aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Bulk-Boundary Correspondence for Non-Hermitian
Hamiltonians via Green Functions
Heinrich-Gregor Zirnstein, Gil Refael, and Bernd Rosenow
Phys. Rev. Lett. 126, 216407 — Published 28 May 2021
DOI: 10.1103/PhysRevlLett.126.216407



Bulk-boundary correspondence for non-Hermitian Hamiltonians
via Green functions

Heinrich-Gregor Zirnstein,! Gil Refael,? and Bernd Rosenow

1,3

Institut fiir Theoretische Physik, Universitit Leipzig, Briderstrasse 16, 04103 Leipzig, Germany
2 Institute of Quantum Information and Matter and Department of Physics,
California Institute of Technology, Pasadena, CA 91125, USA
3 Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
(Dated: July 16, 2020)

Genuinely non-Hermitian topological phases can be realized in open systems with suf-
ficiently strong gain and loss; in such phases, the Hamiltonian cannot be deformed into a
gapped Hermitian Hamiltonian without energy bands touching each other. Comparing Green
functions for periodic and open boundary conditions we find that, in general, there is no cor-
respondence between topological invariants computed for periodic boundary conditions, and
boundary eigenstates observed for open boundary conditions. Instead, we find that the non-
Hermitian winding number in one dimension signals a topological phase transition in the
bulk: It implies spatial growth of the bulk Green function.

Topology has made a profound impact on the descrip-
tion and design of wave-like systems such as quantum
mechanical electrons [1-5] or light interacting with mat-
ter [6—11]. The key idea is to group physical systems,
each described by a gapped (insulating) Hamiltonian,
into the same topological class if their Hamiltonians can
be continuously deformed into each other without clos-
ing the energy gap. For Hermitian Hamiltonians, the
bulk-boundary correspondence states that topological in-
variants for periodic boundary conditions predict the
presence of boundary states for open boundary condi-
tions [1, 12-16].

Recently, non-Hermitian Hamiltonians [17-21] have at-
tracted much attention; they describe open systems with
loss (dissipation) and gain (e.g. coherent amplification
in a laser) [22, 23]. Extending topological methods to
these systems may be particularly beneficial for the de-
sign of topological protected laser modes [24-26]. More-
over, genuinely non-Hermitian Hamiltonians, i.e. Hamil-
tonians that cannot be deformed to a Hermitian Hamil-
tonian without energy bands touching, have novel topo-
logical properties not found in Hermitian systems. They
can be characterized by topological invariants different
from those of Hermitian systems [27-38], but the extent
of a bulk-boundary correspondence is, surprisingly, much
less clear [39-50].

We consider systems in one dimensions, which are par-
ticularly interesting because not only the eigenvectors
but also the eigenenergies can have a nontrivial wind-
ing number. In the case of a two-band model with chiral
symmetry, the Bloch Hamiltonian is off-diagonal
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In a lattice model, the lattice spacing forces the momen-
tum k to be periodic, and the ¢4 (k) describe closed paths
in the complex plane. For example, a non-Hermitian

Su-Schrieffer-Heeger (SSH) model is given by ¢i(k) =
(m — 1) 4+ e*(=%) "and the paths are circles with differ-
ent radii centered on the real axis. [51] The eigenvalues
of the matrix H(k) are distinct if neither path passes
through the origin; in this case, we can assign to each
path a winding number around the origin. These form
the Z x Z topological invariant of a non-Hermitian Hamil-
tonian in symmetry class AIIT [28]. Hermitian Hamilto-
nians are characterized by ¢4 (k) = ¢_(k)*, which forces
both winding numbers to be opposites of each other; a
single Z-invariant remains [3, 52, 53]. Genuinely non-
Hermitian phases appear whenever the two winding num-
bers are no longer opposites of each other [28, 33]. In
this case, the non-Hermitian winding number, which is
the winding number of the determinant det(H (k)), is
nonzero.

Is there a bulk-boundary correspondence for the non-
Hermitian winding number? To answer this, we focus
on response (Green) functions, which describe experi-
mental observables in a scattering setup. We find that
the bulk-boundary correspondence breaks down once the
non-Hermitian winding number takes a non-trivial value:
When the winding number changes from zero, the bulk
response starts exhibiting exponential growth in space,
and since periodic systems cannot accommodate such
spatial growth, they do not reflect the properties of sys-
tems with open boundaries. In this Letter, we focus
on the specific example of non-Hermitian Dirac fermions
to discuss the above physics, while a general proof is
contained in the companion paper Ref. [54]. Green
functions are more robust objects than eigenstates, be-
cause the latter are very sensitive to boundary condi-
tions: wave functions can become localized in the pres-
ence of an open boundary, a phenomenon referred to as
non-Hermitian skin effect [39, 41, 55-64]. This skin ef-
fect can be observable already for arbitrarily small non-
Hermiticity, whereas an exponential growth of the bulk



Green function occurs only above a critical strength of
non-Hermiticity. In a semi-infinite system with only one
boundary on the other hand, right-eigenfunctions can be
localized at the boundary, whereas there exist no corre-
sponding normalizable left-eigenfunctions, such that the
Green function cannot be expressed in terms of eigen-
functions.

Ezxample: Dirac  fermions with non-Hermitian
terms.— We consider a continuum model that corre-
sponds to the long distance limit of the non-Hermitian
SSH model [32, 41, 65, 66]. It concerns wave functions
with two components 1 (x) = [t (), ¥2(z)]T subject to
a Hermitian Dirac Hamiltonian Hy = moy, + (—i0; )0y,
where o0,,0, are Pauli matrices, m is a real mass
parameter (band gap). Let us introduce non-Hermiticity
by adding constant antihermitian terms:

H = Hy +inoy, (2)

where v is real. There are three more terms that we
could add: i7v,0, iv,0,, and —il'l, where 1 is the iden-
tity matrix. The first can be absorbed by analytic con-
tinuation of the mass m. The second and third vanish if
we also impose a chiral symmetry, {f:f ,0.} = 0, neces-
sary for discussing zero energy boundary eigenstates in
one dimension. Thus, the symmetry class is AIII [1] for
complex m. For real mass m, H is additionally invari-
ant under complex conjugation, placing it in symmetry
class BDI, which also implies that eigenvalues occur in
complex conjugate pairs.

In the continuum model (2), we have ¢+ (k) = m +
(v —ik), and the paths described by ¢4 (k) in the com-
plex plane are no longer closed. Still, one can assign a
half-integer winding number v1 [33] that changes when-
ever a path crosses the origin. Such crossings happen at
v = +m and we find the topological phase diagram in
Fig. 1(a).

Open boundary conditions.— We now consider a sys-
tem of length L with open boundary conditions

P2(0) =0, 91 (L) =0 3)

corresponding to a particular boundary termination of
the lattice model. For open boundary conditions, the
non-Hermitian terms in both the Dirac-Hamiltonian
Eq. (2) and the non-Hermitian SSH model defined below
Eq. (1) can be eliminated by a similarity transformation:
if Yo (x) is an eigenfunction of the Hamiltonian Hy, then
Y(x) = e"y(x) is an eigenfunction of the Hamiltonian
H. From this we see that all eigenfunctions are exponen-
tially localized, when v # 0. This is the non-Hermitian
skin effect [39, 41, 55-64].

Bulk and boundary Green function.— To clearly distin-
guish bulk and boundary, we now focus on Green func-
tions, which are matrix-valued solutions to the equation

(E—-H)G(E;z,y) =16z —y) . (4)
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Figure 1. Topological phase diagram of one-dimensional non-
Hermitian Dirac fermions with particle-hole symmetry and
chiral symmetry. (a) Periodic boundary conditions. A pair
of half-integer winding numbers (v4,v_) distinguishes four
phases: Two Hermitian (red and blue) and two genuinely non-
Hermitian phases (grey), separated by lines v = +m. (b)
Open boundary conditions. The line m = 0 separates phases
with a different number of zero energy boundary eigenstates.
For the boundary conditions (3), a positive mass implies the
existence of a boundary state at each end (red), which are
absent for a negative mass (blue). The lines v = +m now
indicate that the bulk (and boundary) Green function change
from exponential decay to exponential growth.

The bulk Green function Gpyik is defined as the response
of an infinite system [54], whereas the Green function
Gopen for open boundary conditions is defined as the so-
lution that satisfies the conditions (3). When we probe
the system far away from the boundary, 0 < z,y < L,
then only the bulk of the system responds, and we expect
that both Green functions give the same result. However,
when the source is close to the boundary, y ~ 0 or y ~ L,
we expect that reflection at the boundary is important,
which is captured in the boundary Green function

Gbound(E; x, y) = Gopen(E; Z, y) - Gbulk(E; T — y) (5)

It solves the homogeneous equation (E -—
fI)Gbound(E;:c,y) = 0. We have used that for a
translationally invariant Hamiltonian, the bulk response
only depends on the difference x — y. If Gy denotes
a Green function of Hy for open boundaries, then the
corresponding retarded Green function for H reads

G(E;2,y) = Go(E + in; z,y)e" ™), (6)

with 7 = 0. We now focus on zero energy, E = 0. Then,
we find

Gopuc(in; 7, y) = [0(—3)GL, + 0(F)Ggle” V™ 1,
(7)
where T = x — y, and G, and G r are matrices

G = N i m v /mE 0T g
§ m — vgy/m?2 + n? m

with s = L,R, v/, = £1, and N = 1/(2/m? + n?).
Thus, we obtain one of our main results: In the phases



where the non-Hermitian winding number is nonzero,
|y] > |m|, the bulk Green function Gpyy grows expo-
nentially as x — 400 while keeping ¥y fixed. For G bound
near the left boundary, we find

Go,bound (i1, z,y) = Gpe™ V m2+’72(“"+y), for x,y < L.
9)

Here, Gp is the matrix

m++/m24n?

mf\/812+n2 (1) . (10)

Gp=—Cn-

Taken together, this yields the decomposition (5).
Boundary eigenstates.— The Green function can be
expressed as a sum over eigenstates

G(Byz,y) =) (E—Ea) Haldp)(Wily). (1)

n

Here, |¢}) are the so-called right- and [¢7) the
left-eigenstates of the non-Hermitian Hamiltonian,
ie. HYR) = Bolop) and Hiyp) = Eilv}), with
(VPWE) = 6nm [07]. The contribution (z|¢}%) (¥} |y) of
an individual eigenstate to the Green function can be ex-
tracted as the residue of the pole at E = E,, [68, (9].
For identical positions * = y, this residue yields the
biorthogonal polarization discussed in Ref. [10]. We now
define a boundary eigenstate to be the residue of a pole
of the boundary Green function, and focus on states at
zero energy, ¥ = 0. For open boundary conditions,
our model has only real eigenvalues due to the relation
Eq. (6), and we can obtain the residue from the imaginary
part of the Green function since Im G(E + i0T;xz,y) =
— > (|YRr)(YrL|y)o(E — E,,) for real E. We find that

—Im Glllbound (07 X, y) = Ae('yfm)ze(f'yfm)y’

where A = 0(m)2m/n with n =0".  (12)

Thus, for m > 0, the boundary Green function has an
isolated pole at zero energy, whose associated eigenstate
is (z[y%) = ™™ and (¢9]y) = e(=7=™¥. The spa-
tial shape changes dramatically from exponentially lo-
calized to exponentially growing and vice versa when-
ever v = £+m. In contrast, for m < 0, no boundary
eigenstate is found. Thus, the number of zero energy
boundary eigenstates does not change during the topolog-
ical phase transition at v = £|m| for periodic boundary
conditions [Fig. 1(b)], and the bulk-boundary correspon-
dence breaks down.

Bulk-periodic correspondence.— The traditional view
on the bulk-boundary correspondence actually comprises
two separate logical steps: it relates i) the bulk to the
boundary Green function, and ii) the Green function
Goperiod for periodic boundary conditions to that for the
bulk of an infinite system: In the limit of large system
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Figure 2. Breakdown of the bulk-periodic correspondence.
(a) If the bulk Green function decays spatially, then both bulk
and periodic Green function agree. (b) If the bulk Green func-
tion grows spatially, then the periodic Green function has to
change drastically in order to accommodate periodic bound-
ary conditions.

size, both agree if the bulk Green function decays spa-
tially [Fig. 2(a)]; this allows us to use topological invari-
ants of the Bloch Hamiltonian (1) to characterize an in-
finite bulk. In non-Hermitian systems, step i) is unprob-
lematic, but step ii) may fail. To better distinguish them,
we propose to narrow the name bulk-boundary correspon-
dence to refer only to the first step, and to call the second
step the bulk-periodic correspondence.

Indeed, for our model in the regime |y| > |m|, the
bulk-periodic correspondence breaks down, because the
periodic Green function decays, while the bulk Green
function grows exponentially. [Fig. 2(b)] This growth also
explains the exponential sensitivity to small perturba-
tions seen in Ref. [14]. For periodic boundary conditions
P(—L/2) = 1 (+L/2), and using the results Egs. (6) and
(7) for the bulk Green function, we find

Gperiod(o; xZ, 0) = Gbulk(o; &€, 0)
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with k7, r = v+ /m? + 72 In the limit of large system
size, L > |z|, the two additional terms vanish if only if
the exponents satisfy x;, > 0 and kg < 0, i.e. if the bulk
Green function decays spatially [Fig. 2].

If we focus on bulk growth and disregard boundary
eigenstates, we no longer require symmetry class AIIL
Then, we find our main result, which holds both with
and without symmetry (class A): If the non-Hermitian
winding number is nonzero, then the bulk Green func-
tion at zero energy grows spatially. For example, consider



