This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Optimal Two-Tier Outpatient Care Network

Redesign With a

Real-World Case

Study of Shanghai

Yewen Deng, Na Li™, Nan Kong

Abstract— Healthcare capacity shortage contributes to poor
access in many countries. Moreover, rapid urbanization often
occurring in these countries has exacerbated the imbalance
between healthcare capacity and need. One way to address the
above challenge is expanding the total capacity and redistributing
the capacity spatially. In this research, we studied the problem
of locating new hospitals in a two-tier outpatient care system
comprising multiple central and district hospitals, and upgrading
existing district hospitals to central hospitals. We formulated the
problem with a discrete location optimization model. To parame-
terize the optimization model, we used a multinomial logit model
to characterize individual patients’ diverse hospital choice and
to quantify the patient arrival rates at each hospital accordingly.
To solve the hard nonlinear combinatorial optimization problem,
we developed a queueing network model to approximate the
impact of hospital locations on patient flows. We then proposed
a multi-fidelity optimization approach, which involves both the
aforementioned queuing network model as a surrogate and a
self-developed stochastic simulation as the high-fidelity model.
With a real-world case study of Shanghai, we demonstrated the
changes in the care network and examined the impacts on the
network design by population center emergence, governmental
budget change and considering patients with different age groups
or income levels.

Note to Practitioners—QOur work focuses on improving
system-wide care access in a two-tier care network. We believe
that our work can lead to effective development of a location
analytics tool for city-wide healthcare system planners. We also
think the importance of this study is further strengthened by the
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case studies based on real-world hospital choice experimental
data from Shanghai, China, a region suffering from the imbal-
ance between healthcare capacity and need. Our case studies are
expected to make recommendations on care facility expansion
and dispersion to better align with the spatial distribution of
residential communities and patient hospital choice behavior.

Index Terms— Network design, location optimization, patient
choice, queueing network, multi-fidelity optimization.

I. INTRODUCTION

HERE is a significant discrepancy between patient need

and provider capacity in many major metropolises world-
wide, including Shanghai, China. The 2017 Shanghai Statistics
Year Book (available from www.tjj.sh.gov.cn/) shows that the
annual volume of hospital visits in Shanghai is as high as
273 million. By contrast, the number of licensed and assistant
physicians is only 2.31 per thousand residents in Shanghai
(available from www.spcsc.sh.cn/). Healthcare capacity short-
age becomes a major social issue in many metropolises in
China and around the world. Moreover, with rapid urbaniza-
tion, major metropolises in China expand significantly and
resident populations disperse with new residential communi-
ties sprouting in inter-city and suburban areas. However, high-
quality healthcare resource remains at city centers. As a result,
the demand-supply imbalance is further exacerbated.

Like in many other countries, the hospital network in China
is a two-tier system, consisting of central hospitals (CHs) and
district hospitals (DHs). CHs are typically staffed with the
most qualified physicians and clustered at city centers. On the
other hand, DHs provide basic medical services, and they
are located in various residential communities. For outpatient
care, Chinese patients typically choose hospitals based on their
preferences, and CHs are often more attractive to them due
to their good reputation. However, due to limited capacities,
it is often overcrowded at CHs and patients have to wait long.
Similar to China, in South Africa, many patients directly visit
general hospitals for some minor issues without consulting
local primary care centers [1]. In Japan, many patients needing
basic care prefer to choose the emergency departments of
regional/national public hospitals instead of receiving more
appropriate primary care services in a community clinic [2].
Therefore, the limited resources in regional/national public
hospitals inevitably lead to poor care access. In addition,
since CHs are mostly located in the central city, patients from
inter-city or suburban areas, have to travel long distance for
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outpatient services. Overall capacity shortage and capacity
maldistribution motivated a series of reforms in recent years to
address the challenge on care access, one of the fundamental
challenges in the Chinese healthcare system. The use of
our study is not limited to outpatient care network redesign.
Besides outpatient care, preventive care is also greatly influ-
enced by poor access [3], [4].

This paper presents our mathematical modeling and opti-
mization work that aims to increase care access through
optimal redesign of a two-tier hospital network subject to
government budget. For this research, we conduct a choice
experiment on hospital visit for some outpatient service,
through which we record respondents’ choices when presented
with hospital type and distance to the hospital. We develop a
multinomial logit model to characterize hospital choice behav-
ior. We formulate a nonlinear optimization problem to select
locations to build new care facilities and identify some of the
existing DHs to upgrade to CHs. We consider a care access
measure that combines times spent in traveling to the hospital
and waiting for the outpatient service. Finally, we design a
multi-fidelity optimization algorithm involving a low-fidelity
queueing network based surrogate and a high-fidelity simula-
tion model. This optimization approach can balance efficient
identification of promising solutions and accurate comparison
among them.

The contribution of this paper is three-fold. First, we illus-
trate a way to embed discrete choice modeling into location
optimization through quantifying the demand diversion. Sec-
ond, we demonstrate the use of a multi-fidelity optimization
approach to solve nonlinear combinatorial optimization prob-
lems whose objective is computationally expensive to evaluate
precisely even for one candidate solution. Third, we base
our case study on an outpatient care facility choice survey
and additional census data collected from Shanghai; thus
offering potentially meaningful suggestions to the Shanghai
municipality’s health department.

The remainder of this paper is organized as follows.
In Section II, we review the relevant literature. In Section 111,
we present our model and optimization approach, which
includes a location optimization model for network redesign,
a multinominal logit model for outpatient choice characteriza-
tion, and a multi-fidelity optimization algorithm for solution
tractability. In Section IV, we illustrate our approach with a
Shanghai-based case study and analyze the results for net-
work redesign effectiveness and robustness. Finally we draw
conclusions and outline future research in Section V.

II. LITERATURE REVIEW

There are numerous location analysis studies for health-
care planning. According to the classification of Daskin [5],
discrete location models in the healthcare OR literature are
divided into three categories: covering-based models, median-
based models, and other models such as the p-dispersion
model. Covering-based and median-based models are classic
models used in medical facility location analysis. For review
of these classical problems, we refer the readers to [6], [7],
and [8]. For example, many researchers addressed the objective
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of maximizing the total demand covered by a given number
of facilities e.g. [9], [10], and [11] or minimizing the distance
or travel time when demand locations are assigned to facilities
within a certain distance e.g. [12], [13], [14], and [15]

A critical aspect of medical facility location analysis is
modeling patient choice and its impact on location decisions.
Studies on patient choice are divided into two categories. In the
first category, studies assume a directed-choice (or system-
optimal) mechanism, i.e., each patient is assigned to a medical
facility by the decision maker, rather than being allowed to
choose a facility. These models determine the optimal facility
location and patient assignment for maximization of some
system outcome. For example, in [10], the demand at each
node is assigned to only a facility within some allowable
distance. Other studies in this category include [3], [14], [16],
and [17].

In the other category, studies assume a patient-choice mech-
anism, i.e., patients are free to choose a medical facility to
visit. This category can be further categorized as deterministic-
choice and probabilistic-choice models. For deterministic-
choice models, the patient choice behavior is simplistic based
on some utility-based criteria, i.e., each patient is assumed to
visit the most attractive facility. These models often assume
patients are rational and fully informed, and they visit the
facility they think is most attractive at all time. For example,
Kim and Kim [11] studied the problem of locating public
health facilities to maximize the number of served patients
of two types (low- and high-income). The authors only con-
sidered the preferences of high-income patients and assumed
that those patients are only assigned to their most preferred
facilities. The authors modeled the preference of high-income
patients on each facility to be dependent on several factors,
including distance to travel and amount of service charge.
Instead of analyzing the influence of each factor, the authors
simply used a given parameter between 0 and 1 to represent
patients’ preferences, and assumed patients from the same
region have identical preference. Some other studies assumed
that patients visit the closest facility [18], [19] or the facility
with the minimal total time [20], [21].

For probabilistic-choice models, a patient is assumed to visit
each facility with a certain probability. Huff [22] proposed
the first probabilistic-choice model, for a spatial interaction
analysis. In the model, client utility is represented by a
gravity formula to estimate market shares of the facilities.
Subsequently, [22] was extended in the location analysis lit-
erature, including one based on the multiplicative competitive
interaction model by [23]. Discrete choice models, relevant to
our work, are based on random utility theory in marketing
and econometrics, and have been incorporated in location
analysis and optimization. For example, to maximize the total
participation of a preventive care program, [4] assumed that the
only attractiveness attribute in their probabilistic-choice model
is the proximity to a facility. The authors used a multinomial
logit (MNL) model to characterize the probability that a patient
chooses each facility. The parameters in the MNL model are
set hypothetically for the study. Reference [24] also modeled
the patient choice behavior with an MNL model. In addition
to distance (travel time), the authors considered the influence
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of waiting time on patient choice. The authors estimated the
coefficients in their model using actual patient flow data. Ref-
erence [25] proposed a location-allocation model to improve
the accessibility in medically under-served areas. A discrete
choice model is incorporated to describe care consumers’
choice decision for obstetrics care. The attribute variables are
travel time, level of a hospital, number of obstetrics specialists,
the deprivation index of the location of a hospital and whether
care consumer i and hospital j belong to the same hospital
service area. Other location analysis papers that incorporate
patient choice with a discrete choice model include [26], [27],
[28], and [29].

The existing literature on hospital choice model (such as
[30], [31], [32], [33], [34], and [35]) believes that the factors
that affect patients’ hospital choice behavior are: medical con-
venience (e.g., distance to healthcare facility), patient attributes
(age, income, etc.), and hospital attributes (price, quality of
providers, level of the hospital, etc.). Most of the location
studies considering patient choice often assume that distance
(or proximity) is a major or the only influencing factor, and
a few studies also consider waiting time as an influencing
factor. In this paper, we did not use waiting time, because
in reality it is difficult for patients to have information about
the detailed waiting time of each hospital in advance. Instead,
we considered the preference of patients on CHs versus DHs,
considered by fewer in the existing studies, as well as the effect
of travel distance. In addition, in most studies that considered
patient behavior or preference, there were no distinction on
patient types, whereas we distinguished patients by their
age and analyzed their respective hospital choice behavior.
Furthermore, the aforementioned MNL models were either
constructed based on expert judgement and scattered evidence,
or fitted against patient flow data. On the other hand, we fitted
an MNL model against first-hand behavior data collected from
a survey of Shanghai residents. Further, we examined whether
distance and type of the hospital were influencing factors and
estimated the influence of each significant factor. We believe
this has made our work more realistic and comprehensive.

Another aspect of the literature related to our work concerns
incorporating congestion in facility design models. The most
common way to do it is to represent each facility as a queue
(e.g., M/M/1 or M/G/1) and consider a constraint on the
congestion level. For example, [4], [36], and [37] used M/M/1
(or M/M/c) queues to model service facilities and considered
an upper bound on the average waiting time of customers
(or equivalent queue length) in a constraint. References [38]
and [39] modeled facilities as M/M/1 (or M/M/c) queueing
systems and introduced a constraint to ensure the probability
that a client enters the queue at a facility with at most b waiting
clients is at least a in a maximal covering location-allocation
model. Reference [40] considered a re/design of a congested
multi-service network with M/M/1 servers. Patient waiting
time is added to the objective function to improve service
quality. Alternatively, there are studies that assumed a decay
function between demand and waiting time, and included
this function as a constraint in their models. Reference [20]
captured the level of congestion at each facility with an M/M/1
queue in a preventive care facility location problem. They

assumed the fraction of customers from each population node
to each facility is a decreasing function of the expected total
(travel, waiting and service) time and a client chooses the
facility with the least total time. The authors then provided a
heuristic solution method to determine the number of facilities
and the location of each facility so as to maximize the
population-level participation. Reference [24] modeled each
facility as an M/M/c queue. The authors assumed that the mean
system waiting time and travel time are main determinants
on customer choice, and used an MNL model to character-
ize the relationship between the equilibrium flow from each
population node to each facility. Reference [3] used spatially
distributed M/G/1 queues to model a preventive care network,
and captured the congestion due to waiting and service delays.
Then to minimize the weighted sum of total time, the authors
presented a nonlinear mixed integer program to determine
the facility locations, service capacity of each facility, and
customer allocation to each facility. Through a search of
the above relevant literature that incorporates congestion into
facility design, the arrival are usually assumed to be Poisson
distributed. Different from the above studies that assume every
patient arriving at a facility will join the queue, we modeled
each hospital as an M/G/1 queue and considered multiple balks
made by some patients, i.e., a patient arriving to a hospital will
decide whether or not to join the queue according to his/her
estimated waiting time. If he/she goes to a hospital where the
waiting time is longer than expected, he will balk and choose
another hospital until the waiting time is acceptable, or he will
leave the system.

II1. METHODS

The optimization model presented in this section concerns
the government’s need to alleviate the current situation of poor
care access among patients. Studies suggest that the total time
spent on transportation and waiting can be used as a proxy
to measure care accessibility [3], [20]. The objective is to
improve care access under certain government budget for the
capacity expansion and spatial redistribution of care facilities.

Let Jy and Jp be the sets of current sites of CHs and
DHs, respectively. Let J be the set of candidate sites for new
hospitals, either CHs or DHs. Let I be the set of residential
sites (considered as demand nodes). We also denote three sets
of decision variables:

if a CH is located at site j, j € J,

otherwise.

if a DH is located at site j, j € J,

otherwise.

if an existing DH at site j is upgraded, j € Ji,
otherwise.

Thus, the binary decision vector on locating new CHs and

DHs is represented by x” = (xf/,...x/,...x[}) and
x" = (x{,...x},...x[j), respectively. The decision vec-
tor on whether to upgrade a DH is represented by y =
V1, -+ Yjs ... Yu,)- Without loss of generality, denote R to

be the set of patient classes.
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Given decision vectors x, x* and y, we calculate the

rectilinear distance between each residential site i and each
hospital site j, denoted by d;;. We then identify the binary
label, denoted by ¢;, of a hospital at site j, i.e., whether
the hospital at site j is CH or DH. We finally estimate the
likelihood of a class r patient at site i choosing a hospital
at site j, denoted by pf(x”,x",y), r € R, i € I,j €
J U Jyg U Jp, specified by the underlying choice model.
By converting the population quantity of class r patients at
site i into the demand estimate for outpatient care, denoted
by A7, and combining the demand estimate with patient
choice preferences p; (XH ,xk, y), we obtain the arrival rate
of class r patients from site i to hospital at site j and the total
arrival rate of hospital at site j, denoted by A7, (x",x",y).
Thus, 4, (x#,xty) = A pj; (x",xL,y). We further denote
Aj (XH ,xL,y) to be the aggregate arrival rate of hospital
at site j over all residential sites. Thus, 1;(x,x",y) =
> A pl; (XH, xL, y)). Given 1, (XH, xt, y), we derive the

i
reRiel

mean waiting time and balking probability at site j, denoted
by WJH (2;(x#,x",y)) and pf” (4;(x", xL,y)), if the hospital
at site j is CH; or those quantities at site j, denoted by
wi (2;(x",x%,y)) and pr (2, (x#, x",y)), if the hospital at
site j is DH.

Next, we present a nonlinear optimization model,
i.e., (1) — (6), as shown at the bottom of the page, that aims
to select optimal sites for new CHs or DHs and upgrade
some of the existing DHs. The objective of the optimiza-
tion model comprises two parts: (i) the cost of waiting for
care at hospital site j; and (ii) the cost of traveling to
hospital site j from residential site i. In the model, for
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By
J
pr to replace 4;;(x",x,y), 4;(x", xb,y), di;(x",x",y),
W (4, (x", xE,y)), WE(2;(x", x5 y))s pi (2 (xH, x5, y))
and pr (4;(x#, xE,y)), respectively.

In objective (1), Cy, and Cy, are the unit costs of traveling
to CH and DH, respectively; Cw, and Cy, are the unit-time
costs of waiting at CH and DH, respectively; a; and aw
are assigned weights on the cost of traveling and cost of
waiting, respectively. Constraints (2) state that a DH cannot be
built when a CH has been built at some site, and vice versa.
Constraint (3) ensures that the proportion of CHs at which the
balking probability does not exceed fy is no less than ¢p.

notational simplicity, we use 4;;, 4;, dij, WJH , WjL, p>" and

Note that l(pf” < HH), an indicator function, equals 1 if
pf” < 0y, and equals 0 otherwise. Constraint (4) is similar to

constraint (3) and 1 (pr < HL) is the other indicator function.
Constraint (5) represents that the total government spending on
the network redesign is no more than budget T, and x and
kL are the costs of land acquisition and facility construction
for locating a CH and a DH, respectively, x, is the cost of
upgrading a DH. Constraints (6) ensure non-negativity and
binary restrictions.

To quantify the arrival rates, we developed a discrete
choice model and characterized patient choice preferences
(Section ITI-A). To compute the system performance measures,
such as patient waiting time and balking probability, one can
formulate a two-level network model with an M/G/1 queue at
each node, which can be used to capture potentially multiple
balks made by some patient. However, such a model does not

lend itself to the availability of exact closed-form expressions

xH xL, X -
iel jelJ

+Cy, (szf'lij TIEDIDS

iel jeJ

iel jel

miny ad[CdH (22)(;! - Aij - dij +Z Zyj - Aij - dij +Z z Aij -dij)

iel jeJg

(-5) )]

iel jely

+0€W|:CWH(ZXJH'1J' ~WJH+Zyj'/1jon]+ Zij WJH)

jeJ jeJdr

Jj€Jn

+CWL(Zx;.,1j.WjL+Z(1—yj).zj.wf)} (1)

jelJ JEJL
s.t. xJH —l—x} <1, Vj; @
jEZ;)CJH . l(pr < 91.1) —}-jEZJ: V- l(pr < 91.1) +j€zjl l(pfﬂ < QH)
- : > du; (3)
PIEHIEEDIRTRA/A
jeJ JEJL
B, B
jezjxﬁl(pj feL)+j§ (=) -1(pf = 01)
L > b @
>xr+ > (1-yj)
jeJ JjeJr
Z(Kf'x;]-i-KxL'xf)‘FZK;]‘yjfTBQ Q)
jel JjelL
xfxb,y; €{0,1), V). (6)
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for the performance measures. We thus simplified the above
queueing network model to a two-level network model with
an M/M/1 queue at each node, where patients leave the system
once they balk (Section III-B). On the other hand, while
high-fidelity computer simulation can be used to achieve a
high level of precise estimation, it is time consuming even for
one candidate solution, needless to say we need to solve a
highly nonlinear hospital location optimization model. Hence,
we elected to combine the advantages of the above two ideas
intelligently (Section III-C). We refer to the queuing network
model as the low-fidelity model and the simulation model as
the high-fidelity model.

A. The Probabilistic-Choice Model of Hospital Visit Behavior

As described in the literature review, it iS common to con-
sider distance as an influencing factor. Studies have suggested
the so-called distance decay on the use of hospital, i.e., the
inverse association between hospital attractiveness and travel
distance [41], [42]. Reference [13] compared the magnitude of
distance decay on general hospitals and local health centers.
In addition, [43] and [44] examined the influence of provider
expertise (or being knowledgeable, experienced, and capable)
on provider choice. References [45], [46], and [47] examined
the influence of specialists on hospital choice.

To characterize how patient choice is affected by the
distance and hospital type (i.e., CH or DH), we surveyed
a cohort of online respondents residing in Shanghai with
a self-designed questionnaire (see Appendix A). With the
questionnaire, we acquired each respondent’s age, and asked
him/her to make a selection among a set of hospital alter-
natives. To each respondent, a scenario where CH is more
crowded than DH is prompted. And each hospital alternative
in the choice set is identified by a randomly generated pair
of attributes (d;;, g;), where d;; is the distance between
residential site ¢ and hospital site j, and ¢; is the indi-
cator of hospital type at location j. After completing the
survey, we used an MNL model to examine whether the
distance and hospital type would play an important role on
the hospital choice behavior, and how significant the effect
would be.

The utility that a respondent chooses a hospital at site j is
given by U;; = Vij +¢;j,i € 1, j € JUJg U Jp. Note that
the logit model arises from the assumption that the random
error component are drawn from an extreme value (GEV)
distribution, i.e., Gumbel distribution. In this formula, V;; is a
deterministic component and ¢;; is a random error component
under a Gumbel distribution. Further, for a hospital at site
J with distance d;; and hospital type ¢g;, we have V;; =
Padij + Pyqj, where f; and S, are parameters that capture
the preferences of a patient at site i on distance and hospital
type. These two parameters need to be estimated. Additionally,
d;j is a continuous variable, and ¢; is an indicator variable
for two hospital types; 1 if the hospital at site j is a CH,
0 otherwise.

We denote the preference parameters for distance and
hospital type of class r patients are denoted by f; and S,
respectively. Then the probability a class r patient at site i

chooses to visit a hospital at site j is expressed as
. eBadij+By47)
Pii = 5 (Bidirpian
keJUTUIT,,

reRiel, jeJUJygUJr. (7)

With the definition in equation (7), we derive the arrival rate
of class r patients from site i to hospital at site j as shown in
equations (8)—(10).

i:j (XHa XL’ Y) =

(xj’ 4 le-‘) eBidii+Byx)
AL -
U

_eBidi+h))

yeR,iel, jel (8)

R reR,iel,jely (9

i Ur
e Badii+Byy))
riU’ , reR,iel, jeJ, (10)
where
U = Z (x,fl + x}f)e(ﬁgdfk-i-/f;xf) + Ze(/ﬁ’,’dimﬂﬁ’;)
keJ mely

+ Z e(/y;dil +/f;y1) .
IE.]L

Equation (8) represents the arrival rate of class r patients
from residential site i € / to a new hospital at site j. The
hospital type g; can be jointly determined by the decision
variables x f' and ij. Notice that if the newly built hospital
at site j is CH (i.e., x;’ =1, xf =0, j € J), its hospital

type is set to 1 (i.e., ¢; = x =1, j € J); otherwise, if the
I._I = 0’ _xl.‘ = l’

newly built hospital at site j je J is DH (i.e., x;

J € J) or there is no hospital built at site j € J (i.e., xf’ =0,
x} =0, j € J), the corresponding hospital type is 0 (i.e., g; =
x;' = 0, j € J). Equation (9) represents the arrival rate of
class r patients from site i € [ to the existing CH at site
Jj € Jg. Accordingly, the hospital type of an existing CH at
site j € Jy isset to 1 (e, gj = 1, j € Jy). Similarly,
equation (10) represents the arrival rate of class r patients
from site i € [ to the existing DH at site j € J,. When the
existing DH at site j € J. is upgraded to a CH (i.e., y = 1,
J € Jp), its hospital type indicator is set to 1 (i.e., q; =
y; =1, j € Jr), otherwise, its hospital type indicator is 0
(ie.,qgj =y; =0, j € Jr). Finally, the arrival rate at a hospital
at site j is expressed as 1;(x,y) = >’ Zi;}(x,y), for any

reRiel
j € JUJg U Jr. With these arrival rates, we next use them

as inputs to the hospital location optimization model. Note
that when a patient arrives at CH or DH according to his/her
choice preference, he/she will decide whether or not to join
the queue according to his/her estimated waiting time. If the
waiting time is longer than expected, he will balk and choose
another hospital. When the patient chooses another hospital,
his/her choice is still affected by the hospital type and distance
to other hospitals, as modeled in the choice model.

B. Low-Fidelity Model Based Approximation

For low-fidelity approximation of the system performance
measures, we consider a two-level open network model with
an M/M/1 queue at each node, where patients leave the system
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once they balk. We assume the arrival process from residential
site 7 to hospital site j follows a Poisson distribution with
mean arrival rate ;; (XH,XL,y). Thus the aggregate arrival
process at hospital site j also follows a Poisson distribution
with mean arrival rate 4 (xH ,xk, y). In reality, when a patient
arrives at a hospital, a long queue discourages the patient from
joining the queue (i.e., balking). We follow Liu and Kulkarni
[48] to introduce a notion of virtual queueing (vqt). The vqt is
the waiting time estimated by a patient once s/he arrives at the
hospital. We assume that each patient can estimate the time
s/he will wait from multiple sources. For example, in many
countries, such as Australia, the estimated waiting time is
sometimes available to patients [49], or they may estimate
the waiting time based on their previous visits [24].

Next we introduce the balking rule used in the system
performance evaluation. We assume when an arriving patient
believed that his/her vqt is no more than a fixed amount, s/he
would decide to join the queue. The fixed amount is considered
essentially the maximum waiting time, and denoted by by for
CH and b, for DH, respectively. We thus term the probability
that vqt is more than the fixed amount by and b;, as the
balking probability. We denote J5 to be the set of CH locations
Ge.Jy = JHU{]’x =1 ]GJ}U{]‘y]—l ]EJL})
and denote J;, to be the set of DH locations (i.e., J, =
{]‘ =1,j¢ J}U{]’y, =0,j ¢ JL}) We thus denote the
balking probability at CH j € Jy and DH j € J; to be pj
and pr, respectively. We also assume the service duration
at each CH and each DH to be exponentially distributed.
We denote the mean service rate at CH j € J npandDH j € JL
to be u’! ; and uk j» respectively. For CH j € Ju, an arriving
patient leaves the two-level system with balking probability
pf” , otherwise, the patient waits for the service in an infinite
capacity FCFS (first come, first served) queue with probability
1— pf ", and leaves the system when the service is completed.
For DH j € J;, a patient leaves the system with balking
probability pr, otherwise, the patient waits for the service
in a queue with probability 1 — pf “. With these assumptions,
we formulate a two-level queueing network model with each
node being an M/M/1 queue with balking.

Given 4;(x",x",y), j € J U Jy U J., which can be com-
puted via equations (8)-(10), together with ,u7 , ,uf, by and
br, we follow Theorems 1 to 4 in [48] to derive the following
closed-form expressions for relevant queueing performance
measures, i.e., CH/DH utilization rate, balking probability,
and mean waiting time. The system parameters such as the
outpatient service demand, the threshold on the wait time
tolerance and service rate are exogenous. The parameters
such as the arrival rate, mean waiting time, and the balking
probability of each hospital are endogenous.

« The utilization rate at CH j € Jy:

pi (A (x"

« The utilization rate at DH j € J:

A (xf,xt,
G y)) = O
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« The balking probability at CH j € Jy:

Py (A5 (x",x", )
g it Tl
i1 p}q ,U7 » J€JH,
where o, as shown at the bottom of the next page, and

J(x x".y)

pJ Aj (x” xk y)+,u
« The balking probability at DH j € J.:
Py (2 (x", x5, y))

L, L — /JL-f/l‘v(xH,x’-,y by,
:a)L 'u/pj € ( ’ ' ))

iT=p L #JL- >

, as shown at the bottom of the next page, and

i!x x,y!

L __
pj = Aj(x”,xL,y)Jr/sz-'

jGjL,

where ok

o The mean waiting time at CH € Ju:
Wf'(/lj(XH,XL,y)), as shown at the bottom of the
next page.

o The mean waiting time at DH IS fL:
Wf‘(/l j(x,x",y)), as shown at the bottom of the
next page.

C. Multi-Fidelity Optimization

In this section, we propose a multi-fidelity optimization
approach, for which we borrowed ideas from [50] and [51].
Our discrete location optimization problem has a very large
solution space (3%3° x 2%46), thus the computational cost cannot
be ignored even with the use of the low-fidelity model. Instead
of exhaustive search of all feasible solutions, we applied
genetic algorithm to efficiently select a set of promising
candidate solutions based on the low-fidelity model. We then
sorted the low-fidelity estimates to form a one-dimensional
ordinal space, and equally partition the candidate solutions into
groups. We next iteratively sampled candidate solutions from
each group, ran the high-fidelity simulation to assess the per-
formance measures for the sampled solutions, and computed
group-specific sample statistics (i.e., sample mean and sample
standard deviation) for each group. To efficiently establish
the stochastic domain of candidate solutions, we adaptively
allotted the sampling budget to each solution group based on
it sample statistics until we used up all the sampling budget.

« Exploration based on the low-fidelity model

Step 1: Set the number of generations in genetic
algorithm 7, and the number of chromosomes in each
generation N.

Step 2: Run the genetic algorithm to generate N chromo-
some (i.e., N feasible solutions) at each generation: first, gen-
erate a chromosome that satisfies constraints (2), (5) and (6),
and then examine whether the chromosome satisfies con-
straints (3) and (4). If so, the chromosome is retained, and
so on, until N distinct chromosomes are generated, forming
an initial population satisfying constraints (2) - (6). Then,
generate new chromosomes for the descendant generation. The
feasibility of each new chromosome (whether it meets the con-
straints (2)-(6)) is examined. If feasible, it is retained into the
descendant population to form N feasible chromosome at each
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generation. The fitness of each chromosome (i.e. objective (1))
is computed via the low-fidelity model. Upon the termination
of the algorithm, only retain the distinct solutions obtained
from the 7" generations.

Step 3: Set the group number K. Sort in an ascending order
the fitness values of those solutions retained in Step 2. Then
partition them equally into K groups, following an ascending
order.

« Exploitation based on the high-fidelity simulation

Step 4: Set the initial sampling budget By (i.e., number of
simulation runs). Assign each candidate solution group with
By/K sampling budget. Randomly sample By/K solutions
from each group and run the high-fidelity simulation exactly
one time on each of the selected solutions. Collect the sim-
ulation results and compute the initial group-specific sample
statistics information (i.e., sample mean 00 = (),..., 0%
and sample standard deviation 6° := (60, ...,69)).

Step 5: Set the total budget B and the sampling budget
in iteration 1, B;. Set the decrement of sampling budget over
two consecutive iterations A. Set the iteration index i = 1.

Step 6: Select the best group b'~! based on the sample
mean D'~ in iteration i — 1. For any group k = 1,..., K,
allot its sampling budget in iteration i, i.e., B, according to

the following relationship:

2
Bi 5’1 1 , Ai—1
ko fl‘f.ffk L ViK' =1,...K, (1)
B, 6. 517
K .
. e (B))?
By = b} Z Gy (12)
7& bi—1 )
K
2.8 = a3
where 5’b, 1 Trepresents the sample mean difference between

_Al 1
Vi

groups b~ I and k in iteration i — 1 (i.e., 5’b, ! & Al’,, })

Step 7: Randomly sample B] solutions from each group k =
1, ..., K. Run the high-fidelity simulation exactly one time on
each of the sample solutions. Collect the simulation results
and update the group- specific sample statistics information
(.e., sample mean §' := (di,...,D%) and sample standard
deviation 6' := (6, ...,6%)).

Step 8: Set By = Bi — A. If there is remaining budget
(ie, B— > B, > Biy1), seti =i+ 1 and go to Step 6.

a=1
Otherwise, STOP and output the best solution over the past i
iterations.

-1

,u;’pf-l 1 B e_(/‘fl—/lj(xH,xL,Y))bHij (XH’XL’y) o " 41

I | R T T (TR SN0 P T
: A (x", xE,y) it pf =1
2y (xH,xE,y) 4 L ”f 71+ 2 (x7, <L, y)by) S

utpt | e (i X))o S(x xEy) L | it b

ot = 1—ph\ wh =2, (x1,xL,y) (#jL S(x XL, y) ) uk i

A (x",xt,y) if pt =1
ij(XH,XL,y) /‘, P, (1 Y (XH XL,y)bL) / '

1 _ /lj (XH, XL, y))bH . e_(/‘jf‘]_/lj(XH,XL,y))hH _ e_(/‘jf‘]_/lj(xH,XL,y))bHi|

B w\(,H 2 if pil #1,
Wb xy) = My H (1= pf) (1= 2 (1 = 250 y)
ij i Dj " p]H:l.
2(1 . pr) 1—p! .
J s s
5 2 if pf #1,
Wi (2 (%, ¥)) = (1 - ij)(1 - Pf)(“f‘ — A (xH, xt, y))

2(1 - pr) 1-p}

J
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Sub-district centers

Fig. 1. The spatial distribution of sub-districts'.

IV. CASE STUDY

In this section, we present a real-world case study. For the
case study, we used the multi-hospital system in Shanghai
as the real-world context. We aimed to answer the following
questions: (1) where new hospitals of either type should be
built and what existing DHs should be upgraded; (2) what hap-
pens to the design of the hospital system with the emergence
of population center; and (3) what happens to the design of
the hospital system if the redesign budget increases. Through
this real-world case study, we expect to offer system redesign
recommendations to the Shanghai municipal government.

A. Background

In Shanghai, there are 16 administrative districts, or equiv-
alently 230 administrative sub-districts (available from http://
www.shanghai.gov.cn/). These sub-districts can be labeled
as central urban area, semi-central semi-suburban area, and
suburban area; see Figure 1. Table X in Appendix B lists the
district names and the corresponding population distribution.
In our model, we used the 230 sub-districts in Shanghai to
identify the care demand and provision sites. The current
system comprises 285 hospitals, 39 of which are CHs, 246 are
DHs; see Figure 2-3. Tabulation on the 2010 Population
Census of the People’s Republic of China by Township (avail-
able from www.stats.gov.cn/) provides the population quantity
of permanent residents at each of the 230 sub-districts in
Shanghai; see Table XI and Figure 1. Figure 2 shows that
most of the CHs are located in central urban areas, where the
population is only 30.35% of the total population of Shanghai.

The two-week consultation rate for outpatient services is
reported to differ by age [52]. In our case study, we divided the

!'Sub-districts with more population correspond to larger points.
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Sub-district centers ~
a  Existing CHs

Fig. 2. Current location of CHs.

Sub-district centers ~
o  Existing DHs

Fig. 3.

Current location of DHs.

age group into two groups: 0-64 years old and over 65 years
old. From the Shanghai Statistics Year Book (available from
www.tjj.sh.gov.cn/), we extracted the population of either age
group, and derived the outpatient service demand in two
weeks based on the consultation rate. By assuming seven
work days per week and 8 work hours per day, we converted
the population quantity into the unit-time outpatient service
demand from either age group, to calculate the mean arrival
rate. Finally, based on the real data of patient service time
at partnering CHs (Ruijin hospital and Shanghai No. 6 Peo-
ple Hospital) and DHs (Xujiahui Street Community Health
Service Center, Longhua Street Community Health Service
Center, and Hongmei Street Community Health Service Cen-
ter) between 2015-17, we estimated the mean service rates at
CHs and DHs.
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TABLE I
CHOICE MODEL COEFFICIENT ESTIMATION RESULTS

Age Variable Parameter Standard p —Value
Group Name Estimate Error

q; 1.099 0.235 0.000
0-64 dij -0.085 0.014 0.000
Constant 0.108 0.109 0.326
q; 0.541 0.283 0.056
65+ dij -0.042 0.016 0.008
Constant 0.150 0.141 0.286

B. Choice Modeling Results

To characterize how patient hospital visit behaviors are
influenced by the hospital type and distance to hospital,
we designed a questionnaire (see Appendix A). We admin-
istered an online survey with the questionnaire in Septem-
ber 2021 on a Chinese internet survey platform (www.
wenjuan.com). A total of 1018 respondents in Shanghai par-
ticipated in our study, and 997 of which were deemed valid
samples. The respondents are anonymous and the data source
is reliable.

In the questionnaire, we presented the following scenario.
We asked each respondent to imagine that she experienced
fever and cough, accompanied by chest tightness, shortness
of breath and other symptoms. This is likely a respiratory
disease. As a result, the respondent would like to make an
outpatient visit. We then provided each respondent a choice
card containing two hospitals identified by distance and type.
The hospital attributes were randomly generated. We set a
plausible range of distance on each hospital, from which we
drew uniform samples. The lower bound of the distance range
on DH is 0 and the upper bound is 3 kilometers. The lower
bound of the distance range on CH is 1 and the upper bound
is 30 kilometers.

With the behavior experiment data, we parameterized a
choice model for either age group. Table I presents our choice
model results, i.e., respective estimates of parameters £/, and
B from equation (7). We verified that for both age groups, the
attribute hospital type is significant and positively correlates
to the hospital choice, suggesting that patients prefer a CH
than a DH when the distances to the two hospitals being
equal. Our results also verified that for both age groups,
the attribute distance to hospital is a factor as significant as
hospital type. That is, when hospital type being equal, the
shorter the distance is, the more likely the patient is to visit it.
In addition, by comparing the probabilities of choosing CH
between the two age groups (see Appendix C), we found
that when the differences between traveling to DH and to CH
are the same for the two age groups, (1) patients aged 0-64
are less likely to choose to visit CH than patients aged 65+
if the distance between CH and DH is relatively large, and
(2) patients aged 0-64 are more likely to choose to visit CH
than patients aged 65+ if the distance between CH and DH is
relatively small.

C. Network Redesign Results

In this section, we report three Shanghai-based case stud-
ies. Through interviews with managers of some hospitals in

Shanghai, we are able to obtain reasonable weight coefficient
and each cost in the objective function. We set Cy,,, Cy4,, Cw,,,
and Cy, , the per kilometer travel cost of CH and DH, and the
per hour waiting cost of CH and DH, to be 1.8 RMB/kilometer,
2 RMB/kilometer, 12 RMB/hour, 8 RMB/hour, respectively.
We also set a4, the weighting coefficient of distance, to be 0.4,
and aw, the weighting coefficient of waiting times, to be 0.6.
We set the upper bounds of the balking probability at CH
and DH, i.e., 8y and 6,, to be 0.2 and 0.3, respectively. The
cost of land acquisition and facility construction for locating
a CH and DH is from literature [53] and [54] and website
(www.sohu.com/). We set k7, kL, the cost of land acquisition
and facility construction for locating a CH and a DH, to be
1.4 x 108 RMB and 3 x 10° RMB, respectively, ., the costs of
upgrading a DH, to be 1.37 x 108 RMB, and T}, the redesign
budget, to be 2 x 10° RMB. Through field investigation at
hospitals, we estimated the service rates of a CH and a DH
to be x#f' =100 patients/hour and x = 10 patients/hour, and
by conducting small-scale investigations in several hospitals
into the threshold on the wait time tolerance, we specified the
threshold at CH to be by = 2 hour and the threshold at DH
to be by = 0.5 hour. We then set the lower bounds for the
proportion of CHs and DHs at which the balking probability
does not exceed by and by according to experience, i.e., ¢y
and ¢, to be 0.8 and 0.7, respectively. Finally, we assumed
each patient balks at most twice in the simulation model.

For the implementation of our multi-fidelity optimization
approach, we set the number of groups K = 6, initial sampling
budget By = 30, total iteration budget B = 90, budget
of iteration 1 B; = 26, and budget decrement over two
consecutive iterations A = 4. In the GA algorithm, we set
the population size N = 40, and the number of generations
T = 600.

Study 1: What are the changes of the care network through
the proposed redesign?

Figure 4 displays that 3 new CH and 24 new DHs are built
and 11 existing DHs are upgraded in the optimal redesign. CHs
in the current network are mainly clustered in central city (see
Figure 2), whereas the location of new CHs in the optimal
redesign is more dispersed (see Figure 4a). Taking a close
look at the optimal location, we noticed that some suburbs
with large populations, such as Baoshan District, Songjiang
District, and Minhang District, add CHs. Upgraded DHs are
also distributed in suburban areas that previously had no CHs
or few CHs, such as Songjiang District and Baoshan District.
This can be explained as follows. Relatively scattered CHs
in the optimally redesigned network would be conveniently
accessible to surrounding residents that still primarily concern
the distance to hospital when choosing which hospital to visit.
Moreover, new DHs in the optimal redesign are dispersed in
each district. These results imply that the hospital network
redesign is aligned with the expansion and dispersion of
residential communities.

We compared the waiting time and traveling distance for
accessing care between the optimally redesigned network and
the current network. For the interest of space, we term two
outcome measures as waif time and distance. Table II indicates
that the optimal redesign, mostly with upgrading existing DHs
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(a) Location of new CHs
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(b) Location of new DHs

Fig. 4. Location for new CHs and DHs in the optimal redesign.

and building new DHs, reduces mean CH and DH wait times
and mean DH distance to some extent. On the other hand, the
mean CH distance slightly increases. Most of the observations
are intuitive and only the last piece deserves a bit explanation.
Unlike the locations of existing CHs, new CHs are often
built far away from central city to cover recently appeared
residential communities. Given that residential communities
are still mostly concentrated at central city, some of those
central-city dwellers may have to travel to suburban CHs
with the redesigned network. Such slight inconvenience is
largely offset by the increase in care access across the board
with much reduced in-facility wait time. Note that Chinese
patients have traditionally the tendency of visiting CHs without
minding much the travel distance or even the waiting time. For
more information, please refer to Appendix D.
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TABLE II

PERFORMANCE COMPARISON BETWEEN THE OPTIMALLY REDESIGNED
CARE NETWORK AND THE CURRENT NETWORK

H(t);g 1eta1 Performance Study 1 | Current | p-value
Wait time |_1ean 1.386 1.920 0.000
(h) min 1.361 1.919
CH max 1.455 1.921 \
Distance |_mean 18.628 16.494 0.000
(Km) min 18.562 16.468
max 18.886 16.524 \
Wait time |13 0.065 0.140 0.000
(h) min 0.064 0.138
DH max 0.067 0.142
Distance |_mean 0.983 1.098 0.000
(Km) min 0.977 1.093
max 0.989 1.100 \

Furthermore, to discuss the benefit of Exploitation of the
multi-fidelity optimization, we compare the inputs and outputs
of Exploration and Exploitation respectively. We take the best
solution obtained by low-fidelity model (Exploration) as the
input (shown in Figure 5), and run the high-fidelity simulation
to obtain the performance measures, such as wait time and
distance as outputs of Exploration procedure. As for the
Exploitation procedure, its input is the best solution obtained
through the multi-fidelity optimization approach (shown in
Figure 4). And the performance measures obtained from the
high-fidelity simulation, such as wait time and distance, are
the outputs of Exploitation procedure. Figure 5a displays the
optimal 14 new CHs, including 3 newly built and 11 upgraded.
Comparing Figure 4a and Figure 5a, the main difference is
the locations of some CHs in the three suburbs of Minhang
District, Jiading District, and Songjiang District. The location
of new CHs in the Exploitation procedure is more dispersed,
so as to meet the care needs of suburban residents as much
as possible. By comparing the outputs of Exploration and
Exploitation (see Table III), we find the objective function
value, the mean CH and DH wait times, and the mean CH
and DH distance obtained from Exploitation are all smaller
than those from Exploration, which verifies the effectiveness
of Exploitation.

Study 2: What is the impact on the optimal network redesign
from the emergence of population center?

Next we assumed the emergence of a new population
center somewhere in Shanghai (say e.g., Qingpu District—
QPD, a northwest suburb) and compared the optimal network
redesign before (i.e., optimal design from Study 1) and after.
This study was inspired by the trend of Shanghai’s rapid
changing spatial distribution of its population. In this study,
we increased the population quantity of some sub-district far
from the city center (see Table IV) and kept other model
parameters the same as before.

Figures 6 displays that 4 new CHs and 23 new DHs are built
and 10 existing DHs are upgraded. Compared with Study 1,
we noticed that 2 new CHs in Songjiang District are located
towards the new population center. For two adjacent districts of
Qingpu District, two CHs in Songjiang District are removed
and one CH in Minhang District are moved to the remote
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Fig. 5. Location for new CHs and DHs in the low-fidelity model.

area. On the other hand, one CH are built in Fengxian District
and one CH are located in remote area of Pudong District,
which intuitively is used to meet the care access requirement
by residents in suburban area. The rest of the network is similar
to Study 1.

Further, we compared the optimal redesign of this study
with that from Study 1, in terms of the wait time and distance.
Table V indicates that the mean CH wait time has a slight
increase compared to before, whereas the other three outcomes
hardly change. The performance comparison suggests reason-
able robustness with the optimal network redesign in response
to modest changes in the spatial population distribution.

Study 3: What is the impact on the optimal network redesign
from the increase of redesign budget?

In this study, we increased the government budget for the
network redesign. We kept the other model parameters the
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TABLE III

PERFORMANCE COMPARISON BETWEEN THE LOW-FIDELITY MODEL
(EXPLORATION) AND THE HIGH-FIDELITY MODEL (EXPLOITATION)

Outputs

H(t))s,g;tal Performance Exploitation | Exploration | p-value
Objective | mean | 2.03 x 107 | 2.08 x 107 | 0.000

function min | 2.01 x 107 | 2.03 x 107 \

value max | 2.04 x 107 [ 2.10 x 107 \
Wait time |_mean 1.386 1.435 0.000

(h) min 1.361 1.354 \

CH max 1.455 1.462 \
Distance |_m€an 18.628 18.753 0.000

(Km) min 18.562 18.698 \

max 18.886 18.832 \
Wait time |_mean 0.065 0.069 0.000

(h) min 0.064 0.068 \

DH max 0.067 0.071 \
Distance |_mean 0.983 0.985 0.000

(Km) min 0.977 0.965 \

max 0.989 0.944 \

TABLE IV
POPULATION SIZE OF THE SELECTED SUB-DISTRICTS

Current Alternative
Residential site QPD5 QPD6 QPD5 QPD6
Population quantity | 59600 57960 | 238400 173880
TABLE V

PERFORMANCE COMPARISON WITH EMERGENCY OF
A NEW POPULATION CENTER

H(:;gletal Performance Study 2 | Study 1 p-value
wait time |_mean 1.519 1.386 0.000
(h) min 1.502 1.361
CH max 1.530 1.455 \
Distance mean 18.413 18.628 0.000
(km) min 18.376 18.562
max 18.450 18.886 \
wait fime |_m€an 0.062 0.065 0.000
(h) min 0.061 0.064
DH max 0.064 0.067 \
Distance |_M€an 0.981 0.983 0.000
(km) min 0.977 0.977
max 0.985 0.989 \

same as in Study 1. First, we increased the budget from 2 x 10°
RMB to 3 x 10° RMB.

Figure 7a displays the optimal location of 21 new CHs,
including 6 newly built and 15 upgraded, with the increased
budget. Compared with the baseline optimal redesign, new
CHs appear in central city and on the periphery of the
suburbs. This can be explained as follows. The central urban
area in Shanghai have relatively densely populated residential
communities. Thus, when the budget is sufficient, adding CHs
in central city has a better chance to achieve the system-wide
requirement on care access. Figure 7b displays the optimal
location of 15 newly built DHs. Compared with Study 1, the
newly built DHs in Study 3 are decreased for the reason that
the construction budget should be allocated to the scarce CHs
as much as possible. Table VI shows that the mean CH and DH
wait times decrease significantly, but the mean CH distance
increases slightly. This is also because Chinese patients have
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(b) Location of new DHs

Fig. 6. Location for new CHs and DHs after the emergence of the new
population center.

the tendency of visiting CHs without minding much of the
travel distance. On the other hand, the mean DH distance
decreases slightly.

We further increased the budget to B = 4 x 10°. Figure 8a
displays that the optimal location of 28 CHs, including 9 new
built and 19 upgraded. Compared to previous optimal location
(i.e., B = 3x10%), the number of new CHs and DHs increases
and the distribution of CHs and DHs is more scattered. Further,
the suburban area that previously had no CHs, such as Qingpu
District and Jingshan District, has a new CH. Table VIII shows
that the mean CD and DH wait time further decreases as the
number of new CHs and DHs increases, and the mean CH
distance decreases and mean DH distance increases slightly.

In addition to analyzing the impact of redesign budget
on optimal network redesign, we next briefly analyze the
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Fig. 7. Location for new CHs and DHs with B =3 x 10°.

impact of other parameters on system design. When decision
makers pay more attention to the proximity of patients’ visit
to hospitals, i.e. ay > aw, the locations of CHs and DHs
tend to be located in communities with large populations.
When the threshold on the wait time tolerance at CH (i.e.,by)
decreases, more CHs will be built to meet patients’ care need.
And conversely, when the threshold at CH by increases, less
CHs need be added. Similarly, for b;, when the threshold at
DH decreases, more DHs will be built to meet patients’ care
need. And when the threshold at DH increases, less DHs need
be added.

Study 4: What is the impact on the optimal network redesign
considering patients with different income levels?

In this case study, we categorized patients by income
level. With the behavior experiment data, we parameterized
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o CHs upgraded from DHs
©  Newly built CHs

a3

(a) Location of new CHs

%  Newly built DHs

=

(b) Location of new DHs

Fig. 8. Location for new CHs and DHs with B = 4 x 10°.
TABLE VI
PERFORMANCE COMPARISON WHEN THE BUDGET
INCREASES FROM 2 x 10° 10 3 x 10°
H?;g ::tal Performance 3 5 109 9 5 109 p-value
wait fime L_0€an 0.092 1.386 0.000
(h) min 0.089 1.361
CH max 0.094 1.455 \
Distance mean 19.135 18.628 0.000
(Km) min 19.111 18.562
max 19.157 18.886
wait fime |_0ean 0.051 0.065 0.000
(h) min 0.050 0.064
DH max 0.053 0.067
Distance mean 0.803 0.983 0.000
(Km) min 0.797 0.977
max 0.811 0.989 \

a choice model for two income groups (0-10000 RMB and
over 10000 RMB). Table VII presents the respective estimates

o CHs upgraded from DHs
©  Newly built CHs

(a) Location of new CHs

%  Newly built DHs

=

(b) Location of new DHs

Fig. 9. Location for new CHs and DHs when considering patients with
different income levels.

of parameters £; and /. From the result, we verified that for
both income groups, the attribute hospital type is significant
and the positive estimate of the parameter f; suggests that
patients prefer a CH than a DH when the distances to the two
hospitals being equal. Our results also verified that for both
income groups, the attribute distance to hospital is a significant
factor. That is, when hospital type being equal, the shorter the
distance is, the more likely the patient is to visit it.

Figure 9 displays that 5 new CHs and 36 new DHs are
built and 16 existing DHs are upgraded, with the budget B =
3 x 10°. CHs are mainly clustered in central city, and five
new CHs is located in suburban area with large populations,
i.e., Minhang District and Songjiang District (see Figure 9a).
Similar to Study 3 with B = 3 x 10°, because of the relatively
dense population in the central urban area, it is more likely to
meet the system-wide care access needs by adding CHs in the
central urban area when the budget is sufficient. And new DHs
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TABLE VII

CHOICE MODEL COEFFICIENT ESTIMATION RESULTS
FOR DIFFERENT INCOME GROUPS

Income Variable Parameter Standard p —Value
Group Name Estimate Error
q; 0.974 0.243 0.000
0-10000 dij -0.075 0.014 0.000
Constant 0.125 0.115 0.279
q; 0.742 0.269 0.006
10000+ d;j -0.057 0.015 0.000
Constant 0.116 0.131 0.375
TABLE VIII

PERFORMANCE COMPARISON WHEN THE BUDGET FURTHER INCREASES
FROM B = 3 x 10° AND STUDY WITH B = 4 x 10°

Hospital Perf B = B= "~
type erformance 4% 10° 3y 109 p-value
wait time | —oean 0.025 0.092 0.000
(h) min 0.024 0.089
CH max 0.025 0.094
Distance |mcan 18.595 19.135 0.000
(km) min 18.576 19111
max 18.632 19.157
wait time | —oean 0.046 0.051 0.000
(h) min 0.045 0.050 \
DH max 0.047 0.053
Distance |mean 0.977 0.803 0.000
(km) min 0.970 0.797 \
max 0.984 0.811
TABLE IX

CHANGES IN PERFORMANCE WHEN CONSIDERING PATIENTS
WITH DIFFERENT INCOME LEVELS

H(t);g 1eta1 Performance Study4 Study3 p-value
wait time |_mean 0.103 0.092 0.000
(h) min 0.100 0.089
CH max 0.106 0.094 \
Distance |_0€an 20.030 19.135 0.000
(km) min 20.007 19.111
max 20.044 19.157
wait time |_mean 0.052 0.051 0.009
(h) min 0.050 0.050
DH max 0.054 0.053
Distance |_0€an 0.898 0.803 0.000
(km) min 0.891 0.797
max 0.906 0.811 \

in the optimal redesign are dispersed in each district, as shown
in Figure 9b. The hospital network redesign is aligned with the
expansion and dispersion of residential communities.

Table IX indicates that the mean CH distance has a slight
increase compared to Study 3 with budget B = 3 x 10°,
whereas the other three outcomes change less. This can be
explained as follows. Compared with Figure 7a, CHs in
Figure 9b are more concentrated in central city, which leads
to a longer distance for suburban patients to CH. The slight
inconvenience to visit CH is largely offset by the increase in
care access across the board with much reduced in-facility wait
time at CH.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

V. CONCLUSION AND FUTURE RESEARCH

Healthcare capacity expansion and spatial redistribution
needs to coordinate with care-seeking behavior, population
change, and government budget. A well redesigned hospital
network is expected to improve care access for the entire pop-
ulation without incurring significant spending on establishing
new hospitals and upgrading the existing ones.

In this paper, we studied the optimal network redesign
problem for a two-tier hospital network consisting of cen-
tral hospitals and district hospitals, which was inspired
by real challenges in Chinese metropolitan areas. In our
study, we developed (1) a multinomial logit choice model
to characterize hospital visit behaviors of different patient
groups; (2) a queuing network model with consideration
of patient balking and choice model derived arrival rates;
(3) a multi-fidelity optimization approach with the queuing
network model being low-fidelity and a self-developed simu-
lation being high-fidelity; and (4) a case study based on the
hospital network of Shanghai municipality. Our study makes
two contributions: (1) integrating choice models of multiple
patient types into multi-type facility network redesign opti-
mization with queuing performance measures in the objective;
(2) embedding genetic algorithm into the multi-fidelity opti-
mization framework, which speeds up the execution of discrete
location optimization based on the low-fidelity queuing net-
work model; and (3) conducting a proof-of-the-concept case
study based on real-world data for Shanghai, a place of immi-
nent need, with anticipation that we will make meaningful
recommendation to Shanghai’s healthcare system. However,
limitation still exist. In the choice model, the current work only
analyzes the impact of distance and hospital type on patients’
choice behavior in the situation where CH is more crowded
than DH, but do not analyze the impact of specific waiting
time of each hospital as one of the attributes in the choice
model.

The key findings of the patient hospital visit choice model-
ing are (1) hospital type (central vs. district) and distance to
hospital are influential factors in patient behavior; (2) younger
patients are less likely to choose CH than older patients if
the distance between CH and DH is relatively large, and
younger patients are more likely to choose CH than older
patients if the distance between CH and DH is relatively small.
Through the location analysis in our case study, we can make
recommendations on care facility expansion and dispersion
to better align with the spatial distribution of residential
communities.

We plan to pursue further research in the following direc-
tions. First, we plan to incorporate additional factors such
as the detailed waiting time into the choice model. Thus,
arrival rate and waiting time will affect each other, and then
need to solve the equilibrium problem between them, which
will make the model more complex and interesting. Second,
we will introduce additional heterogeneity among hospitals
such as differentiated pricing in medical services, and further
set the multi-service pricing decision in a model extension.
Moreover, we will investigate the robustness of the optimal
network design in face of further population aging in the
coming decades.
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APPENDIX A
THE HOSPITAL VISIT CHOICE BEHAVIOR QUESTIONNAIRE

In this appendix, we present the questionnaire we used to
survey a cohort of online respondents and model the hospital
visit choice behavior in Shanghai. The questionnaire is orig-
inally written in Chinese. We provide its English translation
here.

A. Introduction

You are being invited to take part in a research study about
hospital visit choices. Please note that there are no right or
wrong answers to any questions in this questionnaire. We are
only interested in your opinions and feedback. Your kind and
valid response will help the Shanghai municipal government
develop better hospital network and will help make you feel
more satisfied about the accessibility of hospitals in the future.
This questionnaire should take approximately 3-5 minutes to
complete.

We assure you that the responses you provide will not be
linked to any personal identifiable information. Your partic-
ipation in this study is on a voluntary basis and you are
free to withdraw from the study at any time without penalty.
We thank you again for your willingness to participate in this
study. Please feel free to contact us if you need any additional
information about this project.

B. Section 1: Basic Information

The first section of the questionnaire includes questions
about your demographics and other related information.
We will only use your responses to these questions to compare
across survey participants. We assure you that your privacy is

protected.
1) What is your gender?
a) Female b) Male
2) Which of the following categories does your age falls
into?
a) 0-18 b) 19-34  ¢) 35-49
d) 50-64 e) 65-69 f) over 70

4) What’s your occupation?
a) Unemployed
Employees of state-owned

b) Student
Self-employed or

¢ . e .
) enterprises and institutions private owners
Employees of private
e) ploy prive f) Peasant
or foreign companies
g) Worker h) Retired

i) Other (Please specify)

5) Which of the following income groups includes your
monthly individual income
a) less than 3000 RMB
¢) 5000-10000 RMB
e) over 30000 RMB

b) 3000-5000 RMB
d) 10000-30000 RMB

C. Section 2: Choice Scenario

In the following, we will present a scenario where we would
like you to choose whether to go to a central hospital or a
community-based hospital. Please note that there are no correct

TABLE X

DIVISION OF SHANGHAI AND THE CORRESPONDING
PROPORTION OF POPULATION

T Administrative Percentage of population
ype divisions each district | each type
HPD (Huangpu) 2.95%
JAD (Jingan) 4.68%
XHD (Xuhui) 4.71%
Central urban area CND (Changning) 3.00% 30.35%
YPD (Yangpu) 5.70%
HKD (Hongkou) 3.70%
PTD (Putuo) 5.60%
Semi central area PDD (Pudong) 21.91% 21.91%
and semi suburban areq
BSD (Baoshan) 8.28%
JDD (Jiading) 6.39%
MHD (Minhang) 10.55%
Suburban area Sggéiﬁ;ﬁ’;ﬁ‘c’;) S%Zg 47.74%
FXD (Fengxian) 4.71%
JSD (Jinshan) 3.18%
CMD (Chongming) 3.06%

or incorrect responses, and your choice should be based on
your own preferences, experiences, and specific needs.

Suppose you had fever and cough with headache, muscle
pain and other symptoms, you would go to a hospital in need
of basic medical service, e.g., an outpatient consultation. Imag-
ine you have two options, either going to a central hospital,
i.e., a CH, or a community-based hospital, i.e., a DH. Please
note that in Shanghai, CH is more crowded than DH, and the
access time (indirect waiting time to get an appointment) to
CH is usually longer than that to DH.

Alternatives
Hospital 1 Hospital 2
Type Central hospital | Community-based hospital
Distance X1 X2
Which one
would you
choose?

APPENDIX B
ADDITIONAL INFORMATION ON DISTRICTS AND
SUB-DISTRICTS OF SHANGHAI

Table X and XI list the relevant data on districts and
sub-districts of Shanghai, respectively.

APPENDIX C
EXPLANATIONS ABOUT THE CONCLUSION
ON SECTION IV-B

Without loss of generality, we assume that there are a CH
and a DH, and patients choose one hospital according to their
preference modeled by equation (7). Based on the coefficient
estimation results in Table I, the probabilities of choosing the
CH for the two types of patients are given by equation (14)
and (15).

o (—0.085+d+1.099%9¢+0.108)

0-64 __
Pc £(—0.085+d%%+1.099%g+0.108) + o (—0.085%d] % 41.099¢ p+0.108)

1
T 4 (008555 —dZ)+1.09x(ap—gc))

(14)
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TABLE XI
POPULATION QUANTITY OF EACH SUB-DISTRICT IN SHANGHAI

HPD1 | HPD2 | HPD3 | HPD4 | HPD5 | HPD6 | LWD1 | LWD2 | LWD3 | LWD4
66285 64896 89776 74994 61042 72898 82403 59085 57931 49360
XHDI | XHD2 | XHD3 | XHD4 | XHD5 | XHD6 | XHD7 | XHDS | XHD9 | XHDI0
60533 36281 69710 | 112400 | 118872 | 97171 34877 | 100444 | 92915 | 108582

XHD11 | XHD12 | XHDI13 | XHDI14 | CND1 | CND2 | CND3 | CND4 | CND5 | CND6
85769 97917 67415 2244 72730 51883 73230 56628 73757 84664
CND7 | CNDS8 | CND9 | CND10 | JAD1 JAD2 JAD3 JAD4 JADS PTD1
59551 24487 46865 | 146776 | 75272 34288 36544 29173 71511 98267
PTD2 PTD3 PTD4 PTD5 PTD6 PTD7 PTDS PTDY ZBD1 ZBD2
120920 | 128647 | 112498 | 120217 | 111185 | 172397 | 229925 | 194825 | 34749 77968
ZBD3 | ZBD4 | ZBD5 | ZBD6 | ZBD7 | ZBDS ZBD9 | HKD1 | HKD2 | HKD3
80726 97630 77710 | 156276 | 78079 74633 | 152725 | 73328 | 102564 | 122669
HKD4 | HKD5 | HKD6 | HKD7 | HKDS | YPDI YPD2 YPD3 YPD4 YPD5
125634 | 98094 87401 | 113751 | 129035 | 100480 | 85870 95382 92505 | 105613
YPD6 | YPD7 | YPDS | YPDY9 | YPDIO | YPDIl | YPDI2 | MHDI | MHD2 | MHD3
70195 90334 | 192554 | 124954 | 149090 | 27251 | 178994 | 185991 | 149141 | 65256
MHD4 | MHD5 | MHD6 | MHD7 | MHDS | MHDY9 | MHDI10 | MHD11 | MHDI2 | MHD13
277934 | 283352 | 189604 | 193777 | 165877 | 344434 | 121164 | 103989 | 292750 | 56103
BSD1 BSD2 BSD3 BSD4 BSD5 BSD6 BSD7 BSDS BSD9 | BSD10
136814 | 104162 | 172284 | 118323 | 371856 | 204564 | 139328 | 54329 | 240185 | 127512
BSD11 | BSD12 | BSD13 | JDDI JDD2 JDD3 JDD4 JDD5 JDD6 JDD7
89615 | 127347 | 18567 55223 | 106164 | 60924 81854 | 139845 | 232503 | 172864
JDDS JpD9 | JDD10 | JDD11 | JDD12 | PDDI PDD2 PDD3 PDD4 PDD5
165452 | 46355 80896 | 256218 | 72933 | 100548 | 112507 | 144668 | 76916 | 104932
PDD6 | PDD7 | PDDS | PDD9 | PDDI0 | PDD11 | PDDI2 | PDDI3 | PDDI4 | PDDI5
107130 | 112031 | 206017 | 146237 | 177468 | 121449 | 221327 | 20219 | 369032 | 184486
PDD16 | PDD17 | PDDIS | PDD19 | PDD20 | PDD21 | PDD22 | PDD23 | PDD24 | PDD25
276547 | 132038 | 129267 | 186012 | 81537 | 137625 | 110552 | 165297 | 360516 | 213845
PDD26 | PDD27 | PDD28 | PDD29 | PDD30 | PDD31 | PDD32 | PDD33 | PDD34 | PDD35
147329 | 84183 71162 27162 | 174672 | 110060 | 51013 | 104945 | 62519 59567
PDD36 | PDD37 | PDD38 | PDD39 | PDD40 | PDD41 | PDD42 | PDD43 | PDD44 | JSDI
59323 24346 37408 638 508 862 1349 5514 23617 87901
JSD2 JSD3 JSD4 JSD5 JSD6 JSD7 JSDS JSD9 JSD10 SJD1
120084 | 82477 37057 | 122272 | 52808 33658 70819 40722 84640 | 112671
SJD2 SJD3 SJD4 SJDs SJD6 SJD7 SJD8 SJDY SJD10 | SJDI1
93330 | 161438 | 98888 94279 75507 | 167687 | 155856 | 57861 | 253110 | 41626
SJD12 | SJD13 | SJD14 | SJDI5 | SJDI6 | QPDI QPD2 | QPD3 | QPD4 | QPD5
44011 33627 80104 51606 60797 | 137321 | 118708 | 106830 | 94351 63485
QPD6 | QPD7 | QPDS | QPD9 | QPDI10 | QPDI1l | FXDI FXD2 FXD3 FXD4
67735 74409 | 127936 | 153203 | 39756 92288 | 361185 | 176938 | 62388 | 108264
FXD5 | FXD6 | FXD7 | FXD8 | FXD9 | FXD10 | FXDI1 | FXDI2 | FXDI13 | CMDI
65389 89163 62589 28457 57341 15413 29151 16710 10475 | 113442
CMD2 | CMD3 | CMD4 | CMD5 | CMD6 | CMD7 | CMD8 | CMD9 | CMD10 | CMDI11
60111 42737 45926 40823 26265 29894 40741 25274 53996 7061

CMDI2 | CMD13 | CMD14 | CMD15 | CMD16 | CMD17 | CMD18 | CMD19 | CMD20 | CMD21
23416 27466 11646 15112 99134 9581 27916 1695 35 1451
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6 e(—0.042*d35*+0.541*qc +0.150)
"

€7 p(-0.0424d8 +0.5415qc +0.150) 4 o(—0.042+d5* +0.541xg +0.150)
1

= 1+e(—o.042*(d;;5+—d25*)+0.541*(q[,—qc))‘ (15)

Note that g¢ (gp) represents the indicator variable for the CH
(DH), and g¢c = 1, gp = 0. d2'64(d%'64) is the distance for a
patient aged 0-64 to travel from his/her residential site to a
CH (DH), and d®* (d%*) is the distance for a patient aged
65+ to travel. The probability of choosing the CH can thus
be further derived as:

Pl = 1 )
¢ 1 4 (—0.085x(d%—d2®)-1.099)"
PO = 1
¢ 1 4 e(-0.042x(df* ~dg)~0.541) "

When the differences between traveling to the DH and
traveling to the CH are the same for the two age groups of
patients (i.e., d5® — d2% = d%* — d®* = Ad), we have
—0.085 % Ad — 1.099 — (—0.042 « Ad — 0.541) = —0.043 %
Ad — 0.558.

If Ad < —12.98 km, then —0.043 %« Ad — 0.558 > 0, and
we have p%® < p%*, which means that younger patients are
less willing to choose a CH than older patients when a CH is
far away from a DH. On the contrary, If Ad > —12.98 km,
then —0.043 % Ad — 0.558 < 0, and we have pX®* > p&+
which means that younger patients are more willing to choose
a CH than older patients when a CH is not two far away from
a DH.

APPENDIX D
MATHEMATICAL EXPLANATIONS FOR
THE CONCLUSION OF STUDY 1

Before the optimization of the hospital system, for patients
at any residential site i who choose CH, we denote their
probability of going to an existing CH j as pg,i el,jeJy.
Thus we have pg = 1,Vi. The mean distance from site

JE€JH _
i to these existing CHs, denoted as diH , is expressed as

af =" dypli, viel

=

(16)

Without loss of generality, when a new CH is located at site
j' € J U Jy after the optimization, the probability of patients
at residential site i visiting CH at site j € Jy or the new CH
at site j' € J U Jp is denoted by pj] " and pi’j,,, respectively.
We can derive the expression as follows.

Zpgurpg/: 1, Vj'eJUulJ,
Jj€Jn

A7)

The mean distance from site i to all CHs after the recon-
figuration is represented as

! / /
@' = 3 dypl] + dyol)

Jj€Jn

(18)

The MNL model we used to quantify patient choice behav-
ior has the property of independence of irrelevant alternatives
(ITA). That is, the ratio of choice probabilities of any two
alternatives is independent of the systematic utilities of any

other alternatives [55]. For example, p//pH = pH'/pH’.
Therefore, we can obtain the following equation.

pg’:pg.(1_pg,’), Viel,jedy,j eJUJL. (19)

=,/
Thus, the mean distance diH can be expressed as

! / l
diH = Zdljpz[;l —i—dij/pg-,

Jj€Jn

= > dipli (1= pll) + ol

Jj€Jn
JH H' H'
= di (1 — pij’) +dij'pij’
=d' + pll/(diy—dl'), Viel,jely,jeluly
(20)

When d;; > d¥, we will get d > d". In other words,
if the distance from the new CH ' to residential site i is larger
than the mean distance from existing CHs to residential site i,
the mean distance from site i to all CHs in the reconfigured
network will increase. In contrast, when d;;; < c?iH , then

df ' < dl, implying that if the distance from the new CH
Jj’ to residential site i is smaller than the mean distance from
existing CHs to residential site i, the mean distance from site
i to all CHs in the reconfigured network will decrease.
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