the curvature, hence performs much better than the first-order test.

To begin, we present the pseudocodes for the first- and second-order boundary tests, and
the generalization of the second-order test to point clouds supported on manifolds. See Fig. 4
for Algorithm 2 applied to a two-dimensional annulus; Fig. 5 shows application of Algorithm
3 to two-dimensional surfaces.

Algorithm 1 First-order boundary test

Input: The set of points S = {x1 ,+-+,x"}, and parameters r, ¢ > 0
Output: T (x;) = 1 if x; is a e-boundary point, 0 if an e-interior point

l:fori =1---ndo

2 T(@) <1

3: o (x') < Z)7EB(xf,r)f‘|S (y - X])

4 D) < (/10D

50 dfmax i poi ns (= x> 32—5 then T(i) =0
6

7

: endif
: end for

We add that the algorithms can take a percentile p% as an input instead of &, so that
it outputs the top p% of points with smallest estimated distance. This may be easier to
implement in practice than choosing ¢, as the lower bound for ¢ depends not only on n but
also on R, p and d. Theoretically, p% and ¢ are interchangeable; we may set the largest
estimated distance within the p% percentile to equal to the threshold, 375

Remark 5.1 (Computational complexity) Noting that range search task is essentially equiv-
alent to k-nearest neighbor search for suitable k, we briefly remark on the computational
expense. The best rigorous upper bounds for computing all-kNN for z points in R? known
to us, without number of parallel processors growing with n, are O (n(log n)4=1) [8] and
O(kdd nlogn) [9]. Note that the the suitable choice of k for us is k ~ wgrén, which, under
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Algorithm 2 Second-order boundary test

Input: The set of points S = {xl, -+, x"}, and parameters r, ¢ > 0
Output: T (x;) = 1 if x; is a e-boundary point, 0 if an e-interior point

l:fori=1---ndo .
20 00 < X g ()

52 (”’ ~')
3: (X ) <~ ZxJeB(x’ NS H(rf)
4 DR < 020 /107 ()|
5: endfor
6: fori =1---ndo
7. for j=1---ndo . )
urz(x]) — ﬁ%(x’)

8: W s = P2 + 5 g, (2 - D2(x1)
9: end for ) ) B

10: it maxj g i g 6 =) 010 > ¥ then T(1) =0
11:  endif

12: end for

Algorithm 3 Second-order boundary test for point clouds supported on manifolds

Input: The set of points S = {x1 ,--+, x"}, parameters r, ¢ > 0, and the dimension of the manifold m
Output: T (x;) = 1if x; is a e-boundary point, 0 if an e-interior point

1: forz—l -n do
2: 0 6(xh) ez i ILB(x r/z)(x/)

(=)

3 o) < Zx/eB(xl NS "By

4: v,(x ) <—vr(x )/|v,(x )|

5: Yl « rangesearch(xi, r)

6: Y <Y —71'

7. {vy, -+, um} < eigenvectors associated to m largest eigenvalues of (Yi — xi)T(Yi — xi)
8: T! « Span{vy, -+, vm}

9: end for

10: fori =1---ndo
11: forj=1---ndo
P2(xd) — D2 (xh)

12: 0 osr = D) + 5 Ig, (T (G2 () - I (B (1))
13:  end for

14: if Max j p(xi NS i[(x! —x/H)]- D D! Y oost > 8 then 7(i) =0

15:  endif

16: end for

the optimal choice of the test radius r = RC, (log n/n)d*i2 < de_l/d (log n/n)d*i2 for our
first-order test, has the following scaling in n and d

k < (logn)@pae.

Please see Remark 3.4 for further details.

While the computational cost of exact all-kNN is not cheap, approximate all-kNN can be
performed at nearly linear time in n. For instance, the algorithm suggested in [39] reports
that empirical cost scales like n!1* on average with above 90 percent accuracy. Python
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Fig. 5 Boundary points of point clouds supported on 2-dimensional surfaces, identified using Algorithm 3.
n = 2000, r =0.21, ¢ = 0.05. Point clouds are marked in black, and the boundary points are circled in red.
(Left) No additive noise. (Right) Additive Gaussian noise with standard deviation set as 1% of the diameter
of the surface. Surfaces appear irregular as they are reconstructed from noisy samples (Color figure online)
GraphLearning [19] package uses the Approximate Nearest Neighbors algorithm (ANNOY)
[10], which also provides close to linear scaling in 7.

Remark 5.2 (Intrinsic dimension of M) In practice the intrinsic dimension m of M often
unknown. However there are many ways to recover this from the eigenvalues A; < --- < A4
of the sample covariance matrix (Y —x?)(Y? —x?)” . There are two big drops in the eigenvalue
distribution. Near the boundary, eigenvectors sufficiently parallel to the normal direction have
smaller eigenvalues due to the absence of points one one side of d M. However, this gap should
not reduce the eigenvalues much more than halving. On the other hand, A, 1, - - - , A4 are due
to curvature, and thus are much smaller compared to the first m when curvature is bounded.
Thus we may recover the dimension m by for instance, counting the number of eigenvalues
before the steepest drop in ratio )”A—Jlr‘

‘We now describe the setting of our numerical experiments. In Figs. 6, 7, and 8 we consider
two types of domains: a ball, and an annulus, both with reach R = 0.5. Recall that this means
the ball has radius R and the annulus has inner and outer radii Ry = R, R, = 1.6R. By the
boundary of the ball mean the sphere, and by that of the annulus we refer only to the inner
boundary {x : |x| = R1}, so we can observe how the test performs when the curvature is
negative. Thus we test only the points satisfying |x| € [Ry, Ry — r].

We consider the density function p parametrized by the Lipschitz constant L. The sinu-
soidal density has the form
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| 1st 1st
- 2nd

0.15

0.05

; ‘ ‘ ‘ 2% ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
(A) 3D ball with R = 0.5, and n = 4000. Left panel L = 0 and right panel L = 2.

1st

0.15

0.02 0.04 0.06 0.08 0.1 0.04 0.06 0.08 0.1
(B) 3D annulus with Ry = 0.5, R2 = 0.8, and n = 12000. Left panel L = 0 and right panel L = 2.

Fig. 6 Plot of distance to boundary with ¢ = 0.03, » = 0.18. x- and y-axes each represents the true and the
estimated distances respectively. 1st and 2nd refer to the order of the algorithm used. The boxes in the upper
left and lower right corners specify the region for false negatives and false positives respectively. Only 1000
relevant points are plotted for improved visibility. Clear trend of 1st underestimating (resp. overestimating)
the distance in a domain of positive (resp. negative) curvature is observed

px) = ﬁ (1 + %sin(Lllel)) , (5.1)
so that sup,.q [d10(x)| = L. Note that our theory in Sect. 3 applies to Lipschitz functions
that are not necessarily of class C'. Indeed, we note that results obtained using the triangular
wave density were similar.

The boundary tests are as described in (1.20), where the first-order test (‘1st’) uses the
distance estimator (1.12), and the second-order test (‘2nd’) uses the estimator (1.17).

Measuring the test error. Let ¢, r > 0 be the boundary width and the test radius. Given
a test we are considering, let the set of tested boundary points be the set of points in X’ where
the test i,r defined in (1.20). The tested interior points is the complement of the tested
e-boundary points in X. Let P be the number of tested boundary points and N the number
of tested interior points:

P=tx'eXx : T.,x)=1} and N=t{x'ecXx : T, (x')=0}.

We measure the error rate in a different way than is standard in hypothesis testing. We
do it in a way that measures better whether we succeeded in our stated goal to create a test
that would identify a large percentage of points near the boundary and would not misidentify
as boundary points almost any points deep in the interior. This is important to be able to
accurately set boundary conditions for PDE.

Thus we refer to 9,2 = {x € X' : dist (x, Q) < e} and Q5, = {x € X : dist (x, Q) > 2¢}
as true boundary and true interior points, respectively. We refer to tested boundary points
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Fig.7 Test failure rates depending on the test radius, number of points, sign of curvature, and the type of tests.
e = 0.03, R = 0.5. Ist, and 2nd are as in the previous experiments, while t1st and t2nd denote the first and
second-order tests using the true normal vectors. Results have been averaged over 10 independent runs
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Fig.8 The plot shows the smallest number of points n for which TFR < threshold, for given boundary width
¢. (Left) Ball, threshold= 0.5%, (Right) Annulus, threshold= 10%. Maximal n considered was 20000 for the
ball and 25000 for the annulus. We considered density with L = 2, and r = +/¢. Number in the legend indicate
the slope until n becomes stable. 1st order test applied to negatively curved domains have high false negatives,
hence the TFR never went below the threshold. Hence the results from the 1st order test is not included for
the annulus. Results have been averaged over 10 independent runs

which lie in €25, as false positives and tested interior points which lie in 9, €2 as false negatives.
We denote the number of false positives and false negatives by

FP=txeXxnQs, : T,,x)=1} and FN=t{x e XN Q : T, (x') =0}.

We denote by B P the number of true boundary points BP = (X N 9.2).
We define false negative rate (FNR) and false positive rate (FPR) by
FN FP
FNR=— and FPR=—.

BP BP
By the test failure rate (TFR) we mean the sum of FNR and FPR. Note the unusual definition
of FPR. From the point of view hypothesis testing FPR would be the ratio of FP and true
interior points. Given the large number of true interior points such measure of error would
be small even if there is a significant number of points that were misidentified as boundary
points. For our purposes it is important that the impact of false positives is small to the
impact of the true positives. Thus we measure the error much more stringently and compare
the number of the false positives to the number of true boundary points.

Remark 5.3 (Smoothing the estimated normals) We observed that it is possible to further
improve the accuracy of the estimated normals, thus of the test, if we smooth the normals in
a small neighborhood using a suitable kernel. This reduces the variance, and tends to work
well in combination with the second-order normal vector estimator (1.7), which limits the
bias even in the presence of fluctuations in the density. However, when the second derivatives
of the density p are large there can be a large bias in the estimated normal. In such cases we
found that smoothing may worsen accuracy as errors accumulate.

In Fig. 8 we see that the first-order test for the ball shows n ~ ¢~2, corresponding

almost exactly to the optimal theoretical scaling ¢ ~ r2, & ~ (logn/n)*/@*2) established in
Corollary 3.5. We see similar trends with the second-order test for the ball. However, the first-
order test shows extremely poor performance for the annulus, due to the negative curvature.
For it to work, we need n large and ¢, r small enough so that the curvature is negligible. On
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the other hand, the normalized second-order test shows exponential relationship between n
and ¢, although the exponent is worse than its counterpart for the ball.

Remark 5.4 (Choice of parameters ¢, ) We have established in Theorem 3.3 that the optimal
scaling for the first-order test is » ~ (logn/n)'/@+2 and ¢ ~ r? as n — oco. However, in
practical situations, often n is not sufficiently large to guarantee that such scaling is realistic.
Then how should we choose ¢ and r?

We observe from Fig. 7 that the 2nd order test with the true normal vectors (t2nd) gives
close to perfect results for both domains. This suggests that the 2nd order test for the most part
resolves the challenge posed by curvature, which Ind order test suffers from, and accurate
estimation of normal vectors is key to boosting performance of the boundary test.

There are trade-offs in choosing r: clearly, when r is too small, the estimated normal
is inaccurate due to high variance. On the other hand, large r leads to larger bias caused
by curvature or fluctuations in the density. However, in Sect. 2.1 we have showed that the
normalization by degree in the 2nd order estimator for the normal vector limits the bias to
O(r?) even when p is non-uniform. Indeed, we see in Fig. 7b that FNR of 2nd is close to
that of t2nd even in the presence of nontrivial fluctuation with L = 2 and relatively large r.

Thus, using the 2nd order test, it suffices to choose r in a reasonable range, so that B 0, r)
contains sufficiently many points, and r is not too close to the reach R, when a rough estimate
of R is known. When the reach is completely unknown, then we recommend that r is taken
to be the smallest so that each ball of radius » contains sufficient number of points.

i 32
Given r, € should be chosen so that the ratio % of the volume of the balls is

no larger than, say, %, to limit the number of false positives. The particular coefficient % 2

is is chosen as the threshold of our test is at 375, and W can have magnitude as

small as % when the sharp cutoff function is used. Note that for fixed r, ¢, the ratio of the
volumes decreases in dimension, as volume concentrates near the boundary of the ball in
high dimensions. On the other hand, ¢ should be large enough so that the strips of height %
and width around r contain enough points; this limits the possibility that points y with dg(y)
around 2¢ are falsely tested positive. See Fig. 3 and Lemma 3.1 for details.

5.1 Comparison with Other Approaches

We limit our comparisons with other border detection algorithms to a couple of visual illus-
trations and remarks. The reason for this is that other algorithms were not designed to identify
a boundary layer of desired width, ¢, that our algorithm is designed for. Furthermore in most
cases there is no straightforward way to adapt other algorithms to do detect a boundary layer
of fixed width.

We compare our 2nd order boundary test with, tests based on the Devroye-Wise estimator
(1.26) (DW), BRIM [66], and the statistic of Wu and Wu (WuWu) [74]. Recall that the
Devroye-Wise estimator €2,, approximates supp p, and by boundary points we mean the
points which contribute to the boundary 92, —i.e. x' € X such that B(x, &) N 32, # @.
We note that these are also exactly the data points that lie on the boundary estimator of Casal
[67]. As discussed in Sect. 1.5, such points are precisely the boundary points of the «-shape
[40, 41], a generalization of convex hull, with « = 1/¢. In dimensions d = 2, 3, efficient
algorithms for «-shapes exist, and we used the built-in function in MATLAB [73] to compute
the contributing boundary points.
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Fig.9 Comparison of tests for n = 2000 points drawn out of density p defined in (5.1), with (top, and bottom
right) L = 3, and (bottom left) L = 1. The second-order test with ¢ = 0.03, r = 0.18 is compared with (top

left) the Devroye-Wise estimator with radius o L (top right) BRIM, and (bottom) WuWu. For BRIM and
WuWu, the colored points are in the indicated top percentile according to the test statistic

For BRIM and WuWu, we implemented in MATLAB the algorithms described in [66]
and [74] respectively.

In Fig. 9 we see that the Devroye-Wise estimator via «-shape effectively finds a thin
boundary when a suitable « is used. The choice of appropriate « depends heavily on the
density of the set of points considered. Smaller @ ~! identifies more points, and in particular
allows recognizing those where boundary has negative curvature. On the other hand, choosing
o~ ! too small increases the risk of falsely identifying interior points, lying in an area of low
density, as boundary points. Indeed, the top plot of Fig. 9 exhibits such a trade-off: the test with
a~! = 0.1 misses boundary points around the concave indents, while choosing «~! = 0.05
results in false positives deep inside the interior. In the context of solving PDEs on graphs,
such false positives can be catastrophic.

As pointed out in Sect. 1.5, computing «-shapes becomes expensive when d > 3. We
tested a commonly used alpha shapes package in Python [7] on a high performance computer
with a4.5GHz CPU, and found that the computational complexity in dimension forn = 1000
points independently and uniformly distributed on the unit ball in dimensions d = 2 up to
d = 9 followed very closely to the exponential complexity O(n%23?). In terms of raw
computational times, the alpha shape for n = 1000 points in dimension d = 9 took 110
minutes, and d = 10 and d = 11 would have taken roughly 12 and 77 hours, respectively.
The memory requirements seem to grow very quickly as well, with d = 8 taking 13 GB and
d = 9 requiring roughly 45 GB.

In contrast, BRIM easily generalizes to dimensions higher than 3. BRIM uses a similar
basic idea as our approach: it approximate the inward normal direction. It does so by identi-
fying the point x' € B(x?, ) maximizing | B(x’, r) N X|. To detect the boundary it compares
the number of points in the normal direction and those opposite of it. The test is sensitive to
variations in the density. Indeed the plot in the top right of Fig. 9 shows that BRIM identifies
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significantly more points on the left boundary, near which the density is high, than it does on
the sparsely populated right.

WuWu also generalizes well to arbitrary dimension. Furthermore, it takes into account the
curvature of the boundary by using spectral information of the ‘sample covariance matrix’
(see Sect. 1.5). We can see in Fig. 9 that WuWu consistently detects points near negatively
curved parts of the boundary. However, it is not as robust under fluctuations in density.
Observe WuWau classifies considerably more points on the left side of the boundary, where
points are densely distributed, compared to the right. Further, some interior points are in the
top 15% according to the test statistic; this can be resolved by increasing k for kNN, but at
the cost of successfully identifying fewer points close to the boundary.

We also ran experiments using the test statistic suggested by Aaron and Cholaquidis [3],
but it did not perform well, as their statistic is designed to decide whether the manifold has
a boundary or not, rather than to identify boundary points.

We stress again that all the other algorithms we compared were not designed for the task
considered. We note that our method is as fast as any of the other methods and provides the
best quality boundary for the task considered. Furthermore there is no error analysis that
would suggest that any of the other methods are second-order accurate.

6 Solving PDEs on Data Clouds

One immediate application of boundary detection is the ability to solve PDEs on point clouds
with flexibility in the choice of boundary condition. All of the present approaches to solving
PDEs on data clouds, where the boundary is not known in advance, rely on a variational
description of the problem and thus result in natural variational boundary conditions. For the
graph Laplacian this always yields homogeneous Neumann boundary conditions (see [24]
for discussion of the graph Laplacian near the boundary). In this section, we show how we
can use our boundary detection method, which includes an estimation of the normal vector
to the boundary, to solve PDEs on point clouds with various boundary conditions, including
Dirichlet, Neumann, oblique, and Robin problems. We then give applications to computing
data-depth and medians on real datasets, and present intriguing numerical experiments on
MNIST and FashionMNIST.
Throughout this section, we fix some additional notation. For ¢ > 0 we define

0:Q2 = {x € Q : dist(x, Q) < ¢}

and set Q, = Q\ 9,€2. We recall that ¥ = {x',..., x"} is our point cloud, which is
assumed to consist of independent and identically distributed random variables with density
p : 2 — R. We will place various assumptions on p throughout the section. We also assume
we have an accurate estimation of the points from X that fall in the boundary tube 9, 2. This
is provided by our main results on boundary detection in Theorem 3.3 and Corollary 3.5. In
order to make the results in this section as general as possible, we simply assume that we
have computed a boundary set 9, X C X that satisfies

Xe C Q2 and 9, X C 02,92, 6.1)
where X, = X'\ 0. X.
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6.1 The Eikonal Equation

First, we consider extending Theorem 3.3 to estimate the distance function
do(x) = dist(x, 02) (6.2)

on the whole point cloud X'. We can do this by solving the graph eikonal equation

min [ua(y)—us(xi)+|y—xi|}:0, ifx' e &,
yeBo(xi,e)NX (6.3)

ua(xi) =0, ifx'e 0: X,

where we write Bo(x, ) := B(x, ) \ {x} for the punctured ball. The solution u, of the
graph eikonal equation (6.3) is exactly the distance function on the graph with vertices X
and edge weights w;; = |x' — x/|if |x' — x/| < &, and w;; = oo otherwise. When this
graph is connected, the solution of (6.3) is unique. The solution of (6.3) can be computed
with Dijkstra’s algorithm in O (nk log(n)) time, where k is an upper bound for the number of
points in B(x, &) N X over all i. We expect the solution u, converges to the distance function
dg as ¢ — 0. Indeed this section is focused on proving this convergence with a quantitative
O (&) error rate.

For (6.3) to be well-defined, we require the set By (x', ) N X to be nonempty for all
xt e X,.

Proposition 6.1 Let n > 2. The event that Bo(x', &) N X is nonempty for all xi € X, has
probability at least 1 — n exp (—%wdpmi,,nsd).

Proof By the i.i.d. law, the probability that By(x’, &) N X is empty conditioned on x' € X
is

n—1 n—1
<1 _/ p(x) dx) = (1 - pminwdgd) =< exp <_pminwd(n - l)gd) .
B(xi &)

The proof is completed by union bounding over X, and using that n — 1 > %n for
n>2. O

We briefly review some basic properties of the distance function. We recall a function
u: Q — R is semiconcave with constant C if u — C|x|? is concave. The distance function
dgq is 1-Lipschitz and semiconcave with constant 1/R (see, e.g., [26]). By the Alexandrov
theorem, a semiconcave function is twice differentiable almost everywhere in 2. The distance
function also satisfies the dynamic programming principle

do(x) = min {do(y)+ |y — x|}
yeB(x,¢)

for all balls B(x, &) C 2. This can be rearranged into the form

min {dq(y) —da(x) + |y — x[} = 0. (6.4)
yeB(x,¢)
Thus, the graph eikonal equation (6.3) is merely a discretization of the dynamic programming
principle (6.4) to the point cloud X'. At any point x € 2 where dq is differentiable, we can
Taylor expand dg in (6.4) and compute the minimum explicitly to find that |Vdg(x)| = 1. If
2 is bounded, the distance function dg, always has points of nondifferentiability (for example
at its maximum).
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The equation |Vu| = 1 is referred to as the eikonal equation (more generally |Vu| = f).
The distance function dg can be interpreted as the unique viscosity solution of the eikonal
equation. The viscosity solution is a type of weak solution to a partial differential equation
(PDE) that allows non-differentiable functions to be solutions of first and second-order PDEs.
In the case of the eikonal equation, and other first-order convex Hamilton-Jacobi equations,
the viscosity solution coincides with the unique Lipschitz and semiconcave function that
satisfies the PDE almost everywhere. We use the semiconcave interpretation here and do not
discuss viscosity solutions directly. We refer the reader to [5, 16] for more details on viscosity
solutions.

We now turn to convergence of the solution of the graph eikonal equation (6.3) to the
distance function dgq,. For this, we require a notion of asymptotic consistency.

Lemma6.2 Let0 <t < é. The event that
2

. 4 45,
min [Adgz(x) — Ado(x') + |x — x’|] <4+ 2 _—1e  (65)
xeBy(xi,e)NX R

holds forall . > 1 and x' € XN, has probability at least 1 —n exp (— %pmmnsd (21) %>

The proof of Lemma 6.2 requires some well-known properties of the distance function, which
we summarize in the following Proposition, whose proof is postponed to the appendix.

Proposition 6.3 Ler ¢ > 0 and x0 € Q.. Let x,. € B(x°, ) such that

do(xy) = min dgq. (6.6)
B(x0,¢)

Then x, € dB(x°, &), do(xy) = da(x®) — &, and for all x € Q we have

0_

1 b
do(x) —do(xs) < p-(x —x4) + E'X - x*|2, where p = 6.7

Proofof Lemma 6.2 Let A > 1 and let xi € B(x', ) such that dg (xfk) = ming,i . dg. For
x' € X N Q. we can apply Proposition 6.3 to obtain
rdo(x) — Ado(x)) + |x — x| = Adg(x) — Adg(xl) — re + |x — x|
i Ao i i
<Ap-(x x*)+R|x X, re+|x —x'|
for any x € B(x, ), where p = (x' — xi)/e. Since |x — xfkl < 2¢and |x — x| < & we

obtain

. . . 4382
ro(x) —rdo(x") +x = x| <Ap-(x —x))+ = (A — De. (6.8)

For 0 <t < 1 define the set
Al = {xeB(x",s) : p-(x—x;)srs}.

If (6.5) fails to hold, then it follows from (6.8) that ;he set X N Af is empty. The remainder
of the proof is focused on estimating the volume |A}| in order to control the probability that
X N A} is empty.

The measure of A} is unchanged by taking x' = 0, x}, = eey, and p = —e,, which gives

Al = B0, &) N (xa = (1 =D}l = e [BO, )N g = 1 —1}].
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We lower bound the volume of the spherical cap by integrating

1

BO, 1) N {xg > 1— 1) =/ a1 (1= x5 dxg
1—1

v

1 )t
wg—1(1 —x3) 2 xqdxq
1—1
d+1
_ wg-1(2) 2 ( _L)%
d+1 2 '
d+1

Now, since # > (1 — %) 2 is convex we have

(1-9)F =1- (4=

)

0| —

provided t < which is satisfied when t < %. This yields

2
d+1°

, _ dztd;zrl
PUE =L RN
2(d + 1)

Hence, the event that X N Al is empty has probability bounded by
_ 1
(1 = pmin A" ! < exp (—Pmin(n — 1)A) < exp (_EpminnA> ,

sincen >2son—1> %n The proof is completed by union bounding over X'. O

We now prove convergence of u, to the distance function dg as ¢ — 0 and n — oo.
Theorem 6.4 Assume ¢ < % and (6.1) holds. Let u, solve (6.3) and let 0 < t < min{é, % —
4e
& Then

4
— 26 < up —dg < 2dg (r+%) on X 6.9)

holds with probability at least 1 — 2n exp (—ﬁﬁpmmnsd (ZZ)%).

Proof The proof is split into three steps. .
I.Let0 <1 < é and assume the results of Lemma 6.2 hold. Let A > 1 and let x' € X

such that u, — Adq attains its maximum over X at x’. Then we have that
ue(x)) — e (x') < rdq(x/) — rdg(x")

for all j. If x' € X, then since u, satisfies (6.3) we have

0= min {uc() —uel) + Iy - x'l]
yeBy(x!,e)NX

< min Lo - rdal) + Iy - x'l}.
yeBy(xl,e)NX

By (6.1) we have x' € Q,, which allows us to apply Lemma 6.2 to obtain that

4)e?
0§tk5+7—(k—1)5.
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This cannot hold when when A > (1 —t— —) and t+ 48

i < 1. For any such A we must
have x! € 9,X and so

max(u, — Adg) = max(u, — Adg) < 0.
X 0 X

It follows that u, — dg < (A — 1)dg on X. Sending A — (1 —1 — %)~ " we obtain

4e\ !
—dQSdQ[<1—t—;) —1i| on X.

The proof of this direction is completed by using the inequality

(1-x)"'"—1<2x for0<x<}
and imposing the additional restriction that ¢ 4 ‘;6 < é to simplify the right hand side.
2. For the other direction, let 0 < A < 1. Since dg is 1-Lipschitz we have

min ido(n) —ado() +ly =21} = =2 min Ay =1} >0, (6.10)
yeBy(x!,e)NX yeBy(x',e)NX

provided By (x?, &) N X is not empty. Thus, by (6.1) and Proposition 6.1, (6.10) holds for all
x! € X, with probability at least 1 — n exp (—%wdpmmnsd). Let x' € X such that u, — Adg
attains its minimum over X at x’. By an argument similar to the first part of the proof, (6.3)
and (6.10) imply that x! € 8,X. Therefore u,(x’) = 0 and by (6.1) we have xt € 0, Q. It
follows that

min (ue (x) — Ado(x)) = —Adg(x') = —2)e.
xeX
Sending A — 1~ completes the proof.

3. Union bounding over the events in steps 1 and 2 above, the results of the theorem hold
with probability at least

Wd—1 1
1 —nexp ( 1d LD ————— Pmin € (Zt) & > — nexp (—Ewdp,,linned> .

The first exponential is larger, provided

T
2(d T 1) = @d.

Recalling wg_1/wq < J/d, this is true when 27 < 1, which is implied by the assump-
tion that r < % and d > 2. Therefore, (6.9) holds with probability at least 1 —

d+l
2n exp (—%pminngd(zt) ) ) O

Remark 6.5 We now provide an interpretation of the result of Theorem 6.4. To obtain the
conditions under which the error rate is linear in &€ we take ¢+ = ¢ and obtain

4
—2e <uy —dg < 2dg <1+E>8
holds with probability at least 1 — 2n~2 provided that the length scale ¢ satisfies:

_2
. (6(d + 1) log(n) ) 3 .

sy (6.11)
272 w4—1PminN
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Fig. 10 Plots of the solution to the graph eikonal equation (6.3) forn = 10# for both the box and ball domains,
and error plots for varying ¢ averaged over 100 trials. The red points indicate the detected boundary points
used in solving (6.3). We see convergence rates better than the linear O (¢) rate guaranteed by Theorem 6.4

Taking the smallest allowable ¢ above, we obtain that u, converges to the distance function
dg at a convergence rate of O(n~2/G4+D) up to logarithmic factors. We mention that we
have numerically seen convergence rates closer to O(2) for & much larger than the lower
bound in (6.11). This may indicate that, in practice, a sharper convergence rate, as a function
of n, could be obtained by choosing larger value for ¢.

To obtain a sufficient condition for uniform convergence alone we need conditions under
which we can take 1, — 0 as n — oo and &, — 0 for the estimate in Theorem 6.4 to hold
with high probability. We see that this is possible whenever

d
lim —2n_ — o, (6.12)
n—o0 log(n)

Then by the Borel-Cantelli lemma we have that u;, — dgq uniformly on & as n — oo with
probability one.

6.1.1 Numerical Results

We tested the O(e) convergence rate from Theorem 6.4 on a box Q2 = [0, 11% and ball
Q = B(0, 1) domain. We used n = 2!% up to n = 2!7 = 131, 072 i.i.d. random variables

uniformly distributed on the domain, and chose ¢ adaptively based on the distance to the k™

. IR . . _2
nearest neighbor, where k = 10n5 . This is equivalent to the scaling & ~ n~5, since k ~ ne?.

We detected the boundary by thresholding d,(x) at 378, where r is the distance from x to
its k™ nearest neighbor, and ¢ satisfies 36rpne? = k. In Fig. 10 we show the solution of
(6.3) for n = 10* as both a colored point cloud, and visualized as a surface, computed by
constructing a triangulated mesh over the point cloud. In the plot in Fig. 10 we show the L
error |u, — dg| versus ¢ averaged over 100 trials. Both domains track very closely to the
theoretical O (¢) convergence rates.

6.2 Second-Order Equations

We now turn to second-order equations on point clouds with general boundary conditions.
In particular, we show how our estimation D, of the inward unit normal vector v can be used
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to set general boundary conditions involving normal derivatives. We recall that Theorem 2.6
shows that D, is an O (¢) approximation of v with high probability. In order to state the results
in the most general setting, we simply assume there exists a constant C), such that

1De(x') —v(x")] < Ce (6.13)

for all x' € X N 3,,2. We recall that Theorem 2.6 shows that the bound (6.13) holds with
high probability as long as & > C(logn/n)'/@+2) This lower bound on & is also required
for all the results in this section to hold with high probability. Indeed, Theorems 6.8 and 6.9
both require ne?*2 > C log n for a sufficently large constant C, which amounts to the same
lower bound on ¢ up to constants.

The graph PDEs we solve will involve the graph Laplacian £,, which is defined by

4 2 " i xJ . .
Lol = =S5 3 ("‘87“> @) = u(x')), (6.14)
j=I

where 0, = fRd n(|z|)z% dz, and 7 is smooth, compactly supported on [0, 1], and satisfies
fRd n(lz))dz = 1. We define the normal derivative V,u(x) = Vu(x) - v and the approximate
normal derivative V,, by

w(pn(x' 4 &0e(x))) — u(x")

Vou(x') = ; , (6.15)

where p, : @ — X is the closest point map. We consider the following graph Poisson
equation with Robin-type boundary conditions
Leu(x') = f(x'), ifx' €A,
. Leule) = J T (6.16)
yu) — (1 =) Vyux') = g, ifx’ € 9. X
Here, y € (0, 1] and f and g are given smooth functions. In this section, we show that the
solution of (6.16) converges as n — oo and ¢ — 0 to the solution of the Robin problem

—p Mdiv(p?*Vu) = f, inQ

(6.17)
yu—(1—-y)Vyu=g, onadQ.

Remark 6.6 We note that in order to solve the graph PDE (6.16) given a nonconstant boundary
condition g : 02 — R, weneed a way to define an extension g, : 02,2 — R thatis uniformly
close to g within the boundary tube 9,,£2. One way to do this is to define the closest point
extension g.(x) = g(x,) where x, = argminyemlx — y|. The closest point x, is unique
for x € 0.2 when 2¢ < R and if g is Lipschitz then |g.(x) — g(x4)| < Ce for x € 9,.9Q.
It is important to note, however, that the closest point extension requires knowledge of the
boundary 9€2. In applications where the boundary 92 is not known a priori, and is instead
estimated from the point cloud, such as in data depth in machine learning, we can only handle
constant boundary conditions (i.e., g¢ = 0 on 92 for data depth).

Throughout this section we assume d<2 and p are smooth. By elliptic regularity, the solution
u of (6.17) is smooth. The constants in this section will be denoted by C, Cy, Co, --- > 0,
and may depend on y, u,d, f, g, p, 2 and 9<2, and can change from line to line.

The proof of convergence is based on a maximum principle for (6.16).

Lemma 6.7 If u satisfies
—Lou(x') <0, ifx' € X,

A . A (6.18)
yulx') — (1 =py)Voux') <0, ifx' € 9. X
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thenu < 0on X.

Proof Let us write w;; =7 (M) and d; = Z'}zl wjj. Then by (6.18) we have

n n
diu(x'y = wijue) =3 wij ) — ux’)) <0
j=1 j=1
for all x! € X,. It follows that d; > 0, and so u(x') < di,- 23:1 w,-ju(xj). Therefore, u

attains its maximum over X at some x' € 9. X, and so

u(pu(x’ +edex)) —ulx) _
: <o.

yu(x') < (1 —y)
Since y > 0 we have u(x') < 0. ]

The convergence proof also requires pointwise consistency for the graph Laplacian. We
refer to [18,Remark 5.26] for the following result.

Theorem 6.8 Letu € C*(2), ¢ > 0and 0 < A < =L, Then

“max £8u(xi) — p(xi)_ldiv(pZVu)|xi
xieQ.Nx

< Cillullcs gy (€* + 1) (6.19)

holds with probability at least 1 — 2n exp (—Czne‘”zkz).
‘We now establish our main convergence result in this section.

Theorem 6.9 Assume (6.1) and (6.13). Let ¢ > 0 and assume C,& < 1. Let u be the solution
of (6.17) with y > 0, and let u, satisfy (6.16). Then for any 0 < » < ¢ " and t > 0, the
event that

(") — ue (x|

< C(lyu— = y)Vou = gl + (1 =)t + Coe +&) + 7+ 1) (620)
holds forall x' € X has probability at least 1 —n exp(—%a)dpmmnsdtd)—2n exp(—Cnsd+2A2).

Proof The proof is split into three steps.
1. Note that x’ 4 v € Q. By (6.13) we have
Ix! + ede(x)) = (XF + ev)| = g|De —v| < Cye?.
Since Cpe < 1 we have x' 4 D, (x') € Q. Therefore, we can compute
u(pa(x' + e0e(x))) — ux’)
£
i1 ep(xi)) — i
_ ulx+evix’)) u(x)+o
&

= Vo) + O (67 |pux’ +eDs(x) — (& + e8] + Cop +e)

6,,u(xi) =

(57" 1pn (e’ + edex) = (& + 20 (x))] + Cue)

Letr > 0.If | pu(x" + eDe (x%)) — (x' + De(x"))| > t& then the set B(x! + e, (x)), te) N X
is empty, which by Lemma 2.1 has probability less than 1 — exp (—%wd Pmin(n — l)edld).
Union bounding over x and using thatn — 1 > %n for n > 2, we find that

%vu(xi) = Vvu(xi) + O+ Cre+e)
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holds for all x' € 8, X C 9,,Q with probability at least 1 — n exp (—%wdpm,-nnsdtd). A
similar computation can be made for ¢, and so we find that

Vo)) — Vyp(x)I, IVyu(x) — Vyu(x')| < C(t + Cue + ¢) (6.21)

for all x' € 3, X.
2.Let0 < A < ¢~ 1. Let ¢ be the solution of

—pldiv(p®Vg) =1 inQ }

6.22
yo—(1—-y)V,p=1 onaQ. S

By assumption, u,¢ € C*(Q), and so by Theorem 6.8, with probability at least 1 —
2nexp (—Cned22?) we have

ILep(x)) — 1], [Leu(x’) — fF(x)] < Ce* + 1) (6.23)

whenever dist(x!, 9Q) > .
3. Let us now define

wx') = u@x’) —ue(x') — Kp(x),

for K to be determined. Then by (6.23) and (6.21) we have

Lew(x') < =K +C(e* +2)
for x! € X, and

yw) — (1 = Vw) < =K + llyu — (1 =) Vou — glle .0
+C(1 —y)(t+ Cre+e)
for x' € 8. X. For any choice of K satisfying
K> C(lyu—(0=y)Vou =gl + (1 =)t + Coe + )+ + 1)

we can apply Lemma 6.7 to find that w < 0, and so u — u; < CK||¢|p>~(gq). The other

direction of the proof is similar. O

Remark 6.10 The proof of Theorem 6.9 relies on the maximum principle (Lemma 6.7), which
requires ¥ > 0. Thus, the result does not apply to the pure Neumann case y = 0. This case
would require special attention to ensure the compatibility condition

/;Zfdx:/mgdS

holds at both the continuum and discrete level.

Remark 6.11 Consider the Dirichlet problem in Theorem 6.9 by setting y = 1. If we set
A = &2, then we obtain the rate

lu —ue| < C(llu— gllrop.a + &2

with probability at least 1 — 2n exp (—Cn8d+6). If we are able to extend the boundary

conditions g to € so that |lu — gl o, =< Ce2, then we obtain a second-order O(g2)
convergence rate in Theorem 6.9.
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PR AL

Fig. 11 First 7 Laplacian Dirichlet eigenfunctions on the disk computed via approximation with graph Lapla-
cian eigenvectors with n = 10° points

Remark 6.12 Finally, we remark that our boundary detection method allows us to consider
Dirichlet eigenfunctions of the Laplacian on the point cloud X" by solving the eigenfunction
problem

Lou(x) =ru(xh), ifx' € X, } 624

u(xi) =0, ifx' e 0 X

The Dirichlet eigenfunctions of £, would naturally converge to continuum Dirichlet eigen-
function for the weighted Laplacian — p~1div(p2Vu). The proof of this is expected to be
more involved than Theorem 6.9, since we cannot use the maximum principle to obtain strong
discrete stability results. We expect discrete to continuum convergence results to hold for the
eigenvector problem (6.24) using the combined variational and PDE methods from [22, 23,
49]. We show in Fig. 11 the first 7 Dirichlet eigenfunctions on the disk computed by solving
(6.24) over a graph constructed with n = 103 random variables independent and uniformly
distributed on the disk.

Remark 6.13 In the case that f = 0 and we consider Dirichlet boundary conditions (y = 1),
we can extend Theorem 6.9 to hold even when 9, X is replaced with a thinner boundary 9 X
for any £2 < § < ¢. That is when only the points in a very thin region near the true boundary
are identified. In this case we can prove the error rate of O(¢?/8). The proof is a minor
adaptation of [24,Theorem 2.4]. We expect the proof would extend to the case of nonzero f
as well, though the incorporation of y < 1 seems more difficult.

6.2.1 Numerical Results

We ran several numerical experiments to test the rate of convergence in Theorem 6.9 on the
disk @ = B(0, 1) ¢ RZ. In this case, p = 1/m. In the first experiment, we set the solution
of the Robin problem (6.17) with y = 1/2 to be

u(x) = sin(2x?) — cos(2x?)

and then set f = —%Au and g = %(u — V,u), and tested how well the solution of the graph
Laplace equation (6.16) can reconstruct «. In the second problem, we solved (6.24) for the
principal Dirichlet eigenfunction, and compared against the true solution u(x) = Jo(1|x]),
where Jj is the zeroth order Bessel function of the first kind, and X is the first positive root of
Jo. In each case we varied the number 1 of random variables in the point cloud from n = 2!°

upton = 217 = 131,072 by powers of 2, and set

1 (logn 7
&= - ,
4 n
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—4— Robin Problem

Fig. 12 On the left, plots of the solution to the Robin problem and principal Dirichlet eigenvector for n = 109

points on the disk, compared to the exact solutions of each problem. On the right we show an error plot for
varying ¢ averaged over 100 trials

—e— FEigenfunction

£

5% 1071

25 x 107"
1070 9x1072 8x1072 7Tx 1072 6x1072 5x 1072

€

L error

where here, d = 2. We approximated the & boundary using k = 27 ne? nearest neighbors. Fig.
12 shows plots of the solutions to each graph-based problem, compared to the true solutions
of their corresponding PDEs, and a plot of maximum absolute error versus &, averaged over
100 trials. In both cases we see better convergence rates than the O (¢) guaranteed by Theorem
6.9. Taking the last three data points on each plot, the empirical convergence rates are &80
for the Robin problem and ¢'-!3 for the Dirichlet eigenfunction.

6.3 Experiments with Real Data

We now turn to experiments with real data. We use the MNIST [54] and FashionMNIST [79]
datasets. MNIST is a standard dataset for handwritten digit recognition, consisting of 70,000
images of handwritten digits 0-9. Each image is a 28 x 28 grayscale image, which we interpret
as a vector in R734. The FashionMNIST dataset is a drop-in replacement for MNIST, with the
same number of datapoints and image resolution, except that the 10 classes in FashionMNIST
correspond to different items of clothing, with pictures taken from a fashion catalog. In all
experiments, we use Euclidean distance between the raw pixel values in R7%* to compare
images.

We focus our experiments on detecting the boundary images for each class, and then
using the discovered boundary to compute a notion of data depth by solving PDEs over
the data with Dirichlet boundary conditions. In this way, we also compute a notion of data
median, by taking the deepest images in the dataset. To compute the boundary points, we use
k = 10 Euclidean nearest neighbors and compute d. (x") for each image x! by taking ¢ as
the Euclidean distance to the k™ nearest neighbor. We then set the images with scores de(x")
in the lower 10% of all images to be boundary points. This is an implicit way to select the
desired width of the boundary by instead specifying how many boundary points are desired.
Figures 13 and 14 show that top 10 boundary images in each class compared to randomly
selected images.

Once the boundary points are detected, we construct a k nearest neighbor graph over the
data points in each class. We use Gaussian weights given by

4xt — x7)?
w;j = exp —W ,
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(C) Eigen Median digits (D) Eikonal Median digits

Fig. 13 MNIST experiments

where g (x;) is the distance between x’ and its k™M nearest neighbor. We used k = 10 in
all experiments, and the weight matrix was symmetrized by replacing W with W + W7,
For a notion of data depth, we compute the principal Dirichlet eigenfunction of the graph
Laplacian, i.e., the solution of (6.24) with smallest . We found the symmetric normalization

Lu(x) = sz, (u(x, M;@) di = Zwij
j=1

gives slightly more consistent results, and so we report the results with this normalization.
The principal Dirichlet eigenfunction has one sign on all of X, and we choose the version
that is positive on X. We use u(x’) as a notion of data depth, and the x/ where u(x’) is
largest can be interpreted as median images for each class. The median images computed
this way are shown in Figs. 13c and 14c. We also computed the median by solving the eikonal
equation (6.3), again using our detected boundary images as Dirichlet boundary conditions.
The eikonal median images are shown in Figs. 13d and 14d.

We observe that the eigen-median images are all very similar to each other, compared with
the eikonal median images, which have much more variation. There is some work showing
that the maximum or minimum points of graph Laplacian eigenvectors correspond to nodes
in the graph that are unusually well-connected, in the sense that a random walker will take
a long time to escape the region (see, e.g., [4]). These regions then contain groups of highly
similar images. In contrast, the eikonal median images are simply those that are furthest from
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(C) Eigen Median images (D) Eikonal Median images

Fig. 14 FashionMNIST experiments

the boundary in the graph geodesic distance, and these images may be scattered around the
graph and have far more variability.

We remark that we can also construct a similar notion of data depth by solving the Dirichlet
problem (6.16) with f = 1,y = 1, and g = 0. The solution of this Poisson equation has
the interpretation that u(x’) is the mean exit time for random walkers starting at x’, and
exiting at 9, X. We almost always obtained the same set of median images, up to some
minor differences, using the two graph PDEs, so we only show the results using the Dirichlet
eigenfunction.

Remark 6.14 1t is important to point out that our boundary detection method is designed for
data sampled from a distribution with a Lebesgue density on a domain  C R¢. That is,
our results do not apply to the manifold assumption, which is a commonly used modeling
assumption in machine learning that assumes the data is sampled from a low dimensional
smooth submanifold, possibly with boundary, embedded in R?. The dimension m of the
smooth submanifold is called the intrinsic dimension of the data. While the MNIST dataset
has extrinsic dimension d = 784 (i.e., the number of pixels in each image), it has been
estimated that intrinsic dimension of each class of MNIST digits is between m = 12 and
m = 14 [32, 51]. In the manifold setting, it is possible that our approximation of the unit
normal vector D, will point in the direction normal to the data submanifold in regions of
higher curvature. This would cause interior points to be incorrectly identified as boundary
points. This could be addressed by projecting D, onto the tangent space to the submanifold,
but we leave this for future work. Since we see good results for our method on MNIST and
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FashionMNIST in Figs. 13b and 14b, this may indicate that curvature is low for both datasets
and does not play a large role in boundary detection.
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Appendix A. Proof of Lemma 3.1

The following lemma will be useful in proving Lemma 3.1.

LemmaA.1 (Covering with spherical segments) Let r < 1and0 < a < b < r. Foru € S%~!
and 0 < a < b < r define the spherical sector by

Sa“’b:{x € B(O,r) : a <x-u <b}.
Suppose % C S~ is a finite set satisfying the following property:
forallu € S there exists v € T such that lu —v| <é. (A1)

Then, for any u € S?~! we can find v €  such that
v u
Sa+sb.b—sb C Sap-

Proof Letu € S"!and fixav € X satisfying (A.1). Suppose that x € Si 1 sp.p_sp- Then we
have

a+686b<x-v<b-—5b.
We have
v —x-ul = |x - (v —w)| < |xllu— v| < 8lx| < 8b,
since |x| < b — 8 < b. Therefore
x-u<b—8b+6éb=>b and x-u >a+8b—8b=a.
Therefore x € SZ, »» Which shows that for each u € S9! there exists v € ¥ such that
Sab D Satshb—sb-

Hence, the event that Sfl" 18 empt.y for somf.: u € S?1iscontained in the event that Sy L sb.b—sb
is empty for some v € ¥—a finite collection of events.
O
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Remark A.2 (g-nets and upper bound on | X|) Recall that an e-net of S¢~! is the set of points
in SY~! such that the pairwise distance is at least &. Then we define a maximal &-net of the
sphere to be an e-net such that no point on S¢~! can be added while preserving the lower
bound for the pairwise distance.

Then, observe that any maximal e-net of the unit sphere satisfies the condition of Lemma

AL IfY, = {x!, -, xN} is a maximal e-net of S9! then for each x € S there exists
x' € . such that |[x — x'| < ¢. To see this, suppose |x* — x'| > ¢ foralli =1, -, N,.
Then

B(x*,e/2) N B(x', e/2) = P forall x' € %,.

Thus X, N {x*} should also be an ¢-net, which contradicts the maximality of X,.

Now, let X5 be any é-net — i.e. e-net with ¢ = §. Then {B(v',8/2) : v! € Z5)isa
collection of disjoint balls, all contained in B(0, 1 4+ §/2) \ B(0, 1 — §/2). Thus, base on a
simple volumetric argument, we can deduce

2 d—1
|X5] <2d (1+§> , (A.2)

Proofof Lemma 3.1 (1) Let {v,-}i"i1 = ¥ C S¢°! be a maximal §-net. By Lemma A.1 and
Remark A.2, for any u € S9! we can find v; € ¥ such that

Vk u
Satbs,b—bs C Sa,b-

This means that if all of SanerzS, »—ps are nonempty, all of Sy, is nonempty for u € §e-1
hence

c?rl (xo) >a.

Without loss of generality, assume x° € R is the origin, and let @ = dg (x°) A ’5 Denote
by K, C S, , the cone of maximal height sharing the base with S ,. Note that b < «

implies K}/ , C B(xg, r) N . On the other hand, we need a > (1 — A)a — ¢ to deduce
the desired lower bound on 3,1 Thus choose

a=(—-MNa—t,b=aqa.

Further, we need the height of Sgii-bS p_ps L0 scale like 7, in order to lower bound the
volume. Thus we need

h—bs—(a+bs)=1—-28b—a=(1—-28a—(1—Na—1t=(—28)a+1.

As we are interested in t < r2 &« a~¢g, weneed L — 28 > 0, hence

A
§ < —.
-2
(2) Following the discussion in the previous step, let ¥ = {vl, cee vNA} be amaximal %-net
of S~ and write
St = 5iubx/2,b—bx/2 where a = (1 — M, b =«, and.

Thus, to show (3.2) holds with probability at least | — n~7, it suffices to show

P(No pointin §') < (I — pmin|S' N QD" < Ny 'n™7 foralli = 1,---, Nj.
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(3) We first compute the lower bound for IS N Q|. Temporarily write a’ = a + bi/2, b =
b —b)/2.Let K, ,, be the cone of height b" — a’ = ¢ sharing the base of S'. Note that

K’, » C S* N Q and its base has radius /72 — (a’)2 = ry/1 — (a’/r)2. As the |Ka wl

is mdependent of i, we may drop the superscript and deduce

t
18" N Q= Ky pl 2/ w41 (r\/l - (a’/r)2;>
0

1 .
ds = a1t (1 - @/n>T

d—1

Asa < b < a < r/2, we have (1 — (a’/r)>)@=1/2 > 2=(@=D/2 Hence, for each
i=1,---, N,

s i . n Pmin d-1\"
P(No pointin §*) < (1 — pmin| Ky p )" < (l — Wtr ) .

The expression on the right is less than N, =7 if

Pmin d—1
nlOg(l—WU’ ) f—ylogn—logN)L,
or equivalently

_ ylogn+log Ny
n

d—1)/2
-1 - d2W@-D/2(1 —¢

Pmin®Wd —1

tr

As 1 —e™ < x, it suffices for 7, r to satisfy

d2W=D/2 (y] log N
=1 > (V ogn + log A)'
Pmin®Wd—1 n

(4) We claim that log Ny < y(d — 1) logn. By setting § = % in (A.2), we know

4\ A+ 4\t
N§2d<1+7> =2d(—>
A A

By hypothesis n > d v 244 and y > 2, we see

n?@=D > pd=1,yd=1 5 2g ()\ +4> > N.
> . =
Thus y logn +log N < dy logn, and it suffices for ¢, r to satisfy

a1 d?2@=0/2,, <10gn)'
" Pmin@Wd—1 n

tr

This completes the proof O

Appendix B. Proof of Proposition 6.3

Proof The proof is split into several steps.
1. Let y € 02 satisfy dq(xy) = |xx« — y|. Letz € 3B(xY, &) be along the line from x, to
y. Then we have

dq(z) < dg(xs) — |xs — Z|
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and so by the property defining x, we have x, = z; that is x, € dB(xY, ). Since dg
is 1-Lipschitz, we have dq(x4) > dg 9% —e. By a similar argument as above, we have
do(xy) < dQ(XO) — g, and so

do(x,) = do(x") —e.
Now, note that the function

g(r) =da(xs +1rp)

is 1-Lipschitz and satisfies g(¢) = dgq =% = g(0) + ¢. It follows that g(I) = g(0) + r for
0<r <eg,andso

do(xs +rp) =dqo(xs) +r forO<r <e. B.1)

2. Since dg — %Ix — x4|2 is a concave function, there exists q € R" such that

1
do(x) = do(x) < g+ (x = x.) + L 1x = X2

for all x € Q. By (B.1) we have

2

.
r=dq(xy+rp) —dq(xy) <rq-p-+ z

for 0 < r < e. Therefore

> 1 !
q-p= R
Sending r — 0 we find that p - ¢ > 1.
3. We now claim that |¢g| < 1, which combined with p - ¢ > 1 from part 2 implies that
p = q and completes the proof. To see this, since B(xo, &) C 2, we have B(x,,r) C Q for
r > 0 sufficiently small. Now, the dynamic programming principle gives

0= xegl(irli,r) {da(x) —da(x) + |x — x4} < xegl(ixr:,r) {q-(x —x0) + |x — x|} + %.
Setting x — x,, = —|x — xx|q/|q| we have
2 2
0= xegl(ixri’r) {lx —xe (T —lgD} + 7= "lgl =Dy + &
Sending r — 0T we obtain |g| < 1, which completes the proof. O

Appendix C. Concentration Inequalities

For reference, we state the Chernoff bounds, Hoeffding inequality, and the Bernstein inequal-
ity, which are concentration of measure inequalities used to control the variance of our normal
and distance estimators. We refer the reader to [14] for a general reference on concentration
inequalties. Proofs of the exact inequalities below can also be found in [18,Chapter 5].

Theorem C.1 (Chernoffbounds) Let X1, X7 ..., X, be a sequence of i.i.d. Bernoulli random
variables with parameter p € [0, 1] (i.e, P(X; = 1) = pand P(X; =0) = 1 — p). Then
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for any ¢ > 0 we have

n 2
P(in z<1+s>np) < exp (—z('flflg)) 1)
3

i=1

and for any 0 < & < 1 we have

n
1
P (Zl Xi<(1- a)np) < exp (—Enp 82> , (C.2)
=

Theorem C.2 (Hoeffding inequality) Let X1, X» ..., X, be a sequence of i.i.d. real-valued
random variables with finite expectation p = E[X;], and write S, = % Z?:] Xi. Assume
there exists b > 0 such that |X — | < b almost surely. Then for any t > 0 we have

2b2
Theorem C.3 (Bernstein Inequality) Let X1, X» ..., X, be a sequence of i.i.d. real-valued
random variables with finite expectation . = E[X;] and variance o* = Var(X;), and write
Sp = % Y71 Xi. Assume there exists b > 0 such that |X — p| < b almost surely. Then for
any t > 0 we have

nt?
P(Sy — 1t > 1) < exp (— ) . C3)

nt?
P(S,—p=n<exp(-—— ). (C4)
P ( 207 + ;br))

Appendix D. List of Constants

We list the explicit constants that appear in Sects. 2 and 3. Below wy is the volume of unit ball
in d dimensions, and y > 2 is a parameter of choice related to the error rate in the following
way: P( Boundary test fails ) = O(n™7).

LRwy
Cx =2w4-1+ ,
Pmin
¢ = L,
2(d + 1)
= BN
1 3ypmaxd2(0dR2 a2 4yC‘,d22(d—l)/2 a+1
Cr = — max # , Tybyd 2
R Cx” Pinin 13 pmin@wa—1Cx
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