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Optimal Two-Tier Outpatient Care Network
Redesign With a Real-World Case

Study of Shanghai
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Abstract— Healthcare capacity shortage contributes to poor1

access in many countries. Moreover, rapid urbanization often2

occurring in these countries has exacerbated the imbalance3

between healthcare capacity and need. One way to address the4

above challenge is expanding the total capacity and redistributing5

the capacity spatially. In this research, we studied the problem6

of locating new hospitals in a two-tier outpatient care system7

comprising multiple central and district hospitals, and upgrading8

existing district hospitals to central hospitals. We formulated the9

problem with a discrete location optimization model. To parame-10

terize the optimization model, we used a multinomial logit model11

to characterize individual patients’ diverse hospital choice and12

to quantify the patient arrival rates at each hospital accordingly.13

To solve the hard nonlinear combinatorial optimization problem,14

we developed a queueing network model to approximate the15

impact of hospital locations on patient flows. We then proposed16

a multi-fidelity optimization approach, which involves both the17

aforementioned queuing network model as a surrogate and a18

self-developed stochastic simulation as the high-fidelity model.19

With a real-world case study of Shanghai, we demonstrated the20

changes in the care network and examined the impacts on the21

network design by population center emergence, governmental22

budget change and considering patients with different age groups23

or income levels.24

Note to Practitioners—Our work focuses on improving25

system-wide care access in a two-tier care network. We believe26

that our work can lead to effective development of a location27

analytics tool for city-wide healthcare system planners. We also28

think the importance of this study is further strengthened by the29
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case studies based on real-world hospital choice experimental 30

data from Shanghai, China, a region suffering from the imbal- 31

ance between healthcare capacity and need. Our case studies are 32

expected to make recommendations on care facility expansion 33

and dispersion to better align with the spatial distribution of 34

residential communities and patient hospital choice behavior. 35

Index Terms— Network design, location optimization, patient 36

choice, queueing network, multi-fidelity optimization. 37

I. INTRODUCTION 38

THERE is a significant discrepancy between patient need 39

and provider capacity in many major metropolises world- 40

wide, including Shanghai, China. The 2017 Shanghai Statistics 41

Year Book (available from www.tjj.sh.gov.cn/) shows that the 42

annual volume of hospital visits in Shanghai is as high as 43

273 million. By contrast, the number of licensed and assistant 44

physicians is only 2.31 per thousand residents in Shanghai 45

(available from www.spcsc.sh.cn/). Healthcare capacity short- 46

age becomes a major social issue in many metropolises in 47

China and around the world. Moreover, with rapid urbaniza- 48

tion, major metropolises in China expand significantly and 49

resident populations disperse with new residential communi- 50

ties sprouting in inter-city and suburban areas. However, high- 51

quality healthcare resource remains at city centers. As a result, 52

the demand-supply imbalance is further exacerbated. 53

Like in many other countries, the hospital network in China 54

is a two-tier system, consisting of central hospitals (CHs) and 55

district hospitals (DHs). CHs are typically staffed with the 56

most qualified physicians and clustered at city centers. On the 57

other hand, DHs provide basic medical services, and they 58

are located in various residential communities. For outpatient 59

care, Chinese patients typically choose hospitals based on their 60

preferences, and CHs are often more attractive to them due 61

to their good reputation. However, due to limited capacities, 62

it is often overcrowded at CHs and patients have to wait long. 63

Similar to China, in South Africa, many patients directly visit 64

general hospitals for some minor issues without consulting 65

local primary care centers [1]. In Japan, many patients needing 66

basic care prefer to choose the emergency departments of 67

regional/national public hospitals instead of receiving more 68

appropriate primary care services in a community clinic [2]. 69

Therefore, the limited resources in regional/national public 70

hospitals inevitably lead to poor care access. In addition, 71

since CHs are mostly located in the central city, patients from 72

inter-city or suburban areas, have to travel long distance for 73
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outpatient services. Overall capacity shortage and capacity74

maldistribution motivated a series of reforms in recent years to75

address the challenge on care access, one of the fundamental76

challenges in the Chinese healthcare system. The use of77

our study is not limited to outpatient care network redesign.78

Besides outpatient care, preventive care is also greatly influ-79

enced by poor access [3], [4].80

This paper presents our mathematical modeling and opti-81

mization work that aims to increase care access through82

optimal redesign of a two-tier hospital network subject to83

government budget. For this research, we conduct a choice84

experiment on hospital visit for some outpatient service,85

through which we record respondents’ choices when presented86

with hospital type and distance to the hospital. We develop a87

multinomial logit model to characterize hospital choice behav-88

ior. We formulate a nonlinear optimization problem to select89

locations to build new care facilities and identify some of the90

existing DHs to upgrade to CHs. We consider a care access91

measure that combines times spent in traveling to the hospital92

and waiting for the outpatient service. Finally, we design a93

multi-fidelity optimization algorithm involving a low-fidelity94

queueing network based surrogate and a high-fidelity simula-95

tion model. This optimization approach can balance efficient96

identification of promising solutions and accurate comparison97

among them.98

The contribution of this paper is three-fold. First, we illus-99

trate a way to embed discrete choice modeling into location100

optimization through quantifying the demand diversion. Sec-101

ond, we demonstrate the use of a multi-fidelity optimization102

approach to solve nonlinear combinatorial optimization prob-103

lems whose objective is computationally expensive to evaluate104

precisely even for one candidate solution. Third, we base105

our case study on an outpatient care facility choice survey106

and additional census data collected from Shanghai; thus107

offering potentially meaningful suggestions to the Shanghai108

municipality’s health department.109

The remainder of this paper is organized as follows.110

In Section II, we review the relevant literature. In Section III,111

we present our model and optimization approach, which112

includes a location optimization model for network redesign,113

a multinominal logit model for outpatient choice characteriza-114

tion, and a multi-fidelity optimization algorithm for solution115

tractability. In Section IV, we illustrate our approach with a116

Shanghai-based case study and analyze the results for net-117

work redesign effectiveness and robustness. Finally we draw118

conclusions and outline future research in Section V.119

II. LITERATURE REVIEW120

There are numerous location analysis studies for health-121

care planning. According to the classification of Daskin [5],122

discrete location models in the healthcare OR literature are123

divided into three categories: covering-based models, median-124

based models, and other models such as the p-dispersion125

model. Covering-based and median-based models are classic126

models used in medical facility location analysis. For review127

of these classical problems, we refer the readers to [6], [7],128

and [8]. For example, many researchers addressed the objective129

of maximizing the total demand covered by a given number 130

of facilities e.g. [9], [10], and [11] or minimizing the distance 131

or travel time when demand locations are assigned to facilities 132

within a certain distance e.g. [12], [13], [14], and [15] 133

A critical aspect of medical facility location analysis is 134

modeling patient choice and its impact on location decisions. 135

Studies on patient choice are divided into two categories. In the 136

first category, studies assume a directed-choice (or system- 137

optimal) mechanism, i.e., each patient is assigned to a medical 138

facility by the decision maker, rather than being allowed to 139

choose a facility. These models determine the optimal facility 140

location and patient assignment for maximization of some 141

system outcome. For example, in [10], the demand at each 142

node is assigned to only a facility within some allowable 143

distance. Other studies in this category include [3], [14], [16], 144

and [17]. 145

In the other category, studies assume a patient-choice mech- 146

anism, i.e., patients are free to choose a medical facility to 147

visit. This category can be further categorized as deterministic- 148

choice and probabilistic-choice models. For deterministic- 149

choice models, the patient choice behavior is simplistic based 150

on some utility-based criteria, i.e., each patient is assumed to 151

visit the most attractive facility. These models often assume 152

patients are rational and fully informed, and they visit the 153

facility they think is most attractive at all time. For example, 154

Kim and Kim [11] studied the problem of locating public 155

health facilities to maximize the number of served patients 156

of two types (low- and high-income). The authors only con- 157

sidered the preferences of high-income patients and assumed 158

that those patients are only assigned to their most preferred 159

facilities. The authors modeled the preference of high-income 160

patients on each facility to be dependent on several factors, 161

including distance to travel and amount of service charge. 162

Instead of analyzing the influence of each factor, the authors 163

simply used a given parameter between 0 and 1 to represent 164

patients’ preferences, and assumed patients from the same 165

region have identical preference. Some other studies assumed 166

that patients visit the closest facility [18], [19] or the facility 167

with the minimal total time [20], [21]. 168

For probabilistic-choice models, a patient is assumed to visit 169

each facility with a certain probability. Huff [22] proposed 170

the first probabilistic-choice model, for a spatial interaction 171

analysis. In the model, client utility is represented by a 172

gravity formula to estimate market shares of the facilities. 173

Subsequently, [22] was extended in the location analysis lit- 174

erature, including one based on the multiplicative competitive 175

interaction model by [23]. Discrete choice models, relevant to 176

our work, are based on random utility theory in marketing 177

and econometrics, and have been incorporated in location 178

analysis and optimization. For example, to maximize the total 179

participation of a preventive care program, [4] assumed that the 180

only attractiveness attribute in their probabilistic-choice model 181

is the proximity to a facility. The authors used a multinomial 182

logit (MNL) model to characterize the probability that a patient 183

chooses each facility. The parameters in the MNL model are 184

set hypothetically for the study. Reference [24] also modeled 185

the patient choice behavior with an MNL model. In addition 186

to distance (travel time), the authors considered the influence 187
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of waiting time on patient choice. The authors estimated the188

coefficients in their model using actual patient flow data. Ref-189

erence [25] proposed a location-allocation model to improve190

the accessibility in medically under-served areas. A discrete191

choice model is incorporated to describe care consumers’192

choice decision for obstetrics care. The attribute variables are193

travel time, level of a hospital, number of obstetrics specialists,194

the deprivation index of the location of a hospital and whether195

care consumer i and hospital j belong to the same hospital196

service area. Other location analysis papers that incorporate197

patient choice with a discrete choice model include [26], [27],198

[28], and [29].199

The existing literature on hospital choice model (such as200

[30], [31], [32], [33], [34], and [35]) believes that the factors201

that affect patients’ hospital choice behavior are: medical con-202

venience (e.g., distance to healthcare facility), patient attributes203

(age, income, etc.), and hospital attributes (price, quality of204

providers, level of the hospital, etc.). Most of the location205

studies considering patient choice often assume that distance206

(or proximity) is a major or the only influencing factor, and207

a few studies also consider waiting time as an influencing208

factor. In this paper, we did not use waiting time, because209

in reality it is difficult for patients to have information about210

the detailed waiting time of each hospital in advance. Instead,211

we considered the preference of patients on CHs versus DHs,212

considered by fewer in the existing studies, as well as the effect213

of travel distance. In addition, in most studies that considered214

patient behavior or preference, there were no distinction on215

patient types, whereas we distinguished patients by their216

age and analyzed their respective hospital choice behavior.217

Furthermore, the aforementioned MNL models were either218

constructed based on expert judgement and scattered evidence,219

or fitted against patient flow data. On the other hand, we fitted220

an MNL model against first-hand behavior data collected from221

a survey of Shanghai residents. Further, we examined whether222

distance and type of the hospital were influencing factors and223

estimated the influence of each significant factor. We believe224

this has made our work more realistic and comprehensive.225

Another aspect of the literature related to our work concerns226

incorporating congestion in facility design models. The most227

common way to do it is to represent each facility as a queue228

(e.g., M/M/1 or M/G/1) and consider a constraint on the229

congestion level. For example, [4], [36], and [37] used M/M/1230

(or M/M/c) queues to model service facilities and considered231

an upper bound on the average waiting time of customers232

(or equivalent queue length) in a constraint. References [38]233

and [39] modeled facilities as M/M/1 (or M/M/c) queueing234

systems and introduced a constraint to ensure the probability235

that a client enters the queue at a facility with at most b waiting236

clients is at least α in a maximal covering location-allocation237

model. Reference [40] considered a re/design of a congested238

multi-service network with M/M/1 servers. Patient waiting239

time is added to the objective function to improve service240

quality. Alternatively, there are studies that assumed a decay241

function between demand and waiting time, and included242

this function as a constraint in their models. Reference [20]243

captured the level of congestion at each facility with an M/M/1244

queue in a preventive care facility location problem. They245

assumed the fraction of customers from each population node 246

to each facility is a decreasing function of the expected total 247

(travel, waiting and service) time and a client chooses the 248

facility with the least total time. The authors then provided a 249

heuristic solution method to determine the number of facilities 250

and the location of each facility so as to maximize the 251

population-level participation. Reference [24] modeled each 252

facility as an M/M/c queue. The authors assumed that the mean 253

system waiting time and travel time are main determinants 254

on customer choice, and used an MNL model to character- 255

ize the relationship between the equilibrium flow from each 256

population node to each facility. Reference [3] used spatially 257

distributed M/G/1 queues to model a preventive care network, 258

and captured the congestion due to waiting and service delays. 259

Then to minimize the weighted sum of total time, the authors 260

presented a nonlinear mixed integer program to determine 261

the facility locations, service capacity of each facility, and 262

customer allocation to each facility. Through a search of 263

the above relevant literature that incorporates congestion into 264

facility design, the arrival are usually assumed to be Poisson 265

distributed. Different from the above studies that assume every 266

patient arriving at a facility will join the queue, we modeled 267

each hospital as an M/G/1 queue and considered multiple balks 268

made by some patients, i.e., a patient arriving to a hospital will 269

decide whether or not to join the queue according to his/her 270

estimated waiting time. If he/she goes to a hospital where the 271

waiting time is longer than expected, he will balk and choose 272

another hospital until the waiting time is acceptable, or he will 273

leave the system. 274

III. METHODS 275

The optimization model presented in this section concerns 276

the government’s need to alleviate the current situation of poor 277

care access among patients. Studies suggest that the total time 278

spent on transportation and waiting can be used as a proxy 279

to measure care accessibility [3], [20]. The objective is to 280

improve care access under certain government budget for the 281

capacity expansion and spatial redistribution of care facilities. 282

Let JH and JL be the sets of current sites of CHs and 283

DHs, respectively. Let J be the set of candidate sites for new 284

hospitals, either CHs or DHs. Let I be the set of residential 285

sites (considered as demand nodes). We also denote three sets 286

of decision variables: 287

x H
j =

{
1 if a CH is located at site j , j ∈ J ,

0 otherwise.
288

x L
j =

{
1 if a DH is located at site j , j ∈ J ,

0 otherwise.
289

y j =
{

1 if an existing DH at site j is upgraded, j ∈ JL ,

0 otherwise.
290

Thus, the binary decision vector on locating new CHs and 291

DHs is represented by xH = (x H
1 , . . . x H

j , . . . x H
|J |) and 292

xL = (x L
1 , . . . x L

j , . . . x
L
|J |), respectively. The decision vec- 293

tor on whether to upgrade a DH is represented by y = 294

(y1, . . . y j , . . . y|JL |). Without loss of generality, denote R to 295

be the set of patient classes. 296
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Given decision vectors xH , xL and y, we calculate the297

rectilinear distance between each residential site i and each298

hospital site j , denoted by di j . We then identify the binary299

label, denoted by q j , of a hospital at site j , i.e., whether300

the hospital at site j is CH or DH. We finally estimate the301

likelihood of a class r patient at site i choosing a hospital302

at site j , denoted by pri j
(
xH , xL , y

)
, r ∈ R, i ∈ I, j ∈303

J ∪ JH ∪ JL , specified by the underlying choice model.304

By converting the population quantity of class r patients at305

site i into the demand estimate for outpatient care, denoted306

by λr
i , and combining the demand estimate with patient307

choice preferences pri j
(
xH , xL , y

)
, we obtain the arrival rate308

of class r patients from site i to hospital at site j and the total309

arrival rate of hospital at site j , denoted by λr
i j

(
xH , xL , y

)
.310

Thus, λr
i j

(
xH , xL , y

) = λr
i p

r
i j

(
xH , xL , y

)
. We further denote311

λ j
(
xH , xL , y

)
to be the aggregate arrival rate of hospital312

at site j over all residential sites. Thus, λ j
(
xH , xL , y

) =313 ∑
r∈R

∑
i∈I

λr
i p

r
i j

(
xH , xL , y

)
). Given λ j

(
xH , xL , y

)
, we derive the314

mean waiting time and balking probability at site j , denoted315

by WH
j

(
λ j
(
xH , xL , y

))
and pBH

j

(
λ j
(
xH , xL , y

))
, if the hospital316

at site j is CH; or those quantities at site j , denoted by317

WL
j

(
λ j
(
xH , xL , y

))
and pBL

j

(
λ j
(
xH , xL , y

))
, if the hospital at318

site j is DH.319

Next, we present a nonlinear optimization model,320

i.e., (1) – (6), as shown at the bottom of the page, that aims321

to select optimal sites for new CHs or DHs and upgrade322

some of the existing DHs. The objective of the optimiza-323

tion model comprises two parts: (i) the cost of waiting for324

care at hospital site j ; and (ii) the cost of traveling to325

hospital site j from residential site i . In the model, for326

notational simplicity, we use λi j , λ j , di j , WH
j , WL

j , pBH
j and 327

pBL
j to replace λi j

(
xH , xL , y

)
, λ j

(
xH , xL , y

)
, di j(xH , xL , y), 328

WH
j

(
λ j
(
xH , xL , y

))
, WL

j

(
λ j
(
xH , xL , y

))
, pBH

j

(
λ j
(
xH , xL , y

))
329

and pBL
j

(
λ j
(
xH , xL , y

))
, respectively. 330

In objective (1), CdH and CdL are the unit costs of traveling 331

to CH and DH, respectively; CWH and CWL are the unit-time 332

costs of waiting at CH and DH, respectively; αd and αW 333

are assigned weights on the cost of traveling and cost of 334

waiting, respectively. Constraints (2) state that a DH cannot be 335

built when a CH has been built at some site, and vice versa. 336

Constraint (3) ensures that the proportion of CHs at which the 337

balking probability does not exceed θH is no less than φH . 338

Note that 1
(
pBH
j ≤ θH

)
, an indicator function, equals 1 if 339

pBH
j ≤ θH , and equals 0 otherwise. Constraint (4) is similar to 340

constraint (3) and 1
(
pBL
j ≤ θL

)
is the other indicator function. 341

Constraint (5) represents that the total government spending on 342

the network redesign is no more than budget TB , and κH
x and 343

κ L
x are the costs of land acquisition and facility construction 344

for locating a CH and a DH, respectively, κy is the cost of 345

upgrading a DH. Constraints (6) ensure non-negativity and 346

binary restrictions. 347

To quantify the arrival rates, we developed a discrete 348

choice model and characterized patient choice preferences 349

(Section III-A). To compute the system performance measures, 350

such as patient waiting time and balking probability, one can 351

formulate a two-level network model with an M/G/1 queue at 352

each node, which can be used to capture potentially multiple 353

balks made by some patient. However, such a model does not 354

lend itself to the availability of exact closed-form expressions 355

min
xH ,xL ,y

αd

[
CdH

(∑
i∈I

∑
j∈J

x H
j · λi j · di j +

∑
i∈I

∑
j∈JL

y j · λi j · di j +
∑
i∈I

∑
j∈JH

λi j · di j
)

+CdL

(∑
i∈I

∑
j∈J

x L
j ·λi j · di j +

∑
i∈I

∑
j∈JL

(
1 − y j

)
· λi j · di j

)]

+αW

[
CWH

(∑
j∈J

x H
j · λ j · WH

j +
∑
j∈JL

y j · λ j · WH
j +

∑
j∈JH

λ j · WH
j

)

+CWL

(∑
j∈J

x L
j · λ j · WL

j +
∑
j∈JL

(
1 − y j

)
· λ j · WL

j

)]
(1)

s.t. x H
j + x L

j ≤ 1, ∀ j; (2)∑
j∈J

x H
j · 1

(
pBH
j ≤ θH

)
+ ∑

j∈JL

y j · 1
(
pBH
j ≤ θH

)
+ ∑

j∈JH

1
(
pBH
j ≤ θH

)
∑
j∈J

x H
j + ∑

j∈JL

y j + |JH | ≥ φH ; (3)

∑
j∈J

x L
j · 1

(
pBL
j ≤ θL

)
+ ∑

j∈JL

(
1 − y j

) · 1
(
pBL
j ≤ θL

)
∑
j∈J

x L
j + ∑

j∈JL

(
1 − y j

) ≥ φL; (4)

∑
j∈J

(
κH
x · x H

j + κ L
x · x L

j

)+ ∑
j∈JL

κH
y · y j ≤ TB; (5)

x H
j , x L

j , y j ∈ {0, 1}, ∀ j. (6)
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for the performance measures. We thus simplified the above356

queueing network model to a two-level network model with357

an M/M/1 queue at each node, where patients leave the system358

once they balk (Section III-B). On the other hand, while359

high-fidelity computer simulation can be used to achieve a360

high level of precise estimation, it is time consuming even for361

one candidate solution, needless to say we need to solve a362

highly nonlinear hospital location optimization model. Hence,363

we elected to combine the advantages of the above two ideas364

intelligently (Section III-C). We refer to the queuing network365

model as the low-fidelity model and the simulation model as366

the high-fidelity model.367

A. The Probabilistic-Choice Model of Hospital Visit Behavior368

As described in the literature review, it is common to con-369

sider distance as an influencing factor. Studies have suggested370

the so-called distance decay on the use of hospital, i.e., the371

inverse association between hospital attractiveness and travel372

distance [41], [42]. Reference [13] compared the magnitude of373

distance decay on general hospitals and local health centers.374

In addition, [43] and [44] examined the influence of provider375

expertise (or being knowledgeable, experienced, and capable)376

on provider choice. References [45], [46], and [47] examined377

the influence of specialists on hospital choice.378

To characterize how patient choice is affected by the379

distance and hospital type (i.e., CH or DH), we surveyed380

a cohort of online respondents residing in Shanghai with381

a self-designed questionnaire (see Appendix A). With the382

questionnaire, we acquired each respondent’s age, and asked383

him/her to make a selection among a set of hospital alter-384

natives. To each respondent, a scenario where CH is more385

crowded than DH is prompted. And each hospital alternative386

in the choice set is identified by a randomly generated pair387

of attributes (di j , q j ), where di j is the distance between388

residential site i and hospital site j , and q j is the indi-389

cator of hospital type at location j . After completing the390

survey, we used an MNL model to examine whether the391

distance and hospital type would play an important role on392

the hospital choice behavior, and how significant the effect393

would be.394

The utility that a respondent chooses a hospital at site j is395

given by Ui j = Vi j + εi j , i ∈ I , j ∈ J ∪ JH ∪ JL . Note that396

the logit model arises from the assumption that the random397

error component are drawn from an extreme value (GEV)398

distribution, i.e., Gumbel distribution. In this formula, Vi j is a399

deterministic component and εi j is a random error component400

under a Gumbel distribution. Further, for a hospital at site401

j with distance di j and hospital type q j , we have Vi j =402

βddi j + βqq j , where βd and βq are parameters that capture403

the preferences of a patient at site i on distance and hospital404

type. These two parameters need to be estimated. Additionally,405

di j is a continuous variable, and q j is an indicator variable406

for two hospital types; 1 if the hospital at site j is a CH,407

0 otherwise.408

We denote the preference parameters for distance and409

hospital type of class r patients are denoted by βr
d and βr

q ,410

respectively. Then the probability a class r patient at site i411

chooses to visit a hospital at site j is expressed as 412

pri j = e(βr
ddi j+βr

q q j )∑
k∈J∪JH∪JL

e(βr
ddik+βr

q qk )
, r ∈ R, i ∈ I, j ∈ J ∪ JH ∪ JL . (7) 413

With the definition in equation (7), we derive the arrival rate 414

of class r patients from site i to hospital at site j as shown in 415

equations (8)–(10). 416

λr
i j

(
xH , xL , y

) = 417


λr
i

(
x H
j + x L

j

)
e(βr

ddi j+βr
q x

H
j )

Ur
,r ∈ R, i ∈ I, j ∈ J (8)

λr
i

e(βr
ddi j+βr

q )

Ur
, r ∈ R, i ∈ I, j ∈ JH (9)

λr
i

e(βr
ddi j+βr

q y j)

Ur
, r ∈ R, i ∈ I, j ∈ JL (10)

418

where 419

Ur =
∑
k∈J

(
x H
k + x L

k

)
e(βr

ddik+βr
q x

H
j ) +

∑
m∈JH

e(βr
t dim+βr

q ) 420

+
∑
l∈JL

e(βr
ddil+βr

q yl). 421

Equation (8) represents the arrival rate of class r patients 422

from residential site i ∈ I to a new hospital at site j . The 423

hospital type q j can be jointly determined by the decision 424

variables x H
j and x L

j . Notice that if the newly built hospital 425

at site j is CH (i.e., x H
j = 1, x L

j = 0, j ∈ J ), its hospital 426

type is set to 1 (i.e., q j = x H
j = 1, j ∈ J ); otherwise, if the 427

newly built hospital at site j ∈ J is DH (i.e., x H
j = 0, x L

j = 1, 428

j ∈ J ) or there is no hospital built at site j ∈ J (i.e., x H
j = 0, 429

x L
j = 0, j ∈ J ), the corresponding hospital type is 0 (i.e., q j = 430

x H
j = 0, j ∈ J ). Equation (9) represents the arrival rate of 431

class r patients from site i ∈ I to the existing CH at site 432

j ∈ JH . Accordingly, the hospital type of an existing CH at 433

site j ∈ JH is set to 1 (i.e., q j = 1, j ∈ JH ). Similarly, 434

equation (10) represents the arrival rate of class r patients 435

from site i ∈ I to the existing DH at site j ∈ JL . When the 436

existing DH at site j ∈ JL is upgraded to a CH (i.e., y = 1, 437

j ∈ JL ), its hospital type indicator is set to 1 (i.e., q j = 438

y j = 1, j ∈ JL ), otherwise, its hospital type indicator is 0 439

(i.e., q j = y j = 0, j ∈ JL ). Finally, the arrival rate at a hospital 440

at site j is expressed as λ j (x, y) = ∑
r∈R

∑
i∈I

λr
i j(x, y), for any 441

j ∈ J ∪ JH ∪ JL . With these arrival rates, we next use them 442

as inputs to the hospital location optimization model. Note 443

that when a patient arrives at CH or DH according to his/her 444

choice preference, he/she will decide whether or not to join 445

the queue according to his/her estimated waiting time. If the 446

waiting time is longer than expected, he will balk and choose 447

another hospital. When the patient chooses another hospital, 448

his/her choice is still affected by the hospital type and distance 449

to other hospitals, as modeled in the choice model. 450

B. Low-Fidelity Model Based Approximation 451

For low-fidelity approximation of the system performance 452

measures, we consider a two-level open network model with 453

an M/M/1 queue at each node, where patients leave the system 454
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once they balk. We assume the arrival process from residential455

site i to hospital site j follows a Poisson distribution with456

mean arrival rate λi j
(
xH , xL , y

)
. Thus the aggregate arrival457

process at hospital site j also follows a Poisson distribution458

with mean arrival rate λ j
(
xH , xL , y

)
. In reality, when a patient459

arrives at a hospital, a long queue discourages the patient from460

joining the queue (i.e., balking). We follow Liu and Kulkarni461

[48] to introduce a notion of virtual queueing (vqt). The vqt is462

the waiting time estimated by a patient once s/he arrives at the463

hospital. We assume that each patient can estimate the time464

s/he will wait from multiple sources. For example, in many465

countries, such as Australia, the estimated waiting time is466

sometimes available to patients [49], or they may estimate467

the waiting time based on their previous visits [24].468

Next we introduce the balking rule used in the system469

performance evaluation. We assume when an arriving patient470

believed that his/her vqt is no more than a fixed amount, s/he471

would decide to join the queue. The fixed amount is considered472

essentially the maximum waiting time, and denoted by bH for473

CH and bL for DH, respectively. We thus term the probability474

that vqt is more than the fixed amount bH and bL , as the475

balking probability. We denote ĴH to be the set of CH locations476

(i.e., ĴH = JH ∪
{
j
∣∣∣x H

j = 1, j ∈ J
}

∪ { j ∣∣y j = 1, j ∈ JL
}
),477

and denote ĴL to be the set of DH locations (i.e., ĴL =478 {
j
∣∣∣x L

j = 1, j ∈ J
}
∪{ j ∣∣y j = 0, j ∈ JL

}
). We thus denote the479

balking probability at CH j ∈ ĴH and DH j ∈ ĴL to be pBH
j480

and pBL
j , respectively. We also assume the service duration481

at each CH and each DH to be exponentially distributed.482

We denote the mean service rate at CH j ∈ ĴH and DH j ∈ ĴL483

to be µH
j and µL

j , respectively. For CH j ∈ ĴH , an arriving484

patient leaves the two-level system with balking probability485

pBH
j , otherwise, the patient waits for the service in an infinite486

capacity FCFS (first come, first served) queue with probability487

1− pBH
j , and leaves the system when the service is completed.488

For DH j ∈ ĴL , a patient leaves the system with balking489

probability pBL
j , otherwise, the patient waits for the service490

in a queue with probability 1 − pBL
j . With these assumptions,491

we formulate a two-level queueing network model with each492

node being an M/M/1 queue with balking.493

Given λ j
(
xH , xL , y

)
, j ∈ J ∪ JH ∪ JL , which can be com-494

puted via equations (8)-(10), together with µH
j , µL

j , bH and495

bL , we follow Theorems 1 to 4 in [48] to derive the following496

closed-form expressions for relevant queueing performance497

measures, i.e., CH/DH utilization rate, balking probability,498

and mean waiting time. The system parameters such as the499

outpatient service demand, the threshold on the wait time500

tolerance and service rate are exogenous. The parameters501

such as the arrival rate, mean waiting time, and the balking502

probability of each hospital are endogenous.503

• The utilization rate at CH j ∈ ĴH :504

ρH
j (λ j

(
xH , xL , y

)
) = λ j

(
xH , xL , y

)
µH

.505

• The utilization rate at DH j ∈ ĴL :506

ρL
j (λ j

(
xH , xL , y

)
) = λ j

(
xH , xL , y

)
µL

.507

• The balking probability at CH j ∈ ĴH : 508

pBH
j

(
λ j
(
xH , xL , y

))
509

= ωH
j

µH
j p

H
j

1 − pH
j

e
−
(
µH

j −λ j(xH ,xL ,y)
)
bH

µH
j

, j ∈ ĴH , 510

where ωH
j , as shown at the bottom of the next page, and 511

pH
j = λ j(xH ,xL ,y)

λ j(xH ,xL ,y)+µH
j
. 512

• The balking probability at DH j ∈ ĴL : 513

pBL
j

(
λ j
(
xH , xL , y

))
514

= ωL
j

µL
j p

L
j

1 − pL
j

e
−
(
µL

j −λ j(xH ,xL ,y)
)
bL

µL
j

, j ∈ ĴL , 515

where ωL
j , as shown at the bottom of the next page, and 516

pL
j = λ j(xH ,xL ,y)

λ j(xH ,xL ,y)+µL
j
. 517

• The mean waiting time at CH j ∈ ĴH : 518

WH
j

(
λ j
(
xH , xL , y

))
, as shown at the bottom of the 519

next page. 520

• The mean waiting time at DH j ∈ ĴL : 521

WL
j

(
λ j
(
xH , xL , y

))
, as shown at the bottom of the 522

next page. 523

C. Multi-Fidelity Optimization 524

In this section, we propose a multi-fidelity optimization 525

approach, for which we borrowed ideas from [50] and [51]. 526

Our discrete location optimization problem has a very large 527

solution space (3230×2246), thus the computational cost cannot 528

be ignored even with the use of the low-fidelity model. Instead 529

of exhaustive search of all feasible solutions, we applied 530

genetic algorithm to efficiently select a set of promising 531

candidate solutions based on the low-fidelity model. We then 532

sorted the low-fidelity estimates to form a one-dimensional 533

ordinal space, and equally partition the candidate solutions into 534

groups. We next iteratively sampled candidate solutions from 535

each group, ran the high-fidelity simulation to assess the per- 536

formance measures for the sampled solutions, and computed 537

group-specific sample statistics (i.e., sample mean and sample 538

standard deviation) for each group. To efficiently establish 539

the stochastic domain of candidate solutions, we adaptively 540

allotted the sampling budget to each solution group based on 541

it sample statistics until we used up all the sampling budget. 542

• Exploration based on the low-fidelity model 543

Step 1: Set the number of generations in genetic 544

algorithm T , and the number of chromosomes in each 545

generation N . 546

Step 2: Run the genetic algorithm to generate N chromo- 547

some (i.e., N feasible solutions) at each generation: first, gen- 548

erate a chromosome that satisfies constraints (2), (5) and (6), 549

and then examine whether the chromosome satisfies con- 550

straints (3) and (4). If so, the chromosome is retained, and 551

so on, until N distinct chromosomes are generated, forming 552

an initial population satisfying constraints (2) - (6). Then, 553

generate new chromosomes for the descendant generation. The 554

feasibility of each new chromosome (whether it meets the con- 555

straints (2)-(6)) is examined. If feasible, it is retained into the 556

descendant population to form N feasible chromosome at each 557
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generation. The fitness of each chromosome (i.e. objective (1))558

is computed via the low-fidelity model. Upon the termination559

of the algorithm, only retain the distinct solutions obtained560

from the T generations.561

Step 3: Set the group number K . Sort in an ascending order562

the fitness values of those solutions retained in Step 2. Then563

partition them equally into K groups, following an ascending564

order.565

• Exploitation based on the high-fidelity simulation566

Step 4: Set the initial sampling budget B0 (i.e., number of567

simulation runs). Assign each candidate solution group with568

B0/K sampling budget. Randomly sample B0/K solutions569

from each group and run the high-fidelity simulation exactly570

one time on each of the selected solutions. Collect the sim-571

ulation results and compute the initial group-specific sample572

statistics information (i.e., sample mean ν̂0 := (ν̂0
1 , . . . , ν̂0

K )573

and sample standard deviation σ̂ 0 := (σ̂ 0
1 , . . . , σ̂ 0

K )).574

Step 5: Set the total budget B , and the sampling budget575

in iteration 1, B1. Set the decrement of sampling budget over576

two consecutive iterations 
. Set the iteration index i = 1.577

Step 6: Select the best group bi−1 based on the sample578

mean ν̂i−1 in iteration i − 1. For any group k = 1, . . . , K ,579

allot its sampling budget in iteration i , i.e., Bi
k, according to580

the following relationship: 581

Bi
κ

Bi
κ ′

=
(

δ̂i−1
bi−1,κ ′

σ̂ i−1
κ ′

· σ̂ i−1
κ

δ̂i−1
bi−1,κ

)2

, ∀κ, κ ′ = 1, . . . K , (11) 582

Bi
bi−1 = σ̂ i−1

bi−1

√√√√ K∑
k=1,k �=bi−1

(Bi
k)

2

(σ̂ i−1
k )2

, (12) 583

K∑
k=1

Bi
k = Bi , (13) 584

where δ̂i−1
bi−1 ,k represents the sample mean difference between 585

groups bi−1 and k in iteration i−1 (i.e., δ̂i−1
bi−1 ,k = ν̂i−1

k − ν̂i−1
bi−1 ). 586

Step 7: Randomly sample Bi
k solutions from each group k = 587

1, . . . , K . Run the high-fidelity simulation exactly one time on 588

each of the sample solutions. Collect the simulation results 589

and update the group-specific sample statistics information 590

(i.e., sample mean ν̂i := (ν̂i
1, . . . , ν̂

i
K ) and sample standard 591

deviation σ̂ i := (σ̂ i
1, . . . , σ̂

i
K )). 592

Step 8: Set Bi+1 = Bi − 
. If there is remaining budget 593

(i.e., B −
i∑

a=1
Ba ≥ Bi+1), set i = i + 1 and go to Step 6. 594

Otherwise, STOP and output the best solution over the past i 595

iterations. 596

ωH
j =





 µH

j p
H
j

1 − pH
j


 1

µH
j − λ j (x, y)

− e
−
(
µH

j −λ j(xH ,xL ,y)
)
bH λ j

(
xH , xL , y

)
(
µH

j − λ j
(
xH , xL , y

))
µH

j


+ 1




−1

, if ρH
j �= 1,

λ j
(
xH , xL , y

)
λ j
(
xH , xL , y

)+ µH
j pH

j

1−pH
j
(1 + λ j

(
xH , xL , y

)
bH )

, if ρH
j = 1,

ωL
j =





 µL

j p
L
j

1 − pL
j


 1

µL
j − λ j

(
xH , xL , y

) − e
−
(
µL

j −λ j(xH ,xL ,y)
)
bLλ j

(
xH , xL , y

)
(
µL

j − λ j
(
xH , xL , y

))
µL

j


+ 1




−1

if ρL
j �= 1,

λ j
(
xH , xL , y

)
λ j
(
xH , xL , y

)+ µH
j pLj

1−pLj
(1 + λ j

(
xH , xL , y

)
bL)

if ρL
j = 1,

WH
j

(
λ j
(
xH , xL , y

)) =




ωH
j µH

j p
H
j

[
1 −

(
µH

j − λ j
(
xH , xL , y

))
bH · e−

(
µH

j −λ j(xH ,xL ,y)
)
bH − e

−
(
µH

j −λ j(xH ,xL ,y)
)
bH
]

(
1 − pBH

j

)(
1 − pH

j

)(
µH

j − λ j
(
xH , xL , y

))2 if ρH
j �= 1,

ωH
j b

2
H

2
(

1 − pBH
j

) µH
j p

H
j

1 − pH
j

if ρH
j = 1.

WL
j

(
λ j
(
xH , xL , y

))=




ωL
j µ

L
j p

L
j

[
1 −

(
µL

j − λ j
(
xH , xL , y

))
bL · e−

(
µL

j −λ j(xH ,xL ,y)
)
bL − e

−
(
µL

j −λ j(xH ,xL ,y)
)
bL
]

(
1 − pBL

j

)(
1 − pL

j

)(
µL

j − λ j
(
xH , xL , y

))2 if ρL
j �= 1,

ωL
j b

2
L

2
(

1 − pBL
j

) µL
j p

L
j

1 − pL
j

if ρL
j = 1.
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Fig. 1. The spatial distribution of sub-districts1 .

IV. CASE STUDY597

In this section, we present a real-world case study. For the598

case study, we used the multi-hospital system in Shanghai599

as the real-world context. We aimed to answer the following600

questions: (1) where new hospitals of either type should be601

built and what existing DHs should be upgraded; (2) what hap-602

pens to the design of the hospital system with the emergence603

of population center; and (3) what happens to the design of604

the hospital system if the redesign budget increases. Through605

this real-world case study, we expect to offer system redesign606

recommendations to the Shanghai municipal government.607

A. Background608

In Shanghai, there are 16 administrative districts, or equiv-609

alently 230 administrative sub-districts (available from http://610

www.shanghai.gov.cn/). These sub-districts can be labeled611

as central urban area, semi-central semi-suburban area, and612

suburban area; see Figure 1. Table X in Appendix B lists the613

district names and the corresponding population distribution.614

In our model, we used the 230 sub-districts in Shanghai to615

identify the care demand and provision sites. The current616

system comprises 285 hospitals, 39 of which are CHs, 246 are617

DHs; see Figure 2–3. Tabulation on the 2010 Population618

Census of the People’s Republic of China by Township (avail-619

able from www.stats.gov.cn/) provides the population quantity620

of permanent residents at each of the 230 sub-districts in621

Shanghai; see Table XI and Figure 1. Figure 2 shows that622

most of the CHs are located in central urban areas, where the623

population is only 30.35% of the total population of Shanghai.624

The two-week consultation rate for outpatient services is625

reported to differ by age [52]. In our case study, we divided the626

1Sub-districts with more population correspond to larger points.

Fig. 2. Current location of CHs.

Fig. 3. Current location of DHs.

age group into two groups: 0-64 years old and over 65 years 627

old. From the Shanghai Statistics Year Book (available from 628

www.tjj.sh.gov.cn/), we extracted the population of either age 629

group, and derived the outpatient service demand in two 630

weeks based on the consultation rate. By assuming seven 631

work days per week and 8 work hours per day, we converted 632

the population quantity into the unit-time outpatient service 633

demand from either age group, to calculate the mean arrival 634

rate. Finally, based on the real data of patient service time 635

at partnering CHs (Ruijin hospital and Shanghai No. 6 Peo- 636

ple Hospital) and DHs (Xujiahui Street Community Health 637

Service Center, Longhua Street Community Health Service 638

Center, and Hongmei Street Community Health Service Cen- 639

ter) between 2015–17, we estimated the mean service rates at 640

CHs and DHs. 641
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TABLE I

CHOICE MODEL COEFFICIENT ESTIMATION RESULTS

B. Choice Modeling Results642

To characterize how patient hospital visit behaviors are643

influenced by the hospital type and distance to hospital,644

we designed a questionnaire (see Appendix A). We admin-645

istered an online survey with the questionnaire in Septem-646

ber 2021 on a Chinese internet survey platform (www.647

wenjuan.com). A total of 1018 respondents in Shanghai par-648

ticipated in our study, and 997 of which were deemed valid649

samples. The respondents are anonymous and the data source650

is reliable.651

In the questionnaire, we presented the following scenario.652

We asked each respondent to imagine that she experienced653

fever and cough, accompanied by chest tightness, shortness654

of breath and other symptoms. This is likely a respiratory655

disease. As a result, the respondent would like to make an656

outpatient visit. We then provided each respondent a choice657

card containing two hospitals identified by distance and type.658

The hospital attributes were randomly generated. We set a659

plausible range of distance on each hospital, from which we660

drew uniform samples. The lower bound of the distance range661

on DH is 0 and the upper bound is 3 kilometers. The lower662

bound of the distance range on CH is 1 and the upper bound663

is 30 kilometers.664

With the behavior experiment data, we parameterized a665

choice model for either age group. Table I presents our choice666

model results, i.e., respective estimates of parameters βr
d and667

βr
q from equation (7). We verified that for both age groups, the668

attribute hospital type is significant and positively correlates669

to the hospital choice, suggesting that patients prefer a CH670

than a DH when the distances to the two hospitals being671

equal. Our results also verified that for both age groups,672

the attribute distance to hospital is a factor as significant as673

hospital type. That is, when hospital type being equal, the674

shorter the distance is, the more likely the patient is to visit it.675

In addition, by comparing the probabilities of choosing CH676

between the two age groups (see Appendix C), we found677

that when the differences between traveling to DH and to CH678

are the same for the two age groups, (1) patients aged 0-64679

are less likely to choose to visit CH than patients aged 65+680

if the distance between CH and DH is relatively large, and681

(2) patients aged 0-64 are more likely to choose to visit CH682

than patients aged 65+ if the distance between CH and DH is683

relatively small.684

C. Network Redesign Results685

In this section, we report three Shanghai-based case stud-686

ies. Through interviews with managers of some hospitals in687

Shanghai, we are able to obtain reasonable weight coefficient 688

and each cost in the objective function. We set CdH , CdL , CWH , 689

and CWL , the per kilometer travel cost of CH and DH, and the 690

per hour waiting cost of CH and DH, to be 1.8 RMB/kilometer, 691

2 RMB/kilometer, 12 RMB/hour, 8 RMB/hour, respectively. 692

We also set αd , the weighting coefficient of distance, to be 0.4, 693

and αW , the weighting coefficient of waiting times, to be 0.6. 694

We set the upper bounds of the balking probability at CH 695

and DH, i.e., θH and θL , to be 0.2 and 0.3, respectively. The 696

cost of land acquisition and facility construction for locating 697

a CH and DH is from literature [53] and [54] and website 698

(www.sohu.com/). We set κH
x , κ L

x , the cost of land acquisition 699

and facility construction for locating a CH and a DH, to be 700

1.4×108 RMB and 3×106 RMB, respectively, κy , the costs of 701

upgrading a DH, to be 1.37 × 108 RMB, and TB , the redesign 702

budget, to be 2 × 109 RMB. Through field investigation at 703

hospitals, we estimated the service rates of a CH and a DH 704

to be µH
j = 100 patients/hour and µL

j = 10 patients/hour, and 705

by conducting small-scale investigations in several hospitals 706

into the threshold on the wait time tolerance, we specified the 707

threshold at CH to be bH = 2 hour and the threshold at DH 708

to be bL = 0.5 hour. We then set the lower bounds for the 709

proportion of CHs and DHs at which the balking probability 710

does not exceed bH and bL according to experience, i.e., φH 711

and φL , to be 0.8 and 0.7, respectively. Finally, we assumed 712

each patient balks at most twice in the simulation model. 713

For the implementation of our multi-fidelity optimization 714

approach, we set the number of groups K = 6, initial sampling 715

budget B0 = 30, total iteration budget B = 90, budget 716

of iteration 1 B1 = 26, and budget decrement over two 717

consecutive iterations 
 = 4. In the GA algorithm, we set 718

the population size N = 40, and the number of generations 719

T = 600. 720

Study 1: What are the changes of the care network through 721

the proposed redesign? 722

Figure 4 displays that 3 new CH and 24 new DHs are built 723

and 11 existing DHs are upgraded in the optimal redesign. CHs 724

in the current network are mainly clustered in central city (see 725

Figure 2), whereas the location of new CHs in the optimal 726

redesign is more dispersed (see Figure 4a). Taking a close 727

look at the optimal location, we noticed that some suburbs 728

with large populations, such as Baoshan District, Songjiang 729

District, and Minhang District, add CHs. Upgraded DHs are 730

also distributed in suburban areas that previously had no CHs 731

or few CHs, such as Songjiang District and Baoshan District. 732

This can be explained as follows. Relatively scattered CHs 733

in the optimally redesigned network would be conveniently 734

accessible to surrounding residents that still primarily concern 735

the distance to hospital when choosing which hospital to visit. 736

Moreover, new DHs in the optimal redesign are dispersed in 737

each district. These results imply that the hospital network 738

redesign is aligned with the expansion and dispersion of 739

residential communities. 740

We compared the waiting time and traveling distance for 741

accessing care between the optimally redesigned network and 742

the current network. For the interest of space, we term two 743

outcome measures as wait time and distance. Table II indicates 744

that the optimal redesign, mostly with upgrading existing DHs 745
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Fig. 4. Location for new CHs and DHs in the optimal redesign.

and building new DHs, reduces mean CH and DH wait times746

and mean DH distance to some extent. On the other hand, the747

mean CH distance slightly increases. Most of the observations748

are intuitive and only the last piece deserves a bit explanation.749

Unlike the locations of existing CHs, new CHs are often750

built far away from central city to cover recently appeared751

residential communities. Given that residential communities752

are still mostly concentrated at central city, some of those753

central-city dwellers may have to travel to suburban CHs754

with the redesigned network. Such slight inconvenience is755

largely offset by the increase in care access across the board756

with much reduced in-facility wait time. Note that Chinese757

patients have traditionally the tendency of visiting CHs without758

minding much the travel distance or even the waiting time. For759

more information, please refer to Appendix D.760

TABLE II

PERFORMANCE COMPARISON BETWEEN THE OPTIMALLY REDESIGNED
CARE NETWORK AND THE CURRENT NETWORK

Furthermore, to discuss the benefit of Exploitation of the 761

multi-fidelity optimization, we compare the inputs and outputs 762

of Exploration and Exploitation respectively. We take the best 763

solution obtained by low-fidelity model (Exploration) as the 764

input (shown in Figure 5), and run the high-fidelity simulation 765

to obtain the performance measures, such as wait time and 766

distance as outputs of Exploration procedure. As for the 767

Exploitation procedure, its input is the best solution obtained 768

through the multi-fidelity optimization approach (shown in 769

Figure 4). And the performance measures obtained from the 770

high-fidelity simulation, such as wait time and distance, are 771

the outputs of Exploitation procedure. Figure 5a displays the 772

optimal 14 new CHs, including 3 newly built and 11 upgraded. 773

Comparing Figure 4a and Figure 5a, the main difference is 774

the locations of some CHs in the three suburbs of Minhang 775

District, Jiading District, and Songjiang District. The location 776

of new CHs in the Exploitation procedure is more dispersed, 777

so as to meet the care needs of suburban residents as much 778

as possible. By comparing the outputs of Exploration and 779

Exploitation (see Table III), we find the objective function 780

value, the mean CH and DH wait times, and the mean CH 781

and DH distance obtained from Exploitation are all smaller 782

than those from Exploration, which verifies the effectiveness 783

of Exploitation. 784

Study 2: What is the impact on the optimal network redesign 785

from the emergence of population center? 786

Next we assumed the emergence of a new population 787

center somewhere in Shanghai (say e.g., Qingpu District– 788

QPD, a northwest suburb) and compared the optimal network 789

redesign before (i.e., optimal design from Study 1) and after. 790

This study was inspired by the trend of Shanghai’s rapid 791

changing spatial distribution of its population. In this study, 792

we increased the population quantity of some sub-district far 793

from the city center (see Table IV) and kept other model 794

parameters the same as before. 795

Figures 6 displays that 4 new CHs and 23 new DHs are built 796

and 10 existing DHs are upgraded. Compared with Study 1, 797

we noticed that 2 new CHs in Songjiang District are located 798

towards the new population center. For two adjacent districts of 799

Qingpu District, two CHs in Songjiang District are removed 800

and one CH in Minhang District are moved to the remote 801
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Fig. 5. Location for new CHs and DHs in the low-fidelity model.

area. On the other hand, one CH are built in Fengxian District802

and one CH are located in remote area of Pudong District,803

which intuitively is used to meet the care access requirement804

by residents in suburban area. The rest of the network is similar805

to Study 1.806

Further, we compared the optimal redesign of this study807

with that from Study 1, in terms of the wait time and distance.808

Table V indicates that the mean CH wait time has a slight809

increase compared to before, whereas the other three outcomes810

hardly change. The performance comparison suggests reason-811

able robustness with the optimal network redesign in response812

to modest changes in the spatial population distribution.813

Study 3: What is the impact on the optimal network redesign814

from the increase of redesign budget?815

In this study, we increased the government budget for the816

network redesign. We kept the other model parameters the817

TABLE III

PERFORMANCE COMPARISON BETWEEN THE LOW-FIDELITY MODEL
(EXPLORATION) AND THE HIGH-FIDELITY MODEL (EXPLOITATION)

TABLE IV

POPULATION SIZE OF THE SELECTED SUB-DISTRICTS

TABLE V

PERFORMANCE COMPARISON WITH EMERGENCY OF

A NEW POPULATION CENTER

same as in Study 1. First, we increased the budget from 2×109
818

RMB to 3 × 109 RMB. 819

Figure 7a displays the optimal location of 21 new CHs, 820

including 6 newly built and 15 upgraded, with the increased 821

budget. Compared with the baseline optimal redesign, new 822

CHs appear in central city and on the periphery of the 823

suburbs. This can be explained as follows. The central urban 824

area in Shanghai have relatively densely populated residential 825

communities. Thus, when the budget is sufficient, adding CHs 826

in central city has a better chance to achieve the system-wide 827

requirement on care access. Figure 7b displays the optimal 828

location of 15 newly built DHs. Compared with Study 1, the 829

newly built DHs in Study 3 are decreased for the reason that 830

the construction budget should be allocated to the scarce CHs 831

as much as possible. Table VI shows that the mean CH and DH 832

wait times decrease significantly, but the mean CH distance 833

increases slightly. This is also because Chinese patients have 834
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Fig. 6. Location for new CHs and DHs after the emergence of the new
population center.

the tendency of visiting CHs without minding much of the835

travel distance. On the other hand, the mean DH distance836

decreases slightly.837

We further increased the budget to B = 4 × 109. Figure 8a838

displays that the optimal location of 28 CHs, including 9 new839

built and 19 upgraded. Compared to previous optimal location840

(i.e., B = 3×109), the number of new CHs and DHs increases841

and the distribution of CHs and DHs is more scattered. Further,842

the suburban area that previously had no CHs, such as Qingpu843

District and Jingshan District, has a new CH. Table VIII shows844

that the mean CD and DH wait time further decreases as the845

number of new CHs and DHs increases, and the mean CH846

distance decreases and mean DH distance increases slightly.847

In addition to analyzing the impact of redesign budget848

on optimal network redesign, we next briefly analyze the849

Fig. 7. Location for new CHs and DHs with B = 3 × 109.

impact of other parameters on system design. When decision 850

makers pay more attention to the proximity of patients’ visit 851

to hospitals, i.e. αd > αW , the locations of CHs and DHs 852

tend to be located in communities with large populations. 853

When the threshold on the wait time tolerance at CH ( i.e.,bH ) 854

decreases, more CHs will be built to meet patients’ care need. 855

And conversely, when the threshold at CH bH increases, less 856

CHs need be added. Similarly, for bL , when the threshold at 857

DH decreases, more DHs will be built to meet patients’ care 858

need. And when the threshold at DH increases, less DHs need 859

be added. 860

Study 4: What is the impact on the optimal network redesign 861

considering patients with different income levels? 862

In this case study, we categorized patients by income 863

level. With the behavior experiment data, we parameterized 864
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Fig. 8. Location for new CHs and DHs with B = 4 × 109.

TABLE VI

PERFORMANCE COMPARISON WHEN THE BUDGET

INCREASES FROM 2 × 109 TO 3 × 109

a choice model for two income groups (0-10000 RMB and865

over 10000 RMB). Table VII presents the respective estimates866

Fig. 9. Location for new CHs and DHs when considering patients with
different income levels.

of parameters βr
d and βr

q . From the result, we verified that for 867

both income groups, the attribute hospital type is significant 868

and the positive estimate of the parameter βr
q suggests that 869

patients prefer a CH than a DH when the distances to the two 870

hospitals being equal. Our results also verified that for both 871

income groups, the attribute distance to hospital is a significant 872

factor. That is, when hospital type being equal, the shorter the 873

distance is, the more likely the patient is to visit it. 874

Figure 9 displays that 5 new CHs and 36 new DHs are 875

built and 16 existing DHs are upgraded, with the budget B = 876

3 × 109. CHs are mainly clustered in central city, and five 877

new CHs is located in suburban area with large populations, 878

i.e., Minhang District and Songjiang District (see Figure 9a). 879

Similar to Study 3 with B = 3×109, because of the relatively 880

dense population in the central urban area, it is more likely to 881

meet the system-wide care access needs by adding CHs in the 882

central urban area when the budget is sufficient. And new DHs 883
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TABLE VII

CHOICE MODEL COEFFICIENT ESTIMATION RESULTS
FOR DIFFERENT INCOME GROUPS

TABLE VIII

PERFORMANCE COMPARISON WHEN THE BUDGET FURTHER INCREASES

FROM B = 3 × 109 AND STUDY WITH B = 4 × 109

TABLE IX

CHANGES IN PERFORMANCE WHEN CONSIDERING PATIENTS

WITH DIFFERENT INCOME LEVELS

in the optimal redesign are dispersed in each district, as shown884

in Figure 9b. The hospital network redesign is aligned with the885

expansion and dispersion of residential communities.886

Table IX indicates that the mean CH distance has a slight887

increase compared to Study 3 with budget B = 3 × 109,888

whereas the other three outcomes change less. This can be889

explained as follows. Compared with Figure 7a, CHs in890

Figure 9b are more concentrated in central city, which leads891

to a longer distance for suburban patients to CH. The slight892

inconvenience to visit CH is largely offset by the increase in893

care access across the board with much reduced in-facility wait894

time at CH.895

V. CONCLUSION AND FUTURE RESEARCH 896

Healthcare capacity expansion and spatial redistribution 897

needs to coordinate with care-seeking behavior, population 898

change, and government budget. A well redesigned hospital 899

network is expected to improve care access for the entire pop- 900

ulation without incurring significant spending on establishing 901

new hospitals and upgrading the existing ones. 902

In this paper, we studied the optimal network redesign 903

problem for a two-tier hospital network consisting of cen- 904

tral hospitals and district hospitals, which was inspired 905

by real challenges in Chinese metropolitan areas. In our 906

study, we developed (1) a multinomial logit choice model 907

to characterize hospital visit behaviors of different patient 908

groups; (2) a queuing network model with consideration 909

of patient balking and choice model derived arrival rates; 910

(3) a multi-fidelity optimization approach with the queuing 911

network model being low-fidelity and a self-developed simu- 912

lation being high-fidelity; and (4) a case study based on the 913

hospital network of Shanghai municipality. Our study makes 914

two contributions: (1) integrating choice models of multiple 915

patient types into multi-type facility network redesign opti- 916

mization with queuing performance measures in the objective; 917

(2) embedding genetic algorithm into the multi-fidelity opti- 918

mization framework, which speeds up the execution of discrete 919

location optimization based on the low-fidelity queuing net- 920

work model; and (3) conducting a proof-of-the-concept case 921

study based on real-world data for Shanghai, a place of immi- 922

nent need, with anticipation that we will make meaningful 923

recommendation to Shanghai’s healthcare system. However, 924

limitation still exist. In the choice model, the current work only 925

analyzes the impact of distance and hospital type on patients’ 926

choice behavior in the situation where CH is more crowded 927

than DH, but do not analyze the impact of specific waiting 928

time of each hospital as one of the attributes in the choice 929

model. 930

The key findings of the patient hospital visit choice model- 931

ing are (1) hospital type (central vs. district) and distance to 932

hospital are influential factors in patient behavior; (2) younger 933

patients are less likely to choose CH than older patients if 934

the distance between CH and DH is relatively large, and 935

younger patients are more likely to choose CH than older 936

patients if the distance between CH and DH is relatively small. 937

Through the location analysis in our case study, we can make 938

recommendations on care facility expansion and dispersion 939

to better align with the spatial distribution of residential 940

communities. 941

We plan to pursue further research in the following direc- 942

tions. First, we plan to incorporate additional factors such 943

as the detailed waiting time into the choice model. Thus, 944

arrival rate and waiting time will affect each other, and then 945

need to solve the equilibrium problem between them, which 946

will make the model more complex and interesting. Second, 947

we will introduce additional heterogeneity among hospitals 948

such as differentiated pricing in medical services, and further 949

set the multi-service pricing decision in a model extension. 950

Moreover, we will investigate the robustness of the optimal 951

network design in face of further population aging in the 952

coming decades. 953
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APPENDIX A954

THE HOSPITAL VISIT CHOICE BEHAVIOR QUESTIONNAIRE955

In this appendix, we present the questionnaire we used to956

survey a cohort of online respondents and model the hospital957

visit choice behavior in Shanghai. The questionnaire is orig-958

inally written in Chinese. We provide its English translation959

here.960

A. Introduction961

You are being invited to take part in a research study about962

hospital visit choices. Please note that there are no right or963

wrong answers to any questions in this questionnaire. We are964

only interested in your opinions and feedback. Your kind and965

valid response will help the Shanghai municipal government966

develop better hospital network and will help make you feel967

more satisfied about the accessibility of hospitals in the future.968

This questionnaire should take approximately 3-5 minutes to969

complete.970

We assure you that the responses you provide will not be971

linked to any personal identifiable information. Your partic-972

ipation in this study is on a voluntary basis and you are973

free to withdraw from the study at any time without penalty.974

We thank you again for your willingness to participate in this975

study. Please feel free to contact us if you need any additional976

information about this project.977

B. Section 1: Basic Information978

The first section of the questionnaire includes questions979

about your demographics and other related information.980

We will only use your responses to these questions to compare981

across survey participants. We assure you that your privacy is982

protected.983

1) What is your gender?984

a) Female b) Male985

2) Which of the following categories does your age falls986

into?987

a) 0-18 b) 19-34 c) 35-49988

d) 50-64 e) 65-69 f) over 70989

4) What’s your occupation?990

a) Unemployed b) Student991

c)
Employees of state-owned
enterprises and institutions

d)
Self-employed or
private owners

992

e)
Employees of private
or foreign companies

f) Peasant993

g) Worker h) Retired994

i) Other (Please specify)995

5) Which of the following income groups includes your996

monthly individual income997

a) less than 3000 RMB b) 3000-5000 RMB998

c) 5000-10000 RMB d) 10000-30000 RMB999

e) over 30000 RMB1000

C. Section 2: Choice Scenario1001

In the following, we will present a scenario where we would1002

like you to choose whether to go to a central hospital or a1003

community-based hospital. Please note that there are no correct1004

TABLE X

DIVISION OF SHANGHAI AND THE CORRESPONDING
PROPORTION OF POPULATION

or incorrect responses, and your choice should be based on 1005

your own preferences, experiences, and specific needs. 1006

Suppose you had fever and cough with headache, muscle 1007

pain and other symptoms, you would go to a hospital in need 1008

of basic medical service, e.g., an outpatient consultation. Imag- 1009

ine you have two options, either going to a central hospital, 1010

i.e., a CH, or a community-based hospital, i.e., a DH. Please 1011

note that in Shanghai, CH is more crowded than DH, and the 1012

access time (indirect waiting time to get an appointment) to 1013

CH is usually longer than that to DH. 1014

APPENDIX B 1015

ADDITIONAL INFORMATION ON DISTRICTS AND 1016

SUB-DISTRICTS OF SHANGHAI 1017

Table X and XI list the relevant data on districts and 1018

sub-districts of Shanghai, respectively. 1019

APPENDIX C 1020

EXPLANATIONS ABOUT THE CONCLUSION 1021

ON SECTION IV-B 1022

Without loss of generality, we assume that there are a CH 1023

and a DH, and patients choose one hospital according to their 1024

preference modeled by equation (7). Based on the coefficient 1025

estimation results in Table I, the probabilities of choosing the 1026

CH for the two types of patients are given by equation (14) 1027

and (15). 1028

p0-64
C = e(−0.085∗d0-64

C +1.099∗qC+0.108)

e(−0.085∗d0-64
C +1.099∗qC+0.108) + e(−0.085∗d0−64

D +1.099qD+0.108)
1029

= 1

1 + e(−0.085∗(d0-64
D −d0-64

C )+1.099∗(qD−qC ))
; 1030

(14) 1031
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TABLE XI

POPULATION QUANTITY OF EACH SUB-DISTRICT IN SHANGHAI
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p65+
C = e(−0.042∗d65+

C +0.541∗qC+0.150)

e(−0.042∗d65+
C +0.541∗qC+0.150) + e(−0.042∗d65+

D +0.541∗qD+0.150)
1032

= 1

1 + e(−0.042∗(d65+
D −d65+

C )+0.541∗(qD−qC ))
. (15)1033

Note that qC (qD) represents the indicator variable for the CH1034

(DH), and qC = 1, qD = 0. d0-64
C (d0-64

D ) is the distance for a1035

patient aged 0-64 to travel from his/her residential site to a1036

CH (DH), and d65+
C (d65+

D ) is the distance for a patient aged1037

65+ to travel. The probability of choosing the CH can thus1038

be further derived as:1039

p0-64
C = 1

1 + e(−0.085∗(d0-64
D −d0-64

C )−1.099)
;1040

p65+
C = 1

1 + e(−0.042∗(d65+
D −d65+

C )−0.541)
.1041

When the differences between traveling to the DH and1042

traveling to the CH are the same for the two age groups of1043

patients (i.e., d0-64
D − d0-64

C = d65+
D − d65+

C = 
d), we have1044

−0.085 ∗ 
d − 1.099 − (−0.042 ∗ 
d − 0.541) = −0.043 ∗1045


d − 0.558.1046

If 
d < −12.98 km, then −0.043 ∗ 
d − 0.558 > 0, and1047

we have p0-64
C < p65+

C , which means that younger patients are1048

less willing to choose a CH than older patients when a CH is1049

far away from a DH. On the contrary, If 
d > −12.98 km,1050

then −0.043 ∗ 
d − 0.558 < 0, and we have p0-64
C > p65+

C ,1051

which means that younger patients are more willing to choose1052

a CH than older patients when a CH is not two far away from1053

a DH.1054

APPENDIX D1055

MATHEMATICAL EXPLANATIONS FOR1056

THE CONCLUSION OF STUDY 11057

Before the optimization of the hospital system, for patients1058

at any residential site i who choose CH, we denote their1059

probability of going to an existing CH j as pH
i j , i ∈ I, j ∈ JH .1060

Thus we have
∑
j∈JH

pH
i j = 1,∀i . The mean distance from site1061

i to these existing CHs, denoted as d̄ H
i , is expressed as1062

d̄ H
i =

∑
j∈JH

di j p
H
i j , ∀i ∈ I. (16)1063

Without loss of generality, when a new CH is located at site1064

j ′ ∈ J ∪ JL after the optimization, the probability of patients1065

at residential site i visiting CH at site j ∈ JH or the new CH1066

at site j ′ ∈ J ∪ JL is denoted by pH
i j

′
and pH

i j ′
′
, respectively.1067

We can derive the expression as follows.1068 ∑
j∈JH

pH
i j

′ + pH
i j ′

′ = 1, ∀ j ′ ∈ J ∪ JL (17)1069

The mean distance from site i to all CHs after the recon-1070

figuration is represented as1071

¯dH
i

′ =
∑
j∈JH

di j p
H
i j

′ + di j ′ p
H
i j ′

′
(18)1072

The MNL model we used to quantify patient choice behav-1073

ior has the property of independence of irrelevant alternatives1074

(IIA). That is, the ratio of choice probabilities of any two1075

alternatives is independent of the systematic utilities of any1076

other alternatives [55]. For example, pH
i1/p

H
i2 = pH

i1
′
/pH

i2
′
. 1077

Therefore, we can obtain the following equation. 1078

pH
i j

′ = pH
i j ·
(

1 − pH
i j ′

′)
, ∀i ∈ I, j ∈ JH , j ′ ∈ J ∪ JL . (19) 1079

Thus, the mean distance ¯dH
i

′
can be expressed as 1080

¯dH
i

′ =
∑
j∈JH

di j p
H
i j

′ + di j ′ p
H
i j ′

′
1081

=
∑
j∈JH

di j p
H
i j

(
1 − pH

i j ′
′)+ di j ′ p

H
i j ′

′
1082

= d̄ H
i

(
1 − pH

i j ′
′)+ di j ′ p

H
i j ′

′
1083

= d̄ H
i + pH

i j ′
′(
di j ′ − d̄ H

i

)
, ∀i ∈ I, j ∈ JH , j ′ ∈ J ∪ JL 1084

(20) 1085

When di j ′ > d̄ H
i , we will get ¯dH

i

′
> d̄ H

i . In other words, 1086

if the distance from the new CH j ′ to residential site i is larger 1087

than the mean distance from existing CHs to residential site i , 1088

the mean distance from site i to all CHs in the reconfigured 1089

network will increase. In contrast, when di j ′ < d̄ H
i , then 1090

¯dH
i

′
< d̄ H

i , implying that if the distance from the new CH 1091

j ′ to residential site i is smaller than the mean distance from 1092

existing CHs to residential site i , the mean distance from site 1093

i to all CHs in the reconfigured network will decrease. 1094
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