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Abstract

We study embedded spheres in 4–manifolds (2–knots) via doubly pointed trisection dia-
grams, showing that such descriptions are unique up to stabilisation and handleslides, and
we describe how to obtain trisection diagrams for certain cut-and-paste operations along
2–knots directly from doubly pointed trisection diagrams. The operations described are clas-
sical surgery, Gluck surgery, blowdown, and (±4)–rational blowdown, and we illustrate our
techniques and results with many examples.

2020 Mathematics Subject Classification: 57K45 (Primary); 57K40 (Secondary)

1. Introduction

A 2–knot is a pair (X,K), where X is a smooth, connected, compact, orientable
4–manifold, and K⊂ X is a smoothly embedded 2–sphere. We sometimes refer to K as
a 2–knot, when the ambient manifold X is understood from context. In this paper we use
doubly pointed trisection diagrams (trisection diagrams augmented with pairs of points) to
describe 2–knots and to produce trisection diagrams for the 4–manifolds resulting from var-
ious cut-and-paste operations on 2–knots. The precise definitions needed to understand the
main theorems will be given as the background material is developed in later sections.

In [MZ17b] and [MZ17a], the second author and Zupan showed that trisections of
4–manifolds are the right setting in which to generalise bridge splittings of classical knots
in dimension 3, introducing the notion of a bridge trisection of an embedded surface in a
4–manifold. Classical bridge splittings lead to multipointed Heegaard diagrams for knots,
with 1–bridge splittings giving doubly pointed diagrams, and this generalises to dimension
4. The following is a restatement of [MZ17a, Theorem 1·2 and Corollary 1·3] as applied to
2–knots.
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164 DAVID GAY AND JEFFREY MEIER

THEOREM 1·1 ([MZ17a]). Every 2–knot (X,K) admits a 1–bridge trisection and, thus,

can be described by a doubly pointed trisection diagram.

In this paper, we extend this existence statement to a uniqueness statement.

THEOREM A. Any two 1–bridge trisections of a given 2–knot have a common

stabilisation.

This theorem has an immediate diagrammatic corollary.

COROLLARY B. Any two doubly pointed trisection diagrams for a given 2–knot become

slide-diffeoomorphic after stabilisation.

In dimension three, a doubly pointed Heegaard diagram can be enriched with two arcs
a and b connecting the points, one in the complement of the α curves and one in the com-
plement of the β curves; replacing the S0 × B2 neighbourhood of the points with a cylinder
B1 × S1 and extending the two arcs appropriately across this cylinder gives a Heegaard
diagram for the result of integer surgery on the knot. The following can be seen as a
4–dimensional generalisation, involving an arced trisection diagram coming from a dou-
bly pointed diagram; this will be defined carefully later but, for now, should be understood
to be a trisection diagram on a surface with boundary (the trisection surface minus neigh-
bourhoods of the two points) augmented with three arcs a (red), b (blue) and c (green), in the
complements, respectively, of the α (red), β (blue) and γ (green) curves. We consider here
four cut-and-paste operations: sphere surgery, in which S2 × D2 is replaced by B3 × S1,
Gluck surgery, in which S2 × D2 is removed and glued back via the Gluck twist, (±1)–

blowdown, in which a neighbourhood of a sphere of square ±1 is replaced with B4, and the
(±4)–rational blowdown, in which a neighbourhood of a sphere of square ±4 is replaced
with a rational homology ball, as in [FS97].

THEOREM C. Let D be a doubly pointed (g; k1, k2, k3)–trisection diagram for a 2–knot

(X,K), and let D◦ be an associated arced trisection diagram for the knot exterior EK.

Consider the diagrams in the top row of Figure 1.

(i) If K ·K= 0, then the result X (K) of sphere surgery along K in X is described by the

(g + 1; k1 + 1, k2 + 1, k3 + 1)–trisection diagram D
◦ ∪DB3×S1 .

(ii) If K ·K= 0, then the result X∗(K) of Gluck surgery along K in X is described by the

(g + 1; k1 + 1, k2 + 1, k3 + 1)–trisection diagram D
◦ ∪Da.

(iii) If K ·K= 1, then the result X+1(K) of a (+1)–blowdown along K in X is described by

the (g + 1; k1, k2 + 1, k3)–trisection diagram D
◦ ∪Da. Similarly, if K ·K= −1, then

X−1(K) is described by D
◦ ∪Da.

(iv) If K ·K= 4, then the result X+4(K) of a +4–rational blowdown along K in

X is described by the (g + 2; k1 + 1, k2 + 1, k3 + 1)–trisection diagram D
◦ ∪DB−4 .

Similarly, if K ·K= −4, then X−4(K) is described by D
◦ ∪DB4 .

These gluings of diagrams are illustrated in Figure 1.
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Fig. 1. The diagrammatic gluings corresponding to the six (signed) surgery operations appearing in
Theorem C. From left to right: sphere surgery, Gluck surgery, (+1)–blowdown, (−1)–blowdown, (+4)–
rational blowdown and (−4)–rational blowdown. The region crossing the saddle in D◦ is shaded to
represent the fact that it may contain curves and arcs of any colour.

Fig. 2. How to obtain doubly pointed trisection diagrams D and D
′ for the two 2–knots sharing a common

exterior, given a 0–annular arced trisection diagram D◦ for the exterior.

THEOREM D. Let D◦ be a 0–annular arced diagram for a 4–manifold E with ∂ E ∼=

S2 × S1. Then, the diagrams D and D
′, as shown in Figure 2, are doubly pointed trisection

diagrams for the only 2–knots (X,K) and (X ′,K′) with EK
∼= EK′

∼= E.

Organisation. The paper is organised as follows. In Section 2, we recall the foundations
of the theory of trisections and trisection diagrams for both closed 4–manifolds and 4–
manifolds with boundary, stating basic results about existence, uniqueness, and boundary
data. In Section 3, we discuss the basic gluing results for trisections of 4–manifolds with
boundary and their diagrams, paying particular attention to the boundary parameterisations
associated with the gluings. We also show how things work out particularly well when the
boundary is a lens space with an annular open book. In Section 4, we give a detailed account
of the adaptation of the theory of trisections to the setting of 2–knots in 4–manifolds and
doubly pointed trisection diagrams and show how to get relative trisection diagrams for 2–
knot exteriors from doubly pointed diagrams (with lens space boundaries with annular open
books). Here, we prove Theorem A and Corollary B and give a number of foundational
examples that are needed for our surgery operations. In Section 5, we review the classical
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cut-and-paste operations involving 2–knots, and we prove Theorems C and D. We conclude
in Section 6 by giving examples illustrating our diagrammatic techniques and results.

2. Trisections and their diagrams

In this section, we review trisections of 4–manifolds, starting with closed 4–manifolds,
then moving to the relative settings of compact 4–manifold with non-empty boundary. Then,
we discuss how these objects can be represented diagrammatically.

Given integers g ≥ k ≥ 0, consider the following standard manifolds:

(i) �g = #g(S1 × S1) is the standard closed, oriented genus g surface;
(ii) Hg = ♮g(S1 × B2) is the standard, oriented genus g handlebody, with ∂ Hg = �g;

(iii) Yk = #k(S2 × S1) is the double of a genus k handlebody; and
(iv) Zk = ♮k(B3 × S1) is the standard 4–dimensional “genus k” 1–handlebody, with

∂ Zk = Yk .

The standard objects comprise the building blocks of a trisected 4–manifold.

Definition 2·1. A (g; k1, k2, k3)–trisection of a 4–manifold X is a decomposition
X = X1 ∪ X2 ∪ X3, where, for each i ∈Z3,

(i) X i
∼= Zki

,
(ii) X i ∩ X i+1

∼= Hg, and
(iii) X1 ∩ X2 ∩ X3

∼= �g.

When k1 = k2 = k3 = k, this a balanced (g, k)–trisection, otherwise it is an unbalanced

trisection. The genus of the trisection is g. The union of the three handlebodies

(X1 ∩ X2) ∪ (X2 ∩ X3) ∪ (X3 ∩ X1)

is the spine of the trisection. The handlebodies X1 ∩ X2, X2 ∩ X3, and X3 ∩ X1 are denoted
by Hβ , Hγ , and Hα, respectively, and called the spokes of the trisection. The common
intersection Hα ∩ Hβ ∩ Hγ is denoted by � and called the core of the trisection.

See Figure 3 below for a schematic picture, with the caveat that this schematic more
accurately depicts a trisection of a 4–manifold with boundary, which we will discuss in turn.
Note that, for each i ,

(X i−1 ∩ X i ) ∪� (X i ∩ X i+1)

is a genus g Heegaard splitting of ∂ X i
∼= Yk , with � oriented as ∂(X i−1 ∩ X i ).

Definition 2·2. Given a trisection T of a 4–manifold X , for each i ∈Z3, the i–stabilisation

of T is the trisection T ′ whose pieces X ′
1, X ′

2, and X ′
3 are given in terms of the pieces

X1, X2, and X3 of T as follows. Choose a properly embedded boundary parallel arc ω in
X i−1 ∩ X i+1. Let

(i) X ′
i = X i ∪ ν(ω), while

(ii) X ′
i−1 = X i−1 \ ν(ω) and

(iii) X ′
i+1 = X i+1 \ ν(ω).

Note that this is well-defined up to isotopy independent of the choice of ω, that it increases
g and ki by 1 and does not affect ki±1.
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By stabilising, any trisection can be made balanced. Noting that stabilisation occurs in a
ball, one could also describe stabilisation as the connected sum with one of three standard
genus one trisections of S4; the only disadvantage of this is that it is not obviously an ambient
operation inside a given 4–manifold.

THEOREM 2·3 ([GK16]). Every closed, connected, oriented 4–manifold has a trisec-

tion, and any two trisections of the same 4–manifold become isotopic after sufficiently many

stabilisations.

2·1. Trisections of compact 4–manifolds with non-empty boundary

Next, we recall the extension of the theory of trisections to compact 4–manifolds with
connected, non-empty boundary. First, we need a more subtle understanding of the manifold
Yl = #l(S2 × S1). For p ≥ 0 and b ≥ 1, let �p,b denote the compact surface obtained by
removing the interiors of b small disks from the closed surface of genus p. Consider the
abstract open book (�p,b, id), whose page is �p,b and whose monodromy is the identity. The
total space of this abstract open book is M1

∼= #2p+b−1(S2 × S1). Pick three pages in this open
book: P+, P−, and P0. We augment M1 by connected summing with a manifold M2, which
we take to be a copy of #k(S2 × S1). We assume M2 is equipped with the standard genus n

Heegaard splitting. We perform the connected sum at a point contained in the interior of P0

in M1 and at a point on the Heegaard surface F in M2.
We write

Yl = #l(S2 × S1) = M1#M2 =
(
#2p+b−1(S2 × S1)

)
#

(
#k(S2 × S1)

)
,

and we note that l = k + 2p + b − 1. Moreover, we have the following decomposition:

Yl = Y −
g,l;p,b ∪ Y 0

g,l;p,b ∪ Y +
g,l;p,b,

with pieces defined as follows. We let Y 0
g,l;p,b denote the compact portion of M1 co-bounded

by P− and P+ and not containing P0. We let Y ±
g,l;p,b denote the compact portion of M1#M2

co-bounded by P± and P0#F . The piece Y 0
g,l;p,b is diffeomorphic to

�p,b × I/∼,

where (x, t) ∼ (x, t ′) for all x ∈ ∂�p,b and t, t ′ ∈ I . In other words, the vertical boundary
has been collapsed, so Y 0

g,l;p,b is a sort of lensed product cobordism between the pages P−

and P+. Each of Y ±
g,l;p,b is a sort of lensed compression body, diffeomorphic to the result of

first attaching g − p 3–dimensional 2–handles to �g,b × I along �g,b × {1}, then collapsing
the vertical portion (∂�g,b) × I , as before.

Definition 2·4. A relative (g; k1, k2, k3; p, b)–trisection of a 4–manifold X is a decom-
position

X = X1 ∪ X2 ∪ X3

such that, for each i ∈Z3, there is a diffeomorphism φi : X i → Zli
satisfying

φi(X i ∩ X i+1) = Y −
g,li ;p,b, φi(X i ∩ ∂ X) = Y 0

g,li ;p,b and φi(X i ∩ X i−1) = Y +
g,li ;p,b,
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Fig. 3. A schematic illustration of a relative trisection of a 4–manifold X , which is depicted as the black
3–ball. Inside, the genus two trisection surface sits as a properly-embedded surface, intersecting the bound-
ary of the 4–manifold in the two-component binding. Shown on the boundary are three annular pages filling
the binding, each of which is connected back to the trisection surface by a compression body.

where li = ki + 2p + b − 1. We adopt the notation Hα, Hβ , Hγ , and �, just as in the closed
case, and the concepts of (un)balanced, genus, and spine are defined in the same way, as
well. A schematic of a relative trisection is shown in Figure 3.

A relative trisection T of a compact 4–manifold X cuts ∂ X into three pieces, namely,
the three pre-images of the Y 0

g,li ;p,b. Since each of these is a lensed product cobordism, we
see that ∂ X inherits an open book decomposition from T with pages diffeomorphic to �p,b

(three of which are given by the pre-images of the pages P± in the Yki
) and binding given

by ∂� ⊂ ∂ X .

Remark 2·5. The 4–dimensional 1–handlebodies X i can be thought of as being built (from
the outside in) by starting with P × I × I and attaching ki 1–handles. Here, P × I is an
interval product of a page in ∂ X ∩ X i , while the second product with I is a thickening into
the interior of X i . (Both thickenings are assumed to be lensed.) It is thus that the piece X i

has two relevant complexity measures: li is the measure of its total topological complexity,
while ki measures the interior complexity. For example, a manifold with a trisection having
ki = 0 can be built (relative to its boundary) without 1–handles. Note that our convention
of labeling the interior complexities by ki and the total complexity by li is opposite that
of [CGPC18].

The stabilisation operations introduced above give well-defined stabilisation operations
for relative trisections, as well, and we have a similar existence and uniqueness statement.

THEOREM 2·6 ([GK16]). Given a compact, connected, oriented 4–manifold X with con-

nected, nonempty boundary, and an open book decomposition on ∂ X, there is a trisection

of X inducing the given open book. Any two relative trisections for a 4–manifold X that

induce isotopic open book decompositions of ∂ X become isotopic after sufficiently many

stabilisations.

2·2. (Relative) trisection diagrams

A key feature of the theory of trisections is that the data of a (relative) trisection
can expressed diagrammatically via curves on surfaces. Here, we summarise this feature
following [CGPC18]. We begin with the closed case.
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Fig. 4. (Top) The trivial (g, k)–diagram; each of the three Heegaard diagrams comprising a genus g
trisection diagram is slide-diffeomorphic to this diagram for some value k. (Bottom) The trivial (g, k; p, b)–
diagram; each pair of genus p cut systems for a genus g relative trisection diagram is slide-diffeomorphic
to this diagram for some value of k.

Definition 2·7. A cut system on a closed, connected genus g surface � is a collection
of g disjoint simple closed curves on � which collectively cut � into a genus 0 surface.
Two cut systems are slide-equivalent if they are related by a sequence of handleslides.
Two tuples (�, δ1, . . . , δn) and (�′, δ′

1, . . . , δ′
n), where each δi and δ′

i is a cut system,
are slide-diffeomorphic if there is a diffeomorphism φ : � → �′ such that each φ(δi) is
slide-equivalent to δ′

i .

As is well known, a cut system α on � determines (up to diffeomorphism rel. boundary)
a handlebody Hα with ∂ Hα = �, every handlebody H with ∂ H = � is Hα for some cut
system α, and Hα and Hα′ are diffeomorphic rel. boundary if and only if α and α′ are slide-
equivalent [Joh95].

Definition 2·8. A Heegaard diagram is a triple (�, α, β) where � is a surface and each
of α and β are cut systems on �. The Heegaard diagram appearing as the top graphic of
Figure 4 is called the trivial (g, k)–diagram. (Ignore the double points in the center of
this graphic for now.) A Heegaard triple is a 4–tuple (�, α, β, γ ) where � is a surface
and each of α, β and γ are cut systems on �. A (g; k1, k2, k3)–trisection diagram is a
genus g Heegaard triple (�, α, β, γ ) such that each of (�, α, β), (�, β, γ ) and (�, γ, α)

is slide-diffeomorphic to the trivial (g, ki )–diagram, where k1, k2, and k3 count the number
of parallel curves in the diagram of the figure corresponding to (�, α, β), (�, β, γ ) and
(�, γ, α), respectively. (Again, we ignore the central double points for now.)

A Heegaard diagram (�, α, β) determines a closed, connected oriented 3–manifold
Hα ∪� Hβ , well-defined up to orientation preserving diffeomorphism by the slide-
diffeomorphism type of the diagram, and any closed, connected, oriented 3–manifold is
described by a diagram. The trivial (g, k)–diagram determines the genus g Heegaard
splitting of #k(S2 × S1).

A Heegaard triple (�, α, β, γ ) determines a compact, connected, oriented 4–manifold
with three boundary components by gluing I × Hα, I × Hβ and I × Hγ to D2 × � along
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170 DAVID GAY AND JEFFREY MEIER

Fig. 5. The three genus one trisection diagrams for S4, each of which is unbalanced. Any given trisection
diagram or relative trisection diagram can be stabilized by forming the connected sum with one of these
three diagrams.

Iα × �, Iβ × � and Iγ × �, where Iα, Iβ and Iγ are three disjoint arcs in S1 (with the α, β, γ

order being clockwise around S1). When this Heegaard triple is a trisection diagram D, each
of the three boundary components is a connected sum of copies of S2 × S1, which can be
filled in uniquely with boundary connected sums of copies of B3 × S1 [LP72], and this
closed 4–manifold is denoted X (D). Note that X (D) comes with an implicit (g; k1, k2, k3)

trisection X (D) = X1 ∪ X2 ∪ X3, such that � = X1 ∩ X2 ∩ X3 ⊂ X (D) is the trisection sur-
face and such that α, β and γ , resp., bound disks in the handlebodies X3 ∩ X1, X1 ∩ X2 and
X2 ∩ X3, resp.

The diagrammatic content of [GK16] is that every closed, connected oriented 4–manifold
is X (D) for some trisection diagram D, that slide-diffeomorphic diagrams give diffeomor-
phic 4–manifolds, and that two diagrams give diffeomorphic 4–manifolds if and only if
they are related by slide-diffeomorphism and stabilisation, where diagrammatic stabilisa-
tion is connected summing with one of the three genus one trisection diagrams for S4 shown
in Figure 5. Furthermore, any given trisection of the original 4–manifold is actually the
trisection coming from a diagram.

Definition 2·9. A genus p cut system on a compact, connected, orientable genus g surface
� with b boundary components is a collection of g − p disjoint simple closed curves on �

which collectively cut � into a connected genus p surface. The notions of slide-equivalent

and slide-diffeomorphic carry over verbatim from Definition 2·7.

In this more general setting, a genus p cut system on a genus g surface � with b boundary
components determines (up to diffeomorphism rel. boundary) a compression body Cα with
∂Cα = � ∪ (I × ∂�) ∪ �α, where �α is the result of surgering � along α. Every such com-
pression body is Cα for some cut system α, and Cα and C ′

α are diffeomorphic rel. boundary
if and only if α and α′ are slide-equivalent. (Here, “rel. boundary” really means relative
to the boundary respecting the decomposition of the boundary as � ∪ (I × ∂�) ∪ �α, i.e.
respecting the structure of Cα as a relative cobordism from � to �α.)

Definition 2·10. A (g; k1, k2, k3; p, b)–relative trisection diagram is a 4–tuple
(�, α, β, γ ) where � is a genus g compact, connected surface with b boundary compo-
nents, α, β and γ are genus p cut systems on �, and each of (�, α, β), (�, β, γ ) and
(�, γ, α) is slide-diffeomorphic to the trivial (g, ki ; p, b)–diagram shown in Figure 4.

The first author, with Castro and Pinzon–Caicedo in [CGPC18], showed that relative
trisection diagrams uniquely determine relatively trisected 4–manifolds with boundary. In
other words, for every (g; k1, k2, k3; p, b) relative trisection diagram D= (�, α, β, γ ),
there is a (g; k1, k2, k3; p, b)–trisected 4–manifold with boundary, X (D) = X1 ∪ X2 ∪ X3,
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such that � = X1 ∩ X2 ∩ X3 and such that α, β and γ bound disks in the compression bod-
ies X1 ∩ X2, X2 ∩ X3 and X3 ∩ X1, respectively; and X (D) is uniquely determined up to
trisected diffeomorphism. In particular this also determines a 3–manifold ∂ X (D) equipped
with a genus p open book decomposition with b binding components, well-defined up to
open book preserving diffeomorphism. Furthermore, the existence and uniqueness result in
the relative case in [GK16] translates diagrammatically into the statement that for every
4–manifold X equipped with an open book decomposition of ∂ X , there is a relative tri-
section diagram D with X (D) ∼= X that induces the given open book on the boundary and
that any two diagrams giving diffeomorphic 4–manifolds with diffeomorphic boundary open
books become slide-diffeomorphic after diagrammatic stabilisation. The stabilisation in the
relative case is exactly the same as the closed case, being an interior connected sum with a
diagram in Figure 5.

What is not immediately clear from the above is how to understand the 3–manifold and
its open book decomposition in terms of a diagram, and for this we need to add arcs to our
cut systems.

Definition 2·11. Given a genus p cut system α on �, an arc system relative to α is a
collection a of 2p properly embedded arcs in �, disjoint from α, such that cutting along a

and surgering along α turns � into a disk. If a and a
′ are arc systems relative to cut systems

α and α′, respectively, we say that (α, a) is slide-equivalent to (α′, a′) if the one can be
transformed to the other by ordinary handleslides on the cut systems and by sliding arcs
from the arc system over curves from the cut system. Note that we do not allow the sliding
of arcs over arcs, nor isotopies that move points on ∂�.

Definition 2·12. An arced relative trisection diagram (or arced trisection diagram, or
even arced diagram, for short) is a tuple (�, α, β, γ, a, b, c) such that (�, α, β, γ ) is a
relative trisection diagram, a (resp. b, resp. c) is an arc system relative to α (resp. β, resp. γ )
and such that we have the following pairwise standardness conditions:

(i) (�, α, β, a, b) is slide-equivalent to some (�, α′, β ′, a′, b′) such that (�, α′, β ′) is
diffeomorphic to the trivial (g, ki ; p, b)–diagram and a

′ = b
′.

(ii) (�, β, γ, b, c) is slide-equivalent to some (�, β ′, γ ′, b′, c′) such that (�, β ′, γ ′) is
diffeomorphic to the trivial (g, ki ; p, b)–diagram and b′ = c′.

Observe that ∂a= ∂b= ∂c.

Definition 2·13. A completed arced relative trisection diagram (or completed arced dia-

gram for short) is a tuple (�, α, β, γ, a, b, c, a∗) such that (�, α, β, γ, a, b, c) is an arced
diagram and such that (�, γ, α, c, a∗) is slide-equivalent to some (�, γ ′, α′′, c′, a′′) such
that (�, γ ′, α′′) is diffeomorphic to the trivial (g, k; p, b)–diagram.

Note that one cannot in general assume a= a
∗ in a completed diagram, since, as will

become clear shortly, this would imply trivial monodromy.

Definition 2·14. An abstract open book is a pair (P, φ) where P (the page) is a com-
pact, connected, oriented surface with nonempty boundary and φ (the monodromy) is a
self-diffeomorphism of P which is the identity on ∂ P . Two abstract open books with the
same page are isotopic if their monodromies are isotopic relative to the boundary of the
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page. Two abstract open books (P, φ) and (P ′, φ′) are diffeomorphism isotopic if there is a
diffeomorphism between P and P ′ with respect to which the monodromies are isotopic. An
abstract open book (P, φ) determines a model 3–manifold with open book decomposition
M(P, φ) = [0, 1] × P/∼ where (p, 1) ∼ (φ(p), 0) for all p ∈ P and (p, s) ∼ (p, t) for all
p ∈ ∂ P and all s, t ∈ [0, 1].

Definition 2·15. Consider a relative trisection diagram D= (�, α, β, γ ). The page asso-

ciated to D is the surface PD = �α obtained by surgering all the α curves; this has genus
p with b boundary components, if � had b boundary components and α is a genus p

cut system. Now consider a completed arced diagram D
∗ = (�, α, β, γ, a, b, c, a∗) whose

underlying relative diagram is D. Note that both a and a
∗ descend to well-defined (up to

isotopy rel. boundary) arc systems on PD The monodromy associated to D
∗ is the diffeo-

morphism (well-defined up to isotopy rel. boundary) φ(D∗) : PD → PD taking a to a
∗ and

fixing ∂ PD pointwise. Thus, the abstract open book associated to D
∗ is the pair (PD, φD∗).

THEOREM 2·16 (Castro–Gay–Pinzon [CGPC18]). For any relative diagram D=

(�; α, β, γ ) and any arc system a relative to α on �, there exist cut systems b, c and a
∗ such

that D∗ = (�; α, β, γ ; a, b, c, a∗) is a completed arced diagram. Furthermore, the abstract

open book (PD, φD∗) is uniquely determined (up to isotopy) by the original relative diagram

D and in fact the model 3–manifold M(PD, φD∗) is diffeomorphic, respecting open books,

to ∂ X (D).

In light of the fact that φD∗ does not depend on the choice of arcs used to convert D to
D

∗, we will henceforth write φD, without loss of specificity.

3. Gluing trisections along open books

In this section, we carefully set up the machinery needed to intelligibly glue relative
trisections together when their boundaries are equipped with induced diffeomorphic open
book decompositions. The bulk of this section essentially restates gluing results from
[CO17, section 2], but the conclusion of this section is to look more carefully at the spe-
cial case when we are gluing along lens spaces with annular open books. First we expand on
the above theorem slightly.

LEMMA 3·1. Given an arced relative trisection diagram D= (�; α, β, γ ; a, b, c), let

X (D) be the associated trisected 4–manifold with boundary. Let (PD, φD) be the associated

abstract open book and let M(PD, φD) be the associated model open book. Then there is a

canonical (up to isotopy) diffeomorphism

�(D) : ∂ X (D) −→ M(PD, φD).

In particular, �(D) is uniquely determined up to isotopy by the diagram D, and does not

depend on the choice of arcs but only on the underlying relative diagram.

Proof. This is already proved as [CGPC18, Theorem 5], only that the canonicity of the
diffeomorphism is not emphasised there. Once one understands that such a diffeomorphism
�(D) exists, observe simply that PD = �α naturally sits as a submanifold of ∂ X (D), as one
end of the α compression body. We also identify PD naturally with {0} × PD ⊂ M(PD, φD).

https://doi.org/10.1017/S0305004121000165 Published online by Cambridge University Press



Doubly pointed trisection diagrams and surgery on 2–knots 173

Then we note that any self-diffeomorphism of a 3–manifold which is the identity on a fixed
page of a fixed open book decomposition is necessarily isotopic to the identity.

Definition 3·2. Two arced relative trisection diagrams

D= (�; α, β, γ ; a, b, c) and D
′ = (�′; α′, β ′, γ ′; a′, b′, c′),

together with an orientation reversing diffeomorphism f : ∂(�, a) → ∂(�′, a′), are called
gluing compatible if there is an orientation reversing diffeomorphism

ψ f (D,D′) : PD = �α −→ PD′ = �′
α′

that extends f , takes a to a
′, and commutes with the monodromy diffeomorphisms φD and

φD′ . Note that if such a diffeomorphism exists, it is uniquely determined up to isotopy
because the arc systems a and a

′, respectively, cut PD and PD′ , respectively, into disks.
We call the diffeomorphism f a compatible gluing.

The compatible gluing f will be implicit in our diagrams in what follows, so we will
suppress it from the notation, writing ψ(D,D′) for ψ f (D,D′). In light of this set-up, the
following is [CO17, Proposition 2·12].

PROPOSITION 3·3. Given two gluing compatible arced diagrams D and D
′, consider the

diffeomorphism

�(D,D′) : M(PD, φD) −→ M(PD′, φD′′)

defined by sending each {t} × PD to {t} × PD′ via ψ(D,D′), and the associated diffeomor-

phism

ϒ(D,D′) : ∂ X (D) −→ ∂ X (D′)

defined by ϒ(D,D′) = �(D′)−1 ◦ �(D,D′) ◦ �(D). Also consider the closed Heegaard

triple D∪D
′ obtained by gluing � to �′ so as to match corresponding end points of arcs.

Then this is a trisection diagram and the corresponding closed 4–manifold is the 4–manifold

X (D∪D
′) built by gluing X (D) to X (D′) using the orientation reversing diffeomorphism

ϒ(D,D′)−1 = ϒ(D′,D).

Note that, because our definition of arced diagram requires that the arcs a, b and c all
share common endpoints, the resulting closed diagram will have triple points of intersection
among the curves of α, β and γ at the gluing points. These can of course be perturbed
away after the gluing. In particular, when the page of our open book is an annulus, we can
consistently displace the end points of a, b and c following a counterclockwise orientation
along one boundary component and a clockwise orientation on the other, before the gluing,
so that we immediately avoid the triple points. This is what we will do in later sections, and
in all figures.

LEMMA 3·4. Given three gluing compatible diagrams D, D′ and D
′′, the three diffeo-

morphisms ϒ(D,D′), ϒ(D′,D′′) and ϒ(D,D′′) satisfy the composition rule:

ϒ(D,D′′) = ϒ(D′,D′′) ◦ ϒ(D,D′).
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Proof. Simply follow the definitions of all the maps involved.

3·1. Relative trisections inducing annular open book decompositions

We now focus our attention on a very special case, when the pages of the open book
decompositions being considered are annuli, in which case the 3–manifolds involved are
lens spaces L(p, 1).

Definition 3·5. A(n arced) relative trisection diagram D is annular if the page PD = �α

is an annulus. We say that D is p–annular if the 3–manifold M(PD, φD) is diffeomorphic
to the lens space L(p, 1). Equivalently, D is p–annular if the page is an annulus and the
monodromy is τ

p

C where τC is a Dehn twist around the core C of the annulus.

LEMMA 3·6. Given a fixed p, any two p–annular arced relative diagrams D and D
′

are gluing compatible, and the associated gluing map ϒ(D,D′) is well-defined (up to iso-

topy) and independent of the choice of arcs extending the relative diagrams to arced relative

diagrams.

Proof. The fact that D and D′ are gluing compatible is because the model manifold M(P, φ)

for an abstract open book (P, φ), where P is an annulus, is diffeomorphic to L(p, 1) if and
only if φ is τ

p

C , and since the mapping class group of the annulus is Z, generated by τC ,
any orientation reversing diffeomorphism from PD to PD′ commutes with monodromies φD

and φD′ (up to isotopy rel. boundary), and hence there is such a diffeomorphism ψ taking
a to a

′.
Now suppose D1 and D2 are different arced diagrams extending the same underlying

relative diagram, and similarly that D′
1 and D

′
2 are different arced diagrams extending the

same underlying relative diagram. Thus PD1 = PD2 and PD
′
1
= PD

′
2
. The two gluing maps

we wish to compare are

ϒ(D1,D
′
1) = �(D′

1) ◦ �(D1,D
′
1) ◦ �(D1)

and

ϒ(D2,D
′
2) = �(D′

2) ◦ �(D2,D
′
2) ◦ �(D2).

We will show that ϒ(D2,D
′
2)

−1 ◦ ϒ(D1,D
′
1) is isotopic to the identity. Since we know that

the boundary parametrisations �(D1), �(D2), �(D′
1), and �(D′

2) are well-defined up to
isotopy only by the underlying relative diagrams, i.e. are independent of choice of arcs, we
need only show that �(D2,D

′
2)

−1 ◦ �(D1,D
′
1) is isotopic to the identity. But this is just the

map from M(PD1, φD1) to M(PD2, φD2) = M(PD1, φD1) defined by a map from PD1 = PD2

to itself which maps arc a1 to a2. In other words, this maps pages to pages and is the identity
on the binding. Thus, up to isotopy, this self-map of an open book is determined by its effect
on one page, and on that one page it acts by some power of a boundary parallel Dehn twist.
Such a self-map of an open book is isotopic to the identity via an isotopy which rotates the
corresponding binding component as many times as needed to undo the Dehn twists.

Note that we have in fact proved the independence of choice of arcs whenever the page
has mapping class group generated by boundary Dehn twists, but this is true only in one
case other than the annulus, namely the case of a pair of pants.

https://doi.org/10.1017/S0305004121000165 Published online by Cambridge University Press



Doubly pointed trisection diagrams and surgery on 2–knots 175

4. Bridge trisections of 2–knots

The concept of a trisection can be extended to the setting of knotted surfaces in
4–manifolds. This was first carried out in [MZ17b] for surfaces in S4, before being extended
to the general setting in [MZ17a], where we refer the reader for general details. In the
present note, we will restrict our attention to a special type of generalised bridge trisec-
tion: namely, 1–bridge trisections of 2–knots. Recall that a 2–knot is a smoothly embedded
2–sphere K in a smooth, orientable, connected, closed 4–manifold X , which we will
alternately denote by (X,K) or simply K, when the ambient space is clear from context.

A smooth disk D that is properly embedded in Zk = ♮k(B3 × S1) is called trivial if there
is an isotopy of D that fixes ∂ D point-wise and pushes D into ∂ Zk . It follows that U = ∂ D

is an unknot in Yk = ∂ Zk = #k(S2 × S1).

Definition 4·1. A 1–bridge (g; k1, k2, k3)–trisection of a 2–knot (X,K) is a decom-
position

(X,K) = (X1, D1) ∪ (X2, D2) ∪ (X3, D3),

where

(i) X = X1 ∪ X2 ∪ X3 is a (g; k1, k2, k3)–trisection,
(ii) Di is a trivial disk in X i , and

(iii) K ∩ Hi is a properly embedded arc.

The following is the restriction of [MZ17a, Theorem 1·2] to the setting of a 2–knot K in
a closed 4–manifold X .

THEOREM 4·2 ([MZ17a]). Every pair (X,K) admits a 1–bridge trisection.

The notion of i–stabilisation discussed above yields a natural notion of stabilisation for
1–bridge trisections: Simply perform an i–stabilisation of the underlying 4–manifold trisec-
tion away from the 2–knot K. Thus, we adopt the terminology of Definition 2·2 with respect
to a 1–bridge trisection T for (X,K). In Subsection 4·1, we prove the following.

THEOREM A. Any two 1–bridge trisections of a given 2–knot have a common stabilisation.

It is not difficult to extend the notion of 1–bridge trisections to the setting of knotted
spheres in compact 4–manifolds with boundary, equipped with relative trisections. We will
make use of this generalization in Subsection 4·3. However, we will generally be interested
in 1–bridge trisections of knotted spheres in closed 4–manifolds – i.e., 2–knots.

We now describe how 1–bridge trisections can be encoded diagrammatically. First, we
recall a familiar notion from 3–manifold topology.

Definition 4·3. A doubly pointed Heegaard diagram is a tuple (�; α, β, x+, x−), where
� is a closed surface, each of α and β is a cut system for �, and x+ and x− are points in
� \ ν(α ∪ β). We refer to (�; α, x+, x−) as a doubly pointed cut system.

The notion of slide-diffeomorphism introduced for cut systems and Heegaard tuples
in Definition 2·7 extends to the setting of doubly pointed cut systems if we require that

https://doi.org/10.1017/S0305004121000165 Published online by Cambridge University Press



176 DAVID GAY AND JEFFREY MEIER

handleslides are performed along arcs that are disjoint from the double points, isotopies
of cut systems are supported away from the double points, and diffeomorphisms preserve
the double points and their (±)–labeling. For emphasis, we will sometimes refer to this
equivalence relation as pointed-slide-diffeomorphism.

Definition 4·4. A doubly pointed trisection diagram is a tuple (�; α, β, γ, x+, x−),
where � is a closed surface; each of α, β and γ is a cut system for �; and each of
(�; α, β, x+, x−), (�; β, γ, x+, x−) and (�; γ, α, x+, x−) is pointed-slide-diffeomorphic
to the doubly pointed Heegaard diagram shown as the top graphic of Figure 4, which we
continue to refer to as the trivial (g, k)–diagram, with the understanding that the double
points are now included.

A doubly pointed Heegaard diagram encodes a pair (Y, K ), where Y is the closed
3–manifold described by the Heegaard diagram, and K is a knot in Y that intersects
the Heegaard surface in the points x± and intersects each of the handlebodies in single,
boundary-parallel arc contained in the 0–handle of the handlebody. For example, the trivial
(g, k)–diagram encodes the pair (Yk, U ), where U is the unknot.

The requirement that each pair of doubly pointed cut systems in a doubly pointed trisec-
tion diagram be slide-diffeomorphic to a trivial diagram reflects the fact that, in a 1–bridge
trisection, the 2–knot K intersects X i in a trivial disk Di ; i.e., ∂ Di = U in Yk .

PROPOSITION 4·5. A doubly pointed trisection diagram uniquely determines a 2–knot

(X,K) with a 1–bridge trisection.

Proof. The construction of the ambient manifold X from the data of the trisection diagram
was described in Section 2. Let Hα, Hβ , and Hγ denote the described handlebodies with
boundary �, and let X1, X2, and X3 denote the 4–dimensional pieces bounded by Hα ∪� Hβ ,
Hβ ∪� H γ and Hγ ∪� Hα, respectively.

Let ωα be a properly embedded arc in Hα, obtained by taking an arc ω∗
α in � \ ν(α)

connecting x+ and x− and perturbing its interior into Hα. Define ωβ and ωγ similarly. Note
that these arcs are unique up to proper isotopy inside their respective handlebodies, since
they are boundary-parallel. Since (�; α, β; ω∗

α, ω∗
β) is a standard doubly pointed Heegaard

diagram (albeit, augmented with arcs connecting the double points), the union ωα ∪ ωβ is an
unknot in ∂ X1 = Hα ∪� Hβ . The same is true of the pairs (∂ X2, ωβ ∪ ωγ ) and (∂ X3, ωγ ∪

ωα). These unknots can be capped off with disks Di in a canonical way in the corresponding
4–dimensional 1–handlebodies X i . (See [MZ17a, Lemma 2·3].)

Thus, the 2–knot (X,K), where K=D1 ∪D2 ∪D3, is canonically determined by the
original data of a doubly pointed trisection diagram.

4·1. Trisecting 2–knot exteriors

In this subsection we discuss how a 1–bridge trisection X = X1 ∪ X2 ∪ X3 of a 2–knot
(X,K) immediately gives a relative trisection of the exterior X \ ν(K ), and we use this to
prove Theorem A. We also show how to get a relative trisection diagram for this trisection
of the exterior. To see the first fact, choose the neighbourhood and its product structure
ν(K) ∼=K× D2 so that each X i ∩ ν(K) is (X i ∩K) × D2. Then we see that, in transitioning
from X to the exterior X \ ν(K ), we have simply removed a 4–ball from each X i , since
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X i ∩K is a disk. Similarly, we have removed a 3–ball from each X i ∩ X i+1, and two disks
from X1 ∩ X2 ∩ X3; thus, the X i do in fact induce a trisection of the exterior.

Proof of Theorem A. Consider two 1–bridge trisections X = X1 ∪ X2 ∪ X3 and X = X ′
1 ∪

X ′
2 ∪ X ′

3 of the same 2–knot (X,K). By an ambient isotopy we can assume that X i ∩K=

X ′
i ∩K, since in both cases we simply have “trisections” of a 2–sphere into three bigons

meeting at two points. A further isotopy then arranges that the trisections agree on a neigh-
bourhood ν(K) of K. Thus, we have two relative trisections of the exterior X \ ν(K)

inducing the same (annular) open book on the boundary. Then Theorem 2·6 tells us that
these trisections become isotopic after stabilisation, but since these stabilisations happen
away from K, this proves the result.

As for the relative trisection diagram for X \ ν(K), it should be clear now that this is
simply the original doubly pointed diagram minus open disk neighbourhoods of the two
points. This is because the central surface X1 ∩ X2 ∩ X3 has two disks removed, and yet
every curve that bounded a disk in a given handlebody before removing ν(K) still bounds a
disk in the induced compressionbodies. To turn this into an arced relative diagram, perform
handle slides on α and/or β curves until the two boundary components are in the same
component of � \ (α ∪ β), and then connect them by an arc a= b. Then slide this arc over
β curves, and perhaps perform handle slides on γ , to get an arc disjoint from γ and this is
the arc c. Repeating this process with γ and α gets back to a

∗. This is illustrated in a few key
examples in the next section.

Although the above argument is straightforward, it is worth pointing out two directions
in which one might wish to extend these ideas both of which take more work. First, the
given trisection does not induce a trisection of ν(K); in particular, X1 ∩ X2 ∩ X3 ∩ ν(K) is
disconnected. This can be remedied by carefully stabilising the given closed trisection inside
ν(K), so that we genuinely see the closed trisection as the union a trisection of ν(K) to a
trisection of X \ ν(K). Secondly, if the bridge number is larger than one we do not get a
trisection of either the neighbourhood nor the exterior. This can also, in principle, be fixed
in a similar way but can be quite complicated in practice. In particular, since higher genus
surfaces never have 1–bridge trisections, surgery along surfaces of nonzero genus, and along
non-orientable surfaces, is necessarily more subtle. Kim and Miller show how to obtain a
relative trisection for the exterior of a knotted surface from a (generalised) bridge trisection
of the knotted surface [KM18]; they apply their technique to study the Price twist, which
can be described as a version of Gluck surgery for knotted projective planes.

4·2. Examples of trisected 2–knot exteriors

We now consider a number of important examples of 2–knots in simple 4–manifolds that
can be put in 1–bridge position. As discussed above, this will allow us to present annular
arced trisection diagrams for these 2–knot exteriors, and we will make significant use of
these in the proof of Theorem C in Section 5.

Each image in the first column of Figure 6 is a doubly pointed trisection diagram D

corresponding to a 2–knot (X,K). The corresponding image in the second column is the cor-
responding relative trisection diagram for the exterior EK = X \ ν(K), as described above.
The corresponding image in the third column is an arced trisection diagram D◦ for EK.
We will now remark on each row. Justification for the first column of Figure 6 is given by
[MZ17a, Figure 1].
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Fig. 6. Five examples of how one can go from a doubly pointed trisection diagrams for a 2–knot (X,K)

to an arced relative trisection diagrams for the exterior EK. From top to bottom, the pairs are: the unknot-
ted 2–knot (S4, U), projective line (CP2,L), the conic (CP2, C), the fiber (S2 × S2,F), and the fiber
(S2×̃S2, F̃). The corresponding complements are: B3 × S1, B4, the Z2–homology ball B+4 with boundary
L(4, 1), S2 × D2, and S2 × D2.

The first row corresponds to the unknotted 2–knot in the 4–sphere: (S4,U). In this case,
since U is fibered by 3–balls, EU

∼= B3 × S1. The arced trisection diagram D
◦
U

=DB3×S1 is
0–annular, since U ·U = 0. Note that the corresponding trisection T ◦

B3×S1 of B3 × S1 is the
unique trisection of type (0, 0; 2, 0).

The second row corresponds to the projective line in the projective plane: (CP2,L). In this
case, EL

∼= B4, and the given arced trisection diagram D
◦
L

is (+1)–annular, since L ·L= 1.

Similarly, we can consider the mirror pair (CP
2
,L). In this case, EL

∼= B4, but D◦

L
=D

◦

L
is

(−1)–annular, since L ·L= −1.
The third row corresponds to the degree two curve in the projective plane (CP2, C), which

we refer to as the conic. In this case, EC is the Z2–homology 4–ball B+4 satisfying ∂ B+4 =

L(4, 1). (See Subsection 5·1 for details.) Since C · C = 4, we have that D◦
C

=DB+4 is (+4)–

annular. Similarly, when considering the mirror pair (CP
2
, C), we have that EC

∼= B+4 and
that D◦

C
=D

◦

C
=DB−4 is (−4)–annular.

The trisections T ◦
L

and T ◦
C

are, up to mirroring, the only irreducible1 (1, 0; 0, 2)–
trisections [MZ17a]. In general, the disk bundle Ne with Euler number e(Ne) = e admits
a (2, 0; 0, 2)–trisection [CGPC18], and it is not known whether or not there are other
4–manifolds that admit irreducible trisections of this sort.

1A trisection is irreducible if it is not the connected sum of trisections.
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Fig. 7. Two core diagrams, each of which represents the pair (S2 × D2, S2 × {pt}).

The fourth and fifth rows correspond, respectively, to the fiber F = S2 × {pt} in the trivial
bundle

S2 −֒→ S2 × S2 −−։ S2

and the fiber F̃ = π−1(pt) in the twisted bundle

S2 −֒→ S2×̃S2
π

−−։ S2.

In these cases, we have EF
∼= EF̃

∼= S2 × D2, and both of the arced diagrams D◦
F

=DF and
D

◦

F̃
=DF̃ are 0–annular (2, 0; 0, 2)–trisection diagrams.

4·3. Recording the core of S2 × D2

We end this section with a discussion of the special case of a 2–sphere inside a 4–manifold
with nonempty boundary, which is not technically a 2–knot, by our definition. By a core, we
mean the 2–sphere S2 × {pt} inside S2 × D2. The importance of the core is 2–fold: first,
given any 2–knot (X,K), inside the neighbourhood ν(K), the 2–knot K is a core. Second,
when we form a new 4–manifold by gluing S2 × D2 to a 4–manifold E with ∂ E = S2 × S1,
the core naturally into the result as the 2–knot (E ∪ S2 × D2, S2 × {pt}), which is called the
dual 2–knot for this gluing.

Rather than explicitly develop a theory of bridge trisected position with respect to relative
trisections for knotted surfaces in 4–manifolds with boundary, we will content ourselves in
the present article to an ad hoc description of a core, which we will refer to not as a doubly
pointed relative trisection diagram (as one might), but simply as a core diagram, two of
which are shown in Figure 7.

Definition 4·6. A core diagram is a tuple

(�; α, β, γ ; a, b, c, x+, x−),

where

(�; α, β, γ ; a, b, c)

is a 0–annular arced relative trisection diagram for S2 × D2, and x+ and x− are points in the
exterior of the arcs and curves in � such that x+ and x− can be isotoped, in the exterior of
the arcs and the curves, to lie in distinct components of ∂�.

The next lemma verifies that the result of gluing a core diagram to a compatible arced
diagram is a doubly pointed diagram for the resulting dual 2–knot.
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LEMMA 4·7. If Dcore is a core diagram with underlying arced diagram D describing

S2 × D2 and D
◦ is a 0–annular arced diagram for a 4–manifold E with ∂ E ∼= S2 × S1,

then D
◦ ∪Dcore is a doubly pointed trisection diagram for the pair (X,K), where X =

E ∪ϒ(D,D◦) S2 × D2 and K is the dual 2–knot for this gluing.

Proof. By Lemma 3·6, D◦ and D are gluing compatible, so their union describes the desired
ambient 4–manifold. It remains to see that the inclusion of x+ and x− into D

◦ ∪D changes
this trisection diagram into a doubly pointed trisection diagram.

The points x+ and x− can be connected by arcs that are parallel to the arcs D, because
of the way they can be assumed to lie in ∂D. It follows that these points encode a sphere
S2 × {pt}, where {pt} can be assumed to lie in the boundary S2 × S1, if desired. We already
have that x± lie in S2 × S1. The arcs connecting them naturally lie on annular fibers in
S2 × S1 and are pairwise parallel there. If follows that there is a sphere in S2 × S1 that is
cut into three disks (the traces of these parallelisms) that intersect pairwise in the arcs and
have common intersection x±. Since this sphere intersects each annulus page in a properly-
embedded arc, it intersects any circle core of a page in a point. It follows that the sphere is
S2 × {pt}.

This sphere, along with the induced 1–bridge trisection just described with respect to the
twice-punctured genus two central surface of the trisection of S2 × D2 corresponding to D,
persists in the trisection corresponding to Dcore ∪D

◦, giving an honest 1–bridge trisection
of (X,K), as desired.

5. Surgeries on 2–knots and their diagrams

In this section, we give formal definitions of the relevant surgery operations, and we prove
Theorem C, which gives a trisection diagrammatic illustration of each surgery operation.

5·1. Surgery on 2–knots

Let K be a 2–knot in a 4–manifold X with self-intersection zero; i.e., K has a trivial
normal bundle in X . Then, ν(K) ∼= S2 × D2, and the exterior EK of K in X has boundary
∂ EK

∼= S2 × S1. There are two important surgery operations on such 2–knots. First, consider
the 4–manifold

X (K) = EK ∪S2×S1 B3 × S1

obtained by gluing B3 × S1 to EK using some diffeomorphism of their S2 × S1 bound-
aries. The manifold X (K) is said to be the result of performing sphere surgery on K in
X . By [LP72], every self-diffeomorphism of S2 × S1 extends over B3 × S1, so the result of
sphere surgery depends only on K and X .

As an example of sphere surgery, note that if K is a fibered 2–knot in S4 with fiber some
punctured 3–manifold M◦, then X (K) has the structure of a 3–manifold bundle over S1 with
fiber M . In particular, since the unknotted 2–sphere U in S4 is fibered by 3–balls, we have
that S4(U) ∼= S3 × S1.

Next, consider the 4–manifold

X∗(K) = EK ∪τ S2 × D2
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obtained by gluing S2 × D2 to EK using the diffeomorphism τ : S2 × S1 → S2 × S1

defined by

τ(x, θ) = (ρθ (x), θ),

where ρθ : S2 × S2 is rotation (about some axis) through the angle θ . This operation was
introduced by Gluck [Glu62a], who showed that the diffeomorphism τ (called the Gluck

twist) is the unique diffeomorphism of S2 × S1 that does not extend to a diffeomorphism of
S2 × D2 and that the result of this gluing is independent of the choice of axis of rotation.
The manifold X∗(K) is said to be the result of Gluck surgery on K in X .

As an example of Gluck surgery, consider the fiber K= S2 × {pt} inside X = S2 × S2.
Then, (X)∗(K) ∼= S2×̃S2. On the other hand, Gluck showed that S4

∗(K) is a homotopy
4–sphere for all K⊂ S4, but it is unknown whether or not this homotopy 4–sphere is always
diffeomorphic to S4 [Glu62a].

There is an inverse operation to sphere surgery, which we call circle surgery. Let ω be
a simple, closed curve in a 4–manifold X . Then, ν(ω) ∼= B3 × S1, and the exterior Eω =

X \ ν(B3 × S1) has boundary S2 × S1. We can form a new manifold

Xε(ω) = Eω ∪ε S2 × D2,

where ε : S2 × S1 → S2 × S1 is either id or τ . In either case, we call Xε(ω) the result of
circle surgery on ω in X . Note that Xτ (ω) and X id(ω) are related by Gluck surgery along
their cores.

Now we turn to the instance in which K has self-intersection ±1 or ±4 inside X . First,
we assume the former case, so ∂ EK

∼= S3. Consider the 4–manifold

X±1(K) = EK ∪S3 B4

obtained by gluing B4 to EK using some diffeomorphism of S3. As in the case of sphere
surgery, the result is independent of the diffeomorphism. The manifold X±1(K) is said to be
the result of a (±1)–blowdown of K in X .

When K has self-intersection ±4, we have that ∂ EK
∼= L(4, ±1). Fintushel and Stern

showed that L(4, ±1) bounds a rational-homology 4–ball B±4 and that every self-
diffeomorphism of L(4, ±1) extends over B±4 [FS97]. Thus, the 4–manifold

X±4(K) = EK ∪L(4,±1) B∓4,

which is said to be the result of a (±4)–rational blowdown along K in X , depends only on K
and X . Note that L(4, 1) does not admit an orientation reversing self-diffeomorphism, so we
must be careful: a (±4)–rational blowdown on a (±4)–framed 2–knot K in X requires gluing
B∓4 to EK using an orientation-reversing diffeomorphism from L(4, ±1) to L(4, ∓1).

The simplest example of a 2–knot with self-intersection +4 is the degree-two curve C = C2

in CP
2. In fact, CP2 \ ν(C) ∼= B+4 [FS97]. Similarly, CP

2
\ ν(C) ∼= B−4. So, the result of a

(+4)–rational blowdown on C2 in CP
2 can be described as

CP
2
+4(C) ∼= B+4 ∪L(4,1) B−4,

which turns out to coincide with the spun manifold S(RP3), as well as the non-trivial sphere-
bundle over RP2. See Example 6·6, below.
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5·2. Gluck twins

Although the main goal of this section (and this paper) is to describe how to go from a dou-
bly pointed trisection diagram for a 2–knot (X,K) to one of several manifolds resulting from
performing some surgery operation along K in X , the methods employed are slightly more
general, applying to any 4–manifold E with ∂ E = S2 × S1. This is, however, something of
a distinction without a difference, since any such E gives rise to a pair of 2–knots:

(X,K) = (E ∪id S2 × D2, S2 × {pt}) and (X ′,K′) = (E ∪τ S2 × D2, S2 × {pt}),

where X and X ′ may or may not be diffeomorphic, homeomorphic, or even homotopy-
equivalent, and even if they are diffeomorphic, K and K′ may not be smoothly or even
topologically isotopic. We call the 2–knots (X,K) and (X ′,K′) Gluck twins, since they
share a common exterior.

We now mention a handful of interesting examples of Gluck twins. (See also Section 6,
where we consider these examples – and others – through the lens of trisections.) First, the
fibers (S2 × S2,F) and (S2×̃S2, F̃) are twins, since, as we saw in Subsection 4·2, they both
have exterior S2 × D2. This is an example where the ambient space of the twins are not
even homotopy-equivalent. To the other extreme, there are many families of 2–knots in S4

that are known to be smoothly isotopic to their twin. (In particular, the twins have the same
ambient space.) Gluck gave a sufficient condition, based on a Seifert hyper-surface bounded
by the 2–knot, for a 2–knot to be equivalent to its twin; hence, the ambient 4–manifold is
preserved, as well. (See [Glu62a, theorem 17·1].) This condition is strong enough to show
that ribbon 2–knots and fibered, homotopy-ribbon 2–knots in S4 are ambient isotopic to their
twins [Coc83].

In between this extreme, there are many interesting examples. See [Sun15] for a dis-
cussion of the case of 2–knots that are topologically isotopic within a 4–manifold, but not
smoothly isotopic. In a slightly different vein, Gordon showed that 2–knots in S4 are not
determined by their complement, in general [Gor76].

5·3. Proof of Theorem C

We are now ready to prove our main result, which gives diagrammatic characterisations
of 4–dimensional surgery operations on 2–knots. The proof will follow from a sequence of
lemmata. First, we consider the case corresponding to sphere surgery on a 2–knot. We refer
the reader to Figure 8 for an illustration of the statement of our first lemma. Let DB3×S1 be the
0–annular arced trisection diagram corresponding to B3 × S1, as in Figure 1 and Figure 6.

LEMMA 5·1. Let D◦ be a 0–annular arced trisection diagram for a 4–manifold X with

S2 × S1 boundary. Then, the union

D
′ =D

◦ ∪DB3×S1

is a trisection diagram for the 4–manifold X ′ = X ∪ (B3 × S1).

Note that DB3×S1 =DB3×S1 , in accordance with the fact that B3 × S1 admits an
orientation-reversing self-diffeomorphism.

Proof. By Lemma 3·6, since D
◦ and DB3×S1 are both 0–annular arced trisection diagrams,

they are gluing compatible. So, the diagram D
′ describes X ′ by Proposition 3·3. Note that

this gluing is unique by [LP72].
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Fig. 8. The left image shows 0–annular arced trisection diagrams D◦ and DB3×S1 , corresponding respec-
tively to a 4–manifold X with ∂ X = S2 × S1 and the 4–manifold B3 × S1, as in Lemma 5·1. The right
image shows the result D′ of gluing these diagrams together.

Fig. 9. The left two images are the (+4)–annular arced trisection diagrams D◦ and DB−4 , corresponding
respectively to a 4–manifold X with ∂ X = L(4, 1) and the rational homology 4–ball B−4, as in Lemma 5·2.
The right image shows the trisection diagram D′ obtained by gluing these diagrams together, which
describes the 4–manifold X ∪ B−4.

Next, we consider the case corresponding to a rational blowdown on a 2–knot with self-
intersection ±4. We refer the reader to Figure 9 for an illustration of the second lemma. The
proof is nearly identical to that of the previous lemma. Let DB+4 be the (+4)–annular arced
trisection diagram corresponding to B+4, as in Figures 1 and 6.

LEMMA 5·2. Let D◦ be a (+4)–annular arced trisection diagram for a 4–manifold X

with L(4, 1) boundary. Then, the union

D
′ =D

◦ ∪DB+4

is a trisection diagram for the 4–manifold X ∪ B+4. Similarly, ∂ X = L(4, −1) boundary

and D
◦ is (−4)–annular, then the diagram

D
′ =D

◦ ∪DB+4

describes the 4–manifold X ∪ B+4.

Proof. Suppose ∂ X = L(4, 1). Since D◦ and DB+4 =DB−4 are both (+4)–annular arced tri-
section diagram, they are gluing compatible by Lemma 3·6. So, the diagram D′ describes
X by Proposition 3·3. Similarly, if ∂ X = L(4, −1), then D

◦ ∪DB+4 describes X ∪ B+4, as
desired. Note that these gluings are unique by [FS97].

Next, we consider the case corresponding to a blowdown on a 2–knot with self-
intersection ±1. In order to state the next two lemmata, we need to introduce new objects,
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Fig. 10. From left to right, the a–, b– and c–twisted annuli Da, Db and Dc, which are not arced trisection
diagrams.

Fig. 11. The top two images are the arced trisection diagrams D◦ and DL, corresponding respectively
to a 4–manifold X with ∂ X ∼= S3 and B4, and the trisection diagram D′′ that results from their gluing.
Similarly, the bottom two figures show the same thing, except with Da replacing DL. The right-most
trisection diagram is slide-diffeomorphic to the top middle one via a single Dehn twist about the central
hole and two slides and the destabilises to the bottom middle one.

which we call twisted annuli (more precisely, a–twisted, b–twisted, or c–twisted annuli, as
the case may be), and which act as arced trisection diagrams, though they are not. The
twisted annuli are denoted Da, Db, and Dc and are shown in Figure 10.

An arced trisection diagram has the property that the the red-arcs are slide equivalent to
the blue-arcs, which are slide-equivalent to the green arcs. Thus, an arced trisection diagram
on the annulus must contain three parallel arcs, one of each colour; i.e., it must be the arced
trisection diagram DB3×S1 for B3 × S1. Although the twisted annuli are not arced trisection
diagrams, they will feature in our diagrammatic results as though they were. We refer the
reader to Figure 11 for an illustration of our third lemma, which corresponds to the case of
a blowdown on a 2–knot with self-intersection ±1.

LEMMA 5·3. Let D◦ be a (+1)–annular arced trisection diagram for a 4–manifold X

with ∂ X = S3. Let Da be the a–twisted annulus. Then, the union

D
′ =D

◦ ∪Da
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is a trisection diagram for 4–manifold X ∪ B4. Similarly, if D◦ is (−1)–annular, then the

diagram

D
′ =D

◦ ∪Da

describes X ∪ B4.

Proof. Suppose D◦ is a (+1)–annular arced trisection diagram. Let DL denote the toroidal,
(−1)–annular arced trisection diagram for B4 shown in the top left of Figure 11. By
Lemma 3·6, D◦ and DL are gluing compatible. So, the diagram D

′′ shown in the top middle
of Figure 11 describes X ∪ B4.

Now, since D◦ is, by assumption, an annular arced trisection diagram we can assume that,
away from the local pictures show in Figure 11, the pink arc/curve is parallel to the light
blue arc/curve. Our goal is to destabilise D

′′ using this common α/β–curve. First, we do
three things. Modify D

′′ by performing a left-handed Dehn twist along the dark blue curve.
This has the effect of “straightening out” the dark green curve, and “twisting” the dark red
curve. Next, slide the dark blue curve over the light blue curve. This will cause it to exit
the local picture. Finally, slide the dark red curve over the pink curve. The end result is the
diagram shown on the right- side of Figure 11. This diagram can be destabilised by surgering
the surface along the dark green curve and deleting the light blue curve and the pink curve,
which were parallel. The resulting diagram, after lightening the shades of the remaining red
and blue curves, is shown in the bottom middle of the figure. Note however, that this diagram
is precisely the desired diagram D

′, completing the proof in the case of self-intersection +1.
The same proof works for the case that D◦ is (−1)–annular, except that the role of DL is

played by DL and the role of Da is played by Da. (The left-handed Dehn twist used in the
modification of D′′ will be right-handed, this time.)

Remark 5·4. Lemma 5·3 is also valid if the c–twisted annulus is used instead of the
a–twisted annulus. More precisely, the lemma holds if every instance of Da (respectively,
Da) is replaced with Dc (respectively, Dc). There are a number of ways to see this. One is
that there is an orientation-reversing diffeomorphism of B4 that has the effect of interchang-
ing the red and green arcs and curves in the diagrams DL and DL. Alternatively, in the proof
of the lemma, the destabilisation could be done using the dark red curve and the light green
and light blue arcs, instead of the dark green curve and the pink and light blue arcs.

We do not have a rendering of Lemma 5·3 that involves Db; this is an artifact of the
asymmetry in the definition of an arced trisection diagram – namely, that the a–arcs can-
not be made to coincide with the c–arcs when the monodromy of the induced open book
decomposition is not the identity.

Finally, we arrive at the most complicated case: that corresponding to Gluck surgery. In
this case, we will make use of two different gluings of arced trisection diagrams to account
for the two possible gluings of S2 × D2 to a 4–manifold X with ∂ X = S2 × S1. We refer
the reader to Figures 12 and 13 for illustrations of our fourth lemma. In this lemma, Dcaps

diagram consisting of two disjoint disks, drawn as caps, as in the right-most graphic in
Figure 12. Note that Dcaps is not an honest trisection diagram of any sort.
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Fig. 12. The left two images are the arced trisection diagrams D◦ and DF , corresponding respectively to a
4–manifold X with ∂ X = S2 × S1 and the exterior S2 × D2 of the fiber 2–knot F in S2 × S2, and the result
of their gluing. Similarly, the right two figures show the same thing, except with Dcaps replacing DF . The
equivalence of the middle arrow is the content of Figure 14.

Fig. 13. The left two images are the arced trisection diagrams D◦ and D
F̃

, corresponding respectively to a
4–manifold X with ∂ X = S2 × S1 and the exterior S2 × D2 of the fiber 2–knot F̃ in S2×̃S2, and the result
of their gluing. Similarly, the right two figures show the same thing, except with Da replacing D

F̃
. The

equivalence of the middle arrow is the content of Figure 15.

LEMMA 5·5. Let D◦ be a 0–annular arced trisection diagram for a 4–manifold X with

∂ X = S2 × S1. Then, the unions

D
′ =D

◦ ∪Dcaps

and

D
′′ =D

◦ ∪Da

are trisection diagrams for 4–manifolds X ′ and X ′′ satisfying

{X ′, X ′′} = {X ∪id S2 × D2, X ∪τ S2 × D2}.

Proof. Consider the arced trisection diagrams DF and DF̃ corresponding to the exteriors of
the fiber 2–knots F and F̃ in S2 × S2 and S2×̃S2, respectively. These diagrams are shown
in the top left of Figures 12 and 13, respectively. As 0–annular arced trisection diagrams,
D

◦, DF , and DF̃ are pairwise gluing compatible by Lemma 3·6. There are three things to
be shown: that gluing on Dcaps corresponds to gluing on DF , that gluing on Da corresponds
to gluing on DF̃ , and that the gluing diffeomorphisms ϒ(D◦,DF ) and ϒ(D◦,DF̃ ) are
distinct in the mapping class group M(S2 × S1). The statements of the first two claims are
illustrated by Figures 12 and 13, and their proofs are exhibited in Figures 14 and 15.

First, we will show that the union D
◦ ∪DF is equivalent to the union D

◦ ∪Dcaps, as
illustrated by Figure 12. To do this, we must justify that the middle arrow relating the two
objects on the right of this figure comes from a pair of destabilisations. This justification is
provided by the sequence of five moves given in Figure 14. First, slide the dark blue and
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Fig. 14. A sequence of handleslides and destabilisations taking D◦ ∪DF to D◦ ∪Dcaps. Important is the
fact that the original pink, light blue, and light green curves can be assumed, in turn, to be pairwise parallel
outside of the local picture. The double points represent the 2–knot S2 × {pt} inside the S2 × D2 piece
described, at first, by DF .

Fig. 15. A sequence of slide-diffeomorphisms and destabilisations taking D
◦ ∪D

F̃
to D

◦ ∪Da. Important
is the fact that the original pink curve can be assumed to be parallel, in turn, to the original light blue curve
or the original light green curve outside of the local picture. The double points represent the core S2 × {pt}
inside the S2 × D2 piece described, at first, by D

F̃
.
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Fig. 16. A sequence of diagrams showing that the gluing map ϒ(DF ,D
F̃

is the Gluck twist τ .

dark green curves over their lighter shaded companions. Second, we destabilise the dark
red curve using the dark blue and dark green curves, which can be assumed to be parallel
outside of the local picture, because D

◦ is annular. Third, we slide the dark red curve over
the pink curve. Fourth, we destabilise the dark blue curve using the dark red curve and the
light green curve, which can be assumed to be parallel away from the local picture, as before.
Fifth, we destabilise the dark green curve using the pink and light blue curves, which can be
assumed to be parallel outside of the local picture, as before. This completes the claim that
the proposed gluing of S2 × D2 to X coming from DF can be achieved using Dcaps.

Second, we will show that the union D◦ ∪DF̃ is equivalent to the union D◦ ∪Da, as
illustrated by Figure 13. To do this, we must justify that the middle arrow relating the two
objects on the right of this figure comes from a pair of destabilisations. This justification is
provided by the sequence of five moves given in Figure 15. First, we do a left-handed Dehn
twist about the left dark blue curve. Second, we slide the left dark red and dark blue curves
over their lighter-shaded companions. Third, we destabilise the left dark green curve using
the parallel pink and light blue curves. Here we are using the fact that the pink and light
blue curve can be assumed to be parallel away from the local picture, since they come from
the arcs of an annular arced trisection diagram. The result is the lower genus diagram shown
in the bottom-left of the figure, where the dark blue and dark red curves running out of the
local picture have been lightened. Fourth, we slide dark green and dark red curves over their
lighter-shaded companions. Fifth, we destabilise the dark blue curve using the parallel dark
red and dark green curves. Here we are using the fact that the light blue and light green
curves can be assumed to be parallel away from the local picture, since they come from
the arcs in an annular arced trisection diagram. This completes the claim that the proposed
gluing of S2 × D2 to X coming from DF̃ can be achieved using Da.

Finally, we claim that the two gluings analyzed above account for both elements of
M(S2 × S1). By Lemma 3·4, we have

ϒ (D◦,DF ) ◦ ϒ (DF ,DF̃ ) = ϒ (D◦,DF̃ ) .

We claim that ϒ (DF ,DF̃ ) = τ , which implies that ϒ (D◦,DF ) and ϒ (D◦,DF̃ ) are dis-
tinct mapping classes, as desired. To see that this claim is true, refer to Figure 16, which
shows the trisection diagram D

′′ =DF ∪DF obtained from gluing DF to DF̃ in the left
two figures. By the first part of the present lemma, D′′ is equivalent to the third diagram,
DF̃ ∪Dcaps. Alternatively, one could invoke the second part of the present lemma to con-
clude that D′′ is equivalent to Da ∪DF . Either of these diagrams can easily be seen to be
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equivalent to the fourth diagram of the figure, the genus two trisection diagram for S2×̃S2.
Thus, we have exhibited that ϒ (DF ,DF̃ ) = τ , as desired.

Remark 5·6. The statement of Lemma 5·5 holds if the role of Da is played by any of the
twisted annuli or their mirrors (cf. Remark 5·4).

Finally, we combine the above lemmata to give a proof of Theorem C.

Proof of Theorem C. Suppose that D is a (g; k1, k2, k3)–doubly pointed trisection diagram
for a 2–knot (X,K). If K has self-intersection 0, then D

◦ satisfies the hypotheses of
Lemma 5·1, so D◦ ∪DB3×S1 is a trisection diagram for X (K) of type (g + 1; k1 + 1, k2 +

1, k3 + 1).
If K has self-intersection ±4, then D

◦ satisfies one of the hypotheses of Lemma 5·2, so
D

◦ ∪DB∓4 is a trisection diagram for X±4(K) of type (g + 2; k1 + 1, k2 + 1, k3 + 1).
If K has self-intersection +1, then D

◦ satisfies one of the hypotheses of Lemma 5·3, so
D

◦ ∪Da is a trisection diagram for X1(K) of type (g + 1; k1, k2 + 1, k3). Similarly, if K
has self-intersection −1, then D

◦ ∪Da is a trisection diagram for X−1(K) of type (g + 1;

k1, k2 + 1, k3).
If K has self-intersection 0, then

D
◦ ∪Dcaps describes EK ∪ϒ(D◦,DF ) S2 × D2

and

D
◦ ∪Da describes EK ∪ϒ(D◦,D

F̃) S2 × D2,

by Lemma 5·5. However, by the portion of Lemma 5·5 shown in Figure 14, D◦ ∪Dcaps =D

is the original trisection diagram for X . It follows that ϒ (D◦,DF ) = id. Therefore, D◦ ∪Da

corresponds to the result of Gluck surgery on K in X , as desired.

5·4. The dual 2–knot in Gluck surgery

In this subsection, we give a slightly more detailed treatment of Gluck surgery; namely,
we show how to record information about the dual 2–knot in the Gluck surgery manifold.
The main result is the following.

THEOREM D. Let D
◦ be a 0–annular arced diagram for a 4–manifold E with ∂ E ∼=

S2 × S1. Then, the diagrams D and D
′, as shown in Figure 2, are doubly pointed trisection

diagrams for the only 2–knots (X,K) and (X ′,K′) with EK
∼= EK′

∼= E.

Proof. By Lemma 5·5, the underlying trisection diagrams in Figure 2 describe the desired
ambient 4–manifolds. The proof of this lemma followed by first gluing on DF and DF̃ ,
then reducing the result to the unions D◦ ∪Dcaps and D◦ ∪Da, respectively, as illustrated
in Figure 14 and 15. Not relevant at the time, were the double points included in each
frame of these figures, which now become relevant. However, the extra claim here about
the cores of these two fillings follow from Lemma 4·7 and by tracing the double points
through Figures 14 and 15.
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Fig. 17. Surgery operations on the unknot (S4, U). On the left, we have a doubly pointed, genus zero
trisection diagram for this 2–knot, together with the genus zero (annulus) trisection of its exterior EU

∼=
B3 × S1. The top branch shows the sphere surgery S4(U) ∼= S3 × S1, while the bottom branch shows the
Gluck surgery S4

∗(U). Note that (S4, U) is its own Gluck-twin, since the trisection for the Gluck surgery
destabilises.

6. Examples

In this section, we apply the techniques and result of this paper to a number of examples.
Many of the 2–knots studied here were first introduced in Subsection 4·2.

Example 6·1. Consider the unknot (S4,U), which has self-intersection zero. This is the
unique 1–bridge 2–knot in S4. Since this 2–knot is fibered by 3–balls, EU

∼= B3 × S1. It
follows that the result of sphere surgery on U in S4 is S4(U) ∼= S3 × S1. Since the Gluck
twist extends over EU , we have that S4

∗(U) ∼= S4, as well. Diagrams tracing through these
surgery operations are shown in Figure 17; we see explicitly that the unknot U is its own
Gluck-twin.

Example 6·2. Consider the fiber 2–knots (S2 × S2,F) and (S2×̃S2, F̃), which are each
of self-intersection zero. doubly pointed, genus two trisection diagrams for these 2–knots,
together with genus two trisection diagrams for their exteriors, were given in the fourth
and fifth rows of Figure 6, respectively. These 2–knots have diffeomorphic exteriors: EF

∼=

EF̃
∼= S2 × D2. It follows that they are Gluck-twins, as can be verified by following the

bottom branch of Figure 18. It also follows, as indicated by the top branch of the figure, that
surgery on these 2–knots gives S4. The belt-circle to these sphere surgeries is the unique
curve in S4, giving another way to understand these 2–knots as Gluck-twins.

Example 6·3. In [Mei17], it was shown that the spin of a doubly pointed, genus h Heegaard
splitting of a knot K in S3 gives rise to a doubly pointed (3h, h)–trisection of the spun
2–knot (S3, S(K )). The simplest example of this construction is when (S3, K ) admits a
doubly pointed, genus one Heegaard diagram. Let Tp,q denote the (p, q)–torus knot, which
can be isotoped from its position as a slope on the genus one Heegaard surface to be in
1–bridge position. See the left column of figure 19 and figure 11 of [Mei17] for examples
of doubly pointed Heegaard diagrams when (p, q) is (2, 3) and (3, 4), respectively. The
right side of each of these figures (top-right in the former case) shows the doubly pointed,
genus three trisection diagram for the spin of each torus knot, and the general picture should
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Fig. 18. Surgery operations on the fiber 2–knot (S2 × S2,F). On the left, we have a doubly pointed, genus
two trisection diagram for this 2–knot, together with the genus two trisection of its exterior EF

∼= S2 × D2.
The top branch shows the sphere surgery (S2 × S2)(F) ∼= S4, while the bottom branch shows the Gluck
surgery (S2 × S2)∗(F), the result of which is the other fiber 2–knot (S2×̃S2, F̃).

Fig. 19. (Left column) Two depictions of the doubly pointed, genus one Heegaard splitting of the right-
handed trefoil (S3, T3,2). (Top-right) A doubly pointed, genus three trisection diagram for the the spun
trefoil (S4, S(T3,2)) , (Bottom-right) A genus four trisection diagram for the result of Gluck surgery on this
2–knot, which is known to recover (S4, S(T2,3)). Is this diagram stabilised?

be clear from these examples. The bottom-right graphic of Figure 19 shows the genus four
trisection diagram for the result of Gluck surgery on the spun trefoil, which is known to be
S4 [Glu62a].

It’s not obvious whether or not this genus four trisection diagram for S4 is stabilised; in
general, it is unknown whether or not every trisection of S4 with non-zero genus is stabilised.
See [MSZ16] for a complete discussion of the so-called Four-Dimensional Waldhausen
Conjecture. Examples of trisections of S4 that are potential counterexamples to this conjec-
ture described in [MSZ16] and given in [MZ17c]. By considering trisections corresponding
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Fig. 20. The 2–knot (Sp,Jp), where Sp is the spin of L(p, q) and Jp is the belt-sphere of a circle surgery
from S3 × S1 to Sp , together with diagrams depicting the processes of sphere surgery (top row) and Gluck
surgery (bottom-row) on this 2–knot.

to Gluck surgery on spun (or twist-spun) knots, we access a new class of such potential
counterexamples; we pose the following question.

Question 6·4. Is the trisection diagram constructed by combining the methods of this paper

and those of [Mei17] for Gluck surgery on the spin or twist-spin of a non-trivial knot in S3

ever stabilized?

Example 6·5. Consider the lens space L(p, q), and let Sp = Spin(L(p, q)) be the spin of
this 3–manifold. We refer the reader to [Mei17] for complete details and a related discussion
of these examples. In particular, it is shown there that Sp admits a genus three trisection.
The top left graphic in Figure 20 shows the diagram for S5 = Spin(L(5, 2)) (disregarding
the double points for now). Note that the diffeomorphism type of Sp does not depend on q,
but the trisection diagram may a priori.

Inside Sp are two interesting 2–knots. The first 2–knot is the core of the spinning
construction. By definition,

Sp = (L(p, q)◦ × S1) ∪ S2 × D2,

where L(p, q)◦ is the punctured lens space. Since we are working with lens spaces, the result
is independent of the choice of gluing along the boundary copies of S2 × S1; the spin and
the twisted spin are diffeomorphic, in this case [Plo86]. Let Kp,q = S2 × {pt} be the core
of the S2 × D2 filling in the construction. The second 2–knot is the belt-sphere of a circle
surgery on a circle in S3 × S1. Let ωp be the circle such that [ωp] = p ∈Z∼= π1(S3 × S1).
We claim (and shall soon see) that the circle surgery on ωp in S3 × S1 produces Sp, a fact
originally due to Pao [Pao77]. Let Jp denote the belt-sphere of this circle surgery.

The top left graphic of Figure 20 shows a doubly pointed trisection diagram for (Sp,Jp),
where the double points have been connected with coloured arcs for clarity. The rest of the
top row shows the procedure for obtaining a trisection diagram for the result Sp(Jp) of
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Fig. 21. The 2–knot (Sp,Kp,q ), where Sp is the spin of L(p, q), and Kp,q is the core of the S2 × D2

used in the construction of the spin, together with diagrams depicting the process of sphere surgery on this
2–knot.

sphere surgery on this 2–knot, which is S3 × S1, as one can verify by destabilising the genus
four diagram (the top-right graphic) three times. (Note that this proves that Sp is the result of
circle surgery on ωp, as claimed, and that Jp is the belt-sphere of this surgery.) The bottom
row of Figure 20 shows the diagrams corresponding to Gluck surgery on (Sp,Jp). If p is
odd, the ambient 4–manifold is still Sp after Gluck surgery. However, if p is even, a new
4–manifold S ′

p is produced that is not homotopy-equivalent to Sp [Pao77].
The left graphic of Figure 21 shows a doubly pointed trisection diagram for (Sp,Kp,q)

(again, with clarifying colored arcs added). The underlying trisection diagram for Sp

is obtained from the corresponding diagram discussed in Figure 20 by performing one
handleslide of each colour. The rest of the figure gives a diagrammatic rendering of
sphere surgery on this 2–knot. By the definition of the spinning construction, Sp(Kp,q) ∼=

L(p, q) × S1. (Note that the relevance of q persists here.) Gluck surgery (which we have
not depicted) on (Sp,Kp,q) yields the twisted spin of L(p, q), which, as we remarked
above, turns out to be diffeomorphic to the spin [Plo86]. In fact, Kp,q is equivalent to
its twin, since it has L(p, q)◦ as a Seifert hyper-surface, and L(p, q) is untangled, in the
sense of [Glu62b], a sufficient condition for Gluck surgery to preserve the 2–knot. (See also
[Glu62a, section 22].)

Example 6·6. As discussed above, a (∓4)–rational blowdown is obtained by removing a
neighbourhood of a 2–knot with self-intersection ∓4 and replacing it with the exterior B±4

of the degree-two curve C (the conic) in CP
2 or its mirror in CP

2
, which is a Z2–homology

4–ball. Therefore, the simplest example of a (±4)–rational blowdown is to perform this
operation on the conic itself. In this case, we have

CP
2
+4(C) = B+4 ∪L(4,1) B−4,

is simply the doubly of B+4, hence a Z2–homology 4–sphere. Figure 22 shows the process of
understanding the result of this particular (+4)–rational blowdown diagrammatically. The
resulting 4–manifold turns out to be one that shows up in a number of guises, so we conclude
with proposition unifying these viewpoints, the proof of which is left to the reader.

PROPOSITION 6·7. The following are all descriptions of the same smooth 4–manifold:

(i) The spin S(RP3) of the lens space RP
3 = L(2, 1);

(ii) One result of circle surgery on the curve in S3 × S1 representing twice the generator

in homology;
(iii) The double of an orientable disk-bundle over RP2 with even Euler number;
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Fig. 22. The process of performing a (+4)–rational blowdown on the conic (CP2, C), stating with a doubly
pointed trisection diagram for the 2–knot, passing through a relative trisection diagram for the 2–knot
exterior, and terminating with the Z2–homology 4–sphere CP

2
+4(C).

(iv) The double of the exterior of the conic in CP
2;

(v) The orientable sphere-bundle over RP2 with even Euler number;
(vi) The result of a (+4)–rational blowdown of the conic in CP

2;
(vii) The two-fold cover of S4, branched along the spin of the Hopf link, whose components

are an unknotted sphere and an unknotted torus;
(viii) The quotient of S2 × S2 by the isometry that acts on the first factor by reflection through

an equatorial plane and on the second factor by the antipodal map;
(ix) Gluck surgery on the fiber of the orientable sphere-bundle over RP

2 with odd Euler

number.

Example 6·8. The techniques of this paper have another application, which to this point has
gone unstated. Let (X1,K1) and (X2,K2) be 2–knots, each with self-intersection p, and let
E1 and E2 denote the corresponding exteriors. Let X = E1 ∪ε E2, where ε : ∂ E2 → E1 is
an orientation reversing diffeomorphism. This manifold is the normal connected sum of X1

and X 2 along K1 and K2. (See [GS99, Chapter 10] for a discussion of this operation in the
symplectic category.) If |p| > 1, then the mapping class group of L(p, 1) is Z2 = {id, τ },
where τ is the deck transformation corresponding to viewing L(p, 1) as the double cover of
S3, branched along the (left-handed) torus knot T2,−p [Bon83] . If p = 1, there is a unique
gluing, since the boundaries are S3. If p = 0, the boundary is S2 × S1. Gluck showed that
the mapping class group of S2 × S1 is Z2 ⊕Z2 ⊕Z2; thus, there are a priori eight gluings
in this case. If one of the Ei is B3 × S1, then all eight maps extend, so the gluing is unique.
If one of the Ei is S2 × D2, then all but one map extend, so our choices are the familiar
maps id and τ invoked repeatedly above. However, in general, one expects none of the eight
to extend over either of the Ei , so all of them might be considered. Note that four of these
mapping classes are orientation reversing. (See [Glu62a, theorem 5·1].)

If D1 and D2 are doubly pointed trisection diagrams for (X i ,Ki) and D
◦
1 and D

◦
2 are

the corresponding p–annular, relative trisection diagrams for the exteriors, the the union
D=D

◦
1 ∪D

◦

2 is a trisection diagram for some normal connected sum of X i and X i .
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