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Genuinely non-Hermitian topological phases can be realized in open systems with suf-
ciently strong gain and loss; in such phases, the Hamiltonian cannot be deformed into a
gapped Hermitian Hamiltonian without energy bands touching each other. Comparing Green
functions for periodic and open boundary conditions we nd that, in general, there is no cor-
respondence between topological invariants computed for periodic boundary conditions, and
boundary eigenstates observed for open boundary conditions. Instead, we nd that the non-
Hermitian winding number in one dimension signals a topological phase transition in the
bulk: It implies spatial growth of the bulk Green function.

Topology has made a profound impact on the descrip-
tion and design of wave-like systems such as quantum
mechanical electrons [1–5] or light interacting with mat-
ter [6–11]. The key idea is to group physical systems,
each described by a gapped (insulating) Hamiltonian,
into the same topological class if their Hamiltonians can
be continuously deformed into each other without clos-
ing the energy gap. For Hermitian Hamiltonians, the
bulk-boundary correspondence states that topological in-
variants for periodic boundary conditions predict the
presence of boundary states for open boundary condi-
tions [1, 12–16].
Recently, non-Hermitian Hamiltonians [17–21] have at-

tracted much attention; they describe open systems with
loss (dissipation) and gain (e.g. coherent amplication
in a laser) [22, 23]. Extending topological methods to
these systems may be particularly benecial for the de-
sign of topological protected laser modes [24–26]. More-
over, genuinely non-Hermitian Hamiltonians, i.e. Hamil-
tonians that cannot be deformed to a Hermitian Hamil-
tonian without energy bands touching, have novel topo-
logical properties not found in Hermitian systems. They
can be characterized by topological invariants dierent
from those of Hermitian systems [27–38], but the extent
of a bulk-boundary correspondence is, surprisingly, much
less clear [39–50].

We consider systems in one dimensions, which are par-
ticularly interesting because not only the eigenvectors
but also the eigenenergies can have a nontrivial wind-
ing number. In the case of a two-band model with chiral
symmetry, the Bloch Hamiltonian is o-diagonal

H(k) =

(

0 q+(k)
q−(k) 0

)

. (1)

In a lattice model, the lattice spacing forces the momen-
tum k to be periodic, and the q±(k) describe closed paths
in the complex plane. For example, a non-Hermitian

Su-Schrieer-Heeger (SSH) model is given by q±(k) =
(m− 1) + e±(γ−ik), and the paths are circles with dier-
ent radii centered on the real axis. [51] The eigenvalues
of the matrix H(k) are distinct if neither path passes
through the origin; in this case, we can assign to each
path a winding number around the origin. These form
the Z×Z topological invariant of a non-Hermitian Hamil-
tonian in symmetry class AIII [28]. Hermitian Hamilto-
nians are characterized by q+(k) = q−(k)

∗, which forces
both winding numbers to be opposites of each other; a
single Z-invariant remains [3, 52, 53]. Genuinely non-
Hermitian phases appear whenever the two winding num-
bers are no longer opposites of each other [28, 33]. In
this case, the non-Hermitian winding number, which is
the winding number of the determinant det(H(k)), is
nonzero.

Is there a bulk-boundary correspondence for the non-
Hermitian winding number? To answer this, we focus
on response (Green) functions, which describe experi-
mental observables in a scattering setup. We nd that
the bulk-boundary correspondence breaks down once the
non-Hermitian winding number takes a non-trivial value:
When the winding number changes from zero, the bulk
response starts exhibiting exponential growth in space,
and since periodic systems cannot accommodate such
spatial growth, they do not reect the properties of sys-
tems with open boundaries. In this Letter, we focus
on the specic example of non-Hermitian Dirac fermions
to discuss the above physics, while a general proof is
contained in the companion paper Ref. [54]. Green
functions are more robust objects than eigenstates, be-
cause the latter are very sensitive to boundary condi-
tions: wave functions can become localized in the pres-
ence of an open boundary, a phenomenon referred to as
non-Hermitian skin eect [39, 41, 55–64]. This skin ef-
fect can be observable already for arbitrarily small non-
Hermiticity, whereas an exponential growth of the bulk
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where the non-Hermitian winding number is nonzero,
|γ| > |m|, the bulk Green function Gbulk grows expo-
nentially as x → ±∞ while keeping y xed. For G0,bound

near the left boundary, we nd

G0,bound(iη, x, y) = GBe
−

√
m2+η2(x+y), for x, y  L.

(9)
Here, GB is the matrix

GB = −GR ·





m+
√

m2+η2

m−

√
m2+η2

0

0 1



 . (10)

Taken together, this yields the decomposition (5).

Boundary eigenstates.— The Green function can be
expressed as a sum over eigenstates

G(E;x, y) =
∑

n

(E − En)
−1〈x|ψn

R〉〈ψn
L|y〉. (11)

Here, |ψn
R〉 are the so-called right- and |ψn

L〉 the
left-eigenstates of the non-Hermitian Hamiltonian,
i.e. H|ψn

R〉 = En|ψ
n
R〉 and H†|ψn

L〉 = E∗

n|ψ
n
L〉, with

〈ψn
L|ψ

m
R 〉 = δnm [67]. The contribution 〈x|ψn

R〉〈ψn
L|y〉 of

an individual eigenstate to the Green function can be ex-
tracted as the residue of the pole at E = En [68, 69].
For identical positions x = y, this residue yields the
biorthogonal polarization discussed in Ref. [40]. We now
dene a boundary eigenstate to be the residue of a pole
of the boundary Green function, and focus on states at
zero energy, E = 0. For open boundary conditions,
our model has only real eigenvalues due to the relation
Eq. (6), and we can obtain the residue from the imaginary
part of the Green function since ImG(E + i0+;x, y) =
−

n〈x|ψR〉〈ψL|y〉δ(E − En) for real E. We nd that

− ImG11
bound(0, x, y) = Ae(γ−m)xe(−γ−m)y,

where A = θ(m)2m/η with η = 0+. (12)

Thus, for m > 0, the boundary Green function has an
isolated pole at zero energy, whose associated eigenstate
is 〈x|ψ0

R〉 = e(γ−m)x and 〈ψ0
L|y〉 = e(−γ−m)y. The spa-

tial shape changes dramatically from exponentially lo-
calized to exponentially growing and vice versa when-
ever γ = ±m. In contrast, for m < 0, no boundary
eigenstate is found. Thus, the number of zero energy
boundary eigenstates does not change during the topolog-
ical phase transition at γ = ±|m| for periodic boundary
conditions [Fig. 1(b)], and the bulk-boundary correspon-
dence breaks down.

Bulk-periodic correspondence.— The traditional view
on the bulk-boundary correspondence actually comprises
two separate logical steps: it relates i) the bulk to the
boundary Green function, and ii) the Green function
Gperiod for periodic boundary conditions to that for the
bulk of an innite system: In the limit of large system
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Figure 2. Breakdown of the bulk-periodic correspondence.
(a) If the bulk Green function decays spatially, then both bulk
and periodic Green function agree. (b) If the bulk Green func-
tion grows spatially, then the periodic Green function has to
change drastically in order to accommodate periodic bound-
ary conditions.

size, both agree if the bulk Green function decays spa-
tially [Fig. 2(a)]; this allows us to use topological invari-
ants of the Bloch Hamiltonian (1) to characterize an in-
nite bulk. In non-Hermitian systems, step i) is unprob-
lematic, but step ii) may fail. To better distinguish them,
we propose to narrow the name bulk-boundary correspon-

dence to refer only to the rst step, and to call the second
step the bulk-periodic correspondence.
Indeed, for our model in the regime |γ| > |m|, the

bulk-periodic correspondence breaks down, because the
periodic Green function decays, while the bulk Green
function grows exponentially. [Fig. 2(b)] This growth also
explains the exponential sensitivity to small perturba-
tions seen in Ref. [44]. For periodic boundary conditions
ψ(−L/2) = ψ(+L/2), and using the results Eqs. (6) and
(7) for the bulk Green function, we nd

Gperiod(0;x, 0) = Gbulk(0;x, 0)

+GL
eκLx

eκLL − 1
+GR

eκRx

e−κRL − 1
. (13)

with κL/R = γ ±
√

m2 + η2. In the limit of large system
size, L  |x|, the two additional terms vanish if only if
the exponents satisfy κL > 0 and κR < 0, i.e. if the bulk
Green function decays spatially [Fig. 2].
If we focus on bulk growth and disregard boundary

eigenstates, we no longer require symmetry class AIII.
Then, we nd our main result, which holds both with
and without symmetry (class A): If the non-Hermitian
winding number is nonzero, then the bulk Green func-
tion at zero energy grows spatially. For example, consider


