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Abbreviations:

DFT, density functional theory

DEP, diethyl phthalate

DMP, dimethyl phthalate

HDTMAB, hexadecyltrimethylammonium bromide

MD, molecular dynamics

NERSC, National Energy Research Scientific Computing Center

PFAS, per- and polyfluoroalkyl substances
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PFBS, perfluorobutanesulfonic acid
PFOA, perfluorooctanoic acid

PFOS, perfluorooctanesulfonic acid
PPPM, particle-particle/particle-mesh
SOM, soil organic matter

TNB, Temple-Northeastern-Birmingham

Abstract:

Molecular dynamics (MD) simulations are used to examine the adsorption and aggregation of
tyrosine and glutamate molecules on a stack of smectite particles at three different organic
loadings. The results reveal a strong affinity of the smectite surface for the organic molecules,
with the zwitterionic tyrosine molecules coating the exterior surfaces (and entering the interlayer
region to a lesser extent) while the negatively charged glutamate molecules are generally found
near the clay edge sites and in coordination with aqueous and coordinating calcium ions.
Additional simulations examine the effects of the tyrosine and glutamate organic coatings on the
adsorption of two organic contaminants, dimethyl phthalate (DMP) and perfluorobutanesulfonic
acid (PFBS). The addition of these coatings did not prevent the DMP and PFBS molecules from
accessing previously identified favorable adsorption domains. An analysis of the adsorption
energetics shows an initial decrease in contaminant adsorption relative to pure mineral surfaces
as tyrosine and glutamate are introduced to the system, followed by increasing adsorption with
increasing organic loadings. Overall, this research advances the mechanistic understanding of the

interplay between smectite surfaces, organic coatings, and organic contaminants.
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1. Introduction

In the natural environment, organic carbon is found in soils at levels more than quadruple that of
atmospheric CO., with important implications for the Earth’s carbon cycle, soil fertility, and soil
resilience to erosion and drought (Ciais et al., 2013; Friedlingstein et al., 2019; Lehmann &
Kleber, 2015). This organic carbon is found predominantly within soil organic matter (SOM), a
complex mixture of organic substances characterized in part by its tendency to associate with
mineral surfaces (Kleber et al., 2015; Kleber et al., 2021; Mayer, 1993; Ranson et al., 1997). In
temperate regions, observations suggest a particularly close association between SOM and high
surface area phyllosilicate minerals, such as smectite clay (Ransom et al., 1997; Rasmussen et
al., 2018). These SOM-mineral interactions have important implications for the dynamics of soil
carbon and organic contaminants. In particular, they are widely believed to alter the microbial
processing of SOM (and associated carbon emissions) (Kleber et al., 2021; Lehmann & Kleber,
2015; Mayer, 1993; Ransom et al., 1997; Sulman et al., 2014) and the adsorptive capacity of
mineral surfaces for anthropogenic organic contaminants (and hence the fate and transport of
these contaminants) (Celis et al., 1998; Jeon et al., 2011; Li et al., 2003; Tian et al., 2016; Wu et

al., 2015; Zhou et al., 2010).

For both phenomena outlined above, fundamental understanding of the impact of SOM-mineral
interactions remains limited, in large part because of the complex and variable nature of SOM
(Hsu et al., 2018; Lehmann & Kleber, 2015; Marin-Spiotta et al., 2014; Ohno et al., 2017).
Whereas the adsorption of individual organic compounds on soil minerals is increasingly well

understood (Newcomb et al., 2017) knowledge of the manner in which SOM coats mineral
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surfaces (and of the impact of these coatings on the adsorption of other compounds) remains
limited (Coward et al., 2019; Kleber et al., 2021; Lee et al., 2008). In fact, even the fundamental
mechanisms by which silicate minerals bind SOM molecules and aggregates remain
incompletely understood: anion exchange, cation bridging, hydrophobic interactions, Van der
Waals forces, and hydrogen bonding have all been variously proposed to be of key importance

(Kleber et al., 2021; Liitzow et al., 2006; Zhang, et al., 2020).

In the last decade, atomistic simulations—including particularly molecular dynamics (MD) and
density functional theory (DFT) simulations—have emerged as a useful tool in the study of
mineral-organic interactions. In examinations of the adsorption of individual organic molecules,
these simulations have demonstrated strong complementarity with nanoscale experimental
approaches (Aristilde et al., 2016; Kwon et al., 2006; Liu et al., 2019; Schampera et al., 2016).

In studies of SOM, they may prove particularly valuable (Greathouse et al., 2014) as the
complexity of SOM binding mechanisms and supra-molecule structures strongly limits the
feasibility of deconvolving experimental data (Kleber et al., 2021). Although significant
challenges exist with regard to the examination of SOM and SOM-mineral interactions using
atomistic simulations, notably with regard to the definition of SOM proxies and the generation of
equilibrium structures for SOM aggregates on the limited time-scale of these simulations,
previous MED simulation studies have successfully examined the aggregation of various more or
less simple or realistic SOM proxies (ranging from single molecules to mixtures of ~10
compounds) under different aqueous chemistry conditions (Devarajan et al., 2020; Iskrenova-

Tchoukova et al., 2010; Kalinichev, 2012; Loganathan et al., 2020) along with the behavior of
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these proxies in mesopores (Loganathan et al., 2020), interlayer regions (Kelch et al., 2019;

Sutton & Sposito, 2006), and on edge surfaces of smectite clay particles (Zhang et al., 2020).

In this paper, we build upon previous studies to examine the influence of an organic matter
coating on the adsorption of organic contaminants on smectite clay. We focus on two
contaminants—dimethyl phthalate (DMP), an uncharged polar chemical plasticizer, and
perfluorobutanesulfonic acid (PFBS), a short chained anionic surfactant in the family of per- and
polyfluoroalkyl substances (PFAS)—for which we previously characterized adsorption on
pristine smectite using MD simulations. Previous atomistic simulation studies of the adsorption
of similar contaminants on organic-coated minerals have modeled PFAS adsorption on organic-
coated silica surfaces and within an organic-coated Na-smectite nanopore, but these studies
simulated very short time scales (2.1 ns or less) and did not quantify the free energy of
adsorption of the organic contaminant (Yan et al., 2020; Zhang et al., 2015). Previous
experimental studies have observed significantly enhanced adsorption of perfluorooctanesulfonic
acid (PFOS) and perfluorooctanoic acid (PFOA) on smectite clay in the presence of cationic
surfactants such as hexadecyltrimethylammonium bromide (HDTMAB) (Tian et al., 2016; Zhou
et al., 2010), while humic acid, tannic acid, and Suwannee River natural organic matter coatings
resulted in decreased PFOS and PFOA adsorption compared to pure smectite surfaces (Jeon et
al., 2011). Wu et al. (2015) found that diethyl phthalate (DEP) adsorption on K-smectite was ten
times greater when the surfaces were coated with humic acid at organic carbon loadings ranging
from 0.0015 to 0.015 gcarbon/gelay. These results, along with experimental data for organic
contaminant adsorption by SOM-coated smectite more broadly (Celis et al., 1998; Li et al.,

2004), are somewhat contradictory as they show that SOM coatings can either increase or
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decrease contaminant adsorption depending on contaminant type, clay counterion type, and the

nature of the examined SOM (or SOM proxy).

In an attempt to shed light on the impact of organic matter coatings on the adsorption of organic
contaminants, we first examine the coatings formed by a mixture of amino acids (as a simplified
model of mineral-associated SOM, see next section) on montmorillonite surfaces. Specifically,
simulations are conducted at three organic loadings reflecting low (0.01 gcarbon/gclay), medium
(0.05 gearbon/Lelay), and high ranges (0.1 Zcarbon/gclay) 0f the organic carbon to clay mass ratios
observed in soils and sediments (Mayer, 1993). Then, we apply a metadynamics-based MD
simulation methodology developed in our previous studies (Willemsen & Bourg, 2021;
Willemsen et al., 2019) to predict the impact of these coatings on the free energies of adsorption
of DMP and PFBS. Adsorption mechanisms and energetics are analyzed and compared to our
previous results on DMP and PFBS adsorption on pristine smectite surfaces (Willemsen &
Bourg, 2021; Willemsen et al., 2019). Overall, this work has the potential to improve
understanding of mineral-organic matter interactions and the fate and transport of organic
contaminants and also has implications for the development of organo-clay adsorbents (Tian et

al., 2016; Yan et al., 2020; Zhou et al., 2010; Zhou et al., 2015).

2. Methods

2.1 Simplified Model of Mineral-Associated SOM

As noted above, a recurrent challenge in understanding mineral-organic interactions in soils and

sediments is the complex and variable structure of SOM. The emerging view suggests that SOM
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is comprised of organic fragments varying in size and at various stages of decomposition
(Lehmann & Kleber, 2015; Sutton & Sposito, 2005). These fragments can range from large plant
and animal residues to small biopolymers and monomers. Previous MD simulation studies have
represented this complex material using a variety of simple SOM proxies (Greathouse et al.,
2014) including the macromolecular Schulten model (Sutton & Sposito, 2006), the Vienna model
(Escalona et al., 2021; Petrov et al., 2017; Zhang et al., 2020), the Temple-Northeastern-
Birmingham (TNB) model (Iskrenova-Tchoukova et al., 2010; Kalinichev, 2012; Loganathan et
al., 2020), the UT/ORNL model of dissolved organic matter (Devarajan et al., 2020), fatty acids
(Aquino et al., 2011), and a hydrophobic nanopore comprised of aliphatic chains and carboxyl
groups (Tunega et al., 2019). A compilation of SOM proxies used in previous MD simulation
studies is presented in Table 1. The proxies presented in Table 1 obviously greatly simplify the
complexity of SOM, yet they have proved useful in generating fundamental insight into the
processes that underlie key behaviors of SOM. In this work, we focus on necromass, the dead
microbial component of SOM that accounts for anywhere from 30% (in the case of temperate
forest soils) to 61.8% (in the case of grassland soils) of total topsoil organic carbon (Liang et al.,
2019). Compared to larger plant-based SOM components, necromass tends to contain more polar
and ionizable groups and is more readily found in association with mineral surfaces (Buckeridge
et al., 2020; Liang et al., 2017; Liang et al., 2019; Totsche et al., 2018), making it of particular
interest for our study. As a highly simplified model of soil microbial necromass, we choose a 1:1
combination of glutamate, an anionic amino acid at neutral pH, and tyrosine, a zwitterionic
amino acid. Although this proxy obviously underestimates the complexity of microbial
necromass, its complexity is similar to that of many of the proxies used in previous MD

simulations (Table 1). Its combined C:H:O:N elemental ratio (14:19:7:2) is consistent with
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commonly used models of microbial biomass stoichiometry (5:7:2:1) (Christensen & McCarty,

1975) and with reported biomass C:N ratios (5 to 8) (Kleber et al., 2017; Xu et al., 2013) and is

reasonably close to C:N ratios reported for the fine-sized fraction of soils (on the order of 10 to

12) (Totsche et al., 2018). Finally, we note that individual amino acids have been used as simple

proxies for mineral-associated organic matter in at least one previous experimental study (Gao et

al., 2017).

Table 1: Molecular formulas and structural descriptions of SOM proxies used in previous

molecular dynamics simulation studies.

SOM Proxy Molecular Formula Structure Reference
Schulten
Model C447H4210272N 1552 Macromolecule Sutton & Sposito, 2006
(humic acid)
) Associations of small Escalona et al., 2021;
Vienna ) .
Model Varies organic molecules Petrov et al., 2017;
(system specific) Zhang et al., 2020
Iskrenova-Tchoukova et
al., 2010; Kalinichev
TNB Model H N lecul ; ’ ;
N ode CeH37016N2 One molecule 2012; Loganathan et al.,
2020
Combination of light
{oht .
UT/ORNL Ce79H9650282N38S6P WEIBTE OTgatic .
compounds and peptide, Devarajan et al., 2020
Model Cs77H3490326N23S3P e
carbohydrate, and lignin
components
4 molecules oriented
i h that lat
Undecanold |y oy yicoom such that carboxylate Aquino et al., 2011
acid groups form a
hydrophilic center
H hobi
ydrophobic Cs7H7n2 One I.SC e%nd tW.O e Tunega et al., 2019
nanopore aliphatic chains
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amino acids allowed to aggregate

2.2 Molecular Dynamics Simulations

Molecular dynamics simulations were performed using methodologies adapted from our
previous studies (Willemsen & Bourg 2021; Willemsen et al., 2019) to examine DMP and PFBS
adsorption by organic-coated mineral surfaces at three different organic loadings, for a total of
six unique conditions. Each simulated system consisted of a periodically replicated simulation
cell containing 9960 water molecules and a stack of two fully flexible Ca-montmorillonite
particles (60 unit cells) with an interlayer spacing of 6 A and randomly distributed octahedral
Al¥* to Mg?" isomorphic substitutions in accordance with Léwenstein’s avoidance rule. The
resulting structural charge densities were -0.60 and -0.55 e per unit cell for the upper and lower
clay lamellae, respectively. Three DMP or PFBS molecules were added to the system with a
background electrolyte solution of 0.18 M or 0.10 M CaCly, respectively, to match the
concentrations used in our prior studies of adsorption on pristine smectite surfaces (Willemsen &
Bourg, 2021; Willemsen et al., 2019). Five glutamate and five tyrosine molecules were added to
the simulation cell for the system with a low organic loading, 26 each in the medium loading
system, and 52 each in the high loading system. Calcium ions were added as necessary to charge-
balance the negatively charged glutamate molecules and to maintain charge-neutrality in the

system.
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Simulations were carried out on the Cori supercomputer at the National Energy Research
Scientific Computing Center (NERSC) using the LAMMPS program (Plimpton, 1995) and the
Colvars package (Fiorin et al., 2013). Glutamate, tyrosine, DMP, and PFBS were parameterized
using the OPLS-AA force field (Jorgensen et al., 1996; Lopes & Padua, 2004). Interatomic
interactions for the clay particles and cleaved edge surfaces were described using the CLAYFF
model (Cygan et al., 2004) with the extended CLAYFF parameterization of Lammers et al.
(2017). Water molecules were simulated using the SPC/E model (Berendsen et al., 1987), and
calcium and chloride ions using well-established models (Aqvist, 1990; Smith & Dang, 1994).
Details can be found in Table S1 in the Supplementary Information. The use of distinct force
fields developed to simulate mineral-water (CLAYFF) and organic-water systems (OPLS-AA)
requires particular care as the compatibility of these models has not been rigorously tested.
Furthermore, these models use slightly different conventions for various details of the
interatomic interactions. Notably, they use different mixing rules to evaluate Lennard-Jones 6-12
pair potential parameters between non-identical atom types. To account for this difference,
parameters for interactions between organic molecules were calculated using the convention of
the OPLS-AA force field, €;; = \/€;;€;; and 0;; = \/m , where €;; and o;; are the interatomic
potential well depth and the distance at which the potential equals zero and i and j are different
atom types (Jorgensen et al., 1996). All other Lennard-Jones potential parameters between non-

identical atom types were calculated using the convention of the CLAYFF force field, whereby
0 = % (al-i + oj j) (Cygan et al., 2004). We also note that the interatomic potential models used

in this study, like most standard models used in classical MD simulations, were not designed to
represent changes in covalent bonding. Therefore, our simulations inherently cannot predict the

covalent adsorption of organic molecules on clay edge surfaces or the associated ligand-
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promoted dissolution of clay edges.

Glutamate and tyrosine molecules were initially placed in the bulk water region of the simulation
cell and all simulations were first equilibrated for 445 ps, including a 200 ps run in the NPT
ensemble (P, = 1 bar) to allow the volume of the box to equilibrate. The resulting simulation cell
size was 63.36 A x 89.19 A x 65.0 A, with variations by up to 2.58 A in the y dimension with
changing organic loadings. An additional 60 ns equilibration run was then conducted in the NVT
ensemble at 298 K to allow the glutamate and tyrosine molecules to explore the simulation cell
and coat the clay surface (Figure 1). Contaminant molecules were frozen in place, far from the
clay surface, over the course of both equilibration runs in order to first allow the glutamate and
tyrosine molecules to interact with the clay particles. Following equilibration, the DMP and
PFBS molecules were allowed to move freely. The SHAKE algorithm (Ryckaert et al., 1997)
was used to keep water molecules rigid, and the clay layers were constrained by setting their
translational and rotational velocities to zero with the exception of translation in the z direction,
thus allowing for changes in the interparticle distance. The clay layers were otherwise fully
flexible. Short range VAW and Coulomb interactions were solved up to 12 A, and long range
Coulomb interactions beyond the cutoff were calculated using the particle-particle/particle-mesh

(PPPM) Ewald summation method (Eastwood et al., 1980) with 99.9% accuracy.

2.3. Metadynamics Simulations

Metadynamics simulations were run in the NVT ensemble at 298 K for up to 515 ns. Two
collective variables, the y and z coordinates of the contaminant molecule’s center of mass, were

used to evaluate the free energy landscape associated with the location of the contaminant in the

11
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simulation cell. Metadynamics was performed independently on each of the three contaminant
molecules in each simulation, thus allowing for statistical error calculations. Simulations were
concluded once the free energy landscapes of the three replicates converged with similar free
energy differences between the bulk water and clay regions. Metadynamics simulation specific
information about the duration and size of Gaussian bias potential deposition can be found in
Table S2 of the Supplemental Information. Free energies of adsorption were calculated for the
entire stack of clay lamellae as well as in different sub-regions (i.e., within 6 A of the upper and
lower external basal surfaces and in the interlayer region) by temporally and spatially averaging
two-dimensional free energy maps over the last 50 ns of the metadynamics simulations as
described in the Supplemental Information and in our previous papers (Willemsen & Bourg
2021; Willemsen et al., 2019). In addition to the metadynamics simulations, standard “unbiased”
simulations were performed for 75 to 100 ns to characterize favorable contaminant binding

structures on the basal surface.
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Figure 1: Snapshot of the system with a low organic loading (0.05 gcarbon/Zclay) showing PFBS,
glutamate, and tyrosine molecules as pink, green, and purple spheres (with their H atoms as white
spheres). Calcium and chloride ions are shown as orange and grey spheres. Water molecules are
rendered invisible for viewing purposes. The organic molecules on the right side of the image
interact with the left surface of the stack of clay particles through the periodic boundary of the

simulation cell.

3 Structure of the Organic Coating

3.1 Organic Coating Distribution on the Stack of Clay Particles

Output from the unbiased simulations was analyzed to create two-dimensional density maps for
glutamate, tyrosine, and calcium at low, medium, and high organic loadings. Results are shown
in Figure 2 for systems containing DMP and Figure S1 for systems containing PFBS. Similar
behavior was observed in both sets of simulations. The results reveal the existence of density
maxima near the clay surfaces, indicating that the simulated amino acids have a strong affinity
for these surfaces. Essentially complete adsorption is observed at low and medium organic
loadings, i.e., no glutamate or tyrosine density is observed in the bulk liquid water region,
defined as the 63.36 A x 10 A x 65 A region of the simulation box at the greatest distance from
the clay edges (on the right side of the simulation cell). At the highest loading, organic density in
the bulk liquid water region is nonzero, suggesting a saturation of available adsorption domains
even though the clay surface is not fully coated by organic matter. Free organic aggregates (i.e.,
aggregates of several organic molecules not attached to the clay surface) are observed in this

bulk liquid water region.
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Figure 2: Average glutamate (green), tyrosine (blue), and calcium (red) density in the yz plane for
the simulations containing DMP at different organic loadings. Results were averaged over the last

70 ns of the unbiased simulations.

Tyrosine density peaks are observed adjacent to the exterior basal surfaces, indicative of inner-
sphere complex formation with the clay surface. At the high organic loading, a second layer of
tyrosine density is observed adjacent to the first adsorbed monolayer of tyrosine molecules,
indicating the formation of a multilayer coating. Some tyrosine intercalation is also observed at
medium and high loadings, possibly enabled by the slight planar character of this molecule,

though organic density in the interlayer region remains lower than on the external basal surfaces.
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The glutamate molecules exhibit a propensity to form aggregates with calcium ions near the
surface, as evidenced by increased calcium density in regions with high glutamate density and in
agreement with previous studies of SOM aggregation and adsorption (Iskrenova-Tchoukova et
al., 2010; Kalinichev, 2012; Loganathan et al., 2020; Sowers et al., 2018). No glutamate is found
in the interlayer region as expected given its size and anionic nature. The greater accumulation of
organic matter on exterior surfaces rather than the interlayer nanopores is consistent with
previous studies (Loganathan et al., 2020). The preferential adsorption of tyrosine vs. glutamate
on the basal surface is consistent with experimental results indicating a stronger adsorption of

zwitterionic vs. anionic amino acids to smectite clay (Yeasmin et al., 2014).

3.2 Aggregation Structure in the Organic Coating

Detailed examination of the simulation trajectories confirms both the formation of a multi-layer
coating (with a “contact layer” of tyrosine coated by aggregates of glutamate) and the strong
association between adsorbed organic molecules and Ca ions. These findings are consistent with
the so-called “onion-skin” conceptual model of SOM surface coatings and with the role of Ca-
bridging interactions suggested in previous studies (Coward et al., 2019; Kleber et al., 2007;
Sowers et al., 2018). However, simulation snapshots also reveal that the organic coating is
discontinuous even at high loadings where the presence of organic molecules in bulk solution
suggests a saturation of surface sites, in agreement with experimental observations (Chenu &
Plante, 2006; Totsche et al., 2018). A potential clue into the origin of this patchy coverage is
provided by observations that at the highest organic loading, portions of the basal surface that are

not coated by organic matter are consistently devoid of adsorbed Ca ions (as illustrated in Figure
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3). This suggests that the lateral extent of the organic coating on the clay basal surface may be
limited by the abundance of Ca counterions present on this surface, which should be sensitive to

clay surface charge density.

Detailed examination of the predicted structure of the organic coating further shows that
glutamate molecules also exhibit a strong affinity for clay edge surfaces. In our simulations,
these surfaces carry no net charge, in accordance with current estimates of their protonation state
near pH 7 (Tournassat, Davis, et al., 2016). However, they do carry localized regions of positive
charge (Tournassat, Bourg, et al., 2016) that may allow for favorable electrostatic interactions

with negatively charged glutamate molecules.
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Figure 3: Snapshots of the system with a high organic loading containing DMP molecules viewed
along the yz (top) and xy (bottom) planes highlighting the structure of the organic coating on one

of the external basal surfaces. The color scheme is the same as in Figure 1.

3.3 Hydrophilic/Hydrophobic Nature of the Clay Surface

Our previous MD simulation studies of organic contaminant partitioning to a stack of smectite
sheets revealed that adsorption of uncharged phthalate esters and anionic perfluoroalkyl
substances (PFAs) was enhanced on the less charged clay sheet (0.55 versus 0.60 structural

charges per unit cell) with the greatest contaminant density concentrated on patches of the clay
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siloxane surface spatially distant from the isomorphic substitutions (Willemsen & Bourg, 2021;
Willemsen et al., 2019). Here, we examine whether glutamate and tyrosine molecules also
preferentially adsorb to these uncharged regions. For this, average atomic densities within 7 A of
the plane of the lower basal surface oxygens were calculated over the last 70 ns of the unbiased
simulations and compared with the location of isomorphic substitution sites in the underlying
clay particle. This 7 A region was chosen to fully capture the first monolayer of water,
glutamate, and tyrosine on the clay basal surface. The resulting two-dimensional (x)) density
maps are shown in Figure 4 along with the location of the isomorphic substitutions in the

underlying clay particle.

As expected from the results presented in previous sections, in the simulations with a low
organic loading, only a small portion of the surface is occupied by the surface coating. Much
greater surface coverage is observed in the simulations with a medium or high organic loading.
Glutamate density peaks are concentrated primarily near the clay edges (left and right side of
each figure) as also seen in Figures 2 and S1. Beyond the clay edges, glutamate density is
enhanced in regions near the isomorphic substitutions, likely due to favorable electrostatic
interactions with the coordinating calcium ions, even though these charged regions represent the
more hydrophilic portions of the basal surface. The observed tyrosine density is relatively evenly
distributed across the basal plane for the medium and high loadings, with no obvious correlation
with the location of the isomorphic substitutions. In short, the observed distribution of the
organic coating is distinct from that observed in our previous studies for several types of organic
contaminants (phthalate esters and perfluorinated alkyl substances), where a strong preference

was observed for the uncharged regions of the basal surface. As expected, water density is
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significantly decreased in regions with high organic density (Figure 5), indicating that water

molecules are displaced by the adsorption of organic molecules.
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Figure 4: Density maps of glutamate (top), tyrosine (middle), and water (bottom) atoms in the xy
plane within 7 A of the lower basal surface at different organic loadings for the systems containing

DMP molecules. Density values were normalized relative to the molecular density of each pure
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compound. Since ~20% of the 7-A-thick region is occupied by the basal O atoms, the relative
densities of water and organic compounds should add up to ~0.8. Diamonds indicate the locations
of the isomorphic substitutions within the underlying clay particle. The maximum glutamate
density in the medium loading condition (1.60), the maximum tyrosine density in the high loading
condition (1.15), and the maximum water densities in the low (1.56), medium (1.74) and high

loading conditions (1.65) exceed the scale shown.

4 Adsorption of Organic Contaminants

4.1 Contaminant Adsorption on Hydrophobic Patches of the Basal Surface

Here, we examine how the distribution of glutamate and tyrosine molecules shown in Figure 4
affect the ability of DMP and PFBS molecules to partition to the previously identified
hydrophobic adsorption domains (Willemsen & Bourg 2021; Willemsen et al., 2019). Two-
dimensional (yz) density maps calculated from our unbiased simulations for DMP and PFBS
(Figure S2) indicate that most adsorption on the lower basal surface is via inner-sphere
complexes. Figure 5 shows significant DMP and PFBS adsorption on the largest uncharged
patches at the low and medium organic loadings for DMP, and at all loadings in the case of
PFBS. The locations of these maxima are in good agreement with those observed for systems
with no organic coatings (Willemsen & Bourg 2021; Willemsen et al., 2019). In the DMP
simulations at the high organic loading, the lack of DMP density observed within 7 A of the
lower basal surface is likely an artefact of the relatively short duration of our unbiased
simulations relative to the time required for the contaminant to explore the entire system, as the

three DMP molecules remained adsorbed on the upper basal surface and within the interlayer
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region during the entire unbiased simulation. The lower basal surface remains a favorable
adsorption domain in this system according to our metadynamics simulations, as described in
section 4.2. Overall, our results indicate that DMP and PFBS readily outcompete the organic
coating for the uncharged, hydrophobic regions on the clay basal surface where they were found
to adsorb most strongly in the absence of this coating (Willemsen & Bourg 2021; Willemsen et
al., 2019). This finding is unexpected and may be specific to the contaminants and organic
coating studied here, as DMP has a more planar structure and lower polarity than tyrosine and
glutamate, while the C-F chain in PFBS is likely significantly more hydrophobic than the C-H

groups in tyrosine and glutamate (Dalvi & Rossky, 2010).
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Figure 5: Density maps of DMP (top) and PFBS (bottom) in the xy plane within 7 A of the lower
basal surface at different organic loadings. White diamonds indicate the location of the isomorphic
substitutions within the underlying clay particle. Density values were normalized relative to the

molecular density of each pure compound.

4.2 Free Energy Landscapes

Results from the metadynamics simulations are shown in Figure 6 as average two-dimensional
(yz) free energy maps reflecting the preference of the contaminant for different locations within
the simulation cell. The results show a relatively uniform free energy landscape within the bulk
aqueous region and free energy minima (darker blue areas) near the clay external basal surfaces
and within the interlayer region. The locations of free energy minima on the external basal
surfaces are in good agreement with the unbiased simulation density maps shown in Figure S2

and confirm the energetic preference for adsorption directly onto the mineral surface.

22



396

397

398

399

DMP PFBS

|

Pristine Clay

§

B 0 EEaT 0 EE—_—m
: S & & © © 2 2 2 o O
B e = -~ W e oo
(A9) AB10ug 2014

o
(A9) AB1ouz 201
(=]
(A2) AS1oug 2019

-0.2

-0.4

0.6

0.4

0.2

(=]
(A2) £810ug a1

-0.2

-0.4

0.6

0.4

0.2

(A9) A310Ug 0017
o
(A9) A810u7 sa1g

Medium Loading

-0.2

-0.4

06
0.6
05
0.4 0.4
03 o =
ED . g “5“‘§"‘r="§*‘y’“)‘ o g
= 02 2
3 0 & A £
E o 2 |EIRCCEIR o &
~ Ak . ~
01 S _0_25
02
-0.3 0.4

Figure 6: Free energy maps reflecting the preference of the center of mass of DMP (left) and PFBS
molecules (right) for different yz coordinates in systems with only smectite (top) and with low,

medium, or high organic loadings. In each map, free energies are scaled to the average value in
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the bulk region. Dark blue color indicates favorable locations. Dashed black boxes show the
regions used to calculate the overall free energy of adsorption. Note that the y-axis length in the

systems with pristine smectite is ~8 A less than for the systems with organic-coated smectite.

4.3 Distribution Coefficients

From the results shown in Figure 6, partition coefficients Kq (i.e., linear adsorption coefficients

in the limit of low contaminant loadings) were calculated using the following equation:

AF

dcla Vela _water>clay PH,0_cla
Kd — Yy Y [e RT _ 2 Y (1)

Cwater Mciay PH,0_water

where gclay (Mol Kgclay!) and Cyater (mol L) are the adsorbed and aqueous contaminant
concentration at equilibrium, Velay is the volume of the clay region indicated in Figure 6, Miay is
the mass of clay within the clay region, AF,,4ter—ciay 1 the free energy difference between the
defined bulk aqueous and clay regions, R is the ideal gas constant, T is temperature (298 K), and
PH,0_clay @0d Py, o water are the average water densities in the clay and bulk water regions,

respectively. A full derivation can be found in Willemsen ef al. (2019).

Predicted values of log(Kq) for all six simulations are reported in Table S3 for the overall system
as well as for different adsorption regions (upper and lower external basal surface, interlayer
nanopore) along with results from our previous studies of adsorption on pristine smectite
(Willemsen & Bourg 2021; Willemsen et al., 2019). The results indicate that adsorption is
favorable in all simulated conditions for both contaminants [overall log(Kq¢) =2.8 £1.3,2.3 £ 1.1

and 3.3 + 1.0 for DMP and 1.5 £0.5, 1.8 £ 0.3 and 4.2 = 0.8 for PFBS at low, medium, and high
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organic loadings, respectively versus 3.4 + 0.5 and 3.0 + 0.4 for DMP and PFBS on pristine
smectite]. Predicted log(K«4) values for our organic-coated clay, especially at low organic
loadings, are closer in magnitude to those reported for DMP and PFBS adsorption by soils
[log(Kq4) =-1.16 to 0.8 and -0.4 to 0.8, respectively] (Banerjee et al., 1985; Hunger & Uchrin,
2000; Li et al., 2010; Li et al., 2019; Liu et al., 2013; Maraqa, 2011; Milinovic et al., 2015; Yang
et al., 2013; Zhao et al., 2004) as expected given the propensity of SOM to coat mineral surfaces
in the natural environment. In addition, the observed decrease in log(Kq) by about 1.3 log units
upon addition of our simple proxy for mineral-associated SOM is consistent with the reported
~1.5 log unit offset between phthalate adsorption on pure smectite and the average adsorption of
hydrophobic organic contaminants by soils (Willemsen et al., 2019). Interestingly, the presence
of our sorganic coating renders predicted log(Kq4) values relatively uniform across different parts
of the clay surface. In contrast, in simulations with pristine smectite clay, adsorption was
dominated by the more hydrophobic lower basal surface (Figure 6) (Willemsen & Bourg 2021;
Willemsen et al., 2019). This suggests that adsorption on SOM-coated clay minerals is less
sensitive to surface charge density and the distribution of isomorphic substitutions than

adsorption on pristine clay mineral surfaces.

Calculated free energies of adsorption for DMP and PFBS on the upper and lower basal surfaces
are shown in Figure 7 as a function of organic loading. For both DMP and PFBS, the results
indicate a decrease in adsorption on the lower basal surface with the introduction of low organic
loadings into the system relative to pure mineral surfaces. This likely reflects a competition with
tyrosine molecules for the uncharged hydrophobic adsorption domains previously identified on

this surface as high affinity patches for DMP and PFBS adsorption (Willemsen & Bourg 2021;
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Willemsen et al., 2019), as tyrosine is also observed to adsorb on these patches (Figures 4 and 5).
After the competition-induced decrease in adsorption, we see an increase in adsorption with
increasing organic loadings in agreement with many previous studies (Higgins & Luthy, 2006;
Karickhoff et al., 1979; Li et al., 2019; Milinovic et al., 2015). An experimental study by Jeon et
al. (2011) systematically examining PFOS adsorption on both pure and organic coated smectite
clay provides the closest known comparison to our simulations. They report a similar decrease in
adsorption with the introduction of SOM followed by increasing adsorption with higher SOM
loadings, albeit over a smaller range of foc values. Wu et al. (2015) examined DEP adsorption on
pure and SOM-coated K-smectite and found that at low contaminant concentrations, SOM
coatings increased DEP adsorption relative to pure smectite. This observation matches our
results for partitioning to the upper basal surface (red symbols in Figure 7) which, unlike the
lower surface, does not carry large hydrophobic adsorption domains (Willemsen et al., 2019).
Taken together, these results suggest that organic coatings can decrease adsorption relative to
pure mineral surfaces when the surface contains a small number of high affinity adsorption
domains. In the absence of these high-affinity domains or when these domains are less
accessible, increasing organic loadings result in an increase in contaminant adsorption likely due

to favorable hydrophobic interactions with the organic coating.
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Figure 7: Predicted free energies of adsorption as a function of organic carbon content on the upper
(red) and lower (blue) basal surfaces for simulations containing DMP (left) and PFBS (right). Error

bars represent 95% confidence intervals.

5 Conclusions

Molecular dynamics simulations were used to examine the aggregation of glutamate and
tyrosine, two amino acids with a combined elemental composition similar to that of microbial
necromass, and their interactions with a pair of stacked smectite clay nanoparticles. Zwitterionic
tyrosine molecules formed a discontinuous coating on the clay basal surfaces, primarily adopting
flat orientations as inner sphere complexes. Glutamate molecules formed small aggregates with
calcium ions and were adsorbed on the clay edge surfaces and as a secondary layer on the basal
surfaces. These coatings did not prevent DMP and PFBS molecules from accessing previously
identified favorable adsorption domains, but competition for high-affinity adsorption domains
decreased overall contaminant adsorption relative to pure mineral surfaces. Following this initial
competition-induced decrease, adsorption increased with higher organic loadings. Combined,
these results highlight the complexity of organic contaminant adsorption by organic-coated
minerals and soils and suggest that adsorption cannot be estimated by one single property (such

as organic carbon or clay content) especially in high clay/low SOM conditions.

A potentially promising avenue for future research may be to examine the coating of clay
mineral nanoparticles by the more complex SOM proxies recently proposed by Devarajan et al.

(2020) or Escalona et al. (2021). However, we note that for such complex organic mixtures, the
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short time-scale of typical MD simulations may be insufficient to obtain well equilibrated
organic coatings, in which case the use of enhanced sampling techniques, such as replica-

exchange MD simulations (Vialykh et al., 2020; Atmani et al., 2020), may be required.

Supplemental Material

Molecular dynamics force field parameters, rate and size of metadynamics gaussian bias
potential deposition, details of free energy calculations, yz density maps for glutamate, tyrosine,
and calcium from the PFBS unbiased simulations, PFBS and DMP yz density profiles from the
unbiased simulations, and simulation predicted log Kq values for DMP and PFBS adsorption at

different organic loadings and for different adsorption sites.
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