

1 **Molecular dynamics simulation of the adsorption of**

2 **organic contaminants (phthalate esters and**

3 **perfluorinated alkyl substances) on organic-coated**

4 **smectite clay particles**

5

6 **Jennifer A. R. Willemse^{1,*}, Meléa Emunah¹, Ian C. Bourg¹**

7 ¹Department of Civil & Environmental Engineering (CEE) and High Meadows Environmental
8 Institute (HMEI), Princeton University, Princeton, NJ 08544, USA

9 *email: jwillemse1825@gmail.com

10

11 **Abbreviations:**

12 DFT, density functional theory

13 DEP, diethyl phthalate

14 DMP, dimethyl phthalate

15 HDTMAB, hexadecyltrimethylammonium bromide

16 MD, molecular dynamics

17 NERSC, National Energy Research Scientific Computing Center

18 PFAS, per- and polyfluoroalkyl substances

19 PFBS, perfluorobutanesulfonic acid
20 PFOA, perfluorooctanoic acid
21 PFOS, perfluorooctanesulfonic acid
22 PPPM, particle-particle/particle-mesh
23 SOM, soil organic matter
24 TNB, Temple-Northeastern-Birmingham
25

26 **Abstract:**

27 Molecular dynamics (MD) simulations are used to examine the adsorption and aggregation of
28 tyrosine and glutamate molecules on a stack of smectite particles at three different organic
29 loadings. The results reveal a strong affinity of the smectite surface for the organic molecules,
30 with the zwitterionic tyrosine molecules coating the exterior surfaces (and entering the interlayer
31 region to a lesser extent) while the negatively charged glutamate molecules are generally found
32 near the clay edge sites and in coordination with aqueous and coordinating calcium ions.
33 Additional simulations examine the effects of the tyrosine and glutamate organic coatings on the
34 adsorption of two organic contaminants, dimethyl phthalate (DMP) and perfluorobutanesulfonic
35 acid (PFBS). The addition of these coatings did not prevent the DMP and PFBS molecules from
36 accessing previously identified favorable adsorption domains. An analysis of the adsorption
37 energetics shows an initial decrease in contaminant adsorption relative to pure mineral surfaces
38 as tyrosine and glutamate are introduced to the system, followed by increasing adsorption with
39 increasing organic loadings. Overall, this research advances the mechanistic understanding of the
40 interplay between smectite surfaces, organic coatings, and organic contaminants.

41

42 1. Introduction

43 In the natural environment, organic carbon is found in soils at levels more than quadruple that of
44 atmospheric CO₂, with important implications for the Earth's carbon cycle, soil fertility, and soil
45 resilience to erosion and drought (Ciais et al., 2013; Friedlingstein et al., 2019; Lehmann &
46 Kleber, 2015). This organic carbon is found predominantly within soil organic matter (SOM), a
47 complex mixture of organic substances characterized in part by its tendency to associate with
48 mineral surfaces (Kleber et al., 2015; Kleber et al., 2021; Mayer, 1993; Ransom et al., 1997). In
49 temperate regions, observations suggest a particularly close association between SOM and high
50 surface area phyllosilicate minerals, such as smectite clay (Ransom et al., 1997; Rasmussen et
51 al., 2018). These SOM-mineral interactions have important implications for the dynamics of soil
52 carbon and organic contaminants. In particular, they are widely believed to alter the microbial
53 processing of SOM (and associated carbon emissions) (Kleber et al., 2021; Lehmann & Kleber,
54 2015; Mayer, 1993; Ransom et al., 1997; Sulman et al., 2014) and the adsorptive capacity of
55 mineral surfaces for anthropogenic organic contaminants (and hence the fate and transport of
56 these contaminants) (Celis et al., 1998; Jeon et al., 2011; Li et al., 2003; Tian et al., 2016; Wu et
57 al., 2015; Zhou et al., 2010).

58

59 For both phenomena outlined above, fundamental understanding of the impact of SOM-mineral
60 interactions remains limited, in large part because of the complex and variable nature of SOM
61 (Hsu et al., 2018; Lehmann & Kleber, 2015; Marín-Spiotta et al., 2014; Ohno et al., 2017).
62 Whereas the adsorption of individual organic compounds on soil minerals is increasingly well
63 understood (Newcomb et al., 2017) knowledge of the manner in which SOM coats mineral

64 surfaces (and of the impact of these coatings on the adsorption of other compounds) remains
65 limited (Coward et al., 2019; Kleber et al., 2021; Lee et al., 2008). In fact, even the fundamental
66 mechanisms by which silicate minerals bind SOM molecules and aggregates remain
67 incompletely understood: anion exchange, cation bridging, hydrophobic interactions, Van der
68 Waals forces, and hydrogen bonding have all been variously proposed to be of key importance
69 (Kleber et al., 2021; Lützow et al., 2006; Zhang, et al., 2020).

70

71 In the last decade, atomistic simulations—including particularly molecular dynamics (MD) and
72 density functional theory (DFT) simulations—have emerged as a useful tool in the study of
73 mineral-organic interactions. In examinations of the adsorption of individual organic molecules,
74 these simulations have demonstrated strong complementarity with nanoscale experimental
75 approaches (Aristilde et al., 2016; Kwon et al., 2006; Liu et al., 2019; Schampera et al., 2016).
76 In studies of SOM, they may prove particularly valuable (Greathouse et al., 2014) as the
77 complexity of SOM binding mechanisms and supra-molecule structures strongly limits the
78 feasibility of deconvolving experimental data (Kleber et al., 2021). Although significant
79 challenges exist with regard to the examination of SOM and SOM-mineral interactions using
80 atomistic simulations, notably with regard to the definition of SOM proxies and the generation of
81 equilibrium structures for SOM aggregates on the limited time-scale of these simulations,
82 previous MED simulation studies have successfully examined the aggregation of various more or
83 less simple or realistic SOM proxies (ranging from single molecules to mixtures of ~10
84 compounds) under different aqueous chemistry conditions (Devarajan et al., 2020; Iskrenova-
85 Tchoukova et al., 2010; Kalinichev, 2012; Loganathan et al., 2020) along with the behavior of

86 these proxies in mesopores (Loganathan et al., 2020), interlayer regions (Kelch et al., 2019;
87 Sutton & Sposito, 2006), and on edge surfaces of smectite clay particles (Zhang et al., 2020).

88

89 In this paper, we build upon previous studies to examine the influence of an organic matter
90 coating on the adsorption of organic contaminants on smectite clay. We focus on two
91 contaminants—dimethyl phthalate (DMP), an uncharged polar chemical plasticizer, and
92 perfluorobutanesulfonic acid (PFBS), a short chained anionic surfactant in the family of per- and
93 polyfluoroalkyl substances (PFAS)—for which we previously characterized adsorption on
94 pristine smectite using MD simulations. Previous atomistic simulation studies of the adsorption
95 of similar contaminants on organic-coated minerals have modeled PFAS adsorption on organic-
96 coated silica surfaces and within an organic-coated Na-smectite nanopore, but these studies
97 simulated very short time scales (2.1 ns or less) and did not quantify the free energy of
98 adsorption of the organic contaminant (Yan et al., 2020; Zhang et al., 2015). Previous
99 experimental studies have observed significantly enhanced adsorption of perfluorooctanesulfonic
100 acid (PFOS) and perfluorooctanoic acid (PFOA) on smectite clay in the presence of cationic
101 surfactants such as hexadecyltrimethylammonium bromide (HDTMAB) (Tian et al., 2016; Zhou
102 et al., 2010), while humic acid, tannic acid, and Suwannee River natural organic matter coatings
103 resulted in decreased PFOS and PFOA adsorption compared to pure smectite surfaces (Jeon et
104 al., 2011). Wu et al. (2015) found that diethyl phthalate (DEP) adsorption on K-smectite was ten
105 times greater when the surfaces were coated with humic acid at organic carbon loadings ranging
106 from 0.0015 to 0.015 g_{carbon}/g_{clay}. These results, along with experimental data for organic
107 contaminant adsorption by SOM-coated smectite more broadly (Celis et al., 1998; Li et al.,
108 2004), are somewhat contradictory as they show that SOM coatings can either increase or

109 decrease contaminant adsorption depending on contaminant type, clay counterion type, and the
110 nature of the examined SOM (or SOM proxy).

111

112 In an attempt to shed light on the impact of organic matter coatings on the adsorption of organic
113 contaminants, we first examine the coatings formed by a mixture of amino acids (as a simplified
114 model of mineral-associated SOM, see next section) on montmorillonite surfaces. Specifically,
115 simulations are conducted at three organic loadings reflecting low (0.01 g_{carbon}/g_{clay}), medium
116 (0.05 g_{carbon}/g_{clay}), and high ranges (0.1 g_{carbon}/g_{clay}) of the organic carbon to clay mass ratios
117 observed in soils and sediments (Mayer, 1993). Then, we apply a metadynamics-based MD
118 simulation methodology developed in our previous studies (Willemsen & Bourg, 2021;
119 Willemsen et al., 2019) to predict the impact of these coatings on the free energies of adsorption
120 of DMP and PFBS. Adsorption mechanisms and energetics are analyzed and compared to our
121 previous results on DMP and PFBS adsorption on pristine smectite surfaces (Willemsen &
122 Bourg, 2021; Willemsen et al., 2019). Overall, this work has the potential to improve
123 understanding of mineral-organic matter interactions and the fate and transport of organic
124 contaminants and also has implications for the development of organo-clay adsorbents (Tian et
125 al., 2016; Yan et al., 2020; Zhou et al., 2010; Zhou et al., 2015).

126

127 **2. Methods**

128 **2.1 Simplified Model of Mineral-Associated SOM**

129 As noted above, a recurrent challenge in understanding mineral-organic interactions in soils and
130 sediments is the complex and variable structure of SOM. The emerging view suggests that SOM

131 is comprised of organic fragments varying in size and at various stages of decomposition
132 (Lehmann & Kleber, 2015; Sutton & Sposito, 2005). These fragments can range from large plant
133 and animal residues to small biopolymers and monomers. Previous MD simulation studies have
134 represented this complex material using a variety of simple SOM proxies (Greathouse et al.,
135 2014) including the macromolecular Schulten model (Sutton & Sposito, 2006), the Vienna model
136 (Escalona et al., 2021; Petrov et al., 2017; Zhang et al., 2020), the Temple-Northeastern-
137 Birmingham (TNB) model (Iskrenova-Tchoukova et al., 2010; Kalinichev, 2012; Loganathan et
138 al., 2020), the UT/ORNL model of dissolved organic matter (Devarajan et al., 2020), fatty acids
139 (Aquino et al., 2011), and a hydrophobic nanopore comprised of aliphatic chains and carboxyl
140 groups (Tunega et al., 2019). A compilation of SOM proxies used in previous MD simulation
141 studies is presented in Table 1. The proxies presented in Table 1 obviously greatly simplify the
142 complexity of SOM, yet they have proved useful in generating fundamental insight into the
143 processes that underlie key behaviors of SOM. In this work, we focus on necromass, the dead
144 microbial component of SOM that accounts for anywhere from 30% (in the case of temperate
145 forest soils) to 61.8% (in the case of grassland soils) of total topsoil organic carbon (Liang et al.,
146 2019). Compared to larger plant-based SOM components, necromass tends to contain more polar
147 and ionizable groups and is more readily found in association with mineral surfaces (Buckeridge
148 et al., 2020; Liang et al., 2017; Liang et al., 2019; Totsche et al., 2018), making it of particular
149 interest for our study. As a highly simplified model of soil microbial necromass, we choose a 1:1
150 combination of glutamate, an anionic amino acid at neutral pH, and tyrosine, a zwitterionic
151 amino acid. Although this proxy obviously underestimates the complexity of microbial
152 necromass, its complexity is similar to that of many of the proxies used in previous MD
153 simulations (Table 1). Its combined C:H:O:N elemental ratio (14:19:7:2) is consistent with

154 commonly used models of microbial biomass stoichiometry (5:7:2:1) (Christensen & McCarty,
155 1975) and with reported biomass C:N ratios (5 to 8) (Kleber et al., 2017; Xu et al., 2013) and is
156 reasonably close to C:N ratios reported for the fine-sized fraction of soils (on the order of 10 to
157 12) (Totsche et al., 2018). Finally, we note that individual amino acids have been used as simple
158 proxies for mineral-associated organic matter in at least one previous experimental study (Gao et
159 al., 2017).

160

161 Table 1: Molecular formulas and structural descriptions of SOM proxies used in previous
162 molecular dynamics simulation studies.

SOM Proxy	Molecular Formula	Structure	Reference
Schulten Model (humic acid)	C ₄₄₇ H ₄₂₁ O ₂₇₂ N ₁₅ S ₂	Macromolecule	Sutton & Sposito, 2006
Vienna Model	Varies	Associations of small organic molecules (system specific)	Escalona et al., 2021; Petrov et al., 2017; Zhang et al., 2020
TNB Model	C ₃₆ H ₃₇ O ₁₆ N ₂	One molecule	Iskrenova-Tchoukova et al., 2010; Kalinichev, 2012; Loganathan et al., 2020
UT/ORNL Model	C ₆₇₉ H ₉₆₅ O ₂₈₂ N ₃₈ S ₆ P C ₅₇₇ H ₈₄₉ O ₃₂₆ N ₂₃ S ₃ P	Combination of light weight organic compounds and peptide, carbohydrate, and lignin components	Devarajan et al., 2020
Undecanoid acid	CH ₃ (CH ₂) ₉ COOH	4 molecules oriented such that carboxylate groups form a hydrophilic center	Aquino et al., 2011
Hydrophobic nanopore	C ₃₇ H ₇₂	One 15C and two 11C aliphatic chains	Tunega et al., 2019

		connected to form a hydrophobic nanopore	
163	Glutamate and tyrosine amino acids	C ₅ H ₈ O ₄ N (glutamate) C ₉ H ₁₁ O ₃ N (tyrosine)	5, 26, or 52 of each molecule added and allowed to aggregate

164

165 **2.2 Molecular Dynamics Simulations**

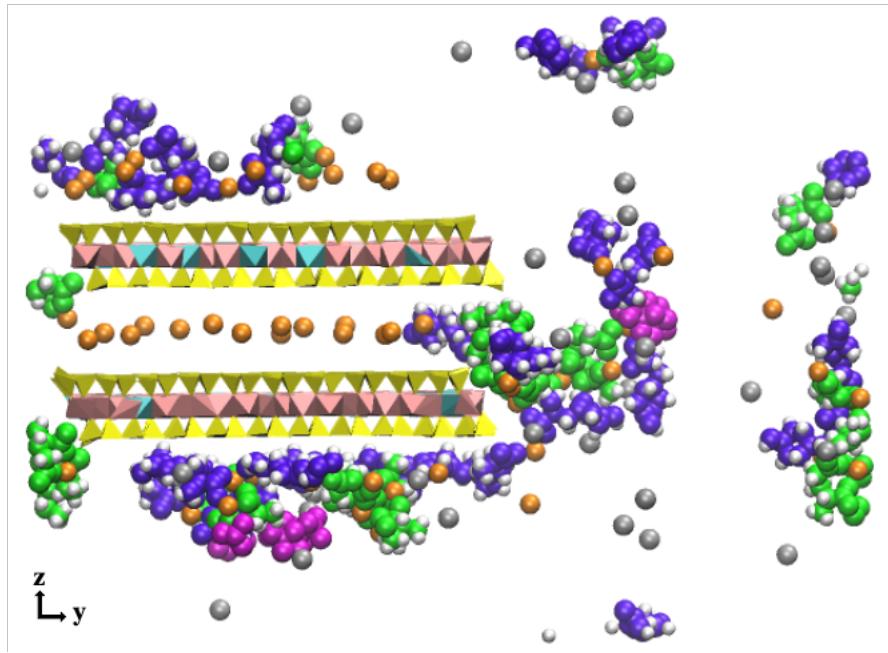
166 Molecular dynamics simulations were performed using methodologies adapted from our
 167 previous studies (Willemesen & Bourg 2021; Willemesen et al., 2019) to examine DMP and PFBS
 168 adsorption by organic-coated mineral surfaces at three different organic loadings, for a total of
 169 six unique conditions. Each simulated system consisted of a periodically replicated simulation
 170 cell containing 9960 water molecules and a stack of two fully flexible Ca-montmorillonite
 171 particles (60 unit cells) with an interlayer spacing of 6 Å and randomly distributed octahedral
 172 Al³⁺ to Mg²⁺ isomorphic substitutions in accordance with Löwenstein's avoidance rule. The
 173 resulting structural charge densities were -0.60 and -0.55 e per unit cell for the upper and lower
 174 clay lamellae, respectively. Three DMP or PFBS molecules were added to the system with a
 175 background electrolyte solution of 0.18 M or 0.10 M CaCl₂, respectively, to match the
 176 concentrations used in our prior studies of adsorption on pristine smectite surfaces (Willemesen &
 177 Bourg, 2021; Willemesen et al., 2019). Five glutamate and five tyrosine molecules were added to
 178 the simulation cell for the system with a low organic loading, 26 each in the medium loading
 179 system, and 52 each in the high loading system. Calcium ions were added as necessary to charge-
 180 balance the negatively charged glutamate molecules and to maintain charge-neutrality in the
 181 system.

182

183 Simulations were carried out on the Cori supercomputer at the National Energy Research
184 Scientific Computing Center (NERSC) using the LAMMPS program (Plimpton, 1995) and the
185 Colvars package (Fiorin et al., 2013). Glutamate, tyrosine, DMP, and PFBS were parameterized
186 using the OPLS-AA force field (Jorgensen et al., 1996; Lopes & Pádua, 2004). Interatomic
187 interactions for the clay particles and cleaved edge surfaces were described using the CLAYFF
188 model (Cygan et al., 2004) with the extended CLAYFF parameterization of Lammers et al.
189 (2017). Water molecules were simulated using the SPC/E model (Berendsen et al., 1987), and
190 calcium and chloride ions using well-established models (Åqvist, 1990; Smith & Dang, 1994).
191 Details can be found in Table S1 in the Supplementary Information. The use of distinct force
192 fields developed to simulate mineral-water (CLAYFF) and organic-water systems (OPLS-AA)
193 requires particular care as the compatibility of these models has not been rigorously tested.
194 Furthermore, these models use slightly different conventions for various details of the
195 interatomic interactions. Notably, they use different mixing rules to evaluate Lennard-Jones 6-12
196 pair potential parameters between non-identical atom types. To account for this difference,
197 parameters for interactions between organic molecules were calculated using the convention of
198 the OPLS-AA force field, $\epsilon_{ij} = \sqrt{\epsilon_{ii}\epsilon_{jj}}$ and $\sigma_{ij} = \sqrt{\sigma_{ii}\sigma_{jj}}$, where ϵ_{ij} and σ_{ij} are the interatomic
199 potential well depth and the distance at which the potential equals zero and i and j are different
200 atom types (Jorgensen et al., 1996). All other Lennard-Jones potential parameters between non-
201 identical atom types were calculated using the convention of the CLAYFF force field, whereby
202 $\sigma_{ij} = \frac{1}{2}(\sigma_{ii} + \sigma_{jj})$ (Cygan et al., 2004). We also note that the interatomic potential models used
203 in this study, like most standard models used in classical MD simulations, were not designed to
204 represent changes in covalent bonding. Therefore, our simulations inherently cannot predict the
205 covalent adsorption of organic molecules on clay edge surfaces or the associated ligand-

206 promoted dissolution of clay edges.

207


208 Glutamate and tyrosine molecules were initially placed in the bulk water region of the simulation
209 cell and all simulations were first equilibrated for 445 ps, including a 200 ps run in the NPT
210 ensemble ($P_y = 1$ bar) to allow the volume of the box to equilibrate. The resulting simulation cell
211 size was $63.36 \text{ \AA} \times 89.19 \text{ \AA} \times 65.0 \text{ \AA}$, with variations by up to 2.58 \AA in the y dimension with
212 changing organic loadings. An additional 60 ns equilibration run was then conducted in the NVT
213 ensemble at 298 K to allow the glutamate and tyrosine molecules to explore the simulation cell
214 and coat the clay surface (Figure 1). Contaminant molecules were frozen in place, far from the
215 clay surface, over the course of both equilibration runs in order to first allow the glutamate and
216 tyrosine molecules to interact with the clay particles. Following equilibration, the DMP and
217 PFBS molecules were allowed to move freely. The SHAKE algorithm (Ryckaert et al., 1997)
218 was used to keep water molecules rigid, and the clay layers were constrained by setting their
219 translational and rotational velocities to zero with the exception of translation in the z direction,
220 thus allowing for changes in the interparticle distance. The clay layers were otherwise fully
221 flexible. Short range VdW and Coulomb interactions were solved up to 12 \AA , and long range
222 Coulomb interactions beyond the cutoff were calculated using the particle-particle/particle-mesh
223 (PPPM) Ewald summation method (Eastwood et al., 1980) with 99.9% accuracy.

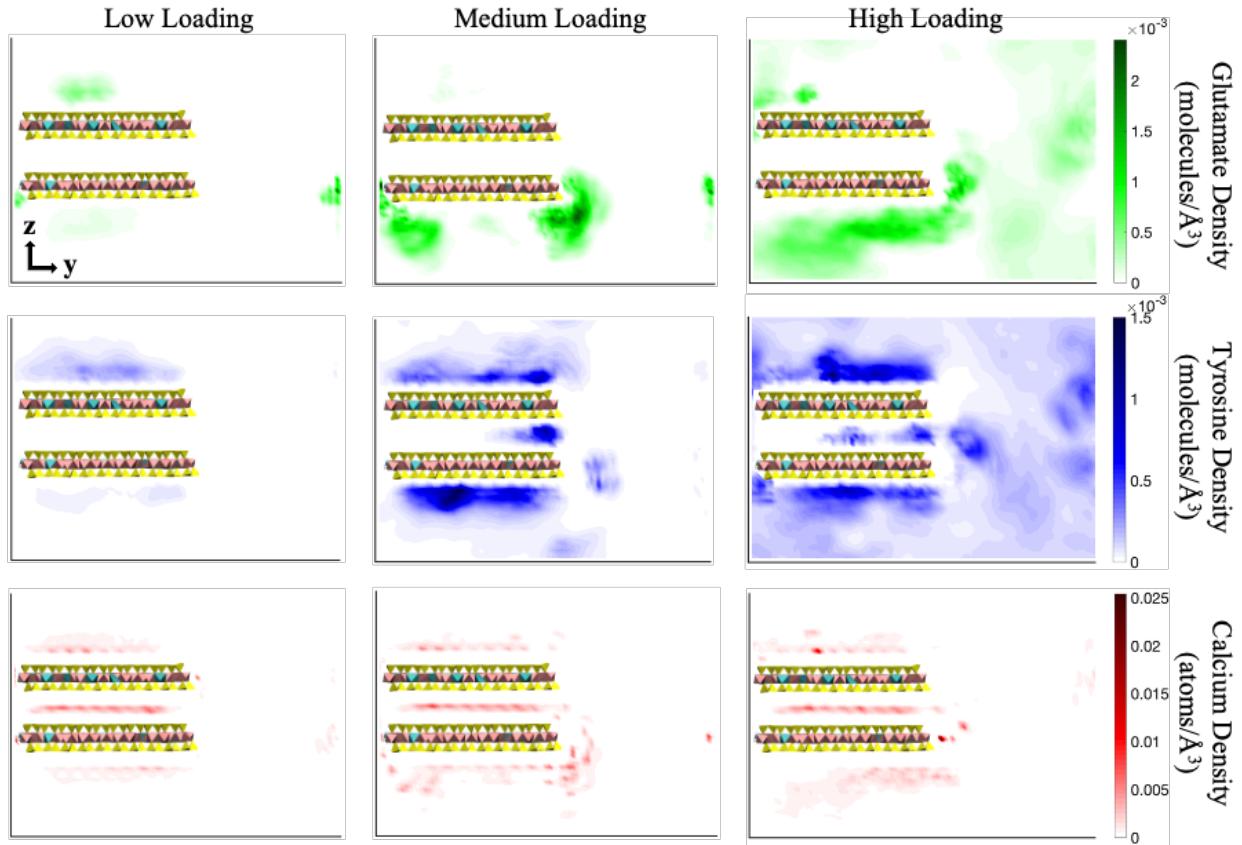
224

225 **2.3. Metadynamics Simulations**

226 Metadynamics simulations were run in the NVT ensemble at 298 K for up to 515 ns. Two
227 collective variables, the y and z coordinates of the contaminant molecule's center of mass, were
228 used to evaluate the free energy landscape associated with the location of the contaminant in the

229 simulation cell. Metadynamics was performed independently on each of the three contaminant
230 molecules in each simulation, thus allowing for statistical error calculations. Simulations were
231 concluded once the free energy landscapes of the three replicates converged with similar free
232 energy differences between the bulk water and clay regions. Metadynamics simulation specific
233 information about the duration and size of Gaussian bias potential deposition can be found in
234 Table S2 of the Supplemental Information. Free energies of adsorption were calculated for the
235 entire stack of clay lamellae as well as in different sub-regions (i.e., within 6 Å of the upper and
236 lower external basal surfaces and in the interlayer region) by temporally and spatially averaging
237 two-dimensional free energy maps over the last 50 ns of the metadynamics simulations as
238 described in the Supplemental Information and in our previous papers (Willemsen & Bourg
239 2021; Willemsen et al., 2019). In addition to the metadynamics simulations, standard “unbiased”
240 simulations were performed for 75 to 100 ns to characterize favorable contaminant binding
241 structures on the basal surface.

242


243 Figure 1: Snapshot of the system with a low organic loading (0.05 g_{carbon}/g_{clay}) showing PFBS,
244 glutamate, and tyrosine molecules as pink, green, and purple spheres (with their H atoms as white
245 spheres). Calcium and chloride ions are shown as orange and grey spheres. Water molecules are
246 rendered invisible for viewing purposes. The organic molecules on the right side of the image
247 interact with the left surface of the stack of clay particles through the periodic boundary of the
248 simulation cell.

249

250 **3 Structure of the Organic Coating**

251 **3.1 Organic Coating Distribution on the Stack of Clay Particles**

252 Output from the unbiased simulations was analyzed to create two-dimensional density maps for
253 glutamate, tyrosine, and calcium at low, medium, and high organic loadings. Results are shown
254 in Figure 2 for systems containing DMP and Figure S1 for systems containing PFBS. Similar
255 behavior was observed in both sets of simulations. The results reveal the existence of density
256 maxima near the clay surfaces, indicating that the simulated amino acids have a strong affinity
257 for these surfaces. Essentially complete adsorption is observed at low and medium organic
258 loadings, i.e., no glutamate or tyrosine density is observed in the bulk liquid water region,
259 defined as the 63.36 Å × 10 Å × 65 Å region of the simulation box at the greatest distance from
260 the clay edges (on the right side of the simulation cell). At the highest loading, organic density in
261 the bulk liquid water region is nonzero, suggesting a saturation of available adsorption domains
262 even though the clay surface is not fully coated by organic matter. Free organic aggregates (i.e.,
263 aggregates of several organic molecules not attached to the clay surface) are observed in this
264 bulk liquid water region.

266 Figure 2: Average glutamate (green), tyrosine (blue), and calcium (red) density in the yz plane for
 267 the simulations containing DMP at different organic loadings. Results were averaged over the last
 268 70 ns of the unbiased simulations.

269

270 Tyrosine density peaks are observed adjacent to the exterior basal surfaces, indicative of inner-
 271 sphere complex formation with the clay surface. At the high organic loading, a second layer of
 272 tyrosine density is observed adjacent to the first adsorbed monolayer of tyrosine molecules,
 273 indicating the formation of a multilayer coating. Some tyrosine intercalation is also observed at
 274 medium and high loadings, possibly enabled by the slight planar character of this molecule,
 275 though organic density in the interlayer region remains lower than on the external basal surfaces.

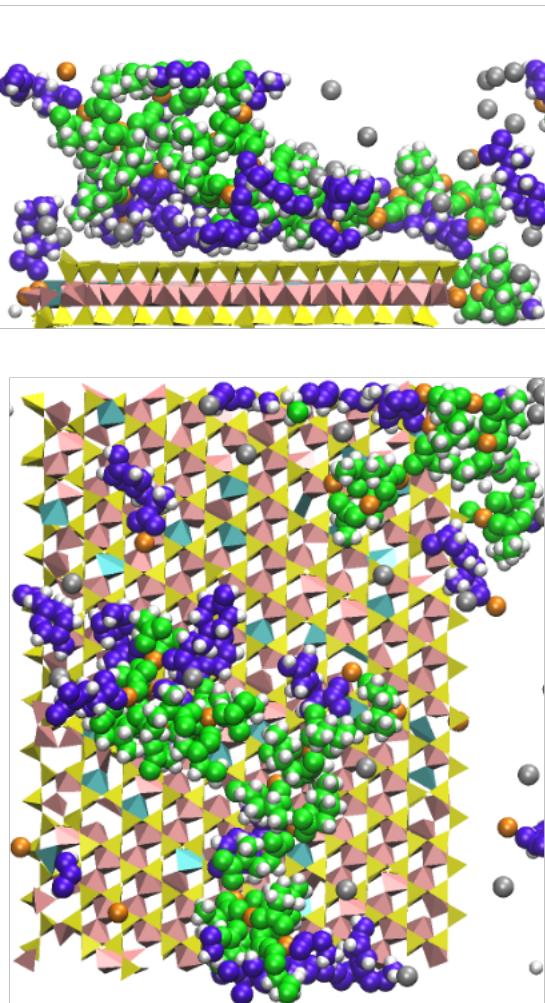
276 The glutamate molecules exhibit a propensity to form aggregates with calcium ions near the
277 surface, as evidenced by increased calcium density in regions with high glutamate density and in
278 agreement with previous studies of SOM aggregation and adsorption (Iskrenova-Tchoukova et
279 al., 2010; Kalinichev, 2012; Loganathan et al., 2020; Sowers et al., 2018). No glutamate is found
280 in the interlayer region as expected given its size and anionic nature. The greater accumulation of
281 organic matter on exterior surfaces rather than the interlayer nanopores is consistent with
282 previous studies (Loganathan et al., 2020). The preferential adsorption of tyrosine vs. glutamate
283 on the basal surface is consistent with experimental results indicating a stronger adsorption of
284 zwitterionic vs. anionic amino acids to smectite clay (Yeasmin et al., 2014).

285

286 **3.2 Aggregation Structure in the Organic Coating**

287

288 Detailed examination of the simulation trajectories confirms both the formation of a multi-layer
289 coating (with a “contact layer” of tyrosine coated by aggregates of glutamate) and the strong
290 association between adsorbed organic molecules and Ca ions. These findings are consistent with
291 the so-called “onion-skin” conceptual model of SOM surface coatings and with the role of Ca-
292 bridging interactions suggested in previous studies (Coward et al., 2019; Kleber et al., 2007;
293 Sowers et al., 2018). However, simulation snapshots also reveal that the organic coating is
294 discontinuous even at high loadings where the presence of organic molecules in bulk solution
295 suggests a saturation of surface sites, in agreement with experimental observations (Chenu &
296 Plante, 2006; Totsche et al., 2018). A potential clue into the origin of this patchy coverage is
297 provided by observations that at the highest organic loading, portions of the basal surface that are
298 not coated by organic matter are consistently devoid of adsorbed Ca ions (as illustrated in Figure


299 3). This suggests that the lateral extent of the organic coating on the clay basal surface may be
300 limited by the abundance of Ca counterions present on this surface, which should be sensitive to
301 clay surface charge density.

302

303 Detailed examination of the predicted structure of the organic coating further shows that
304 glutamate molecules also exhibit a strong affinity for clay edge surfaces. In our simulations,
305 these surfaces carry no net charge, in accordance with current estimates of their protonation state
306 near pH 7 (Tournassat, Davis, et al., 2016). However, they do carry localized regions of positive
307 charge (Tournassat, Bourg, et al., 2016) that may allow for favorable electrostatic interactions
308 with negatively charged glutamate molecules.

309

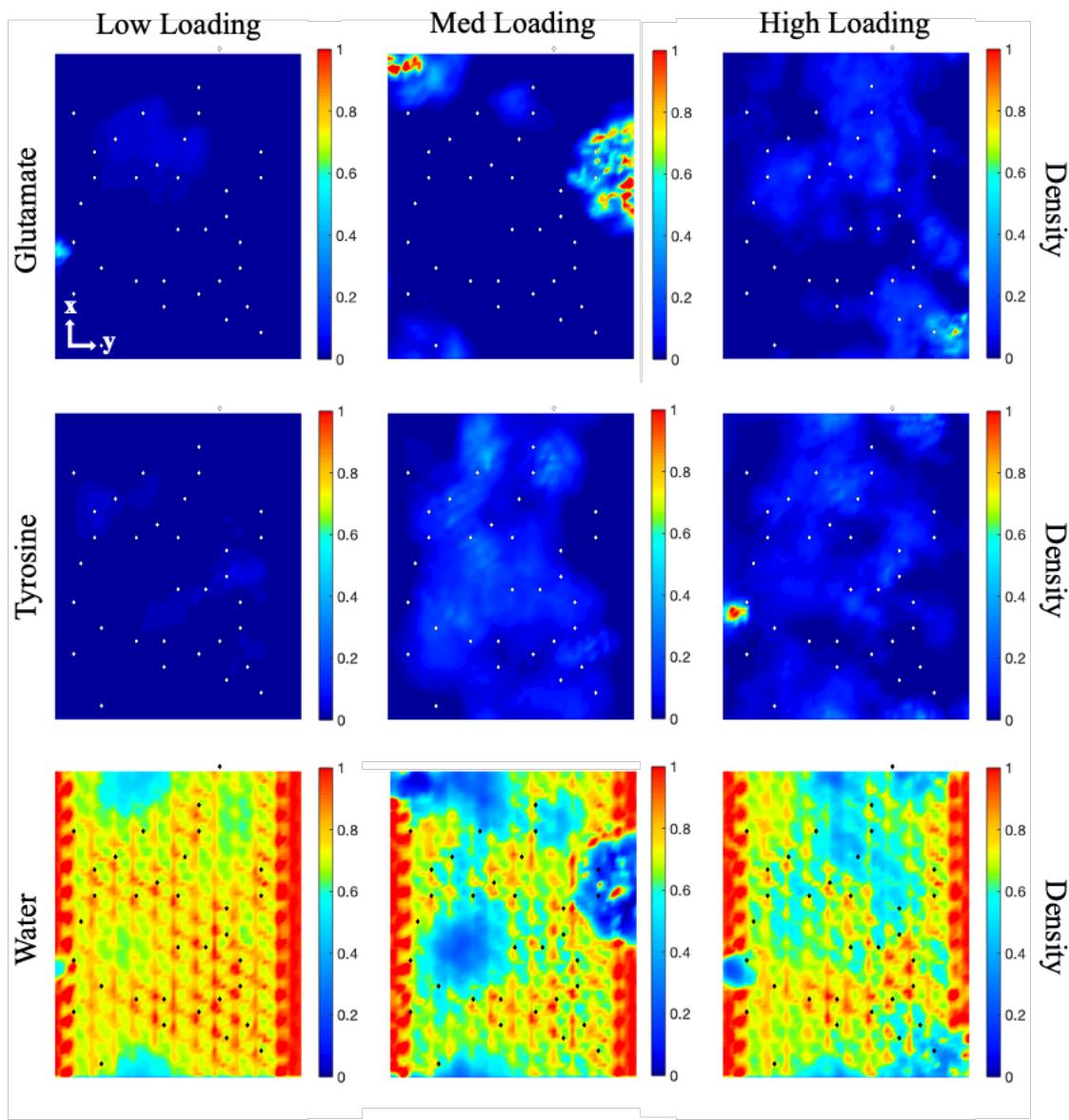
310

311 Figure 3: Snapshots of the system with a high organic loading containing DMP molecules viewed
312 along the yz (top) and xy (bottom) planes highlighting the structure of the organic coating on one
313 of the external basal surfaces. The color scheme is the same as in Figure 1.

314 **3.3 Hydrophilic/Hydrophobic Nature of the Clay Surface**

315 Our previous MD simulation studies of organic contaminant partitioning to a stack of smectite
316 sheets revealed that adsorption of uncharged phthalate esters and anionic perfluoroalkyl
317 substances (PFAs) was enhanced on the less charged clay sheet (0.55 versus 0.60 structural
318 charges per unit cell) with the greatest contaminant density concentrated on patches of the clay

319 siloxane surface spatially distant from the isomorphic substitutions (Willemsen & Bourg, 2021;
320 Willemsen et al., 2019). Here, we examine whether glutamate and tyrosine molecules also
321 preferentially adsorb to these uncharged regions. For this, average atomic densities within 7 Å of
322 the plane of the lower basal surface oxygens were calculated over the last 70 ns of the unbiased
323 simulations and compared with the location of isomorphic substitution sites in the underlying
324 clay particle. This 7 Å region was chosen to fully capture the first monolayer of water,
325 glutamate, and tyrosine on the clay basal surface. The resulting two-dimensional (xy) density
326 maps are shown in Figure 4 along with the location of the isomorphic substitutions in the
327 underlying clay particle.


328

329 As expected from the results presented in previous sections, in the simulations with a low
330 organic loading, only a small portion of the surface is occupied by the surface coating. Much
331 greater surface coverage is observed in the simulations with a medium or high organic loading.
332 Glutamate density peaks are concentrated primarily near the clay edges (left and right side of
333 each figure) as also seen in Figures 2 and S1. Beyond the clay edges, glutamate density is
334 enhanced in regions near the isomorphic substitutions, likely due to favorable electrostatic
335 interactions with the coordinating calcium ions, even though these charged regions represent the
336 more hydrophilic portions of the basal surface. The observed tyrosine density is relatively evenly
337 distributed across the basal plane for the medium and high loadings, with no obvious correlation
338 with the location of the isomorphic substitutions. In short, the observed distribution of the
339 organic coating is distinct from that observed in our previous studies for several types of organic
340 contaminants (phthalate esters and perfluorinated alkyl substances), where a strong preference
341 was observed for the uncharged regions of the basal surface. As expected, water density is

342 significantly decreased in regions with high organic density (Figure 5), indicating that water
343 molecules are displaced by the adsorption of organic molecules.

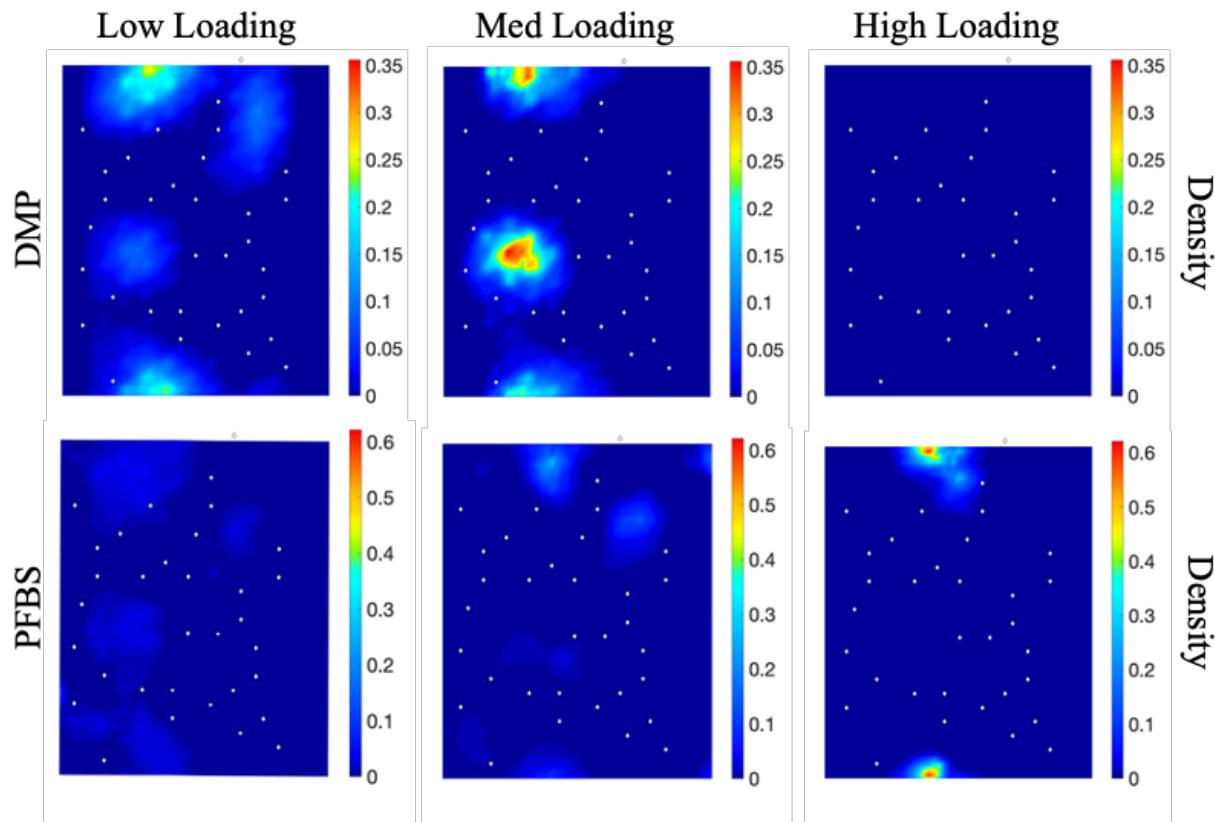
344

345

346

347 Figure 4: Density maps of glutamate (top) tyrosine (middle) and water (bottom) atoms in the xy
348 plane within 7 Å of the lower basal surface at different organic loadings for the systems containing
349 DMP molecules. Density values were normalized relative to the molecular density of each pure

350 compound. Since ~20% of the 7-Å-thick region is occupied by the basal O atoms, the relative
351 densities of water and organic compounds should add up to ~0.8. Diamonds indicate the locations
352 of the isomorphic substitutions within the underlying clay particle. The maximum glutamate
353 density in the medium loading condition (1.60), the maximum tyrosine density in the high loading
354 condition (1.15), and the maximum water densities in the low (1.56), medium (1.74) and high
355 loading conditions (1.65) exceed the scale shown.


356

357 **4 Adsorption of Organic Contaminants**

358 **4.1 Contaminant Adsorption on Hydrophobic Patches of the Basal Surface**

359 Here, we examine how the distribution of glutamate and tyrosine molecules shown in Figure 4
360 affect the ability of DMP and PFBS molecules to partition to the previously identified
361 hydrophobic adsorption domains (Willemse & Bourg 2021; Willemse et al., 2019). Two-
362 dimensional (*yz*) density maps calculated from our unbiased simulations for DMP and PFBS
363 (Figure S2) indicate that most adsorption on the lower basal surface is via inner-sphere
364 complexes. Figure 5 shows significant DMP and PFBS adsorption on the largest uncharged
365 patches at the low and medium organic loadings for DMP, and at all loadings in the case of
366 PFBS. The locations of these maxima are in good agreement with those observed for systems
367 with no organic coatings (Willemse & Bourg 2021; Willemse et al., 2019). In the DMP
368 simulations at the high organic loading, the lack of DMP density observed within 7 Å of the
369 lower basal surface is likely an artefact of the relatively short duration of our unbiased
370 simulations relative to the time required for the contaminant to explore the entire system, as the
371 three DMP molecules remained adsorbed on the upper basal surface and within the interlayer

372 region during the entire unbiased simulation. The lower basal surface remains a favorable
373 adsorption domain in this system according to our metadynamics simulations, as described in
374 section 4.2. Overall, our results indicate that DMP and PFBS readily outcompete the organic
375 coating for the uncharged, hydrophobic regions on the clay basal surface where they were found
376 to adsorb most strongly in the absence of this coating (Willemsen & Bourg 2021; Willemsen et
377 al., 2019). This finding is unexpected and may be specific to the contaminants and organic
378 coating studied here, as DMP has a more planar structure and lower polarity than tyrosine and
379 glutamate, while the C-F chain in PFBS is likely significantly more hydrophobic than the C-H
380 groups in tyrosine and glutamate (Dalvi & Rossky, 2010).

381

382

383 Figure 5: Density maps of DMP (top) and PFBS (bottom) in the xy plane within 7 Å of the lower
384 basal surface at different organic loadings. White diamonds indicate the location of the isomorphic
385 substitutions within the underlying clay particle. Density values were normalized relative to the
386 molecular density of each pure compound.

387

388 **4.2 Free Energy Landscapes**

389 Results from the metadynamics simulations are shown in Figure 6 as average two-dimensional
390 (yz) free energy maps reflecting the preference of the contaminant for different locations within
391 the simulation cell. The results show a relatively uniform free energy landscape within the bulk
392 aqueous region and free energy minima (darker blue areas) near the clay external basal surfaces
393 and within the interlayer region. The locations of free energy minima on the external basal
394 surfaces are in good agreement with the unbiased simulation density maps shown in Figure S2
395 and confirm the energetic preference for adsorption directly onto the mineral surface.

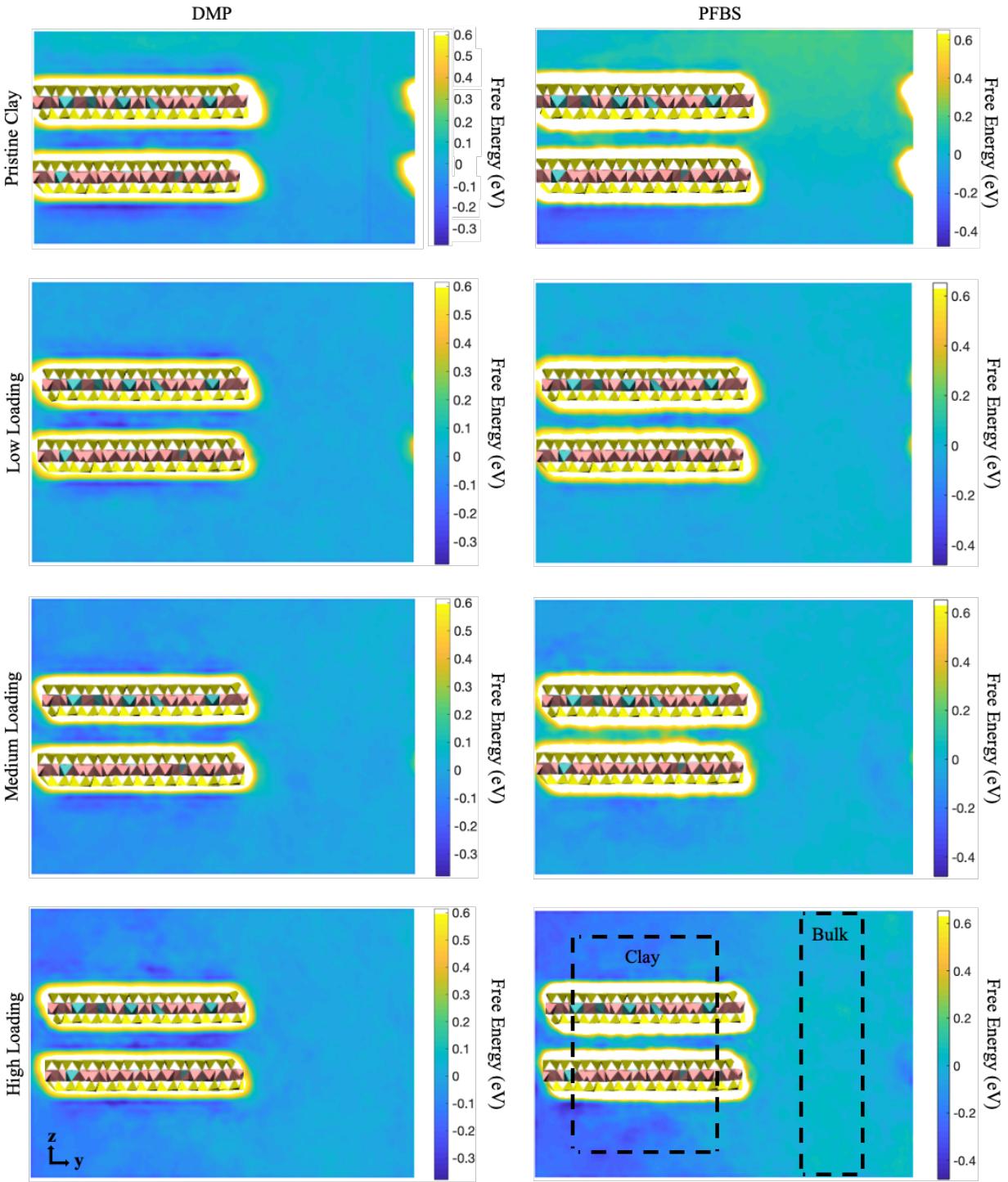


Figure 6: Free energy maps reflecting the preference of the center of mass of DMP (left) and PFBS molecules (right) for different yz coordinates in systems with only smectite (top) and with low, medium, or high organic loadings. In each map, free energies are scaled to the average value in

400 the bulk region. Dark blue color indicates favorable locations. Dashed black boxes show the
401 regions used to calculate the overall free energy of adsorption. Note that the y-axis length in the
402 systems with pristine smectite is ~ 8 Å less than for the systems with organic-coated smectite.

403 **4.3 Distribution Coefficients**

404 From the results shown in Figure 6, partition coefficients K_d (i.e., linear adsorption coefficients
405 in the limit of low contaminant loadings) were calculated using the following equation:

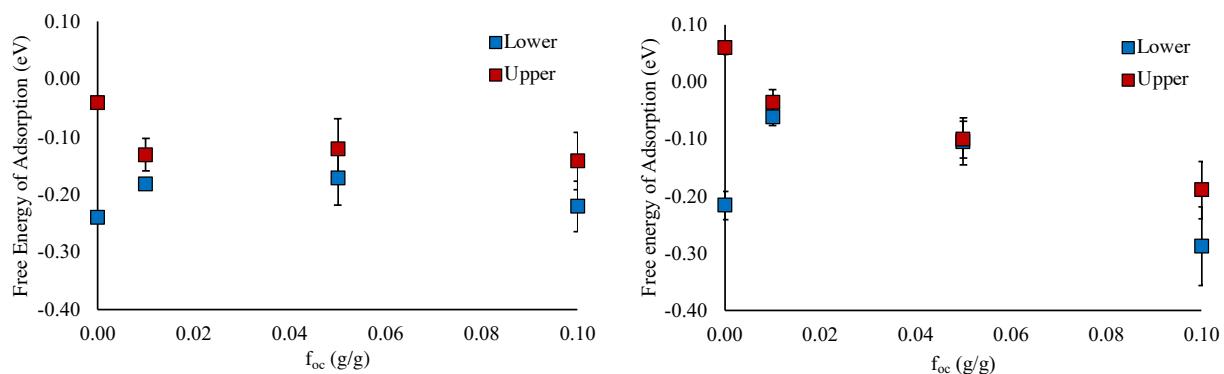
406

407
$$K_d = \frac{q_{clay}}{C_{water}} = \frac{V_{clay}}{M_{clay}} \left[e^{-\frac{\Delta F_{water \rightarrow clay}}{RT}} - \frac{\rho_{H_2O_clay}}{\rho_{H_2O_water}} \right] \quad (1)$$

408

409 where q_{clay} (mol kg_{clay}⁻¹) and C_{water} (mol L⁻¹) are the adsorbed and aqueous contaminant
410 concentration at equilibrium, V_{clay} is the volume of the clay region indicated in Figure 6, M_{clay} is
411 the mass of clay within the clay region, $\Delta F_{water \rightarrow clay}$ is the free energy difference between the
412 defined bulk aqueous and clay regions, R is the ideal gas constant, T is temperature (298 K), and
413 $\rho_{H_2O_clay}$ and $\rho_{H_2O_water}$ are the average water densities in the clay and bulk water regions,
414 respectively. A full derivation can be found in Willemsen *et al.* (2019).

415


416 Predicted values of $\log(K_d)$ for all six simulations are reported in Table S3 for the overall system
417 as well as for different adsorption regions (upper and lower external basal surface, interlayer
418 nanopore) along with results from our previous studies of adsorption on pristine smectite
419 (Willemsen & Bourg 2021; Willemsen *et al.*, 2019). The results indicate that adsorption is
420 favorable in all simulated conditions for both contaminants [overall $\log(K_d) = 2.8 \pm 1.3$, 2.3 ± 1.1
421 and 3.3 ± 1.0 for DMP and 1.5 ± 0.5 , 1.8 ± 0.3 and 4.2 ± 0.8 for PFBS at low, medium, and high

422 organic loadings, respectively versus 3.4 ± 0.5 and 3.0 ± 0.4 for DMP and PFBS on pristine
423 smectite]. Predicted $\log(K_d)$ values for our organic-coated clay, especially at low organic
424 loadings, are closer in magnitude to those reported for DMP and PFBS adsorption by soils
425 [$\log(K_d) = -1.16$ to 0.8 and -0.4 to 0.8, respectively] (Banerjee et al., 1985; Hunger & Uchrin,
426 2000; Li et al., 2010; Li et al., 2019; Liu et al., 2013; Maraqa, 2011; Milinovic et al., 2015; Yang
427 et al., 2013; Zhao et al., 2004) as expected given the propensity of SOM to coat mineral surfaces
428 in the natural environment. In addition, the observed decrease in $\log(K_d)$ by about 1.3 log units
429 upon addition of our simple proxy for mineral-associated SOM is consistent with the reported
430 ~ 1.5 log unit offset between phthalate adsorption on pure smectite and the average adsorption of
431 hydrophobic organic contaminants by soils (Willemsen et al., 2019). Interestingly, the presence
432 of our organic coating renders predicted $\log(K_d)$ values relatively uniform across different parts
433 of the clay surface. In contrast, in simulations with pristine smectite clay, adsorption was
434 dominated by the more hydrophobic lower basal surface (Figure 6) (Willemsen & Bourg 2021;
435 Willemsen et al., 2019). This suggests that adsorption on SOM-coated clay minerals is less
436 sensitive to surface charge density and the distribution of isomorphic substitutions than
437 adsorption on pristine clay mineral surfaces.

438

439 Calculated free energies of adsorption for DMP and PFBS on the upper and lower basal surfaces
440 are shown in Figure 7 as a function of organic loading. For both DMP and PFBS, the results
441 indicate a decrease in adsorption on the lower basal surface with the introduction of low organic
442 loadings into the system relative to pure mineral surfaces. This likely reflects a competition with
443 tyrosine molecules for the uncharged hydrophobic adsorption domains previously identified on
444 this surface as high affinity patches for DMP and PFBS adsorption (Willemsen & Bourg 2021;

445 Willemsen et al., 2019), as tyrosine is also observed to adsorb on these patches (Figures 4 and 5).
 446 After the competition-induced decrease in adsorption, we see an increase in adsorption with
 447 increasing organic loadings in agreement with many previous studies (Higgins & Luthy, 2006;
 448 Karickhoff et al., 1979; Li et al., 2019; Milinovic et al., 2015). An experimental study by Jeon et
 449 al. (2011) systematically examining PFOS adsorption on both pure and organic coated smectite
 450 clay provides the closest known comparison to our simulations. They report a similar decrease in
 451 adsorption with the introduction of SOM followed by increasing adsorption with higher SOM
 452 loadings, albeit over a smaller range of f_{oc} values. Wu et al. (2015) examined DEP adsorption on
 453 pure and SOM-coated K-smectite and found that at low contaminant concentrations, SOM
 454 coatings increased DEP adsorption relative to pure smectite. This observation matches our
 455 results for partitioning to the upper basal surface (red symbols in Figure 7) which, unlike the
 456 lower surface, does not carry large hydrophobic adsorption domains (Willemsen et al., 2019).
 457 Taken together, these results suggest that organic coatings can decrease adsorption relative to
 458 pure mineral surfaces when the surface contains a small number of high affinity adsorption
 459 domains. In the absence of these high-affinity domains or when these domains are less
 460 accessible, increasing organic loadings result in an increase in contaminant adsorption likely due
 461 to favorable hydrophobic interactions with the organic coating.

462

463 Figure 7: Predicted free energies of adsorption as a function of organic carbon content on the upper
464 (red) and lower (blue) basal surfaces for simulations containing DMP (left) and PFBS (right). Error
465 bars represent 95% confidence intervals.

466

467 **5 Conclusions**

468 Molecular dynamics simulations were used to examine the aggregation of glutamate and
469 tyrosine, two amino acids with a combined elemental composition similar to that of microbial
470 necromass, and their interactions with a pair of stacked smectite clay nanoparticles. Zwitterionic
471 tyrosine molecules formed a discontinuous coating on the clay basal surfaces, primarily adopting
472 flat orientations as inner sphere complexes. Glutamate molecules formed small aggregates with
473 calcium ions and were adsorbed on the clay edge surfaces and as a secondary layer on the basal
474 surfaces. These coatings did not prevent DMP and PFBS molecules from accessing previously
475 identified favorable adsorption domains, but competition for high-affinity adsorption domains
476 decreased overall contaminant adsorption relative to pure mineral surfaces. Following this initial
477 competition-induced decrease, adsorption increased with higher organic loadings. Combined,
478 these results highlight the complexity of organic contaminant adsorption by organic-coated
479 minerals and soils and suggest that adsorption cannot be estimated by one single property (such
480 as organic carbon or clay content) especially in high clay/low SOM conditions.

481

482 A potentially promising avenue for future research may be to examine the coating of clay
483 mineral nanoparticles by the more complex SOM proxies recently proposed by Devarajan et al.
484 (2020) or Escalona et al. (2021). However, we note that for such complex organic mixtures, the

485 short time-scale of typical MD simulations may be insufficient to obtain well equilibrated
486 organic coatings, in which case the use of enhanced sampling techniques, such as replica-
487 exchange MD simulations (Vialykh et al., 2020; Atmani et al., 2020), may be required.

488

489 **Supplemental Material**

490 Molecular dynamics force field parameters, rate and size of metadynamics gaussian bias
491 potential deposition, details of free energy calculations, yz density maps for glutamate, tyrosine,
492 and calcium from the PFBS unbiased simulations, PFBS and DMP yz density profiles from the
493 unbiased simulations, and simulation predicted $\log K_d$ values for DMP and PFBS adsorption at
494 different organic loadings and for different adsorption sites.

495

496 **Acknowledgements**

497 This research was supported by the National Science Foundation through award CBET-1931611.
498 The authors are grateful to two anonymous reviews for suggestions that improved the quality of
499 the manuscript.

500

501 **Conflict of interest**

502 The authors declare no conflict of interest.

503

504 **References**

505

506 Aquino, A. J. A., Tunega, D., Pašalić, Schaumann, G. E., Haberhauer, G., Gerzabek, M. H.,
507 Lischka, H. Molecular Dynamics Simulations of Water Molecule-Bridges in Polar Domains of
508 Humic Acids. *Environ. Sci. Technol.* **2011**, *45*, 8411-8419.

509

510 Åqvist, J. Ion-Water Interaction Potentials Derived from Free Energy Perturbation Simulations. *J.*
511 *Phys. Chem.* **1990**, *94*, 8021-8024.

512

513 Aristilde, L., Lanson, B., Miéhé-Brendlé, J., Marichal, C., Charlet, L. Enhanced Interlayer
514 Trapping of a Tetracycline Antibiotic Within Montmorillonite Layers in the Presence of Ca and
515 Mg. *J. Colloid Interface Sci.* **2016**, *464*, 153-159.

516

517 Atmani, L., Valdenaire, P.-L., Pellenq, R. J.-M., Bichara, C., Van Damme, H., van Duin, A. C. T.,
518 Ulm, F. J., Leyssale, J.-M. Simulating the Geological Fate of Terrestrial Organic Matter: Lignin
519 vs Cellulose. *Energy Fuels* **2020**, *34*, 1537-1547.

520

521 Banerjee, P., Piwoni, M. D., Ebeid, K. Sorption of Organic Contaminants to a Low Carbon
522 Subsurface Core. *Chemosphere* **1985**, *14*, 1057-1067.

523

524 Berendsen, H. J. C., Grigera, J. R., Straatsma, T. P. J. The Missing Term in Effective Pair
525 Potentials. *J. Phys. Chem.* **1987**, *91*, 6269-6271.

526

527 Buckeridge, K. M., La Rosa, A. F., Mason, K. E. Whitaker, J., McNamara, N. P., Grant, H. K.,
528 Ostle, N. J. Sticky Dead Microbes: Rapid Abiotic Retention of Microbial Necromass in Soil. *Soil*
529 *Biol. Biochem.* **2020**, *149*, 107929.

530

531 Celis, R., Cornejo, J., Hermosín, M. C., Koskinen, W. C. Sorption of Atrazine and Simazine by
532 Model Associations of Soil Colloids. *Soil Sci. Soc. Am. J.* **1998**, *62*, 165-172.

533

534 Chenu, C., Plante, A. F. Clay-Sized Organo-Mineral Complexes in a Cultivation Chronosequence:
535 Revisiting the Concept of the ‘Primary Organo-Mineral Complex.’ *Euro. J. Soil Sci.* **2006**, *57*,
536 596-607.

537

538 Christensen, D. R., McCarty, P. L. Multi-Process Biological Treatment Model. *Wat. Poll. Control*
539 *Fed.* **1975**, *47*, 2652-2664.

540

541 Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 465–
542 570 (Cambridge Univ. Press, 2013).

543

544 Coward, E. K., Ohno, T., Sparks, D. L. Direct Evidence of Temporal Molecular Fractionation of
545 Dissolved Organic Matter at the Iron Oxyhydroxide Interface. *Environ. Sci. Technol.* **2019**, *53*,
546 642-650.

547

548 Cygan, R., Liang, J., Kalinichev, A. Molecular Models of Hydroxide, Oxyhydroxide, and Clay
549 Phases and the Development of a General Force Field. *J. Phys. Chem. B* **2004**, *108*, 1255-1266.

550

551 Dalvi, V. H., Rossky, P. J. Molecular Origins of Fluorocarbon Hydrophobicity. *Proc. Natl. Acad.*

552 *Sci.* **2010**, *107*, 13603–13607.

553

554 Devarajan, D., Liang, L., Gu, B., Brooks, S. C., Parks, J. M., Smith, J. C. Molecular Dynamics
555 Simulation of the Structures, Dynamics, and Aggregation of Dissolved Organic Matter. *Environ.*
556 *Sci. Technol.* **2020**, *54*, 13527-13537.

557

558 Eastwood, J., Hockney, R., Lawrence, D. P3M3DP – The Three-Dimensional Periodic Particle-
559 Particle/Particle-Mesh Program. *Comput. Phys. Commun.* **1980**, *19*, 215-261.

560

561 Escalona, Y., Petrov, D., Oostenbrink, C. Vienna Soil Organic Matter Modeler 2 (VSOMM2). *J.*
562 *Mol. Graphics Modelling*, **2021**, *103*, 107817.

563

564 Fiorin, G., Klein, M., Hénin, J. Using Collective Variables to Drive Molecular Dynamics
565 Simulations. *Mol. Phys.* **2013**, *111*, 3345-3362.

566

567 Friedlingstein, P., et al. Global Carbon Budget 2019. *Earth Syst. Sci. Data* **2019**, *11*, 1783-1838.

568

569 Gao, J., Jansen, B., Cerli, C., Helmus, R., Mikutta, R., Dultz, S., Guggenberger, G., Kalbitz, K.
570 Competition and Surface Conditioning Alter the Adsorption of Phenolic and Amino Acids on Soil
571 Minerals. *Euro. J. Soil Sci.* **2017**, *68*, 667-677.

572

573 Greathouse, J. A., Johnson, K. L., Greenwell, C. Interaction of Natural Organic Matter with
574 Layered Minerals: Recent Developments in Computational Methods at the Nanoscale. *Minerals*
575 **2014**, *4*, 519-540.

576

577 Higgins, C. P., Luthy, R. G. Sorption of Perfluorinated Surfactants on Sediments. *Environ. Sci.*
578 *Technol.* **2006**, *40*, 7251–7256.

579

580 Hsu, H.-T., Lawrence, C. R., Winnick, M. J., Bargar, J. R., Maher, K. A Molecular Investigation
581 of Soil Organic Carbon Composition across a Subalpine Catchment. *Soil Syst.* **2018**, *2*, 1-23.

582

583 Hunter, J. G., Uchrin, C. G. Adsorption of Phthalate Esters on Soil at Near Saturation Conditions.
584 *J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng.* **2000**, *A35*, 1503-1515.

585

586 Iskrenova-Tchoukova, E., Kalinichev, A. G., Kirkpatrick, R. J. Metal Cation Complexation with
587 Natural Organic Matter in Aqueous Solutions: Molecular Dynamics Simulations and Potentials of
588 Mean Force. *Langmuir* **2010**, *26*, 15909-15919.

589

590 Jeon, J., Kannan, K., Lim, B. J., An, K. G., Kim, S. D. Effects of Salinity and Organic Matter on
591 the Partitioning of Perfluoroalkyl Acid (PFAs) to Clay Particles. *J. Environ. Monit.* **2011**, *13*,
592 1803–1810.

593

594 Jorgensen, W., Maxwell, D., Tirado-Rives, J. Development and Testing of the OPLS All-Atom
595 Force Field on Conformational Energetics and Properties of Organic Liquids. *J. Am. Chem. Soc.*
596 **1996**, *118*, 11225-11236.

597

598 Kalinichev, A. G. Molecular Models of Natural Organic Matter and its Colloidal Aggregation in
599 Aqueous Solutions: Challenges and Opportunities for Computer Simulations. *Pure Appl. Chem.*
600 **2012**, *85*, 149-158.

601

602 Karickhoff, S. W., Brown, D. S., Scott, T. A. Sorption of Hydrophobic Pollutants on Natural
603 Sediments. *Water Res.* **1979**, *13*, 241–248.

604

605 Kelch, S. E., Ferrage, E., Lanson, B., Charlet, L., Aristilde, L. Water Trapping Dynamics in
606 Carbohydrate-Populated Smectite Interlayer Nanopores. *J. Phys. Chem. C* **2019**, *123*, 28816-
607 28827.

608

609 Kleber, M., Bourg, I. C., Coward, E. K., Hansel, C. M., Myneni, S. C. B., Nunan, N. Dynamic
610 Interactions at the Mineral-Organic Matter Interface. *Nature Rev. Earth Environ.* **2021**, *2*, 402-
611 421.

612

613 Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., Nico, P. S. Mineral-Organic
614 Associations: Formation, Properties, and Relevance in Soil Environments. *Adv. Agron.* **2015**, *130*,
615 1-140.

616

617 Kleber, M., Sollins, P., Sutton, R. A Conceptual Model of Organo-Mineral Interactions in Soils:
618 Self-Assembly of Organic Molecular Fragments into Zonal Structures on Mineral Surfaces.
619 *Biogeochem.* **2007**, *85*, 9-24.

620

621 Kwon, K. D., Green, H., Björn, P., Kubicki, J. D. Model Bacterial Extracellular Polysaccharide
622 Adsorption onto Silica and Alumina: Quartz Crystal Microbalance with Dissipation Monitoring of
623 Dextran Adsorption. *Environ. Sci. Technol.* **2006**, *40*, 7739-7744.

624

625 Lammers, L. N., Bourg, I. C., Okumura, M., Kolluri, K., Sposito, G., Machida, M. Molecular
626 Dynamics Simulations of Cesium Adsorption on Illite Nanoparticles. *J. Colloid Interface Sci.*
627 **2017**, *490*, 608-620.

628

629 Lee, S. S., Fenter, P., Park, C., Nagy, K. L. Fulvic Acid Sorption on Muscovite Mica as a Function
630 of pH and Time Using In Situ X-ray Reflectivity. *Langmuir* **2008**, *24*, 7817-7829.

631

632 Lehmann, J., Kleber, M. The Contentious Nature of Soil Organic Matter. *Nature* **2015**, *528*, 60-
633 68.

634

635 Li, B., Qian, Y., Bi, E., Chen, H., Schmidt, T. C. Sorption Behavior of Phthalic Acid Esters on
636 Reference Soils Evaluated by Soil Column Chromatography. *Clean: Soil, Air, Water* **2010**, *38*,
637 425-429.

638

639 Li, F., Fang, Z., Zhou, Z., Liao, X., Zou, J., Yuan, B., Sun, W. Adsorption of Perfluorinated Acids
640 onto Soils: Kinetics, Isotherms, and Influences of Soil Properties. *Sci. Tot. Environ.* **2019**, *649*,
641 504-514.

642

643 Li, H., Sheng, G., Teppen, B. J., Johnston, C. T., Boyd, S. A. Sorption and Desorption of Pesticides
644 by Clay Minerals and Humic Acid-Clay Complexes. *Soil Sci. Soc. Am. J.* **2003**, *67*, 122-131.

645

646 Liang, C., Amelung, W., Lehmann, J., Kästner, M. Quantitative Assessment of Microbial
647 Necromass Contribution to Soil Organic Matter. *Glob. Change Biol.* **2019**, *25*, 3578-3590.

648

649 Liang, C., Schimel, J. P., Jastrow, J. D. The Importance of Anabolism in Microbial Control over
650 Soil Carbon Storage. *Nature Microbiol.* **2017**, *2*, 17105.

651

652 Liu, C., Li, H., Teppen B. J., Johnston, C. T., Boyd, S. A. Mechanisms Associated with the High
653 Adsorption of Dibenz-p-dioxin from Water by Smectite Clays. *Environ. Sci. Technol.* **2009**, *43*,
654 2777-2783.

655

656 Liu, H., Zhang, D., Li, M., Tong, L., Feng, L. Competitive Adsorption and Transport of Phthalate
657 Esters in the Clay Layer of JiangHan Plain, China. *Chemosphere* **2013**, *92*, 1542-1549.

658

659 Loganathan, N., Ferguson, B. O., Arey, B., Argersinger, H. E., Bowers, G. M. A Mechanistic
660 Exploration of Natural Organic Matter Aggregation and Surface Complexation in Smectite
661 Mesopores. *J. Phys. Chem. A* **2020**, *124*, 9832-9843.

662

663 Lopes, J. N. C., Pádua, A. A. H. Molecular Force Field for Ionic Liquids Composed of Triflate or
664 Bistriflylimide Anions. *J. Phys. Chem. B* **2004**, *108*, 16893-16898.

665

666 Lützow, M. V., Köget-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B.,
667 Flessa, H. Stabilization of Organic Matter in Temperate Soils: Mechanisms and their Relevance
668 Under Different Soil Conditions – A Review. *Euro. J. Soil Sci.* **2006**, *57*, 426-445.

669

670 Maraqa, M. A. Effects of Fundamental Differences Between Batch and Miscible Displacement
671 Techniques on Sorption Distribution Coefficient. *Environ. Geol.* **2001**, *41*, 219-228.

672

673 Marín-Spiotta, E., Gruley, K. E., Crawford, J., Atkinson, E. E., Miesel, J. R., Greene, S., Cardona-
674 Correa, C., Spencer R. G. M. Paradigm Shifts in Soil Organic Matter Research Affect
675 Interpretations of Aquatic Carbon Cycling: Transcending Disciplinary and Ecosystem Boundaries.
676 *Biogeochem.* **2014**, *117*, 279-297.

677

678 Mayer, L. M. Relationships Between Mineral Surfaces and Organic Carbon Concentrations in
679 Soils and Sediments. *Chem. Geol.* **1993**, *114*, 347-363.

680

681 Milinovic, J., Lacorte, S., Vidal, M., Rigol, A. Sorption Behaviour of Perfluoroalkyl Substances
682 in Soils. *Sci. Tot. Environ.* **2015**, *511*, 63-71.

683

684 Newcomb, C. J., Qafoku, N. P., Grate, J. W., Bailey, V. L., De Yoreo, J. J. Developing a Molecular
685 Picture of Soil Organic Matter-Mineral Interactions by Quantifying Organo-Mineral Binding. *Nat.*
686 *Comm.* **2017**, *8*, 396.

687

688 Ohno, T., Heckman, K. A., Plante, A. F., Fernandez, I. J., Parr, T. B. ¹⁴C Mean Residence Time
689 and its Relationship with Thermal Stability and Molecular Composition of Soil Organic Matter: A
690 Case Study of Deciduous and Coniferous Forest Types. *Geoderma* **2017**, *308*, 1-8.

691

692 Petrov, D., Tunega, D., Gerzabek, M. H., Oostenbrink, C. Molecular Dynamics Simulations of the
693 Standard Leonardite Humic Acid: Microscopic Analysis of the Structure and Dynamics. *Environ.*
694 *Sci. Technol.* **2017**, *51*, 5414–5424.

695

696 Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. *J. Comput. Phys.*
697 **1995**, *117*, 1-19.

698

699 Ransom, B., Bennett, R. H., Baerwald, R., Shea, K. TEM Study of in Situ Organic Matter on
700 Continental Margins: Occurrence and the “Monolayer” Hypothesis. *Mar. Geol.* **1997**, *138*, 1-9.

701

702 Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C., Berhe, A. A.,
703 Blankinship, J. C., Crow, S. E., Druhan, J. L., Pries, C. E. H., et al. Beyond Clay: Towards an
704 Improved Set of Variables for Predicting Soil Organic Matter Content. *Biogeochemistry* **2018**,
705 *137*, 297-306.

706

707 Ryckaert, J., Ciccotti, G., Berendsen, J. C. H. Numerical Integration of the Cartesian Equations of
708 Motion of a System with Constraints: Molecular Dynamics of N-Alkanes. *J. Comput. Phys.* **1977**,
709 *23*, 327-341.

710

711 Schampera, B., Tunega, D., Šolc, R., Woche, S. K., Mikutta, R., Wirth, R., Dultz, S.,
712 Guggenberger, G. External Surface Structure of Organoclays Analyzed by Transmission Electron
713 Microscopy and X-ray Photoelectron Spectroscopy in Combination with Molecular Dynamics
714 Simulations. *J. Colloid Interface Sci.* **2016**, *478*, 188-200.

715

716 Smith, D. E., Dang, L. X. Computer Simulations of NaCl Association in Polarizable Water. *J.*
717 *Chem. Phys.* **1994**, *100*, 3757-3766.

718

719 Sowers, T. D., Adhikari, D., Wang, J., Yang, Y., Sparks, D. L. Spatial Associations and Chemical
720 Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.
721 *Environ. Sci. Technol.* **2018**, *52*, 6936-6944.

722

723 Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., Pacala, S. W. Microbe-Driven
724 Turnover Offsets Mineral-Mediated Storage of Soil Carbon Under Elevated CO₂. *Nature Climate*
725 *Change* **2014**, *4*, 1099-1102.

726

727 Sutton, R., Sposito, G. Molecular Structure in Soil Humic Substances: The New View. *Environ.*
728 *Sci. Technol.* **2005**, *39*, 9009-9015.

729

730 Sutton, R., Sposito, G. Molecular Simulation of Humic Substance-Ca-Montmorillonite
731 Complexes. *Geochim. Cosmochim. Acta* **2006**, *70*, 3566–3581.

732

733 Tian, H., Gao, J., Li, H., Boyd, S. A., Gu, C. Complete Defluorination of Perfluorinated
734 Compounds by Hydrated Electrons Generated from 3-Indole-Acetic-Acid in Organomodified
735 Montmorillonite. *Sci. Rep.* **2016**, *6*, 32949.

736

737 Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C.,
738 Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., Kögel-Knabner, I. Microaggregates in
739 Soils. *J. Plant Nutr. Soil Sci.* **2018**, *181*, 104-136.

740

741 Tournassat, C., Bourg, I. C., Holmboe, M., Sposito, G., Steefel, C. I. Molecular Dynamics
742 Simulations of Anion Exclusion in Clay Interlayer Nanopores. *Clays Clay Min.* **2016**, *4*, 374-388.

743

744 Tournassat, C., Davis, J. A., Chiaberge, C., Grangeon, S., Bourg, I. C. Modeling the Acid-Base
745 Properties of Montmorillonite Edge Surfaces. *Environ. Sci. Technol.* **2016**, *50*, 13436-13445.

746

747 Tunega, D., Gerzabek, M. H., Haberhauer, G., Lischka, H., Solc, R., Aquino, A. J. A. Adsorption
748 Process of Polar and Nonpolar Compounds in a Nanopore Model of Humic Substances. *Euro. J.
749 Soil Sci.* **2019**, *1*-11.

750

751 Vialykh, E. A., McKay, G., Rosario-Ortiz, F. L., Computational Assessment of the Three-
752 Dimensional Configuration of Dissolved Organic Matter Chromophores and Influence on
753 Absorption Spectra. *Environ. Sci. Technol.* **2020**, *54*, 15904-15913.

754

755 Willemsen J. A. R., Bourg I. C. Molecular Dynamics Simulation of the Adsorption of Per- and
756 Polyfluoroalkyl Substances (PFASs) on Smectite Clay. *J. Colloid Interface Sci.* **2021**, *585*, 337-
757 346.

758

759 Willemsen, J. A. R., Myneni, S. C. B., Bourg, I. C. Molecular Dynamics Simulations of the
760 Adsorption of Phthalate Esters on Smectite Clay Surfaces. *J. Phys. Chem. C* **2019**, *123*, 13624-
761 13636.

762

763 Wu, Y., Si, Y., Zhou, D., Gao, J. Adsorption of Diethyl Phthalate Ester to Clay Minerals.
764 *Chemosphere* **2015**, *119*, 690-696.

765

766 Xu, X., Thornton, P. E., Post, W. M. A Global Analysis of Soil Microbial Biomass Carbon,
767 Nitrogen, and Phosphorus in Terrestrial Ecosystems. *Global Ecol. Biogeogr.* **2013**, *22*, 737-749.

768

769 Yan, B., Munoz, G., Sauvé, S., Liu, J. Molecular Mechanisms of Per- and Polyfluoroalkyl
770 Substances on a Modified Clay: A Combined Experimental and Molecular Simulation Study.
771 *Water Res.* **2020**, *184*, 116166.

772

773 Yang, F., Wang, M., Wang, Z. Sorption Behavior of 17 Phthalic Acid Esters on Three Soils:
774 Effects of pH and Dissolved Organic Matter, Sorption Coefficient Measurement and QSPR Study.
775 *Chemosphere* **2013**, *93*, 82-89.

776

777 Yeasmin, S., Singh, B., Kookana, R. S., Farrell, M., Sparks, D. L., Johnston, C. T. Influence of
778 Mineral Characteristics on the Retention of Low Molecular Weight Organic Compounds: A Batch
779 Sorption-Desorption and ATR-FTIR Study. *J. Colloid Interface Sci.* **2014**, *432*, 246-257.

780

781 Zhang, R., Yan, W., Jing, C. Experimental and Molecular Dynamic Simulation Study of
782 Perfluorooctane Sulfonate Adsorption on Soil and Sediment Components. *J. Environ. Sci.* **2015**,
783 29, 131–138.

784

785 Zhang, Y., Liu, X., Zhang, C., Lu, X. A Combined First Principles and Classical Molecular
786 Dynamics Study of Clay-Soil Organic Matters (SOMs) Interactions. *Geochim. Cosmochim. Acta*
787 **2020**, *291*, 110-125.

788

789 Zhao, X., Yang, G., Wang, Y. Adsorption of Dimethyl Phthalate on Marine Sediments. *Water,*
790 *Air, Soil Pollut.* **2004**, *157*, 179-192.

791

792 Zhou, Q., Deng, S., Yu, Q., Zhang, Q., Yu, G., Huang, J., He, H. Sorption of Perfluorooctane
793 Sulfonate on Organo-Montmorillonites. *Chemosphere* **2010**, *78*, 688–694.

794

795 Zhou, Q., Zhu, R., Parker, S. C., Zhu, J., He, H., Molinari, M. Modelling the Effects of Surfactant
796 Loading Level on the Sorption of Organic Contaminants on Organoclays. *RSC Adv.* **2015**, *5*,
797 47022-47030.

798

799