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Abstract

In many countries, medical services are delivered through a multi-hospital network where a patient
may have unlimited choices to different points of access to care. Due to various reasons, such
a network may experience substantial workload imbalance. One way to address this challenge
relies on government providing higher subsidy to incentivize patients to visit hospitals with low
workload /utilization. In this research, we studied the problem of optimal government-to-patient
subsidy differential (G2P-SD) policy design. We first formulated the problem with a nonlinear
optimization model to minimize the total social cost (i.e., the cost of weighted wait time plus
government subsidy spending) subject to the minimum workload requirement. Then we used
a discrete choice model with real-world data to identify the significant influence of G2P-SD on
patient hospital visit choice and numerically specified the rates of patient arrivals at a multi-
hospital outpatient care network accordingly. We next developed a large-scale two-level queuing
network to analyze the impact of G2P-SD on patient flows within the service network. We defined
funding efficiency as a potential indicator to policy makers for effective budget allocation among
various types of patients. Our study verified the effectiveness of modifying the G2P-SD policy,
i.e., average wait time at high-workload hospitals is reduced by 26.63%, and that at low-workload
hospitals is increased by 4.8%. Furthermore, our study suggested the benefit of further tailoring the
policy design with consideration of influential patient attributes, which leads to a further reduction

in wait time at high-workload hospitals in our Shanghai-based case study.
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1. Introduction

In the United States, supported by rigorous and comprehensive outcome studies, clear guidance

is basically implemented on outpatient care pathway to specify where to access care and what care
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pathway to take for each type of patients with occurring acute conditions. For simple medical needs
such as outpatient consultation for flu-like symptoms, patients usually go to see their primary care
physicians at local hospitals (or local clinics, community-based hospitals/health centers). The
doctors often serve as “gatekeepers” to make referrals to specialty care providers (often at general
hospitals) only if the specialty care is deemed necessary from a medical point of view. To the
contrary, in many other countries including China, even though local clinics are promoted by the
government as the initial point of access to care, no clear guideline is implemented to standardize
care access and transition. Patients needing “generalist care”, such as those needing outpatient
consultation for flu-like symptoms, usually prefer to visit comprehensive hospitals and experienced
physicians instead [1]. On the provider side, experienced specialists, however, have to spend
noticeable proportion of their worktime providing basic medical care. With shorthand notation,
we refer to patients needing generalist care as GC patients.

Further, in China, the hospital system is tiered and hospitals are rated into nine tiers. Reputable
general hospitals in large cities are rated on top. They receive generous financial support from the
government and retain majority of the most qualified specialists. Local health centers in inland
and rural areas are rated towards low. They can provide basic medical services but do not have
the capacity of offering specialist care. The hospital rating exacerbates the crowding situation at
general hospitals. Many Chinese patients are known to have the tendency of seeking care only at
top-rated hospitals regardless of their acuity and need. As a result, longer wait times are incurred
to patients in critical need of specialist care, which is evident to increase their dissatisfaction and
mortality [2]. With shorthand notation, we refer to patients needing specialist care as SC patients.
Meanwhile, longer worktime and over time are incurred to the providers, especially experienced
and most qualified providers, which is evident to increase the incidence of their malpractice due to
exhaustion [3]. On the other hand, with lower than expected service demand, local hospitals often
experience low workload and low resource utilization. The phenomenon of workload/utilization
imbalance is further exacerbated by the prevailing mentality among Chinese people that highly
rated general hospitals can provide better care regardless of the need and by the strong mistrust
on the safety and quality of care (even basic care) delivered by lowly rated local hospitals.

The challenge of workload imbalance among hospitals is known in many parts of the world,
perhaps for different causes. Similar to China, many patients in South Africa go straightly to
general hospitals for minor issues without prior consultation in local primary care centers [4]. In
Japan, access to regional /national public hospitals is sometimes abused. Many GC patients prefer
to go directly to regional/national public hospitals emergency departments rather than receiving
more appropriate primary care services in community-based clinics [5]. For another example,
the United Kingdom, Australia, and Hong Kong, have both free public hospitals and paid private
hospitals. In these standard well-functioning two-level hospital system, patients usually visit public

hospitals for government funded basic care. This has caused the overcrowding problem in public
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hospitals. On the other hand, some flexibility is allowed so that patients can access basic care at
private hospitals. Although patients must pay the services out of pocket, they experience little
waiting time. For the list of countries with tiered hospital systems, please refer to [6]. Without
loss of generality, we refer to a hospital with high workload as a HWH and a hospital with low
workload as a LWH, in the remainder of the paper.

Acknowledging the workload imbalance problem experienced in many countries, there is a need
to divert patient flows from HWHs to LWHSs in a multi-hospital care network. One viable way
to address this largely unmet need is to provide financial incentives to patients and encourage
them to access care at LWHs. In this paper, we consider for the government the macro-level
design problem of setting government-to-patient subsidy differentials (G2P-SDs) between HWH
and LWH under fee-for-service reimbursement for outpatient care. The objective is to alleviate the
issue of workload imbalance through providing patients with more subsidy at the right amount to
cover their medical expenses if they consider accessing care at LWHs (in other words, incentivizing
patients to visit LWHs). Meanwhile, the patient incentive design should consider the possibility of
patients transferring from LWH to HWH for necessary specialist care. More specifically, we consider
the setting where the government pays a higher percentage to cover the spending of medical services
if received at a LWH than at a HWH. Thus through offering the subsidy differential with higher
percentage on services received at LWH, the government expects under the minimum subsidy
spending, more patients to choose LWH, and consequently, more balanced workload between LWHs
and HWHs, Jess likeli ioc 1 of having the overcrowding issue at HWHs and lower total social
cost. For policy design, we considered a large-scale network with sizable numbers of HWHs and
LWHs (e.g., entire city of Shanghai which has 163 HWHs and 1039 LWHs), and made a universal
policy recommendation on G2P-SD to the government-in-charge, given patient characteristics and
policy influence on patient choice between HWH and LWH. With support of a carefully crafted
discrete choice experiment, we designed more precise G2P-SD policy based on not only patient age
(currently effective in Shanghai) but also other individual patient characteristics. Our research
is expected to provide an analytics framework for dealing with other government subsidy policy
design problems as well (e.g., governmental subsidy to individuals purchasing private insurance).

The following questions were answered in our research. One, what is the influence of G2P-SD
on patient choice between HWH and LWH? Two, what is the effect of patient choice on system
performance? Three, what is the optimal G2P-SD to each patient class? To answer these ques-
tions, we first modeled patient choice between HWH and LWH under the influence of G2P-SD.
We conducted a survey which includes a choice experiment on hospital visit for some outpatient
service by assessing respondents’ reactions to randomly generated G2P-SDs. We then developed
a discrete choice model that incorporates various individual patient characteristics as covariates.
We identified four influential attributes from the survey: age, income, medical insurance type, and

preconceived outcome difference between HWH and LWH. Note that preconceived outcome differ-
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ence means the difference in care outcomes between HWH and LWH preconceived by patients. To
answer the second question, we built a large-scale two-level queuing network to model dichotomous
patient arrivals and subsequent intra-network service processes. We demonstrated our problem-
solving approach by considering a stylized Chinese hospital system at a sizeable catchment area
in case studies. We developed a queueing network model and derived approximate closed-form ex-
pressions of performance measures (i.e., wait time, utilization rate, and service throughput) with
respect to G2P-SD. Finally, we formulated a nonlinear program to identify the optimal G2P-SD
for each patient class (defined by the covariates in the choice model) to achieve optimality in min-
imization of the weighted sum of HWH and LWH wait times and the government spending under
minimum workload requirement limitation. Furthermore, we proposed several subsidy policy de-
sign schemes to reduce the total social cost with the limited government subsidy budget in case
studies.

Similar challenges of service workload imbalance appear in many other service systems con-
taining multiple geographically disperse service providers/stations. For example, riders in a shared
vehicle system may choose to pick up and return a car (or bicycle) at a station convenient to them.
This may cause the geographical imbalance problem, i.e., an excessive number of idle vehicles at
some stations whereas riders can hardly rent a vehicle at some other stations (see e.g., [7], [8]).
We believe such a problem can be mitigated by altering the demand arrivals through differential
pricing among the stations, for which our proposed approach is also expected to be effective.

The main contributions of the paper are two folds. First, we are the first that embed discrete
choice model into optimal subsidy differential pricing policy design. For choice model, we obtained
real-world hospital choice experimental data from 2022 respondents in Shanghai, China, a region
suffering from serious intra-network workload imbalance. The optimal subsidy differential pricing
design effectively connects macro-level design of patient flow with operational-level performance
measures.

Secondly, we are the first to study the China’s G2P-SD policy design problem with real-world
case studies. Categorically speaking, the Chinese hospital system is a two-tiered system which
includes few HWHs in urban areas and economically more developed coastal regions, and many
more LWHs in rural and inland areas. We considered two distinct cohorts covered by two types
of medical insurance. In addition to validating the benefit of optimizing G2P-SD settings for
different age groups (an age-specific policy is currently in effect in Shanghai), our case study
suggested that the system performance could be further improved with consideration of income
level in the policy design and through reduction of preconceived outcome difference between HWH
and LWH. Moreover, we introduced the notion of funding efficiency, which could provide guidance
on adjusting the subsidy funding among patient classes.

The remainder of this paper is organized as follows. In Section 2, we present a brief literature

review on relevant research. In Section 3, we present the patient hospital choice model, the two-level
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queueing network. In the section, we also present the queuing performance optimization model.
Subsequently in Section 4, we illustrate our optimal subsidy differential design study through real-
world cases based on Shanghai. Finally, we draw conclusions and outline future research in Section

5.

2. Literature Review

In general, our work falls in the area of healthcare subsidy policy design and analysis. In this
section, we first focus on the relevant studies in this general area. Given the two distinct features
in our study, we will subsequently review the literature on modeling and choice model of patient
hospital visit.

We have only seen few OR/MS studies that optimize subsidy or subsidy differential to in-
centivize patients to visit hospitals with less workload and thus balance the workloads within a
multi-hospital network. However, all of the studies applied game theory. Qu et al. [6], the work
closest to ours in terms of the abstract problem setting, analyzed the interaction between a free
public healthcare system with delayed care access and a paid private healthcare system which is
delay-free. In their problem, patients are required to visit the public system first. To alleviate
overburden of the public system, patients in the public system are offered a subsidy to use private
service whenever their wait times exceed a preset threshold. The public system is modeled as an
M/M/1 queue with consideration of patient wait time. The private system does not concern its
wait time and is only measured by its service cost. To patients in the public system, they can
observe the current wait times and decide to join or balk the system. The authors developed styl-
ized queueing models within a game-theoretic framework, and compared various subsidy schemes
in the case where patient time-sensitivity is either identical or different. Aflaki and Andritsos
[9] conducted game-theoretical analysis based on M/G/1 queues for a single non-profit hospital
and a single for-profit hospital. By analyzing the long-run competition between the two types of
hospitals in three different system settings, the authors concluded that providing larger subsidy to
the for-profit hospital causes wait time at the non-profit hospital to increase. They also concluded
that in long run, providing larger subsidy to the non-profit hospital is more effective to reducing
total patient costs (i.e., waiting-related and monetary) than providing larger subsidy directly to
patients. Chen et al. [10] developed a mixed duopoly game to analyze the competition between a
paid private service provider and a free public service provider with incorporation of patient choice
between the providers. The objective of the private service provider is to maximize its expected
profit, while the objective of the public is to maximize its aggregate utility. Both private and public
providers are modeled as M/M/1 queues. The authors investigated the effect of offering service
recipients subsidy on the objective of each provider when the service price is either regulated or

not by the government.
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The above papers all applied some game-theoretic approach and offered insights into the effect
of subsidy policy design on improving queuing based performance measures. However, much of the
analysis relies on the analytical tractability enjoyed by stylized queuing models such as M/M/1 or
M/G/1. In addition, patient decision on access to care is assumed to be completely rational and it
is modeled mechanistically based on the trade-off between service delay and cost. Finally, subsidy
is not designed with consideration of patient demographic characteristics. These features prevent
them from generating truly meaningful recommendations on health service policy and practice. In
contrast, we considered a multi-hospital system with sufficiently many hospitals covering a large
catchment area. In the system, hospitals differ by capacity, and the patient’s balking behavior is
considered. In addition, we obtained real-world choice experimental data to model patient hospital
visit behavior and incorporated patient preferences in subsidy policy design.

More broadly speaking, one line of relevant research is on optimal service system design with
consideration of the relationship between service price (or subsidy) and demand. Celik and
Maglaras [11] investigated this relationship in the context of revenue management. The authors
assumed the demand rate is modeled as a function of the service price, and the inverse function
that maps achievable demand rate into the corresponding price exists. Then the demand rate is
viewed as the firm’s control, with which the inverse demand function infer the price accordingly.
The control problem is to maximize the expected profit by choosing admissible demand in the
forms of sequencing and expediting policies. The authors derived near-optimal dynamic pricing
strategies and lead-time quotation control policies.

To a lesser extent, studies related to our work also include optimal service scheduling/sequencing
in a stochastic service delivery network, which has seen much more development in the context
of hospital management. Several key issues are addressed in this area, including assignment of
patients to appointment slots (see e.g., [12], [13]), scheduling of regular patients with consideration
of randomly arrived walk-ins (see e.g., [14], [15] and [16]), design of admission control policy on
whether to accept or reject an arrival or batch arrivals (see e.g., [17], [18] and [19]).

Another stream of our study is the analysis of patient hospital visit choice behavior. Dis-
crete choice model is a behavior modeling approach that quantifies the occurrence likelihood of
an individual’s each possible choice from a set of mutually exclusive and collectively exhaustive
alternatives. It involves parameterized utility functions in terms of observable independent vari-
ables and unknown parameters whose values are estimated from a sample of observed choices made
by decision makers when confronted with a choice-making situation [20]. The approach has been
extensively used in marketing, econometrics and operations management; see e.g., [20], [21], [22],
[23] and [24] and the references therein. Common discrete choice models include logit, probit, and
mixed logit models, among which logit model is the most widely used for its explicitly expressable
and easily interpretable probability formula. Unlike other behavior modeling approaches, such as

structural equation modeling [25]; system dynamics [26]; and prospect theory [27], which focus on
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analyzing what factors influence behavior, a discrete choice model can specify the probability that
a decision maker chooses a particular alternative. This probability is expressed as a function of
observed variables that relate to the alternatives and the decision maker [28].

In health care, we have seen modeling studies on choosing which hospital to visit. Other studies
focus on choices of medical service (e.g., [29],[30], [31], [32]) and physician (e.g., [33], [34]). The
existing literature on hospital choice model suggests the following factors affecting patient’s hospital
choice behavior: provider attributes (price, equipment, capacity, etc.), patient attributes (age,
gender, income, etc.), medical convenience (e.g., distance). Bronstein and Morrisey [35] developed
a logistic regression model to study patient’s behavior on choosing between a metropolitan hospital
and a non-metropolitan hospital after deciding to bypass the nearest hospital. The authors found
that travel distance and hospital equipment are important factors for rural pregnant women in
Alabama. Coulter et al. [36] conducted a discrete choice experiment to investigate several factors
that affect patient hospital choice, including locality, travel distance and sector of employment (i.e.
public versus private). Borah [37] developed a mixed logit model to investigate patient outpatient
provider choice decision and found that price and distance to the facility play the key roles. Tai et
al. [38] developed a conditional logit model to study the behavior of bypassing the nearest hospital.
The authors found that distance to hospital, hospital bed size, service capacity, as well as patient
age, gender, marital status, are major factors among rural Medicare beneficiaries.

In addition, several studies conducted surveys on patient choice and preference in outpatient
care. These studies identified various attributes of outpatient care, and mainly focused on ana-
lyzing the impact of such attributes as delay to care, flexibility of appointment times, doctor’s
interpersonal manner and cost of an appointment (e.g.,[39],[40],[41],[42],[43]). For example, Liu et
al. [40] conducted discrete choice experiments to examine patient choice behavior in outpatient
appartement scheduling. The authors examined several operational attributes, including appoint-
ment delay, doctor of choice, flexibility on appointment time and in-clinic waiting. Besides these
attributes, out-of-pocket payment, which is paid by patients when seeing the doctors, is also con-
sidered. In our study, we considered an alternative payment attribute, which is presented in the
form of a G2P-SD. And G2P-SD is used as a powerful incentive lever to guide patient choice in
our case study. Different from the existing literature, we evaluated patient’s preconceived outcome
difference between HWH and LWH under the premise of informing patients in the discrete choice
experiment that “doctors believe that there is no noticeable outcome difference between HWH and
LWH in treating patients needing generalist care for the condition considered”. Another stream of
study on patient choice is by Osadchiy et al. [44]. The authors employed a general non-parametric
model of patient choice to estimate patient’s willingness to wait. Then they estimated the effect
of wait times on patients’ appointment scheduling and arrival decision. In our study, we paid
attention to the impact of G2P-SD on patient choice between HWH and LWH and its impact on

patient arrival and system performance. In another case, Scott et al. [45] used a discrete choice
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experiment to ask parents to imagine that their children had respiratory symptoms and to choose
the type of consultation. By doing this, the authors analyzed the impact of attributes, such as
waiting time, who was seen, location, and whether the doctor listened, on parent’s choice. Similar
designs are also included in our experiments. The attribute analyzed in our study is G2P-SD, and
we analyzed its effect on parent’s choice of hospital for their children.

In this research, we developed a binary choice model against first-hand behavior data collected
from a survey of 2022 urban and rural residents in Shanghai, China. We investigated patient choice
between visiting HWH and LWH, which represent two distinct tiers in the Chinese tiered hospital
system. We included the setting of G2P-SD as an independent variable in the choice model, which
is a novel factor that has not appeared in the literature. By incorporating the developed choice
model into optimizing subsidy differentials for the multi-hospital queuing network, our work is
more comprehensive than many government subsidy policy design studies in the literature for not
only considering patient insurance types, income, age, but also taking other important factors into

account, such as patient’s preconceived outcome difference between HWH and LWH.

3. Methodology

In this section, we first present a queueing performance based nonlinear programming model to
identify optimal G2P-SD for outpatient service in a large-scale multi-hospital system with workload
imbalance. This model takes into consideration patient hospital choice behavior and its impact on
service system performance measures. For exposition convenience, we remove the word outpatient
concerning patients who need outpatient services throughout the paper. Based on choice model,
we can distinguish hospital choices for patients of different classes statistically and determine the
unit-time patient volume for each class at each hospital in the network (Section 3.1). Then by
applying the queueing theory, we can approximate several performance measures for the resultant
queuing network model (Section 3.2). Based on these measures, we can solve the nonlinear program
numerically to identify an optimal G2P-SD for each patient class.

To illustrate the service system, we consider two types of patients based on their disease con-
ditions and specify their care pathways (see Figure 1). For patients needing specialist care, we
assume they must choose an HWH to visit. For GC patients, we assume they can choose between
an HWH and an LWH to visit and the choice is dependent upon the G2P-SD setting as well as
many other covariates such as age group and income level. In addition, for patients of latter type
choosing to visit LWH, the service received there may not suffice. As a result, some portion of
these patients will be referred to HWH. Note that all patients will be considered to have the same
priority of visiting HWH, since they all come with a service appointment which is scheduled based
on the first-come-first-serve principle.

Based on the questionnaire used for the choice model, the cohort of respondents was devided

into classes. Without loss of generality, we assume R to be the set of patient classes. For each class
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Figure 1: Illustration of the Service Flows

r € R, we denote its G2P subsidy setting for HWH and LWH to be s}; and s}, respectively. In
this context, s, (or s ) implies that the percentage of the payment reimbursed by the government
for a class r patient receiving the service at an HWH (or an LWH). We thus represent the subsidy
vectors for HWH and LWH to be sy = (s}q,...,s’;{,...,sf‘)and s = (le,...,sz,...,s‘LR‘),
respectively. We denote the per-capita service payment for GC patients and SC patients by C;
and C,,, respectively. We assume that per-capita service payments at HWH and LWH are the
same, e.g., both payments only involve the outpatient consultant fee that is charged identically at
any hospital in China. Then the proportion of HWH payment reimbursed by the government for
a class r GC patient and SC patients is s, - Cy, and sf; - Cs, respectively. Similary, the proportion
of per-capita payment at LWH reimbursed by the government is s}, - C}, for a class r patient.

Given the specification of patient classes, we denote o = (01,...,0,,...,0/g|), er}ill or = 1,
to be the class distribution vector in some catchment area (e.g., Shanghai, China). Subsequently,
for each class r € R, based on o,, s}, s , one can estimate the likelihood of a patient choosing
an HWH or an LWH, and then determine the exterior arrival rates. We denote A}, g (v, s%, s7)
and A}, 1 (0r, 8%, s7) to be the exterior arrival rates of class r GC patients visiting HWH and
LWH, respectively; and denote Aj to be the exterior arrival rate of class » SC patients visiting
HWH. For notational simplicity, we further use Ay (o,sy,sr) and Ar(o,sy,sr) to represent the
two |R|-dimensional exterior arrival rate vectors of HWH and LWH, respectively.

Given Ay (o,sp,s.), we denote the efficient arrival rate at an HWH i by A7 (A (0, sx,s1)),
and the mean wait time at HWH i by WX (Ay(o,sm,sr)), and the utilization at HWH 4 by
pH (X (0,sm,5L)). Note that we consider the wait time for all patients as a whole because patients
of different classes are given the same priority on care access. We also denote the overall throughput
of class v GC patients in all HWHs as 17, ; (A}, y(0r,57,57)), and that for SC patients as T7

which is indepedent of hospital choice. Similarly, we denote the efficient arrival rate at an LWH
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j, the mean wait time at LWH j, the utilization rate at LWH j and the overall throughput of
class r GC patients in all LWHs by XJL()\L(J,SH,SL)), WjL(/\L(a,sH,sL)), pJL()\L(U,sH,sL)) and
T ()\:n)L(O'T, Sy, sz))7 respectively.

Next we present the nonlinear program for the G2P-SD optimization problem.

Ny N
min Cw a6/ Wl (Ag(o,su,s) +(1—a))_0F - Wf(\(o,5m,51))
SL - r
+ g+ Si; (1)
YH
st elH — Ni\z (AH(UaSHasL)) ,VZ c I, (2)
> M (Am(o,sm,s1))
S\L()\L(O' SH SL))
L I I . .
ej - NLJ~ ,VJ € J; (3)
Z/\jL(/\L(U,SHysL))
J
pi' (A (0,81,8L)) 2 priin, Vi € I (4)
pf()\L(U,SH7SL)) 2 p'rl;zi'rmvj € J; (5)
St =Y Dot (N1 (00, 851,51)) - 85y - Con + ) T 3y - Cs; (6)
reR reR
S = ZTnTz,L ()‘:n,L(JT’ 5%752)) ' 52 : Cm; (7)

reR

Through adjusting the G2P subsidies, sy and sy, our objective (1) is to minimize the cost of
corresponding to the weighted sum of HWH and LWH wait times plus the subsidy spending of
the government. For the weighted waiting time of the entire multi-hospital system, we assign a
weight o to HWH and 1 — a to LWH. The weight « reflects the relative importance to the policy
maker on achieving certain wait time oriented service level between HWH and LWH. Further, the
weight assigned to the waiting time at each HWH i and each LWH j is 67 and OjL, respectively.
And Cyy is an unit-time cost of waiting for patients in the system. Sy and S, are the unit-time
total care payment at HWH and LWH funded by the government (i.e., unit-time spending on the
G2P subsidies) specified in constraints (6) and (7) respectively. The objective function involves
wait time, which has been a significant concern in healthcare service operations research. For
example, in the study of Wan and Wang [46], the objective of implementing a subsidy scheme is to
minimize the total waiting cost for all patients from the perspective of the society. Besides, the total
subsidy spending in the objective function is also widely considered in healthcare service operations
research. For example, in the study of Denoyel et al. [47] about the design of healthcare network
under a given payment policy, the authors minimized the total cost charged to the healthcare
payers. Constraints (2) indicates the proportion of the volume of patients in HWH i to the total
volume of all HWHs. Constraints (3) indicate the proportion of the volume of patients in LWH j
in the total volume of all LWHs. In (1)-(3), Ny and N, represent the total numbers of HWHs and

10
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LWHs, respectively. Constraints (4) and (5) guarantee minimum workload requirement at each
HWH and each LWH, respectively.

The optimization model is a nonlinear multivariate minimization problem with continuous
objective function and constraints with respect to the decision variables. Hence, we can use the
Global Optimization Solver in MATLAB to obtain the solutions. The main challenge comes from
how to quantify the exterior arrival rates Ay, Ar, and the three types of system performance
measures, Wg(Ag), Wr(AL), pa(Am), pr(AL), T"(Amr), T"(\), based on the rates. To estimate
the arrival rates, we developed a binary choice model (Section 3.1). To compute the performance
measures, we modeled the multi-hospital system with a large-scale two-level queuing network

(Section 3.2).

3.1. Binary choice model of patient hospital visit behavior

To derive Ay (o,sm,sr) and Ap(o,sy,sr), we developed a choice model to characterize the
hospital choice probabilities for different patient classes. We first designed a questionnaire that
involves a choice experiment. We recruited and surveyed a cohort of online respondents residing
in Shanghai. Each of the respondents was given a scenario of some imaginative common mild ill-
ness and asked about his/her hospital choice between an HWH and an LHW s/he would consider
visiting. With the questionnaire, we collected individual markers (e.g., demographic characteris-
tics) from each respondent and explained to the respondent the meaning of G2P subsidy for care
payment. We then randomly assigned to the respondent a G2P subsidy on LWH within some
feasibility range and informed him/her of the G2P subsidy on HWH tier currently effective. We
next asked the respondent to decide between the HWH and the LWH at which s/he would make
an appointment. As a result, we formed a binary choice experiment with the choice set of alter-
natives, denoted as C = {HWH, LWH}. With the survey, we essentially regarded each respondent
a hypothetical patient so we use the term patient in the remainder of the subsection.

After completing the survey, we used a binary choice model to explore which patient-level
attributes would be significant in each patient’s choice behavior. We also used the model to test
whether the G2P-SD setting (i.e., G2P subsidy on LWH minus that on HWH) would play an
important role in the choice behavior, and how significant the effect would be. Finally, we selected
a subset of independent variables given their significance in the choice model to form the patient
classes.

The utilities that patient n € N chooses between HWH and LWH are given as U, = Vi; + el
and U} = V" +&%. In these expressions, V}} and V] are deterministic (representative) components,
and €% and ¢} are random components. Each random component for the patients is assumed to
be independent and identically distributed with a Gumbel distribution.

Further for the alternative HWH, we have Vi = ¢;s’;, where ¢, is a patient-independent

parameter needing to be estimated and s% is the known HWH subsidy being in effect. For the
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alternative choice LWH, we have V' = ¢ss] +¢x" + v, where ¢, is defined as above and s} is the
hypothetical subsidy on LWH presented to patient n. Also in V', x” = («F,...,z},... ,x‘”R‘_l)’
is a vector of indicator variables for the patient class that patient n belongs to, via the following

"+ and for patient n

dummy coding scheme. For any patient n from class r = 1, x" = (0,0,0,...)
from any other class 7, only the (r — 1) component in x™ is 1 and the others are 0. Parameter
vector @ = (¢1,..-, Pk, - -, P|r|—1) 18 used to quantify the preference with respect to each patient
class, which needs to be estimated. Finally, we term v an alternative-specific constant(ASC).

For each patient n € I, since €', and €} both follow Gumbel distributions, we have e} — €7
to be logistically distributed. Assuming patient n to be a utility maximizer, then the probability

that a patient chooses the alternative LWH is given in [28] as

Py (x", sy, 87) = Pr (U} > U}
Vil ebssLHex" +u

— no_n> no__yny — = .
Pr(esy —eL 2 Ve = Vi) eVl +eViE  ePsSh 4 ePsSLHexT v (8)

Next we derive the choice model for each patient class r. Based on the earlier specification, we
have z;—,_; = 1 and the others are zero. Then given s%; and s}, the G2P subsidies on HWH and
LWH for class r patients, the probability a class r patient chooses LWH is given as

€¢ssz+Wk+U 9
64)5571:[ + e¢ssz+Wk+U ! ( )

Pr (sy,51) =

Empirical evidence suggests that the subsidy rate is influential to the hospital choice and this
influence differs not only by age, but income and preconceived outcome difference as well. For
more detailed information, we refer the readers to Section 4.2. Therefore, SRI can be used as a
viable lever to guiding patients to choose LWHs. Further, we can explore ways to incorporate these
patient-specific attributes into the design of subsidy.

We assume that within every unit-time interval, there are the arrivals of K,, GC patients
and K, SC patients in the multi-hospital system. With the above definition on the LWH choice

probability of patients in each class, we can derive the exterior arrival rates of LWH and HWH as

)\L(U, SH, SL) = Z A:n,L(U?”? SrHv 32) =Ky, Z O.TPE (57(}7 SE) (10)
reR reR

Au(o,sm,sL) = Z s+ Z )‘:n,H(UT’ sy, s1) = Ks + Kn, Z or (1= P (sy,5sL))- (11)
reR reR reR

Note that Mg (0,8p,51) + AL(0,8m,51) = Ks + Kp,. Further, expressions (10) and (11) imply
the diversion of GC patients due to individual choice. With the above exterior arrival rates, we

next use them as the inputs of the large-scale multi-hospital system.

3.2. Performance evaluation for the multi-hospital system

We model the multi-hospital system as a large-scale two-level queuing network (see Figure

2). In the model, we assume Ng differently capacitated HWHs at one level and Nj, differently
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capacitated LWHs at the other level. Without loss of generality, we let I and J be the sets of HWHs
and LWHs, respectively. For each HWH ¢ € I and each LWH j € J, we denote its capacity to be
cH and cJL, respectively. We also assume the utilization rates at HWHs are identical and those at
LWHs are identical as well for tractability reason and for the reflection of the real situation in some
systems. With this assumption, we have the exterior arrival rate at HWH ¢ equipped with capacity
¢ to be A (A (0,sm,8L)) := Ay (0,81,8L) - ¢ % cH i €I and the exterior rate at LWH j

i=1

< Np
equipped with capaity ¢/ to be ¥ (Ap(0,sm,sL)) = AL (0,5m,5L) - CJL/Z cf. For notational
j=1

simplicity, we use A and XJL to present A7 (g (o, s,51)) and XJL (Ar(o,sm,sL)), respectively.
In many tiered hospital systems, for example, the ones in urban areas in China, hospitals ranked at
the same level have similar reputation and similar utilization rate. As a result, patients as a whole
tend to organically distribute their hospital access across various hospitals on each tier based on

the hospital’s capacities.

/IH(G,SH,SL) /’J’L(G’SH’SL)
. A
' [
| Balking and | Balking and
| leaving the | leaving the
: system | system
|
T
|

BH
'balking P1

Referral

Collection of HWHs Collection of LWHs

I

Figure 2: An illustration of the two-level queuing network with referrals

Further, we assume the arrival process at each HWH or at each LWH is a Poisson process
for analysis tractability. In reality, upon arrival a patient may be discouraged by a long queue,

and then s/he might refuse to join the queue (i.e., balking). We use a balking rule to consider
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patient impatience and balking in the system. We first define a virtual queueing time (vqt) as
introduced in [48]. The vqt is the waiting time estimated by a patient once s/he arrives at the
system. An implicit assumption is that each patient can estimate the time s/he will wait from
multiple sources. For example, in many countries, such as Australia, the estimated waiting time
is sometimes available to patients [49], or patients may estimate the waiting time based on their
previous visits [50]. Next, we introduce the balking rule. We assume an arriving patient decides
to join the queue if and only if s/he evaluates that the vqt is no more than a fixed amount, which
is denoted as by for HWH and by, for LWH respectively. And we define the probability that vqt
is more than the fixed amount by (or by) as the balking probability. The balking probability at
HWH i € I and LWH j € J is represented as p? H and pf L respectively.

Next, we assume the service duration at each HWH and at each LWH is exponentially dis-
tributed. We denote the mean service rates of each server to be pg and pr at an HWH and an
LWH, respectively. For an HWH i, an arriving patient leaves the two-level system with balking

" at his or her arrival epoch, and s/he is called a loss patient, or wait for service in

probability piB
an infinite capacity FCFS (first come, first served) queue at the HWH with probability 1 — p? 7 and
leave when the service is completed. Similarly, we define pf L to be the balking probability at his
or her arrival epoch at an LWH j. Finally, we consider the referrals of GC patients from LWH to
HWH for not getting necessary service at LWH. We denote ppy to be the LWH-to-HWH referral
probability, which is attainable from the average statistics across all patients based on available
LWH-HWH referral records from hospitals in the two-level system. We assume such a referral
decision is made right after the exponential service process and takes place instantaneously. Simi-
larly, referral patients from each LWH distribute their hospital access across various HWHs based
on each HWH’s capacity level. With the above assumptions, we formulate a two-level queueing
network with each node (i.e., hospital) being an M/M/c queue with balking. Further we assume
off prioritization on service access between patient classes and arrival sources.

For each HWH 1, its arrival process consists of two types of arrivals: direct exterior arrivals

with rate j\f{ , and LWH-to-HWH referrals. The total arrival rate at each HWH i is denoted by
pYid

]

i € I, and the efficient arrival rate of patients (i.e., the arrival rate of patients joining the

queue), denote by S\f{ , is given by
M= (1-pP7). (12)

For each LWH j, with the exterior arrival rate j\jL, we derive the total arrival rate as )\]L = 5\JL

and efficient arrival rate of patients, denote by :\f , as

Ny,
A]L:/\f(l—pr)zAL (1—pr>'0§ > (13)
=1

For a node in equilibrium, its arrival rate and service throughput are equal, so the overall
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patient throughput of all LWHs is

NLN NL NL
Tan=3 A =3 Do (1=8") ¢ /3 e (1)
j=1 j=1 j=1

Then, with the exterior arrival rate of an HWH i, we can derive the expression for the total

arrival rate and efficient arrival rate of patients at an HWH 3.

Ny
H_\H H H
At =N+ T pLE ¢ E &

i=1

n K B L
it )\L(l—ij)-cj ch
cH )y j=1 j=1
= +pLH N )
H

Ny
>l > el
=1 3

M= (11— pP)

_ cHy n j=1

= | vg . PLH N .
2. ¢ doc
i=1 i=1

By Theorem 1 to Theorem 4 in [48], we can derive the probability that a patient at HWH and
LWH balks, i.e., pf 2 and pf L respectively, and then the mean waiting time at the HWH and at
the LWH, respectively. For more details, readers may refer to Chapter 2 of [48].

P G R
7pcfl Ci HH
L H L L
i L ,—(cFuL—2F )b
J H e J J
Pt =W (18)

- L L
L—pr CiHL
J

i

k2

e H
WiH _ ; S—pr)(l—pf{{>(cqu_>\fl)2 ifp; #1,
o s 4 ifpt =1,
o) P
whebuppt, {1_(C§ML_A§)1)L;(cf%**f)%_;(c%rkf)%}
. o —~ ifpy #1,
W].L - ) (i_py‘ ) (1_170_7;) (cfuL=A%)
w]LbZ i “LchL i =1
2<1_pj L) 17PCJL J ’
where
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With the balking probability at HWH and LWH, we can finally derive closed-form expressions
for the relevant queueing performance measures, i.e., HWH/LWH utilization rate, mean waiting
time, and class r patient throughput. That is, given Ny, Ny, Ay (0,8m,81), AL (0,8H,8L),
cHiel), cf(j eJ), um, L, bm, by, and prg, we have

205 With the balking probability at HWH and LWH, we can finally derive closed-form expressions
for the relevant queueing performance measures, i.e., HWH/LWH utilization rate, mean waiting

time, and class r patient throughput. That is, given

H H " -
e puply ef(c’: w2 (esysg))on

e The balking probability at an HWH i: piBH =wl T gy i€ 1
H i
CL#LP?H —(ebup—2E(osy.sp))e
e The balking probability at an HWH j: pBL = wj ]1_pL;j (e cI-]’uL o)) ,j € J;
et J
J
410 e The HWH utilization rate at an HWH q:
Np, Np
. > o) ) 3|
pE (A (o,su,s1))= H(UJ’VS:’SL) +prr= - =t el
K _Z:l cH HE /'21 cH

e The LWH utilization rate at an LWH j: pr(Ar(0,8H,81))= M,j € J;
nL Z cf
j=1
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e The mean waiting time at an HWH 4:
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e The respective overall throughput of class » GC patient and SC patients access HWHs

oy oy N | A (008, 51) + Ty (A (00 8T 57)) proa) (1= p ™ )ef!
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e The overall throughput of class r GC patient access LWHs

Ne | x, n(onsist) (1=p0H )k

r?q,L ()‘:n,L(UTa S 32)) = Z NI
=1 5SS ek
j=1
415 We present the detailed derivations for the above performance measures in Appendix A. With

these approxiamte quantities, we can substantiate the nonlinear program (1)—(7), and solve it
numerically to obtain optimal patient-class-specific G2P-SDs with incorportion of the developed

choice model.

4. Case Study

420 In this section, we use the two-tier hospital system in Shanghai, as the real-world context to
present a case study. To verify our approach, we first explored the G2P-SD optimal design to
achieve the minimum waiting cost and government spending. Then we compared the effectiveness

of the optimal G2P-SD policy with the current policy by fixing the total government spending, in
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which we carried out a series of analyses through three case studies: (1) how effective is the optimal
G2P-SD design for different age groups compared to the current policy; (2) what is the benefit to
the system when designing the G2P-SD policy not only based on age groups but also on income
levels compared to the current policy; (3) what is the impact of the G2P-SD policy with reduced
preconceived outcome difference between LWH and HWH on the system compared to the current
policy. Further, we make explanations and draw conclusions about how SRIs for different patient
classes should be adjusted in the G2P-SD optimal design. Through the real-world hospital choice
experiment, our study is expected to offer recommendation to devise more targeted plans for both
urban employee basic medical insurance and urban and rural resident basic medical insurance in
Shanghai. We will start this section with a brief introduction of the Chinese hospital system and

justify the need in Shanghai of differential government subsidy pricing on medical insurance policy.

4.1. Background

The 2017 Statistical Bulletin on the Development of Health Care in China (available from
www.nhfpc.gov.cn/) reported that the average daily number of diagnosis and treatment cases
handled by a primary care physician among highly rated HWHs is 7.9 as opposed to 5.7 among
LWHs on the tier of LWH over entire China. From the data, we can find that the workload
difference among the hospital system is obvious. Absolutely, this difference is widened in big cities
like Shanghai, because care resource of higher quality is gravitated towards Shanghai than much of
China. The above evidence justifies the substantial workload imbalance between the two hospital
tiers.

Now we turn our attention to the situation of medical insurance in Shanghai. G2P subsidy is
provided in the form of care expenses being paid partially by the government. For simplicity, we call
the percentage of government-paid expenses to the total expenses the subsidy rate. Table 1 presents
the subsidy rates for outpatient services, currently effective in Shanghai. Subsidy differentials, i.e.,
difference between the subsidy rates of HWH and LWH, exist for various items of basic medical
care, and these differentials are age-specific in Shanghai. As described, implementation of G2P-SD
is to incentivize patients to visit LWH for basic medical care, almost all of which are included in

the category of outpatient care.

Table 1: Age-specific G2P subsidy rate for outpatient services covered by the two types of basic medical service

insurance (UE: Urban Employee; URR: Urban and Rural Resident)

UE insurance URR insurance

Age
& 19-34 35-44 45-59 60-69 704 | 0-18 19-59 60-69 70+
Hospital Tier

HWH 0.5 0.5 0.6 0.7 0.75 | 0.5 0.5 0.5 0.5

LWH 0.65 0.65 0.75 0.8 0.85 0.7 0.7 0.7 0.7
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With urban development, population aging, and personal income increase, the proportions of
urban and rural resident populations in Shanghai, as well as the population distributions of age and
income have changed significantly in the past decades. As a result, patient volumes from different
population groups are changing. Meanwhile, we have witnessed noticeable increase of LWHs in
Shanghai, i.e., the number of LWHs increased nearly 10% in the past 5 years (available from
www.stats-sh.gov.cn/). These additional LWHs are undoubtedly changing the hospital visit
behavior of some patients. In summary, it is of the government’s interest to consider adjusting
the G2P-SD setting accordingly. Moreover, of special interest to the context in Shanghai is the
two types of basic medical service insurance: urban employee basic medical insurance and urban
and rural resident basic medical insurance. For the interest of space, we refer to the two types as
UE insurance and URR insurance. UE insurance covers basic medical services for employees in
Shanghai, whereas URR, insurance covers those for minors and Shanghai residents without job.

To estimate the aggregate arrival rates, we used the total numbers (i.e., K and K,,) of hourly
outpatient care visits by SC patients and GC patients, respectively. The two numbers are K =
1665 and K,,, = 9435 in entire Shanghai, according to the Shanghai Statistics Year Book (available
from www.stats-sh.gov.cn/). Then we took the distribution between UE insured and URR
insured populations and the distribution among age groups in either population, according to a
survey on a sample 1% Shanghai population in 2015. Note that further distributions with respect
to income and preconceived outcome difference between HWH and LWH were not available to us
from a large-scale publically available dataset. We thus took the sample cohort and survey data
from our choice experiment to derive the patient population distribution among more tailored
classes (i.e., 0,). Finally, with the choice probability of each class (i.e., P] (s%,s}.)) calculated via
equation (9), we estimated the flow diversion of class » GC patients, and eventually estimated the
exterior arrival rates of HWH and LWH according to equations (10) and equation (11), respectively.
Note that s%; and s} are subsidy rates of HWH and LWH for class r patients, respectively.

Through our interactions with practitioners in HWHs (e.g., Ruijin hospital, Shanghai No. 6
People Hospital) and LWHs (e.g., Xujiahui Street Community Health Service Center, Longhua
Street Community Health Service Center, Hongmei Street Community Health Service Center), we
were able to estimate the service rates and the referral probability. We estimated the service rates
of an HWH and an LWH to be ug = 4, ur = 4.5, respectively, based on the average number of
patients a doctor treats hourly at HWHs or LWHs. By conducting small-scale investigations in
several hospitals into the threshold on the wait time tolerance, we specified the threshold at HWHs
to be by = 3 hour, and the threshold at LWHs to be b, = 1 hour. We estimated the probability
of a GC patient being referred/transferred from LWH to HWH to be pry = 12%, based on the
available LWH-HWH referral records between 2015 and 2017. According to the General Hospital
Classification Management Standards (available from www.hgms.org.cn/), HWHs and LWHs can

be further divided into three categories with differences in capacity level among them. Through
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an investigation of the aforementioned hospitals, we estimated that the capacity levels of HWHs
in the three categories are 10, 11, 12, respectively; and the capacity levels of LWHs in the three
categories are 1, 2, 4 respectively. Accordingly, we estimated the number of hospitals at each
category. For HWH, the percentages of hospitals in the three categories are roughly 50%, 30%,
and 20%. For LWH, the percentages are roughly 30%, 50%, and 20%. Finally, through interviews
with managers of the above hospitals, we were able to obtain reasonable estimates on the costs of
outpatient care for GC patients and SC patients receiving treatment in outpatient, i.e., C,, = 300
Chinese Yuan, C's = 1000 Chinese Yuan. We write “Chinese Yuan” with “RMB”, the commonly

used symbol for Chinese currency, in the following.

4.2. Choice Model

To characterize patient hospital visit behaviors, we designed an online survey (see Appendix
B for the web-based questionnaire). We ran the survey in May 2019 on www.wenjuan.com, a
Chinese internet survey platform. A total of 2050 respondents participated in our study, and
2022 of which were deemed valid samples. The respondents are anonymous and the data source
is reliable. The basic information collected includes gender, age, income, and insurance type. In
addition, we asked about the preconceived outcome difference (POD) between HWH and LWH
since it is evident that substantial workload imbalance in China can be attributed to underrating
LWH and distrusting its performance among Chinese patients. Moreover, URR insurance covers
minors. So we also collected information about respondents’ children and asked the respondents
about their hospital choices for their children. For more information on the above attributes of
the correspondents, please review Table 2 (variable categorization) in the following and Table 10
and Table 11 (descriptive statistics) in Appendix D.

Next in the questionnaire, we presented a scenario. We asked each of the respondents to imagine
the situation s/he experienced some common medical condition such as fever and cough with
headache, muscle pain as well as other symptoms. As a result, s/he would visit some outpatient
department. We then provided them with knowledge about the G2P subsidy such as its definition
and current subsidy rate upon visiting the outpatient department of an HWH in Shanghai.

When presenting the scenario to each respondent, we also randomly assigned a subsidy rate
for LWH within some pre-specified range to explore the effect of G2P-SD on hospital visit choice.
We set the plausible range of G2P-SD from which we drew uniform samples as follows. The lower
bound of the range is 0 and the upper bound is the difference between the subsidy rate of HWH and
0.95, a maximally achievable value for the subsidy rate of LWH. Since it is only meaningful to have
a larger subsidy rate for LWH than that for HWH, we call the difference more specifically as subsidy
rate increment (SRI). Note that the plausible range for SRI sampling differs by respondent’s age
group as the HWH subsidy rate varies by age with the current UE insurance policy (see Table 1).
Table 2 presents the SRI sampling ranges.
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Table 2: Attribute levels for participants of UE and URR insurance types

Insurance Type Attribute Level
Age (yrs) 19-34, 35-44, 45-59, 60+
Income (RMB) [0,3K), [3K,5K), [5K,10K), [10K,30K), [30K,+0o0)
POD No difference, relatively small, relatively large, very large

19-34 years old: continuous in [0,0.45]

UE . .
SRI 35-44 years old: continuous in [0,0.45]
45-59 years old: continuous in [0,0.35]
over 60 years old: continuous in [0,0.25]
Age (yrs) 0-18, 19-59, 60-69, 70+
Income (RMB) [0,3K), [3K,5K), [5K,10K), [10K,30K), [30K,+00)
POD No difference, relatively small, relatively large, very large
0-18 years old: continuous in [0,0.45]
URR . .
SRI 19-59 years old: continuous in [0,0.45]

60-69 years old: continuous in [0,0.45]

over 70 years old: continuous in [0,0.45]

With the behavior data, we parameterized a binary choice model for each insurance type.
Table 3 presents our choice model results, i.e., respective estimates of parameters ¢, ¢ and v,
from equation (8). We found that SRIs of both insurance types are significant and positive, which
suggests increasing the increment on subsidization of LWH as opposed to HWH would result in
more willingness to visiting LWH. This observation strengthened our belief that creating sufficiently
large SRIs can be a viable approach to providing financial incentive and to guide patients to choose
LWHs (i.e., the right hospitals) and thus alleviate system workload imbalance. Our results also
suggest that age is a factor as significant as SRI, especially for older adults. Further, the results
imply when other factors being equal, older adults tend to be more willing to visit LWH. These
results promoted us to explore the interplay between age and SRI and refine the current age-specific
G2P-SD policy to further improve the system performance. Similarly, we found that income is a
significant factor , except low-income groups. Our results further imply when other factors being
equal, patients with lower income tend to be more willing to visit LWHs. On the other hand,
patients under the coverage of UE insurance have stable income and thus are less sensitive to
out-of-pocket care spending. Hence we elected to examine the effect of different income levels on
the system performance and further tailor the G2P-SD policy design based on the combination of
age group and income levels. Finally, our results suggest preconceived outcome difference between
LWH and HWH plays a significant role. That is, the worse outcome of LWH preconceived by
some patient compared to HWH, the less likely the patient would choose to visit LWH. Thus we
elected to explore the impact of hypothetically configured distributions of preconceived outcome

difference on the system performance, which offers insights into designing educational campaigns
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among consumers on similar outcomes from basic medical care.

Further, we analyze the interaction effects between patient-specific variables and SRI, we pro-
vided our binary choice model estimation results in Table 9 in Appendix C. The results show that
for the UE insurance type, age, income, and POD significantly interact with SRI. For the URR
insurance type, the interaction effects of SRI with age and POD are significant. For more detailed

information, we refer the readers to Appendix C.

Table 3: Choice model coefficient estimation results

Insurance Variable Parameter Standard p —Value
Type Name Estimate Error
SRI 7.534 0.701 0.000
Age {35 — 44} 0.391 0.196 0.046
Age {45 — 59} 0.636 0.200 0.001
Age {60+} 1.065 0.290 0.000
Income_{3K — 5K} -0.229 0.460 0.619
Income_{5K — 10K} -1.040 0.451 0.021
UE Income_{10K — 30K} -1.719 0.476 0.000
Income_{30K+} -3.277 0.232 0.008
POD_{relatively small} -0.568 0.210 0.007
POD_{relatively big} -2.134 0.237 0.000
POD_{very big} -2.266 0.380 0.000
ASC -0.117 0.501 0.815
SRI 2.292 0.372 0.000
Age {19 — 59} 0.952 0.103 0.000
Age {60 — 69} 1.229 0.274 0.000
Age {70+} 2.000 0.277 0.000
Income_{3K — 5K} -0.169 0.144 0.238
Income {5K — 10K} -0.246 0.140 0.079
URR Income_{10K — 30K} -0.337 0.181 0.037
Income_{30K+} -1.053 0.413 0.002
POD _{relatively small} -0.418 0.135 0.000
POD _{relatively big} -1.581 0.150 0.000
POD_{very big} -2.359 0.249 0.000
ASC -0.081 0.188 0.665

In summary, with the choice model, we identified two key factors in addition to age on patient’s
hospital visit behavior, which promoted us to study various G2P-SD policy redesign issues (see

Study 1 and Study 2.1 — 2.3 in Section 4.3).

4.3. Results

In this section, we report four Shanghai-based case studies. We stated the four research ques-
tions at the beginning of Section 4. Our main results are subsidy rate increments (SRIs) from
HWH to LWH. These studies involve solving the G2P-SD optimization model, i.e., Eq. (1) — (7),

with the parameterization described in Section 4.2. Further, we set «, the weighting coefficient
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between the waiting times at HWH and LWH (i.e., Wy vs. Wp), to be 0.95, for paying more
attention on wait times at HWH at this proof-of-the-concept stage. And we set Cyy, the unit-time
cost of waiting, to be 3.0 x 106.

In the following studies, for exposition simplicity, we refer to the subsidy rate increment from
HWH to LWH in effect as SRI_IE; the subsidy rate increment obtained from solving the nonlinear
program as SRI_REC or SRI_LREC_X, i.e., recommended subsidy rate increment. For the follow-
ing studies, we considered a hypothetical cohort combining patients covered by the two types of

insurance, and a separate choice model was developed for each insurance type first.

Study 1: What is the optimal G2P-SD design to achieve the best system performance?

In this study, patients covered by each insurance type are only divided into four age-specific
classes; referring back to Table 2 for detailed information. We solved the G2P-SD optimization
model to obtain the optimal SRIs (i.e., SRI_REC_0) for different age groups. We also compute the
corresponding actual spending and wait times of HWHs and LWHs.

Figure 3 represents the comparison between the two SRI settings with respect to the insurance
types and different age groups. The figure shows an increase on SRI for the UE-type insurance
(e.g., for age group 19 — 34, SRI is around 15% under the SRI_IE setting vs. around 30% under the
SRI_REC_0 setting), and decrease on SRI for the URR-type insurance across all four age groups
(i.e., 20% under the SRI_IE setting vs. around 8% under the SRI_REC_0 setting). To evaluate the
performance of G2P-SD policy under the SRI_LREC_0 setting, we compared the total social cost
(i.e., the cost of weighted wait times plus the government subsidy spending) under the two SRI
settings (SRIIE vs. SRI_LREC.0). The result shows a 55.99% reduction in the total social cost
under the SRI. REC_0 setting, compared to that under the SRI_IE setting (i.e., 7.30 x 10° under
the SRIIE setting vs. 3.21 x 10° under the SRI.REC_0).

Further, figure 4 represents the comparison on the actual spending at all hospitals. The figure
shows a 9% increase in the actual spending under SRI_REC_0 compared to that under SRI_IE.
Next, Figure 5 shows the comparison on the waiting times at HWHs and LWHs under the two SRI
settings (SRIIE vs. SRI_LREC_0). The figure shows the wait time at HWHs has been significantly
reduced under SRI_.REC_0. Although the wait time at LWHs has increased to some extent, the
wait time after the increase is still tolerable. The results indicate that an appropriate increase in
the subsidy expenditure, especially the increase in SRI for UE patients, can effectively reduce the
wait time at HWHs and balance the workloads of HWHs and LWHs.

Next, to summarize the quantifiable implications from the specifications of SRI_REC_0, we use
Table 4 to introduce the notion of funding efficiency to verify the consideration on government
funding allocation between the two types of insurance. The quantity is calculated as follows. Let
us denote AS to be the relative change in the actual spending on all patients before and after

the SRI change for a given patient class. Similarly, let us denote AO to be the relative change in
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weighted average wait time (i.e., objective function value) when the SRI is changed for the given
patient class. Then funding efficiency for that particular class is AO/AS. Funding efficiency
essentially reflects the cost-benefit potential of making subsidy budget reallocation. As reported
in Table 4, we compared the funding efficiency values for overall UE-type and URR-type insured
patients. We found that the efficiency of funding for UE insurance patients is higher than that for
URR insurance patients across the board. This is explained that SRIs for UE-type insurance have
increased. Further, based on the comparison of this quantity among different age groups for the
same type of insurance, It is not difficult to find that the greater the cost-benefit potential, the
greater the increase in their SRI, which is consistent with the conclusion draw from Figure 3. We

thereby recommend funding efficiency as an indicator for optimal SRI policy design.

35% - s SRI_IE

30% - BSRI_REC 0
25%
20%
15%

10%

Subsidy rate increment (SRI)

5%

0%

Figure 3: SRI comparison with respect to age group for UE and URR insurance types

Finally, we further explored how the effectiveness of the optimal G2P-SD policy v il e affected
if the government subsidy budget is limited. We first introduced a parameter Sp as the budget
limit on the government subsidy spending. Thus, a budget constraint (i.e., Sy + S;, < Sg) is
introduced in the G2P-SD optimization model. By solving the optimal model accordingly, we
explored the impact of increasing government subsidy budget (i.e., Sp) on the performance of
the optimal G2P-SD policy shown in Table 5. Table 5 reports the relative change in total social
cost, the relative change in average wait times at HWHs and at LWHs, and the actual spending
under the incieasing subsidy budget limit. As the subsidy budget increases, the general trend of
the total social cost, the HWH wait time and the actual spending is decreasing, and the LWH
wait time increases. With further subsidy budget increase, we noticed that the actual spending

to achieve the optimal system performance stops increasing after the subsidy budget increases to
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SRI_LREC_0 setting

Table 4: Changes in the cost of weighted average wait time and actual spending with 5% SRI change

The cost of weighted wait time Actual spending
Insurance | Age .
type group | Relative Before the After the Relative | Before the | After the | Efficiency
change” change™* change™™* change” chage™ change™™*
19-34 | -60.1% 4534052 1810223 2.1% 2763185 2820956 28.73
UE 35-44 | -27.7% 4534052 3278884 1.0% 2763185 2791291 27.22
45-59 | -36.0% 4534052 2900228 1.3% 2763185 2800297 26.83
60+ | -32.2% 4534052 3072946 1.1% 2763185 2794855 28.12
0-18 -0.8% 4534052 4496780 0.0% 2763185 2764530 16.88
19-59 | -5.5% 4534052 4286577 0.4% 2763185 2774361 13.50
URE 60-69 -1.0% 4534052 4490851 0.1% 2763185 2765357 12.12
70+ -0.6% 4534052 4506230 0.1% 2763185 2765122 8.75

* The change (either in the cost of weighted average wait time or actuall spending) when comparing the system before
the SRI changed to that after the SRI changed divided by the corresponding value under SRI_IE
™ The value (either the cost of weighted average wait time or actual spending) before the SRI of a patient class is changed

"™ The value (either the cost of weighted average wait time or actual spending) after the SRI of a patient class is changed

certain level, thus the total social cost reaches the optimal.

Study 2: How to improve the current policy based on the cases in Shanghai?

620 To compare the effectiveness of the optimal G2P-SD policy without increasing the total govern-
ment spending with the current policy, we took the actual government spending under the SRI_TE
setting as the budget limit and used it in Study 2.1-2.3. We first ¢
spending under the SRIIE setting via Eq. (6) — (7), and as

nated the actual government
L it to Sp. By solving the optimal
model considering the budget constraint, the government subsidy budget is reallocated to obtain

s the optimal SRIs (i.e., SRI_REC_X) for different patient classes and the corresponding wait times
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Table 5: The effectiveness of optimal G2P-SD policy under increasing subsidy budget

Relative change | Relative change
Subsidy budget Relative change Actual spending
in average wait in average wait
(RMB) in total social cost* (RMB)
times at HWHs* | times at LWHSs*

2763200%* -16.50% -26.64% 4.69% 2763200
2813200 -43.27% -70.95% 17.83% 2813200
2863200 -51.97% -86.13% 33.42% 2863200
2913200 -54.69% -91.66% 49.56% 2913200
2963200 -55.69% -94.41% 66.13% 2963200
3013200 -55.98% -96.03% 83.17% 3013200

3025154*** -55.99% -96.32% 87.32% 3025154
3063200 55.99% -96.32% 87.32% 3025154
3113200 55.99% -96.32% 87.32% 3025154

* The change (either in the total social cost or weighted average wait times) when comparing the system under the
optimal G2P-SD policy to that under SRI_IE divided by the corresponding value under SRI_IE
™ The initial value of the budget limit is set to the actual government spending under SRI_IE

™ The budget limit is set to be the government spending under SRI_-REC_0

at HWHs and LWHs. Then under the same government subsidy budget, we can intwiwvely com-
pare the wait time under the SRI_IE setting with that under the SRI_LREC_X setting in different

scenarios.

Study 2.1: How much improvement can the G2P-SD optimal design bring to the system performance

compared to the current policy under the same government subsidy budget?

For this study, patients with each insurance type are also divided into four age-specific classes

like Study 1.
setting, we solved the G2P-SD optimization model to obtain the optimal SRIs for the four age-

By considering the government subsidy budget limit obtained under the SRI_IE

specific classes (i.e., SRI_.REC). Meanwhile, we analyzed the queuing network to obtain the mean
wait time of each hospital under the SRI_IE setting and under the SRI_LREC setting respectively,
and estimated the weighted average of wait times of HWHs and LWHs via Eq. (1).

Figure 6 presents the comparison between the two SRI settings with respect to the two insurance
types and different age groups. The figure shows a decrease on SRI for the URR-type insurance
across all four age groups (i.e., 20% under the SRI_IE setting vs. 0% under the SRI_REC setting).
For the UE-type insurance, three of the four age groups see an increase on SRI (i.e., age groups
19 — 34, 35 — 44, and 60+). Moreover, the increase is more noticeable for youngest and oldest
age groups than age group 35 — 44. On the other hand, there is a decrease in age group 45 —
59. By comparing the total social cost under the two SRI settings (SRIIE vs. SRI_.REC). The
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result shows a 16.50% reduction in the total social cost under the SRI_REC_0 setting, compared
to that under the SRI_IE setting (i.e., 7.30 x 10% under the SRI_IE setting vs. 6.09 x 10° under
the SRI_.REC).
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Figure 6: SRI comparison with respect to age group for UE and URR insurance types

Moreover, Figure 7 presents the comparison on the proportions of patient volume and actual
spending at the hospitals on the LWH tier as opposed to the total patient volume and subsidy
spending, which are two constants. In addition, to some degree, this figure implies the conse-
quence of the SRI changes shown in Figure 6. With widened subsidy differentials for the UE-type
insurance (at least the younger and older age groups), clearly more patients would choose to visit
an LWH given the positive coefficient on SRI (the point estimate is 7.534). Consequently, more
patients would lead to increased spending at LWHs. On the other hand, with narrowed subsidy
differentials for the URR-type insurance, clearly fewer patients would choose to visit an LWH given
the positive coefficient on SRI (the point estimate is 2.292). Consequently, fewer patients would
lead to decreased spending at LWHs.

Next, Figure 8 presents the comparison on the weighted waiting times at HWHs and LWHs
under the two SRI settings (SRIIE vs. SRI_REC). The figure shows a 26.63% reduction in mean
wait time at HWHs and a slight increase at LWHs under SRI_REC. The results suggest we have
provided encouraging evidence to the hospitals on the effectiveness of reallocating the subsidy
budget for reducing HWH congestion and balancing the workloads on the two tiers. It is important
to have the buy-in from the multi-hospital system, which in China is a so-called hospital alliance
where an HWH tends to be the leader, thus having much more bargaining power than partnering

LWHs.

27



670

675

680

685

690

.
(=}
—_
o0

S S oo o .

< 35 = 2 1.6

= == =] 8SRI IE

% 30 == BSRI IE 214 -

R =— N SRI_REC £ 12 SRI_REC

= — o

= 20 = E 10

2 15 = =08

® = z

= 10 = 5 0.6

£ = 204

5 — e = 0.

2 = = =

g o = = =S ==\ NP

A No. of UE  Funding for UE No. of URR  Funding for 0.0 f ¥ ]
patients patients patients URR patients HWH LWH

Figure 7: Comparison of the proportions at LWHs Figure 8: Comparison of the average wait times

Then, we use Table 4 to summarize the quantifiable implications of reallocating the fixed gov-
ernment funding according to the specifications of SRI_REC. According to Study 1, the efficiency of
funding for UE insurance patients is higher than that for URR insurance patients. It is also known
that there is a fixed amount of government spending to allocate. This quantity helps explain why
a larger (smaller) proportion of funding goes to UE (URR) patients, which is backed by a widened
(narrowed) SRI being presented to UE (URR) patients. Further, based on the comparison of this
quantity among different age groups for the same type of insurance, we drew the same conclusion

as from Figure 6.

Study 2.2: What is the benefit of considering additional patient characteristics in the G2P-SD
design?

For this study, we compared the effectiveness of the G2P-SD policy that considers additional
patient characteristics with the effectiveness of the current policy by fixing the government spending
obtained under the SRI_IE setting. We further divided the patient classes based on income level,
which appeared to be an influential secondary attribute from the choice model (see Table 3). As a
result, we had 20 distinct age- and income-specific classes (i.e., ten for each insurance type). After
a similar setup as in study 2.1, we obtained the optimal SRIs (i.e., SRI_LREC_1) for different age
and income-specific classes and the corresponding mean wait times of HWHs and LWHs.

Figure 9 presents the comparison between the two SRI settings with respect to the two insurance
types and different patient classes. Each index in parentheses in the figure legend indicates a level
of income in RMB; i.e., I1: < 3K; 12: 3K-5K; I3: 5K-10K; I4: 10K-30K; I5: >30K. The figure
suggests further tailoring the SRI policy across different income levels. For the UE insurance type,
the results suggest that at the same income level, the trend of changes in SRI across age groups is
consistent with the results of study 1, and bigger increases in SRI are set for the highest, the second
highest, and the third highest income populations. In return, the middle-income groups should be
given smaller SRI. For the URR insurance type, the results suggest significantly decreasing SRIs

across all age groups and income levels. We compared the total social cost under the three SRI
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Figure 9: SRI comparison with respect to age-income group for UE and URR insurance types

settings (SRIIE vs. SRI.REC vs. SRI_LREC_1). The results show that the total social cost under

the SRI_REC_1 setting is reduced by 17.59% and 1.3%, respectively, compared with the SRI_TE

setting and SRI_REC setting (i.e., 7.30 x 10% under the SRIIE setting vs. 6.09 x 10° under the
s SRI_REC vs. 6.01 x 105 under the SRI_REC_1).

Next, Figure 10 presents the comparison on the mean wait times at HWHs and LWHs under the
three SRI settings (SRIIE vs. SRI.REC vs. SRI.REC_1). The figure shows a further reduction
(28.39%) in wait time at HWHs and a tiny further increase at LWHs under SRI_LREC_1. This
study further promotes the usefulness of patient hospital visit choice behavior studies. The results

w0 give encouraging evidence to the hospitals on the effectiveness of further tailoring the SRI policy.
It should be noted that, although the policy performs well for improving the system performance,

ethical issues involved should be carefully considered before the policy implementation.
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Figure 10: Comparison of the average wait times

Finally, we use Table 6 to illustrate the usefulness of funding efficiency as an indicator to
optimal SRI policy design. After reviewing Table 6 and Figure 9, we concluded that there is

s clear correspondence between the value of funding efficiency and the SRI. For example, for the
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UE insurance type, the largest value appears in the patient class of age group 19 — 34 and income
level > 30K, we see the most widened SRI occurs in this class. On the other hand, for the URR
insurance type, the value is smaller than that for the UE insurance type, we see the most narrowed

SRI are set for all patient classes.

Table 6: Funding efficiency

Insurance Age Income level (RMB)
type group (yrs) [ <3K | 3K-5K | 5K-10K | 10K-30K | >30K
19-34 26.1 | 26.0 28.1 28.8 290.7
35-44 24.6 | 24.2 26.2 27.5 28.9
UE 45-59 24.1 | 23.6 25.6 26.9 28.3
60+ 25.1 | 24.7 26.8 28.2 29.7
0-18 166 | 17.1 174 17.7 19.5
19-59 12.8 | 135 13.8 14.2 16.9
LSS 60-60 | 115 | 123 12,6 13.0 15.9
70+ 8.1 8.9 9.2 9.6 12.8

Study 2.3: What is the impact of G2P-SD optimal design with reduced difference on preconceived
LWH outcome?

This study was inspired by the well-documented assertion that many people in China do not
trust local and community-based hospitals. As mentioned earlier, this mistrust has excerbated the
situation of workload imbalance in the tiered Chinese hospital system. In this study, we analyzed
the impact of G2P-SD optimal design with reduced preconceived outcome difference between LWH
and HWH on the system compared to the current policy. The comparison was made with the same
government spending obtained under the SRI_IE setting.

Data from our survey support this assertion. For example, our data show that with either
insurance type, more than 39% of the online respondents preconceived large difference in care
outcmes between the two tiers. Nevertheless, many healthcare professionals in China believe the
actual care outcomes at LWH are not as bad as what are preconceived by the consumers. The
interactions with our partners in Shanghai indicated this as well. Hence, it would be beneficial to
reduce the preconceived outcome difference (POD), or in other words, correct the biased perception
among Chinese consumers. The quesiton that remains is how much impact it would be with any
hypothetic reduction of POD. Answering this question can help local governments investigate the
trade-off between financially incentivizing consumers and using promotional campaigns to correct
the quality perception on LWH. If found beneficial with the latter approach, our approach can
further help select cost-effective public campaign strategies to implement.

In this study, we varied the POD distributions for the two types of insurance (see Figure 11
for a comparison of the two distributions). We essentially moved a portion of the consumers

having relatively large POD to having relatively small POD, which is aligned with the belief of
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the healthcare professionals we interacted with. In the same study setup as in Study 2.1 except
for the POD distribution, we considered four age-specific patient classes and obtained the optimal

SRI (i.e., SRI.REC_2) for each class and the corresponding wait times of HWH and LWH.

60% 82 POD distribution from survey
o Hypothetically POD distribution [
(]
2 N
A~ )
« 40%
o
=
2 30%
g 30% N\
&
2.20%
2
=
- Eﬁm %
0%
Oa '\"b\\ i@ ﬁ%a \'\c’a ;z’\\\
@e é\ ﬂ\% A @@
6{& ~4@\~\5 & & ng .4@\*\ :
o S & o o $ &
o & M
© 3 R N & Nig

Figure 11: Comparative illustration of the two POD distributions

Figure 12 presents a comparison between the three SRI settings with respect to the two insur-
ance types and different age groups. The figure shows a decrease on SRI for either insurance type
and across age groups. This can be explained as follows. Now that with the POD distribution
change, many consumers have more trust on the care quality of LWH, they would be more willing
to visit LWHs under SRI_LREC_2 than SRI_IE. Thus there would be no need to provide SRIs at
the same level as previously. Neverthless, since we perform the G2P-SD optimization, the design
of SRIs still basically follows the ranking of the funding efficiency values.

After comparing the total social cost under the three SRI settings (SRIIE vs. SRI_.REC vs.
SRI_LREC_2), we fi 1 the total social cost under the SRI_LREC_2 setting is reduced by 31.98% and
18.54%, respectively, compared with the SRIIE setting and SRI_REC setting (i.e., 7.30 x 10°
under the SRIIE setting vs. 6.09 x 10° under the SRI_LREC vs. 4.93 x 10° under the SRI.REC_2).
Further, Figure 13 presents a comparison of the average wait times under the three SRI settings
(SRIIE vs. SRI.LREC vs. SRI.REC_2). The figure suggests the possibility of greatly reducing
the average HWH wait time, and meanwhile, slightly increasing the average LWH wait time,
through more direct ways of varying the POD distribution in the population. Of course, to make
the tradeoff between the financial incentivation and some promotional campaign for correcting the
quality perception on LWH, it is important to assess the cost of the campaign, and subsequentially,
analyze the incremental cost-effectiveness between the above two distinct patient flow alteration

mechanisms.
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Overall, before we give further explanation for our numerical studies, we define that under a
certain SRI, patients with a higher probability of choosing LWH is called patients who are more
willing to visit LWH under that SRI. And patients who has a greater increase in the probability
of choosing LWH brought about by a small increment on a certain SRI is called patients with
more sensitivity to that SRI. To give more evidence for the optimal results, we first offer the
following conclusions, which are verified by the mathematical explanations in Appendix E. We
find the current SRI, the willingness to choose LWH under the current SRI, and the sensitivity to
the current SRI, all will have an impact on the optimal G2P-SD design. (1) If the current SRI is
the same, patients with higher willingness to go to LWH at the current SRI and less sensitive to
the current SRI should be offered a smaller increment on the current SRI. (2) If the current SRI is
not the same, patients with larger current SRI, and higher willingness to go to LWH at the current
SRI and less sensitivity to the current SRI should be offered a smaller increment on the current
SRI. These conclusions can support the interpretation of our G2P-SD optimal design in Study 1
and Study 2.1 — Study 2.3. Taking Study 1 as an example, we give the following explanation.
Compared to patients with URR-insurance, UE-insurance patients have lower current SRI, and
are more sensitive to their current SRI and less willing to visit LWH, thus they should be offered a
larger increment on their current SRI. This is explained that the optimal increment on the current
SRI for UE-type insurance are higher than that for URR~type insurance. Second, for UE-insurance
patients aged 19-59, the current SRI for them is the same, and older patients are more willing
to visit LWH under the same current SRI and are less sensitive to the increment on the current
SRI. Therefore, for patients aged 19-34, 35-44, and 45-59, the older the patients are, the smaller
the increment is on their current SRIs in the optimal policy, which is consistent with the results
in Table 4. Thus, for these three age groups, the older the patients are, the smaller the increment
is on their SRIs. Different from them, patients aged 60+, their willingness to visit LWH is the
highest, but their current SRI and sensitivity are both smaller, so there is a trade-off between these
three factors, and it is necessary to compare the funding efficiency of patients aged 60+ with that
of patients in other three age groups to determine how their increment on the current SRI should
be adjusted. According to the values in Table 4, their funding efficiency value is only second to
that of people aged 19-34, so the increment on SRI for them is ranked the second. Similarly, the
reason for changes on the SRI for four age-specific classes of URR-insurance type is similar to that
for UE-insurance type. And the interpretations of the results in Study 2.1 — 2.3 are also similar to

the above analysis in Study 1.

5. Conclusions and Future Research

Government subsidization of patients’ medical expenses is a must-needed financial incentive
mechanism to regulate population-level care access in the healthcare system to maintain good

system-level service performance. The hospital system in many countries is hierarchical that
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contains diverse hospitals with substantially different amounts of workload. Thus, well-designed
subsidy differentials among these hospitals can positively alter each patient’s choice on hospital
visit so as to rebalance the workload in the multi-hospital system visited by a diverse population of
patients. In summary, from the government’s perspective, G2P-SD can be a useful lever to induce
patients to visit the “right” hospitals.

In this paper, we study the problem of optimal G2P-SD policy design with focus on two-tier
hospital system. Our analytic approach contains four parts: (1) developing a binary choice model
to characterize the hospital visit behaviors of a heterogeneous patient population; (2) modeling
the two-tier system with a large-scale two-level queuing network where the arrivals are specified
by the choice model; (3) analyzing the performance measures of the queuing network considering
patient balking behavior; and (4) formulating a funding allocation optimization model with the
cost of weighted wait time and the government spending as objectives and subject to the minimum
workload requirement at each hospital. To the general OR/MS audience, our work presents contri-
butions in three aspects: (1) integration of choice model into optimal subsidy differential pricing;
(2) application of queueing model evaluation to healthcare service operations management; and
(3) real-world case studies for a country with imminent need.

We administer an online survey and conduct a choice experiment to parameterize the choice
models. Our choice model results suggest that several objective attributes such as age and income
are influential to patient hospital visit choice. The results also suggest preconceived outcome
difference between the two hospital tiers is an important factor. We design case studies based
on the realistic situation in Shanghai where we have developed solid partnership with a variety of
hospitals along the hospital hierarchy. Through our case study, we verify that (1) optimal design of
age-specific G2P-SD policy with our approach can significantly improve the service quality centric
system performance; (2) policy tailoring with respect to influential attributes identified in choice
model, such as income level, can further improve the system performance; and (3) the notion of
funding efficiencycan serve as a useful indicator to SRI design and budget reallocation. Specifically
about the real context of Shanghai, our results suggest that (1) the current SRI, the willingness to
choose LWH under the current SRI, and the sensitivity to the current SRI, all will influence the
optimal G2P-SD design; (2) it is beneficial to widen the SRIs for the UE-type insurance and narrow
the SRIs for the URR-type insurance; and (3) it may be worth investigating the trade-off between
financial incentive mechanisms with alternative non-financial mechanisms such as promotional
campaigns.

Future research can be pursued along several directions. First, one extension is to introduce
additional heterogeneity among hospitals such as distance and and quality level, and further in-
corporate social welfare concerns in the formulation as consequences of balking. Second, we plan
to incorporate some factors such as the estimated waiting time into the utility of balking and to

estimate the balking behavior in a discrete choice experiment. Third, the possible extension is to
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consider the choice model in which individual-specific variables (such as income) are interacted
with subsidy rate in subsidy policy design. Fourth, the possible extension could be to analyze
randomness (e.g., time-varying arrival and load-dependent service) more realistically that exists
widely in healthcare service systems. Moreover, we plan to extend the dimension of our deci-
sion making to include facility location and capacity expansion decisions. Finally to make our
work more implementable and practically meaningful, we plan to conduct more appealing choice

experiments and develop more comprehensive choice models.
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Appendices

Appendix A. Detailed derviations of the queueing network performance measures

With the total arrival rate of an HWH i equipped with capaity ¢ is A¥ (¢,sp,s1), and that

of an LWH j equipped with capaity cF is )\JL (0,81,8L),
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With the exterior overall arrival rate of class r GC patients at LWHs, i.e., A (or, sS4y, 8%), the
Ny,
efficient arrival rate of GC patients at an LWH j is obtained as A7, ; (0., s, s7) (1 —pr )ek/ 21 ck.
ji=
For a node in equilibrium, its arrival rate and service throughput are equal, the overall throughput

of class r patients in all LWHs is
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Similarly, with the exterior overall arrival rate of class r SC patients at HWHs, i.e., A} = K¢p,,
Ny

the efficient arrival rate of class r SC patients at an HWH i is K,p,(1—pP=)cf /Y cf. And with
i=1

the exterior overall arrival rate of class r GC patients at HWHs, i.e., A}, g (o, sy, s7), and the

overall throughput of class r patients at LWHs, i.e., T}, | (AL (or, s, s7)), the efficient arrival rate

Ny
of GC patients at an HWH i is (A}, 5 (07, 857, 87) + Ty, 1 (AL (00, 85, 87)) prm) (1 —pP)eH S e
i=1
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Thus the overall throughputs of class  GC patients and that of class  SC patients at HWHs are
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(25)
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Appendix B. The hospital visit choice behavior questionnaire

In this appendix, we provide the questionnaire we used to survey a cohort of online respondents
and model hospital visit choice behavior in Shanghai. The original questionnaire is written in
Chinese. We provide its English translation here.
Introduction

You are being invited to take part in a research study about hospital visit choices. Please
note that there are no right or wrong answers to any questions in this questionnaire. We are only
interested in your opinions and feedback. Your kind and valid response will help the Shanghai
municipal government devise better medical reimbursement policy and will help make you feel
more satisfied about coverage of your medical care expenses in the future. This questionnaire
should take approximately 3-5 minutes to complete.

We assure you that the responses provided by you will not be linked to any personal identifiable
information. Your participation in this study is voluntary and you are free to withdraw at any
time without penalty. We thank you again for your willingness to participate in this study. Please

feel free to contact us if you need any additional information about this project.
1) What is the type of your medical insurance?

a) Urban Employee (UE) Medical Insurance
b) Urban and Rural Resident (URR) Medical Insurance
c¢) I don’t know what kind of insurance I have

d) No insurance

Section 1: Basic information
The first section of the questionnaire includes questions about your demographics and other
related information. We will only use your responses to these questions to compare across survey

participants. We assure you that your privacy is protected.

2) What is your gender?
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a) Female b) Male
3) Which of the following categories does your age falls into?

a) 0-18 b) 19-34 c) 35-44 d) 60-69 e) over 70
4) What is the highest level of education you have obtained?

a) Primary school or below b) Junior high school
¢) High school or vocational school d) Junior college

e) Bachelor degree or above

5) What’s your occupation?
a) Unemployed b) Student

¢) Employees of state-owned enterprises and d) Self-employed or private owners

institutions

e) Employees of private or foreign companies f) Peasant
g) Worker h) Retired

i) Other (Please specify)

6) Which of the following income groups includes your monthly individual income
a) less than 3000 RMB b) 3000-5000 RMB ¢) 5000-10000 RMB

d) 10000-30000 RMB e) over 30000 RMB

Section 2: Choice scenario

In the following, we will present a scenario where we would like you to choose whether to
go to a nearby community-based hospital you could desire imaginatively. Please note that there
are no correct or incorrect responses, and your choice should be based on your own preferences,
experiences, and specific needs.

Suppose you or your child had fever and cough with headache, muscle pain and other symptoms,
you would go to a hospital in need of basic medical service, e.g., an outpatient consultation. Imagine
you have two options, either going to a top-rated hospital!, i.e., an HWH, or a nearby community-
based hospital, i.e., an LWH. Please note that healthcare professionals do not think that there is
any significant difference in care outcomes between HWH and LWH in the treatment of diseases

with the above symptoms.

1In China, these hospitals are given a 3A designation.
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In your opinion, what is the difference in care outcomes between HWH and LWH for outpa-

tient care of mild fever or coughing with headache?

a) no difference b) relatively small

¢) quite large d) huge
Which of the following categories does your child’s age fall into??
a) 0-18 b) over 18 ¢) no children

Assuming that your child experienced fever and cough with headache, muscle pain and
other symptoms. S/he would thus be in need for going to a children’s hospital for basic
medical service. Suppose your child is covered by medical insurance®. A portion of the total
expenses is covered by the government (The proportion paid by the government is called
subsidy rate), and the rest is paid by you. The subsidy rate for the HWH- and LWH-tier
hospitals are given in the following Table 7. When you make your choice, please take a
moment to think about the care outcomes difference between the two hospitals preconceived

by you.

Table 7: Would you choose HWH or LWH for your child?

Alternatives
HWH | LWH
Subsidy rate 50 %% | X% °
Which one would you choose?

Assuming that you experienced fever and cough with headache, muscle pain and other
symptoms, and thus would be in need for going to a hospital for basic medical care. Your
insurance type is TS. A portion of the total expenses is covered by the government (The
proportion paid by the government is called subsidy rate), and the rest is paid by you. The
subsidy rate for the HWH- and LWH-tier hospitals are given in the following Table 8. When
you make your choice, please take a moment to think about the care outcomes difference

between the two hospitals preconceived by you.

Appendix C. Interaction effects between patient-specific variables and SRI

2The question that follows will depend on the respondent’s answer here. The online questionnaire will present

question 9 to the respondent if the answer is A; otherwise present question 10.

3The insurance type for the minors is always URR.
4Currently in Shanghai, the G2P subsidy rate of HWH is always 50% for the minors
5The subsidy rate at the LWH is randomly assigned to the respondent within some prespecified range.

6T is replaced in real time in the survey according to the respondent’s actual insurance type input earlier in the

questionnaire.
"The corresponding input of the HWH G2P subsidy rate for class r
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Table 8: Would you choose HWH or LWH?

Alternatives
HWH | LWH
Subsidy rate sHT | y9s
Which one would you choose?

Table 9: Coefficient estimation results for interaction effects between patient-specific variables and SRI

Insurance Variable Parameter Standard p —Value
Type Name Estimate Error
SRI 13.764 2.484 0.000
SRI x Age {35 — 44} 1.412 0.785 0.072
SRI x Age_{45 — 59} 2.781 0.890 0.002
SRI x Age_{60+} 3.890 1.422 0.006
SRI x Income_{3K — 5K} -0.864 2.252 0.704
SRI x Income_{5K — 10K} -4.152 2.199 0.059
UE SRI x Income_{10K — 30K’} -6.056 2.269 0.008
SRI x Income_{30K+} -9.672 3.955 0.014
SRI x POD_{relatively small} -2.766 1.046 0.008
SRI x POD_{relatively big} -8.639 1.116 0.000
SRI x POD_{very big} -8.867 1.615 0.000
ASC -1.566 0.154 0.000
SRI 3.873 0.761 0.000
SRI x Age {19 — 59} 3.206 0.419 0.000
SRI x Age_{60 — 69} 4.886 1.208 0.000
SRI x Age_{70+} 9.739 1.586 0.000
SRI x Income {3K — 5K} -0.530 0.593 0.371
SRI x Income_{5K — 10K} -0.833 0.575 0.147
URR  oRT  Tncome {10K — 30K} -1.087 0.710 0.126
SRI x Income_{30K+} -3.991 1.664 0.016
SRI x POD_{relatively small} -1.140 0.551 0.039
SRI x POD_{relatively big} -5.496 0.598 0.000
SRI x POD_{very big} -8.639 1.040 0.000
ASC -0.559 0.091 0.000
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To test the interaction effects between patient-specific variables and SRI, we provided our
binary choice model estimation results in Table 9. We discuss in the following how patient-specific
variables interact with SRI. We found that for the UE insurance type, age, income, and POD
significantly interact with SRI. In particular, when other patient-specific variables being equal,
older patients experience higher utility gain when SRI increases, and patients with higher income
experience less utility gain when SRI increases. Additionally, when other patient-specific variables
being equal, patients whose POD is large experience less utility gain when SRI increases. For the
URR insurance type, the interaction effects of SRI with age and POD are significant. Similarly,
when other patient-specific variables being equal, older patients experience higher utility gain when
SRI increases, and patients whose POD is large experience less utility gain when SRI increases.
Appendix D. Additional information on generation of the hypothetical patient popu-
lation in the Shanghai-based case study

According to survey on a sample 1% Shanghai population in 2015, we can get the corresponding

proportion of different ages of urban and rural populations shown in Table 10.

Table 10: Age distribution of a large-size sample of Shanghai residents covered by either type of insurance

UE insurance URR insurance
Age 19-34 35-44 45-59 60+ 0-18 19-59 60-69 70+
Proportion | 42.0% 16.4% 22.1% 19.5% | 10.5% 66.9% 12.3% 10.3%

The distribution of preconceived outcome difference and income level of the urban and rural

populations are from the data of sample statistic in the choice experiment shown in Table 11.

Table 11: Distributions of preconceived outcome difference and income based on the participants from the self-

conducted choice experiment

POD Income
UE URR UE URR
No difference 17.2%  16.4% <3k 3.0% 17.8%
Relatively small 43.6% 44.0% | 3k-5k  26.6% 30.1%
Relatively large 33.2% 32.6% | 5k-10k 50.7% 38.3%
Very large 6.0% 7.1% | 10k-30k 19.0% 12.3%
>30k 0.7%  1.6%

Appendix E. Mathematical explanations about the conclusions on optimal SRI design
Without loss of generality, we assume that the probability of choosing an LWH when a patient
is offered an SRI is expressed as p;, = asgry * SRI + bsgy, in which aggr; represents the sensitivity
of patients to SRI, and bgg; is a constant related to patient classes and the SRI.
We assume that the total number of patients in the system is n, the subsidy rate at HWH
is sy and the per-capita service payment for patients is C'. We also assume that in the current

policy, the subsidy rate increment is SRI. Thus the number of patients at HWH denoted by np,
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the number of patients at LWH denoted by ny and the total government spending denoted by St

are respectively expressed in equation (27) — (29).

ng =n* (1 - pL)a (27)

ny =mn*py, (28)

St =ng*sg+ng*(sg+ SRI)
=nxsyg+n*xpp*xSRI (29)

If in a new subsidy policy, there is an increment x on the SRI, then the probability of choosing
an LWH is changed to p} = agrr * (SRI + ) + bggrs. Accordingly, the number of patients at
HWH denoted by n'y, the number of patients at LWH denoted by n} and the total government
spending denoted by S/ are respectively expressed in equation (31) - (32).

ny =nx(1-pp) (30)

np =nx*p} (31)

S =nlyx sy +nl x(sy + SRI + x)

=n*xsg+nxppx SRI+nx*p) xx (32)

1050 We denote the increment of p} relative to pr, by Apy, expressed by equation (33). In the new
subsidy policy, the decrease in the number of patients in HWH denoted by Ang is expressed in
equation (34), while the increase in the number of patients in LWH denoted by Any, is expressed
by equation (35), and the. And the increment of the total government spending in the new subsidy

policy is denoted by AS7, which is expressed in equation (36).

Apr, = py, — pr, = asrr * . (33)
Ang =ng—ng=nx(1—pp) —nx(1—pL) =n*aspr *z. (34)
Anp =n, —np =n*pp —n*pL =N *aggry * T. (35)

AST:S/L*—SL
=n*sy+nxp, xSRI +nxpp*xx—n*sy—n*pp*SRI

=n*asrr*r* SRI +n*p) xx (36)
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Therefore, an increase of = in the current SRI will reduce the number of patients in the HWH
by Ang, and the total cost of the government will increase by ASy. Our goal is to reduce wait
times in the system, which means we can use financial incentives to guide more patients to LWHs.
Therefore, we can define the funding efficiency as fs, = Ang/ASr. Obviously, to guide patients
to LWHs more effectively, patients with higher funding efficiency should be given larger increment
on SRI.

fST ZATLH/AST
=nx*asgr *x/(n*asrr *x* SRI +n xpp * x)

= asrr/(asrr * SRI + p}) (37)

From equation 37, when the sensitivity to SRI is the same (i.e., aggs is the same), we find
that the current SRI, the willingness to choose LWH under the current SRI, and the sensitivity
to the current SRI, all will have an impact on the optimal G2P-SD design. (1) if the current
SRI is the same, the higher willingness to visit LWH (i.e., p’ is larger), the lower the funding
efficiency of patients, while the lower willingness to visit LWH (i.e., p/ is smaller), the higher
the funding efficiency of patients. As a result, patients who are less willing to visit LWH should
have a smaller increment on SRI than patients who are more willing to visit LWH. If the current
SRI is not the same: (2) the lower willingness to visit LWH and the smaller the current SRI, the
higher the funding efficiency of patients. Therefore, the increment on SRI of this kind of patients
should also be greater. In reverse, the higher willingness to visit LWH and the larger the current
SRI, the smaller the funding efficiency of patients. Thus the increment on SRI of this kind of
patients should also be smaller; (3) if the willingness to visit LWH is higher, but the current SRI
is smaller, or the willingness to visit LWH is lower, but the current SRI is larger, the patient’s
funding efficiency should be judged according to the actual situation.

When the sensitivity to SRI is not the same, we find that (1) if the current SRI is the same,
patients who are more willing to visit LWH at current SRI and less sensitive to the current SRI
(i.e., aspry is smaller) should be offered a smaller increment on the current SRI. In reverse, patients
who are less willing to visit LWH at the current SRI and more sensitive to the current SRI should
be offered a larger increment on the current SRI. If the current SRI is not the same: (2) if the
current SRI is larger, the willingness to visit LWH is higher, and the sensitivity to SRI is lower,
then the patient’s funding efficiency is smaller. Thus the increment on SRI of this kind of patients
should also be smaller. In reverse, if the current SRI is smaller, the willingness to visit LWH is
lower, and the sensitivity to SRI is higher (i.e., asgy is larger), then the patient’s funding efficiency

is larger.
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