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Training for robotic surgery can be challenging due the complexity of the technology, as well as a high demand for the robotic
systems that must be primarily used for clinical care. While robotic surgical skills are traditionally trained using the robotic
hardware coupled with physical simulated tissue models and test-beds, there has been an increasing interest in using virtual reality
simulators. Use of virtual reality (VR) comes with some advantages, such as the ability to record and track metrics associated with
learning. However, evidence of skill transfer from virtual environments to physical robotic tasks has yet to be fully demonstrated.
In this work, we evaluate the e↵ect of virtual reality pre-training on performance during a standardized robotic dry-lab training
curriculum, where trainees perform a set of tasks and are evaluated with a score based on completion time and errors made during
the task. Results show that virtual reality pre-training is weakly significant (p 0.1) in reducing the number of repetitions required
to achieve proficiency on the robotic task; however, it is not able to significantly improve performance in any robotic tasks. This
suggests that important skills are learned during physical training with the surgical robotic system that cannot yet be replaced
with virtual reality training.
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1. Introduction

Robotic surgery has become a concrete reality in clini-
cal practice and is used routinely in a variety of med-
ical procedures [1]. Indeed, the years between 2012 and
2018 saw a large increase in adoption of robotic surgery
for all general surgery procedures from 1.8% to 15.1% [2].
While there is still no consensus in the scientific commu-
nity on whether surgical robotics is inherently superior to
traditional surgery, some studies highlight better morbidity
rates [3] and others show at least no significant di↵erence
in outcome between robotic and traditional surgery [4, 5].
Regardless, robotic surgery is now an established clinical
option, with multiple companies investing in these tech-
nologies [6].

One of the main challenges for robotic surgery in clin-
ical practice is training of surgeons [7]. In [8] Herron et
al. laid out guidelines for training and clinical practice of
robotic surgery, highlighting the importance of a structured
training curriculum, expert guidance and hands-on experi-
ence. Later in [9] Lee et al. emphasized the importance of
skill-based assessments, to be prioritized for credentialing
over the number of completed surgeries. Stegemann at al.

in [10] laid the foundations for a unified approach to robotic
training in the US, which was later validated and proposed
as a standard training curriculum in [11]. Similar e↵orts
were undertaken in Europe by Volpe et al. [12], and [13]
reports on yet another attempt to defined a unified cur-
riculum from an international panel. Despite these e↵orts,
there is still no unified training system across disciplines
and schools [14, 15].

In more recent years there has been an increased in-
terest in the use of virtual reality (VR) simulators [16–18].
Using VR instead of a physical system comes with intrin-
sic advantages, namely by allowing complete control of all
the parameters of a simulation, which in turn provides a
more consistent mode of skill acquisition and mastery [19]
and enables direct measurements of metrics of performance
within the VR environment [20]. However, there also is
the added challenge that comes from not necessarily be-
ing able to accurately simulate what would happen in a
real world scenario, and simulation fidelity as well as its
e↵ectiveness in increasing skill in surgeons always need to
be evaluated [21].

Several papers, including a few reviews, have been pub-
lished on the topic of using VR for training in robotic
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surgery, with mixed findings. Lallas et al. evaluated results
from the state of the art for four VR simulators, and high-
lighted their advantages over box trainers, which are low fi-
delity models and do not provide feedback on performance
to the trainee, and animal models, which are closer to a real
surgery scenario but are often simply not available [19]. VR
systems on the other hand would be easily available and
provide standardized metric and access to anatomic vari-
ants for di↵erent operations. A survey from practitioners of
the field however also highlighted resistance to the use of
VR systems because of their cost [19].

Hung et al. compared inanimate, virtual reality and in
vivo methods for training [22]. They evaluated performance
di↵erences between novices and experts and measured the
association of performance across the three methods. All
methods showed a di↵erence between experts and novices,
and performance in the inanimate task correlated strongly
with performance in the other methods.

More recently Bric et al. reviewed literature on the use
of Virtual Reality for training on the Da Vinci robot [23].
They reported that some commercially available VR sim-
ulators are able to assess robotic training skill and can
improve skill training at a level comparable to dry lab
training. However, in the same year another review from
Moglia et al. highlighted limitations in VR training, par-
ticularly in the fact that there is still not reported evi-
dence of skills transfer from simulation to clinical surgery
on real patients [24]. Authors also pointed out how evaluat-
ing trainers based on an overall score only can yield mixed
results when tasks of di↵erent levels of di�culty are con-
sidered. This was more recently also asserted by Brook et
al. in their comprehensive review on training for robotic
surgery in urology [15], and by a small number of studies
that found that VR training does not necessarily transfer
to good skills on the robot for certain tasks (e.g., [25]).

Fig. 1. da Vinci S surgical robot used for training with the
UTSW proficiency based curriculum.

In summary, previous work has highlighted potential
for VR training as a good tool for assessment, but evalua-
tion of its e↵ectiveness is still somewhat limited and often
too generalized. In this paper, we aim to address this is-
sue by evaluating the e↵ect of one of the most popular VR
training system, the da Vinci Skills Simulator, on perfor-
mance with a robotic trainer in a standardized curriculum
at the University of Texas Southwestern Medical Center.
This e↵ort was also motivated by recent results [26] which
suggested a (statistically) significant di↵erence in muscle
activation and economy of volume between virtual reality
simulations and dry lab training.

2. Methodology

This study was conducted at the University of Texas South-
western Medical Center at Dallas in the Southwestern Cen-
ter for Minimally Invasive Surgery’s robotic surgical skills
training laboratory, using a da Vinci robot (standard sys-
tem; Intuitive Surgical, Inc., Sunnyvale, CA; Fig. 1). The
da Vinci robot consists of a master-side manipulator with
stereo view and a patient-side robot which could be used
to manipulate the physical training environment.

Fig. 2. VR training system for robotic skills consisting of the
da Vinci Si master console and simulated exercises developed
by Mimic Technologies, Inc.

2.1. Established Robotics Curriculum

The University of Texas Southwestern has established a
proficiency based curriculum for robotic surgery training
[27–30], which we will refer to as the UTSW curriculum,
and has been part of the teaching practice since 2012. It
is based on a set of unique robotic skills that were identi-
fied by a panel of experts. The training protocol includes
an online tutorial, one half-day hands on session, and nine
inanimate training exercises. Trainees are scored for each
task based on the time to completion and errors, with a
normalized score being defined as the task score divided by
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(a) Task 1: Peg Transfer. (b) Task 2: Clutch/Camera
Movement.

(c) Task 3: Rubber Band
Transfer.

(d) Task 4: Suture (Simple). (e) Task 5: Clutch/Camera
Peg Transfer.

(f) Task 6: Stair Rubber
Band Transfer.

(g) Task 7: Run-
ning/Cutting Rubber Band.

(h) Task 8: Pattern Cut. (i) Task 9: Suture (Run-
ning).

Fig. 3. Physical Training Tasks in the UTSW Proficiency-based Surgical Robotics Curriculum.

a proficiency score as obtained by an expert, and a com-
posite score being defined as the sum of normalized scores
for each task. Pre-test scores are recorded on a single proc-
tored repetition of each task at the end of the hands on
session, while post-test scores are recorded after training.

Table 1. Proficiency scores and times for the UTSW curricu-
lum.

Task Score Time (s)

1: Peg Transfer 97 66
2: Clutch/Camera Movement 104 67
3: Rubber Band Transfer 94 68
4: Suture (Simple) 100 69
5: Clutch/Camera Peg Transfer 106 70
6: Stair Rubber Band Transfer 104 71
7: Running/Cutting Rubber Band 110 72
8: Pattern Cut 101 73
9: Suture (Running) 133 74

The experiments presented in this paper were based
on this curriculum. Figure 3 shows the nine inanimate ex-
ercises that are part of the protocol used for training. Tasks
are ordered by level of complexity, with the last task being
the most di�cult. In detail:

• Task 1 - Peg Transfer: transfer six rubber pegs
from the left side of a pegboard to the right side,
and then transfer them back. The camera is static
in this task. Pegs must be transferred from one
needle driver to the other when switching sides;

• Task 2 - Clutch and Camera Movement: move and
navigate the camera to focus it on six geometrical
shapes, zooming on each enough to cut o↵ the red
dots placed above and below each shape;

• Task 3 - Rubber Band Transfer: transfer a rubber
band through custom designed curved wire posts,
without deforming the wire;

• Task 4 - Suture (Simple): perform a simple suture
on Penrose drain;

• Task 5 - Clutch and Camera Peg Transfer: trans-
fer pegs through metal posts on a custom-designed
wooden board, clutching and moving the camera.
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• Task 6 - Stair Rubber Band Transfer: transfer a
rubber band through custom designed curved wire
posts placed at di↵erent heights, clutching and
moving the camera as needed;

• Task 7 - Running and Cutting Rubber Band: cut a
12 cm long rubber band model at 10 marked spots,
clutching as needed, and dropping and re-grasping
the rubber band between cuts;

• Task 8 - Pattern Cut: cut a circular pattern on a
testing gauze, moving the camera and clutching as
needed;

• Task 9 - Suture (Running): perform a running su-
ture on a Penrose drain.

This curriculum has been used at UT Southwestern since
2012 and has trained 365 surgical residents.

2.2. Virtual Reality Pre-Training
Curriculum

A total of 9 tasks were selected from the da Vinci Skills Sim-
ulator (dVSS, Intuitive Surgical, Sunnyvale, CA), where
were developed with Mimic Technologies Inc. (Seattle,
WA). The tasks were chosen as those that most closely
represent skills needed in the UTSW curriculum, and were
selected from sets previously validated for face and con-
struct validity in [20] and [31] (these papers did not how-
ever investigate the e↵ect of the dVSS on the development
of surgical skills). Target proficiency scores and completion
time were defined for each task [20] and are reported here
for the selected tasks (Table 2).

Table 2. Proficiency scores and times for the se-
lected tasks from the da Vinci Skills Simulator [20].

Task Score Time (s)

1: Pick and Place 95 28
2: Camera Targeting 2 87 87
3: Peg Board 1 87 63
4: Tubes 71 207
5: Match Board 3 56 290
6: Ring & Rail 2 75 185
7: Ring Walk 3 63 142
8: Energy Switching 83 81
9: Suture Sponge 68 285

Figure 4 shows the VR tasks that were included, in
particular:

• Task 1 - Pick and Place: place objects inside
containers of the corresponding color (comparable
with physical task 1);

• Task 2 - Camera Targeting 2: move and navigate
the camera while working in a large volume and
manipulating objects (comparable with physical
tasks 2 and 5);

• Task 3 - Peg Board 1 & 2: pick up rings from pegs,
performs a transfer from instrument to another,
and place the rings on a new peg (comparable with
physical task 1);

• Task 4 - Tubes: drive needle through fixed targets
on cylindrical deformable structure, to simulate tis-
sue manipulation (comparable with physical task
4);

• Task 5 - Match board 3: place objects at spe-
cific sites on a match board with removable covers
(comparable with physical task 5);

• Task 6 - Ring and Rail 2: move a ring across a
twisted rail to test alternating camera and instru-
ment control (comparable with physical tasks 2, 5
and 6);

• Task 7 - Ring Walk 3: similar to the previous task,
but in an occluded environment, leading to a more
challenging camera control as well as the need to
remove obstacles (comparable with physical tasks
2, 5 and 6);

• Task 8 - Energy Switching: switch between
monopolar and binopolar energy while working on
a dissection task (comparable with physical task
8).

• Task 9 - Suture Sponge: perform a running suture
on a virtual sponge (comparable with physical task
9).

It can be noted that there is not necessarily a one on one
correspondence between the physical and VR tasks. This is
caused by the fact that we were constrained to only choose
from the VR training tasks that were already present in the
commercial da Vinci Skills Simulator, rather than develop
new ones. However, as shown in the detailed explanation
of both the VR and physical tasks, the overall set of skills
being targeted was the same, consistently with the skill-
based approach that was used in the development of the
dVSS [17].

2.3. Experimental Protocol

A total of 107 third year residents (40 male, 67 female)
from general surgery (29) , urology (12) and gynecology
(66) were recruited to complete surgical robotics training
at UTSW between 2015 and 2018 . As this study originated
as part of an educational improvement e↵ort, participants
were divided, on a voluntary basis, into two groups: one
first went through the VR training program (VR/y), and
then took part in the UTSW curriculum, while the other
group only took part in the UTSW curriculum (VR/n).
We elected to make the participation voluntary since the
UTSW curriculum is part of the formative experience of-
fered to residents at the University of Texas Southwestern,
and we did not know if the additional VR training would
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(a) Virtual Task 1: Pick and Place. (b) Virtual Task 2: Camera Target-
ing 2.

(c) Virtual Task 3: Peg Board 1 &
2.

(d) Virtual Task 4: Tubes. (e) Virtual Task 5: Matchboard 3. (f) Virtual Task 6: Ring and Rail 2.

(g) Virtual Task 7: Ring Walk 3. (h) Virtual Task 8: Energy Switch-
ing.

(i) Virtual Task 9: Suture Sponge.

Fig. 4. Virtual Reality Tasks used during Pre-Training. A total of 9 tasks were used for pre-training on the da Vinci Skills Simu-
lator (Si console), using virtual reality tasks developed by Mimic Technologies, Inc. Images obtained with permission.

be beneficial, have no e↵ect or perhaps even be harmful to
their training.

A total of 18 participants (10 from general surgery,
5 from urology and 3 from gynecology; 12 males, 6 fe-
males) elected to take part in the VR training, leaving
89 for the second group. Performance was evaluated based
on the global and task scores during robotic task perfor-
mance, as defined by the UTSW curriculum, as well as the
number of repetitions to proficiency. Pre-test and Post-test
scores (taken before and after participants took part in the
UTSW curriculum) were considered for comparison. The
data analysis of unidentified data for this publication oc-
curred after obtaining approval from the UTSW IRB as
an exempt study. Scores from the virtual reality simulator
were not recorded and therefore not available for analy-
sis; however, all subjects were required to meet or exceed
a proficiency score for each of the VR tasks, as reported
in Section 2.2. Both groups were evaluated using the same

scoring method defined by the UTSW curriculum.

2.4. Statistical Data Analysis

A comparison between the two groups was performed in
terms of both the global score and individual task scores
from the physical training with the robot according to the
UTSW curriculum. Due to the fact that participation in the
extra VR training was voluntary, the overwhelming major-
ity of participants fell in the VR/n condition, leading to an
unbalanced design. Two di↵erent analyses were performed
on the task scores:

• Global score analysis: in this case the VR train-
ing represents one between-subject factor, while
the two measurements of score before and after the
physical training on the robot (Pre/Post) represent
a within-subject factor. This led us to compare the
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means of the global score with a two-way mixed
model ANOVA;

• Task normalized scores analysis: in addition to
the previous two factors, in this case the di↵erent
tasks represent an additional within-subject factor,
leading to a three-way mixed model ANOVA with
one between-subject (VR) and two within-subject
(Pre/Post, task) factors.

Unbalanced ANOVA designs come with several complica-
tions [32], among which are a loss of robustness to viola-
tions of assumptions on normality and heteroskedasticity.
Furthermore, a power analysis performed in G* Power [33]
showed that for both designs the total number of subjects
needed to have 0.8 power is 20 and 27, respectively, assum-
ing an e↵ect size (partial ⌘2 = 0.1) and a significance level
↵ = 0.05.

For these reasons we decided to subsample the
VR/n condition, and analyse our data through balanced
ANOVAs, which are robust to violations of normality
[34,35] and homogeneity of variance [36]. Of the 89 partic-
ipants falling under the VR/n condition, 18 were selected,
matching the 18 in the VR/y condition in gender and spe-
cialization (10 from general surgery, 5 from urology and
3 from gynecology; 12 males, 6 females), for a total of 36
participants. When more than one trainee in the VR/n con-
dition matched a certain VR/y trainee, one was randomly
selected. A two-way mixed ANOVA was then performed for
the global score, and a three-way mixed ANOVA for the
normalized local score. Huynh-Feldt correction of p-values
was applied when non sphericity was present.

The medians of the number of repetitions during train-
ing were compared through a Mann-Whitney U test. All
analysis was done in R.

3. Results and Discussion

Figure 5 shows bar plots for the global normalized scores
for pre-test and post-test for both groups. Visual inspection
suggests a higher pre-test score for the VR condition when
compared to the no VR condition, while no evident di↵er-
ence between the two emerges for the post-test. There also
seems to be a noticeable di↵erence between pre and post-
test for both conditions. Figure 6 shows a bar plot for the
number of repetitions during the pre-test. The plot shows
a tendency for a lower number of repetitions on average for
the VR condition.
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Fig. 5. Global normalized scores before (Pre) and after (Post)
administration of the UTSW curriculum (calculated as sum of
the normalized scores for each task).
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Fig. 6. Number of repetitions to proficiency over all tasks.

An overview of task-wise scores can be seen in Fig. 7.
VR training seems to yield slightly better scores for most
tasks during the pre-test, with di↵erences being less evident
as task di�culty increases (e.g., task 8 has similar perfor-
mance for both conditions). No clear di↵erence between
the two conditions can be observed for the post-test score.
When it comes to comparing pre and post-test for each VR
condition, there seems to be an increase in performance for
both, although it is not as marked for the VR condition.

Table 3 shows the statistical results of the two way
mixed ANOVA for global scores. There is a significant in-
teraction e↵ect (p = 0.039) as well as a strongly significant
main e↵ect for the Pre/Post (i.e., before or after physi-
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cal training with the robot) factor (p = 4.2e � 13), while
no evidence of main e↵ect appears for the VR factor. No-
tably, the e↵ect size, estimated through the generalized eta
squared ⌘2G [37], is much smaller for the interaction than
for the physical training main e↵ect. Because an interaction
is present, we decided to look at the simple main e↵ects by
running independent t-tests for the VR factor at each level
of the Pre/Post factor, with Holm-Bonferroni correction.
Results yielded non-significant p-values for the e↵ect of VR
in both cases (p = 0.166 for Pre and p = 0.288 for Post).
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Fig. 7. Normalized scores before (Pre) and after (Post) admin-
istration of the UTSW curriculum, for each task, for both the
VR and no VR conditions.

Table 3. Results for two-way mixed ANOVA on global scores.
Significant p-values in bold.

E↵ect DFn DF d F p ⌘2G

VR 1 34 1.716 0.199 0.027
Pre/post 1 34 128.677 4.2e� 13 0.628
VR:Pre/post 1 34 4.618 0.039 0.057

Table 4. Results for three-way mixed ANOVA on
normalized task scores. Significant p-values in bold.

E↵ect DFn DF d F p ⌘2G

VR 1 34 1.716 0.199 0.008
Pre/post 1 34 128.677 4.2e� 13 0.324
task 3.77 128.11 12.549 1.20e� 07 0.125
VR:Pre/post 1 34 4.618 0.039 0.017
VR:task 3.77 128.11 1.998 0.103 0.022
Pre/Post:task 3.21 109.07 22.354 7.87e� 12 0.177
VR:Pre/Post:task 3.21 109.07 1.837 0.141 0.017

Table 5. Results for post hoc two-way ANOVAs on
normalized task scores. Significant p-values in bold.

Pre/Post E↵ect DFn DF d F p (Holm) ⌘2G

Pre VR 1 34 3.19 0.332 0.028
Pre task 3.42 116.14 19.2 9.71e� 11 0.283
Pre VR:task 3.42 116.14 2.03 0.211 0.04
Post VR 1 34 1.17 0.496 0.006
Post task 3.41 115.87 5.68 0.000683 0.12
Post VR:task 3.41 115.87 1.40 0.244 0.033

Fig. 8. Mean normalized scores by task, before (Pre) and after
(Post) administration of the UTSW curriculum, for both the
VR and no VR conditions

Results for the three-way ANOVA on the task-
normalized scores are shown in Table 4. Non-sphericity
was determined for the factor task, which was corrected
with Huynh-Feldt. The three-way interaction was non sig-
nificant, and two-way interactions were significant between
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VR and Pre/Post (p = 0.039) and Pre/Post and task
(p = 6.32e� 11). We also observed significant main e↵ects
for Pre/Post (p = 4.2e� 13) and task (p = 1.20e� 07) fac-
tors. In order to look further into the significant two-way
interaction e↵ects, we did two-way ANOVAs at each level
of the Pre/Post factor, and considered the main e↵ects of
VR and task. Factor VR was non significant at each level of
Pre/Post (p = 0.332 for Pre and p = 0.496 for Post), while
factor task was significant for both (p = 2.24e� 10, ⌘2G =
0.283 and p = 0.005, ⌘2G = 0.12 respectively).
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Fig. 9. Post-hoc pairwise comparison: p-values (Holm ad-
justed).

To better evaluate the e↵ect of the task factor on
scores, we focused on the VR/n condition and considered

the Pre and Post conditions of the Pre/Post factor sepa-
rately. Figure 8 shows an overview of the normalized score
for each task under both conditions. Tasks 1 to 6 appear to
obtain similar scores for the Pre condition, with tasks 1 and
2 having slightly higher means, while tasks 7 to 9 yield no-
ticeably lower mean scores. Normalized scores for the Post
condition are relatively homogeneous, with the exception of
task 8 which has a noticeably higher mean. Figure 9 shows
the outcome of the pairwise paired t-tests, with p values
adjusted using the Holm-Bonferroni correction.

Finally, a Mann-Whitney U test on the number of rep-
etitions to proficiency showed a weakly significant p value
(p = 0.09, e↵ect size r = 0.285) with a median of 63 for the
VR/n condition and 55 for the VR/y condition.

To summarize, our statistical analysis found no signifi-
cant e↵ect of VR training on scores, neither globally nor at
the task level. We did observe a significant improvement of
score with the physical training, which confirms its valid-
ity consistently with results reported in [28–30]. Finally, we
observed a significant e↵ect of the task factor, especially for
the Pre session, with tasks 7 to 9 proving to be more di�-
cult, although task 8 actually yielded a significantly higher
score in the Post session. VR training did show some ef-
fect on the number of repetitions to proficiency during the
physical training, with significance at the 0.1 level. This
means that while VR did not show indication of improving
performance, it might be able to speed up physical training.

4. Conclusions

In this paper we presented a study on the e↵ect of vir-
tual reality (VR) pre-training with the da Vinci Skills Sim-
ulator (dVSS) on the measured outcome of the robotic
training curriculum developed at the Univeristy of Texas
Southwestern (UTSW). This curriculum evaluates trainee
performance before and after training on a physical robot
through a standardized score system. One group of partici-
pants underwent additional training with the dVSS, before
they were administered the UTSW curriculum, while the
other group was only administered the UTSW curriculum.
Scores from the UTSW curriculum were used to evaluated
performance in both groups. We did not observe any signifi-
cant e↵ect of training with the dVSS on performance, while
there were some indications of a reduction in the number
of repetitions to proficiency during training (weakly signif-
icant at p < 0.1).

Analysis of individual task scores showed that tasks
7 (running/cutting rubber band) and 9 (running suture)
yielded significantly lower scores when compared to tasks
1 to 6 (peg transwer, clutch/camera movement, rubber
band transfer, simple suture, clutch/camera peg transfer
and stair rubbed band transfer) before the physical train-
ing occurred, while task 8 (pattern cut) yielded a significant
lower score when compared to tasks 1 and 2, suggesting a
higher level of di�culty for these tasks. Interestingly, no
significant di↵erence was observed on tasks scores after the
physical training occurred with the exception of task 8,
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which yielded a significantly higher score than all other
tasks.

These results suggest that the da Vinci Skills Simula-
tor is not yet able to completely replace the training o↵ered
by the UTSW curriculum , but shows potential for reducing
training time on the physical simulator. While this by itself
could beneficial, buying a VR training system for robotic
surgery comes with a significant additional cost of at least
$80000 [38], much higher than the costs associated with
the physical training curriculum for which material cost is
$2227 [29]. This might make buyers question if a poten-
tial mild reduction in training times justifies the additional
investment required. Additionally, it is interesting to note
that of the 107 residents involved in this study, only 18
elected to go through the additional VR pre-training when
given the choice, indicating an opportunity to better incen-
tive VR training, perhaps through competition or a more
game-like interface [39]. Ultimately, we believe that the out-
come of this work indicates a possible need to enhance the
da Vinci Skills Simulator VR training to either more closely
reflect physical reality to deliver its full potential in terms
of training benefit, or hone very specific skills in a more
abstract setting. It also suggests the benefit of a thorough
proficiency-based evaluation of VR training systems for sur-
gical robotics.
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