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Abstract— While prior studies have designed incentive mech-
anisms to attract the public to share their collected data, they
tend to ignore information asymmetry between data requesters
and collectors. In reality, the sensing costs information (time cost,
battery drainage, bandwidth occupation of mobile devices, and
so on) is the private information of collectors, which is unknown
by the data requester. In this article, we model the strategic
interactions between health-data requester and collectors using
a bilevel optimization model. Considering that the crowdsensing
market is open and the participants are equal, we propose a
Walrasian equilibrium-based pricing mechanism to coordinate
the interest conflicts between health-data requesters and col-
lectors. Specifically, based on the exchange economic theory,
we transform the bilevel optimization problem into a social wel-
fare maximization problem with the constraint condition that the
balance between supply and demand, and dual decomposition is
then employed to divide the social welfare maximization problem
into a set of subproblems that can be solved by health-data
requesters and collectors. We prove that the optimal task price is
equal to the marginal utility generated by the collector’s health
data. To avoid obtaining the collector’s private information,
a distributed iterative algorithm is then designed to obtain
the optimal task pricing strategy. Furthermore, we conduct
computational experiments to evaluate the performance of the
proposed pricing mechanism and analyze the effects of intrinsic
rewards, sensing costs on optimal task prices, and collectors’
health-data supplies.

Index Terms— Health-data crowdsensing, information asym-
metry, pricing mechanism, Walrasian equilibrium.

NOMENCLATURE

Set of collectors.

Number of collectors.

p; Price determined by the requester.

x;  Allocated sensing time for the collector
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yi  Allocated time to meet own demand for the
collector i € U.

¢;  Unit sensing cost for the collector i € U.

t;  Remaining time of the device for the collec-
tori € U

pi  Revenue parameter that obtained from own
demand.

k  Minimum data demand for the requester.

o Utility parameter for the requester.

r Number of iterations.

I. INTRODUCTION

N THE field of healthcare, public-generated health data

can be used to track personal health and well-being status,
and subsequently regulate the healthy living of each indi-
vidual. Besides, health data collected from a cohort of the
public may offer scientific or commercial value for various
areas of healthcare, such as diagnostics, therapeutics, drug
development, and insurance marketing. At present, in order
to obtain and utilize personal health data, several platforms,
such as ResearchKit [1], TrackYourTinnitus [2], and Track-
YourHearing [3], have emerged to build bridges between the
health-data requester and the public (i.e., health-data collectors
or simply collectors). However, these platforms often lack
incentive strategies, resulting in the inability to attract the
public to share their own health data. In recent years, mobile
crowdsensing systems have been widely adopted in large-scale
data acquisition applications, such as intelligent transportation,
indoor localization, and air quality and noise monitoring
[4], [5]. With the proliferation of smartphones and wearable
devices (e.g., Fitbit Flex and Apple Watch), they provide
technological support for health-data crowdsensing, enabling
users to continuously and often unobtrusively collect various
data streams (e.g., heart rate, blood pressure, and blood sugar
level) in nonclinical settings [6], [7].

In health-data crowdsensing, the most important challenge is
to motivate the public to perform the sensing task by providing
appropriate rewards [8]. Considering the willingness of collec-
tors to participate, the number of collectors performing health-
data sensing tasks is uncertain. Besides, when performing
health-data sensing tasks, collectors will incur sensing costs
(time cost, physical or mental tiredness of collectors, battery
drainage and bandwidth occupation of mobile devices, and so
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on) and may also obtain intrinsic benefits (change bad living
habits, better knowledge of their own health, and so on) [9],
which is the collectors’ private information. For health-data
requesters who want to purchase health data, none of the
above information is known. This will lead to the following
phenomenon when the health-data requester setting a low
payment might not attract sufficient collectors; while offering
a high payment to recruit collectors might increase costs and
reduce the profits. For consistency, we use the word task price
in Section II and regard the incentive problem in crowdsensing
as a pricing problem.

Most existing works on incentive mechanisms formulate the
interaction among task initiators (or the platform) and multiple
mobile users as a one-leader multifollower Stackelberg game,
where the task initiator (or the platform) is the leader and the
users are the followers [10], [11]. Furthermore, they transform
the optimal response of all users into a constraint condition
for the task initiator (or the platform) and then solve a
single-level optimization problem. When using this kind of
centralized method, task initiators (or the platform) need to
know each mobile user’s exact utility function. As we all know,
there is information asymmetry between task initiators (or the
platform) and mobile users [12], [13]. Hence, the obtained
results using this centralized approach are far from reality.
Facing the information asymmetry between task initiators (or
the platform) and mobile users, some researchers are trying to
solve it [14], [15]. Sedghani et al. [16] developed a method that
allows the platform to estimate the parameters of the users’
cost functions by sending a few messages containing the prices
and receiving users’ time dedication as responses. Zhan et al.
[17] designed a deep reinforcement learning (DRL) approach
to learn the optimal pricing strategy by formulating the mobile
crowdsensing game as a Markov decision process (MDP).
Although these methods are feasible in theory, they cannot
be easily implemented and ensure truthfulness and fairness in
crowdsensing applications.

To address the above challenges, we consider the inter-
actions between health-data requesters and collectors as the
behavior in the economic market, in which the health-data
requester is the buyer and collectors are the sellers, and
the health-data requester buys health data from collectors.
In the market, both buyers and sellers want to maximize their
interests, and as the market evolves, there exists a Walrasian
equilibrium between buyers and sellers. In our study, based
on the exchange economic theory, we formulate the mar-
ket competition between health-data requesters and collectors
as the bilevel optimization model and design a Walrasian
equilibrium-based pricing mechanism. The proposed method
can optimize the profit of the health-data requester and the
payoffs of collectors without exposing collectors’ privacy
information. Besides, since the task price is determined by
the relationship between supply and demand in the mar-
ket, the Walrasian equilibrium-based pricing mechanism is a
reasonable and viable approach to health-data crowdsensing
application. To be specific, the main contributions of this
article are summarized as follows.

1) Different from general crowdsensing applications,
health-data collectors not only obtain monetary rewards
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but also obtain intrinsic rewards (e.g., change bad liv-
ing habits and better knowing of their own health)
in performing health-data sensing tasks. We accurately
monetarize the intrinsic rewards and analyze the effect
on optimal task prices and health-data supplies.

2) We propose the Walrasian equilibrium-based pric-
ing mechanism to coordinate profit conflicts between
health-data requesters and collectors. By transforming
the bilevel optimization problem into a social welfare
maximization problem with the constraint of supply—
demand balance, we can maximize the benefits of health-
data requesters and collectors, simultaneously.

3) In order to avoid obtaining collectors’ private informa-
tion directly, we design a distributed iterative algorithm
to achieve the optimal pricing strategy based on the dual
decomposition method. Besides, we found that, to coor-
dinate profit conflicts between the health-data requester
and collectors, the optimal pricing strategy should be
made according to the marginal utility generated by the
collector’s health data.

The rest of this article is organized as follows.
We review the relevant literature in Section II. In Section III,
we present a game model for the health-data crowd-
sensing system. Section IV demonstrates the existence
of the Walrasian equilibrium. Then, we characterize the
Walrasian equilibrium-based pricing mechanism in Section V.
In Section VI, we evaluate the proposed pricing mechanism
via numerical studies. Finally, we draw conclusions and sug-
gest directions for future research in Section VIL.

II. LITERATURE REVIEW

The task pricing problem in crowdsensing has attracted a
great deal of research interest among researchers [18]. Through
the analysis of the literature, it can be found that existing stud-
ies either adopted a platform-leading or a user-centered pricing
mechanism. Adopting the platform-leading pricing mechanism
implies that the platform or task initiator is the leader who
offers task rewards to engage potential users. Users, acting
as followers, randomly decide whether to participate or not
[19]. Cheung et al. [11], Nie et al. [12], and Zhan et al. [20]
investigated how to set the task price to maximize the platform
or task initiator’s profit. Yang et al. [10] and Wu et al. [21]
proposed how to minimize the total sensing cost where users
decide the optimal participation strategy by predicting the
strategies of other potential users. Through analysis, we can
found that the platform or task initiator will dominate the
whole crowdsensing process and tries to maximize their own
profits or minimize the rewards provided. In other words,
the platform-leading pricing mechanism is not a fair pricing
mechanism. Besides, the platform-leading pricing mechanism
usually utilizes the Stackelberg game model, the prerequisite
of which is that the platform or task initiator knows all of
users’ private information. Hence, from the perspective of
reality, the platform-leading pricing mechanism cannot be
easily implemented in crowdsensing applications.

As for the user-centered pricing mechanism, most existing
studies adopted the reverse-auction form. Each potential user
first bids a reserve price (i.e., the minimum price at which they

Authorized licensed use limited to: Purdue University. Downloaded on October 31,2022 at 11:04:07 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: WALRASIAN EQUILIBRIUM-BASED PRICING MECHANISM

are willing to share sensing data), and then, the platform or
requester chooses some users as auction winners [22], [23].
Zheng et al. [24] and Jin et al. [25] attempted to minimize
the platform or task initiator rewards under the condition of
ensuring a satisfactory number of users. Yang ef al. [10] and
Zhang et al. [26] examined how to maximize the platform
or the requester’s utility under budget limitations. The user-
centered pricing mechanism usually assumes that users’ con-
tributions are homogeneous, which is not in line with reality.
Besides, this mechanism makes it easy for users to submit
false bids, thus leading to ineffective implementation.

In recent years, some dynamic pricing methods have
attracted the extensive attention of researchers. Duan et al.
[27] designed a distributed algorithm to compute the Walrasian
equilibrium in crowdsensing systems but assumed that the
acceptable price was the same for potential users in the same
region. He ef al. [28] studied a joint pricing and task allocation
problem with the goal of achieving the Walrasian equilibrium
but did not consider users’ sensing costs. Given the func-
tions of supply and demand, Chen er al. [29] formulate an
MDP-based social welfare maximization model and propose
a pricing approach toward incentive mechanisms based on the
Lagrange multiplier method, dual decomposition, and subgra-
dient iterative method. Xu et al. [30] investigated task prices
and resource allocation in the crowdsensing system based on
the supply—demand relationship. The methods proposed in the
above literature are very complex and difficult to implement in
reality. Hence, although various dynamic pricing methods have
been proposed, they have certain limitations for health-data
crowdsensing applications. Moreover, the existing research has
not explored the effect of users’ intrinsic motivation on task
prices.

In our study, we constructed the interaction between health-
data requesters and collectors as the bilevel optimization
problem and proposed a Walrasian equilibrium-based pric-
ing mechanism to coordinate the profit conflicts between
health-data requesters and collectors. The proposed pricing
mechanism does not need the health-data requester to collect
the privacy information of collectors.

III. GAME MODEL FORMULATION

In this section, we first describe health-data crowdsensing
system and formulate the interaction between the health-data
requester and collectors using a bilevel optimization model.

A. System Description

In our study, we consider that a health-data requester posts
a health-data sensing task through a crowdsensing platform
and sets the corresponding rewards, and then, a large group
of potential collectors with smart devices randomly decides
whether to participate or not [31], as shown in Fig. 1. Let
U ={1,2,..., N} denote the set of collectors, where N > 2,
and x = [x1, x2, ..., xn]" specifies each collector’s allocated
sensing time, where x; = 0 implies that the collector i € U
will not participate in the health-data crowdsensing task. The
reward for the unit sensing time is p = [py, p2, .. -, pn]1T. For
clarity, Nomenclature lists out the frequently used notations.

,
1 Selecttask |

Sen;ir:g Eask 1 O O
Provide rewords Uploading data_! O O
Integrated data Obtainrewards |~ O @]

\
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Collectors

Health-data requesters

Crowdsensing platform

Fig. 1. Health-data crowdsensing system framework.

By integrating the data sensed by collectors and then
extracting relevant health information, the requester can realize
a certain amount of utility, denoted by ®(x). Hence, the
benefit of the requester can be modeled by the differential
between the obtained utility and the rewards paid, i.e.,

N
W(p,x)=00x) =D pixi. M

i=1
It is obvious that ®(x) is positively correlated with the number
of collectors and the amount of data uploaded by collectors.
From the reality, we assume that the device held by the
collector i € U still runs ¢ units of time, in which he/she
needs to set aside y; units of time to meet his or her
own demand, such as playing Weibo, making phone calls or
playing games. Define f; as the revenue parameter when the
collector’s own demands are met. Considering the uncertainty
of collectors’ behavior, y; is defined as a random variable

in the interval [Xi’ j}i] [32]. Furthermore, we assume that

y; follows the probability distribution function f;(-), and the
cumulative distribution function is F;(-).

Different from general crowdsensing applications, knowing
own health status while performing sensing tasks is also a very
important incentive factor [33]. Performing health-data sensing
tasks may generate incremental benefits by facilitating each
collector to adopt healthy behaviors. In this article, we define
the individualized utility of adopting healthy behaviors as
intrinsic rewards. Based on the tendency to adopt healthy
living habits, the intrinsic rewards may be different among
collectors. When the collector i € U commits x; units of time
to participate in a health-data sensing task, the time for serving
his or her own demand is #; — x;. Therefore, given the task
price p;, the total benefit of the collector i € U, including the
benefit from serving his or her own demand and the benefit
from uploading health data to the requester, can be expressed
as

H;(pi, xi)
ti—X; Yi
) ( [ wsovds+ [ - xi)ﬁ(mdyi)
Vi ti—Xi
taix; — bix} + pix; — ¢ix;. 2

Here, we use a linear-quadratic function a;x; — bixiz,ai >
0,b; > 0O to represent the intrinsic rewards obtained for
collectors. The quadratic form of the intrinsic rewards not
only allows for tractable analysis but also serves as a good
second-order approximation for a broad class of concave
utility functions. In addition, the linear-quadratic function
captures the decreasing marginal returns from participation.
In particular, @; models the maximum internal participation
willingness rate, and b; is the willingness elasticity factor.
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¢; > 0 is the collector’s sensing cost parameter. For the
convenience of analysis, we define

t; Yi
hi(ti) = pi (/ yi i (yi)dyi +/ lifi(yi)dyi) (3)
Vi t
Therefore, the payoff of the collector i € U can be denoted
as

ui(pi, xi) = Hi(pi, x;) — H;(0,0)
= hi(t; — x;) — hi(t;) + aix; — bix} + pix; — cix;.
4)

B. Model Formulation

Considering that the market is open and free, we model
the strategic interaction between health-data requesters and
collectors as a bilevel optimization model as follows.

1) The requester posts a health-data sensing task on the
crowdsensing platform and initializes the task price p =
[p1, P2, ..., pn1T. To ensure overall sensing robustness,
the requester requires that the total amount of sensing
data does not fall below a certain level, denoted by k.
Hence, we have

max W(p, x)
P

N
st > x>k Q)
i=1

2) Based on the sensing task price p;, those potential
collectors with devices first decide whether to participate
and then allocate the sensing time x;. Considering that
the running time of the device is limited, the decision

problem for the collector i € U is

max u;(pi,x;), i=1,2,...,N
Xi

st.O0<x<t, i=1,2,...,N. (6)

According to the description of the above problems,
we know that there is a conflict of interest between the
requester and collectors. The requester tries to force the price
down so he or she can purchase more data, while collectors
hope the task price to be as high as possible to contribute fewer
data. Since the requester and collectors are peers, it means that
no one can dominate the health-data sensing process. Based
on the market exchange theory, the equilibrium state of the
interaction between (5) and (6) can be characterized by the
Walrasian equilibrium [34]. Therefore, we try to propose a
Walrasian equilibrium-based pricing mechanism approach to
reconcile the above two optimization problems and get the
optimal task prices without directly accessing the collector’s
privacy information.

IV. EXISTENCE OF WALRASIAN EQUILIBRIUM
In this section, we introduce the definition of the Walrasian
equilibrium and show the existence of the Walrasian equilib-
rium in the health-data crowdsensing application.
Definition 1 [35], [36]: A market for a commodity is
at Walrasian equilibrium if, at the current prices of the
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commodity, the quantity of the commodity demanded by
potential buyers equals the quantity supplied collectively by
potential sellers.

In health-data crowdsensing application, the requester can
be viewed as a buyer who wants to buy some health data
from collectors, and each collector can be viewed as a seller
who sells his or her health data. Following the aforementioned
definition, the Walrasian equilibrium is reached in the crowd-
sensing application when the demand vector, supply vector,
and price vector meet the following conditions [37], [38] (for
the sake of analysis, the optimal supply of the collector i € U
is denoted as %;).

1) x is the solution to the optimization problem in (5) at a
given task price p.
2) X;,i € U is the solution to the optimization problem in
(6) at a given task price p;.
3) The market is clear at the optimal task price p*, i.e.,
PINETED T
In order to determine the optimal demand quantity, we need
to characterize the utility function of the requester. According
to the law of diminishing marginal utility in economics,
we denote @ (x) as a monotonically increasing, differentiable,
and strictly concave function, i.e.,

N
O(x)=a ln(l + Zln(l + x,»)) (7
i=1

where a is a system scaler. The internal logarithmic term
implies the diminishing marginal utility of the collector’s
sensing time, whereas the outer logarithmic term implies
the diminishing marginal utility of the number of collectors.
Such an expression has been adopted for the crowdsensing
applications in other sectors [39], [40].

For any given task price vector p = [p1, p2, ..., py17, let
D(p) = arg max[cb(x) ->. p,-x,}. (8)
P
ieU

Lemma 1 [41]: The utility function ®: 2V — R satisfies
the gross substitutes condition if it can be written as

D(A) =g(@(A) YACU (C))

where g: R — R is a concave function and ¢(A) =
> iea ¢({ui}) is an additive measure.

Lemma 2 [42]: The Walrasian equilibrium will exist if and
only if the utility function @: 2V — R satisfies the following.

1) Monotonicity: For all BC A C U, ®(B) < ®(A).

2) Gross Substitutes Condition: For any two price vectors p
and p, their corresponding demand D: R — 2V satisfies
that, for any A € D(p), there exists B € D(p) such
that {i € Alpi = pi} C B.

Proposition 1: For the utility function ®(x) in (7), the mar-
ket for health-data crowdsensing will achieve the Walrasian
equilibrium. That is, the bilevel optimization model in (5)
and (6) exists an optimal market clearing price to achieve
PINSETED IS

Proof: First, the logarithmic function is a monotone
increasing function, so we can get that ®(x) satisfies the
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monotonicity property. Second, according to the expression
®(x) and Lemma 1, we can get that ®(x) is a concave
measure function. Hence, ®(x) satisfies the gross substitutes
condition. To sum up, the optimal market clearing prices exist
in the health-data crowdsensing market. This completes the
proof.

V. WALRASIAN EQUILIBRIUM-BASED
PRICING MECHANISM

In this section, we show how to design the Walrasian
equilibrium-based pricing mechanism. First, the bilevel opti-
mization problem is transformed into social welfare maximiza-
tion problem with the constraint condition, that is, the balance
between supply and demand. Furthermore, the dual decom-
position method is adopted to decouple the social welfare
maximization problem into local optimization problems with
respect to the requester and collectors. Second, a distributed
iterative algorithm is designed to obtain the optimal market-
clearing prices.

A. Searching for Walrasian Equilibrium

Social welfare is a concept of microeconomics, which
measures the satisfaction gained by the participators of a
social system. Meanwhile, it also refers to the sum of the
utility of all individuals in a market. Hence, the Walrasian
equilibrium can be achieved by solving the social welfare
maximization problem with the constraint of supply—demand
balance [43]. In health-data crowdsensing application, the
social welfare is the sum of payoffs of health-data requester
and collectors. Therefore, the social welfare maximization
optimization problem can be expressed as follows:

N
max® (x) + > (hi(t = x0) = hi (1) + aixi = bix] — ¢ixi)
i=1
N N
S.L. Z)Ci = zx,
i=l i=1
N
PIET:
i=1
0<xi<t, ieUl. (10)

where the first constraint guarantees market clears, the second
constraint is a local constraint for the requester, and the third
constraint is a local constraint for collectors. By solving the
above optimization problem, the Pareto optimal solution will
be obtained.

It is obvious that the optimization problem in (10) is a con-
vex optimization problem with affine constraints. Considering
that the objective function in (10) is coupled, it cannot be
directly decomposed into multiple subproblems [44]. Hence,
we solve the optimization problem in (10) using the dual
decomposition method. By introducing the Lagrangian multi-
plier vector A = [A1, A2, ..., Ay]”, the Lagrangian function of
the optimization problem without considering local constraints
can be expressed as

N
L= (D(x) + Z (hi(ti — )C,') — h,’(li) +ajx; — bixiz

i=l1

— cixi)

N
+ Z Ai (& — x;i)
i=1
N
= CD(x) — Z/I,’X,’
N
Z h (t; — —hi(t;) +aix; — b,-xiz + AiX — cixi).
) (11)

Since x and X;,i € U are the optimal decision variables
of the requester and collectors, respectively, the objective
function of the dual problem can be written as

N
2(A) =max L = max (‘D(x) - ZM")

> uzk i=1

+Zor<rfc,ax, (hi(ti — x;) — hi(t;) + aix; — bix}

+/1,')C,' — cixi). (12)

Therefore, according to the Lagrangian duality theory, the
primal optimization problem in (10) is converted into its dual
optimization problem as

Ipil(}z(k). (13)

The optimization problem in (13) can be divided into the
optimization problem of the requester and collectors through
the dual decomposition method. It is worth noting that the
Lagrangian multiplier is essentially the task price. For the sake
of analysis, we use p instead of A in the following part.

When the requester determines the task price, there is an
optimal demand to maximize its profits, i.e.,

N
x(p) = arg max O(x) = > pix;. (14)

> xizk i=l1

For any feasible task price p;, the optimal sensing time
allocation strategy for the collector i € U is

Xi(pi) = arg max (it = xi) = hi(t:)

“+a;x; — bixiz + pPiXi — Cix,'). (15)
Through calculation, we have
%i(pi)
0, if p; €0, pil
—Gﬁ_”(ci—pi —a; + fi +2bit;), if pi € [pi, pil
ti, if p; € [pi, +00]
(16)

where p; = ¢; —a; + fi(1 — Fi(t)), pi = ci —a; + pi +2bit;,
and G,’(li — )C,') = ﬁ,’ﬂ(l‘,’ — )Ci) + Zbi(ti — )Ci).
Proof: The detailed proof is provided in the Appendix.
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Fig. 2. Iterative framework.

B. Designing Distributed Iterative Algorithms

Based on the above analysis, a distributed iterative algorithm
is designed to obtain the optimal task price. In this article,
we use an iterative method based on gradient projection to
solve the above dual optimization problem. The iterative rule
of the requester and each collector is

a +
Pi

[P} — 0% (p}) — xi(p}))]". ieU.

where 0 is the step size, r is the number of iterations,
and [-]T £ max[-,0]. At each iteration, the task price p;
moves toward the optimum along the gradient direction based
on the difference between supply and demand. When the
requester posts an initial task price p, there is optimal demand
to maximize its own profit. Correspondingly, each collector
also chooses optimal sensing time to maximize their own
payoff. If the total supplies from all collectors just meet the
demand from the requester, the posted initial task price p
is the optimal task price p*. Otherwise, the crowdsensing
platform adjusts the initial task price p according to iteration
process in (17). The price-updating process will continue until
supply and demand balance. The iterative framework is shown
in Fig. 2.

Assume that the requester and collectors are price takers,
the distributed iterative algorithm is shown in the following.
The time complexity of an algorithm depends on the number
of entities, i.e., the health-data requester and collectors. For
the health-data requester and collectors, they do not need to
consider the whole system but instead focus on their own
optimization problems, which are all small-scale and convex
problems. Hence, we focus on the execution scale of iteration
step 1 and iteration 2 in Algorithm 1. In each iteration, step 1
and step 2 will execute one and n times, simultaneously.
We define the iteration number at the Walrasian equilibrium as
b. Therefore, the time complexity of Algorithm 1 is O (b * n).

a7
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Algorithm 1 Distributed Iterative Algorithm
Initialization
The requester posts a health-data crowdsensing task on
crowdsensing platform and sets the initial task price.
Iteration process
1 For the requester
Based on the task price, the requester computes the optimal
data demand x according to (14) and reports it to crowd-
sensing platform.
2 For the collector
Based on the task price, the collector computes the sensing
time allocation ¥;,7 € U according to (15) and reports it to
crowdsensing platform.
3 For crowdsensing platform
Based on the response strategies of the requester and col-
lectors, the platform updates task price p; according to (17)
and publishes the updated task price to the requester and
collectors.
Break condition
if H p"+1 —p Hoo < g, where ¢ is a tunable little real number
Output
the optimal sensing time allocation strategy x; for each
collector i € U and the optimal task price p* =

[ p5-- 3]

Proposition 2: With the number of iterations r increasing,
z(p) converges to the minimum according to the iteration
process in (17).

Proof: From the expression in (17), it can be seen that
Ap; = —(9()?}' - x,’) Furthermore, we expand z(p"“) at p”
based on the Taylor expansion, i.e.,

() = o) + 2D (1

Il
[\l
—
‘\
+
—
Kall
|

Rel
=
=

(18)

Because of 6(¥; — x/)> > 0, we can get z(p'™') < z(p").
Therefore, z(p) will converge to the minimum. This completes
the proof.
Proposition 3: When the market achieves Walrasian equilib-
. . . * * * * T 1
rium, the optimal task price p* = [p}, p3,..., py] satisfies

. 0D(x")

p; Vi e U. (19)

Xi
Proof: According to the expression in (4), the total cost
to the collector i € U can be expressed as

Ci(x;) = cix; + hi(t) — hi(ti — x;) — aix; + bix?.  (20)

Besides, there exists (ou;(p;, x;)/0x;) = 0 for the optimiza-
tion problem in (6). Hence, we can get

pi = Cij(%). 21
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Fig. 3.  Wearable device for health-data collection.

Based on the distributed iterative algorithm described above,

there is x; = X;. Since the problem in (10) is a convex
optimization problem, we can further obtain
0D (x) , 0x; .
— Ci(x;) =0 VieU. (22)
axi 5p,‘
It is obvious that
oD (x*
& _ ey =o. 23)
axi

Hence, the above proposition can be obtained by integrating
(21) and (23). This completes the proof.

To sum up, the Walrasian Equilibrium-based pricing mech-
anism can coordinate profit conflicts between the health-data
requester and collectors and does not need the health-data
requester to collect the privacy information of collectors.
In addition, using the Walrasian Equilibrium-based pricing
mechanism shifts the high-complexity computation load from
the platform to each health-data requester and collector; dis-
tributed iterative algorithms are scalable to population varia-
tion, that is, collectors could easily join or leave the system
without tampering the operation of the whole system.

VI. EMPIRICAL STUDY AND PERFORMANCE EVALUATION
A. Empirical Study

In order to investigate the heart condition of teachers,
we conducted a crowdsensing experiment with teachers in the
School of Management, Jiangsu University, in January 2022.
In our experiment, we acted as the health-data requester, and
other teachers (including teachers, counselors, administrators,
and so on) acted as collectors. At present, WeChat is the most
widely used social media platform and the communication
function is sufficient for information transmission in health-
data crowdsensing. Hence, we choose to release the sensing
task of collecting heart rate data through a WeChat group.
In particular, we set the total minimum health-data sensing
time as 25 h and the initial task price as 1.0 RMB/h. In order
to ensure the consistency of data format, participants are
required to use Huawei bracelets for collection and upload the
sensing data through the Huawei sports health app, as shown
in Fig. 3.

Before carrying out the experiment, we declare an agree-
ment on task price in the WeChat group. Specifically, we will
first set an initial task price, and each potential participant
needs to return the expected sensing time under this task price.
Based on the pricing mechanism proposed above, we then
update the task price according to the expected sensing time

TABLE I
EXPERIMENTAL RESULTS

Num  Prices(R  Supplie Num  Prices(R  Supplie
ber MB/h) s(h) ber MB/h) s(h)
1 0.60 2.00 15 1.50 0.80
2 1.45 0.70 16 1.80 0.8
3 1.70 0.50 17 0.80 1.60
4 1.50 0.65 18 1.35 1.50
5 1.65 0.45 19 1.50 0.60
6 1.25 1.00 20 1.55 1.00
7 0.80 1.30 21 0.90 0.60
8 1.00 1.00 22 1.20 1.00
9 1.20 0.80 23 1.10 0.90
10 0.90 1.40 24 0.60 1.80
11 1.45 0.90 25 1.00 1.50
12 1.60 0.60 26 1.40 1.20
13 0.70 1.20 27 0.95 1.00
14 1.20 0.80 28 1.10 1.20

submitted until the supply time of participants is approxi-
mately equal to our demand time. Finally, participants’ task
prices and corresponding sensing time are determined and then
all participants begin to collect their health data under this
agreement.

As a result, a total of 28 teachers signed up for the
sensing task of collecting heart rate data. Based on the stated
agreement, we went through eight iterations to achieve an
approximate balance between supply and demand. In addi-
tion, the total sensing time of participants is 28.8 h, which
also meets our minimum requirements for sensing time. The
specific experimental results are shown in Table 1.

During the whole experiment, we do not need to obtain the
relevant personal information of participating teachers. On the
other hand, after a limited number of interactions, both parties
can achieve satisfactory results, which can effectively verify
the effectiveness of the pricing mechanism proposed.

B. Performance Evaluation

In this section, we evaluate the performance of the proposed
pricing mechanism through numerical experiments. During the
simulation, we used several indicators, including task price,
the amount of supply, the amount of demand, and the gap
between supply and demand to evaluate the proposed pricing
mechanism. In order to get closer to reality, we estimate the
probability distribution of the relevant parameters based on
the behavior analysis of participating teachers, as shown in
Table II. The simulation tool we used is MATLAB R2016b
on Windows 10 operating system with Intel i5-6500 3.19-GHz
CPU and 8-GB memory.
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TABLE 11
SIMULATION PARAMETERS

Parameters Value Parameters Value
p(o) {1,1,1,1,1} t {20,20, 20,20, 20}
uniform distribution
o )
>0 Vi in(0,25)
uniform distribution
B {5,5,5,5,5} a, in (0, 1)
uniform distribution
0 0.05 b, in (0. 1)
£ 0.00001 ¢ uniform distribution
) ! in (0, 1)

First, we verified that the proposed pricing mechanism can
enable the requester to achieve optimal task prices, as shown
in Fig. 4. In the beginning, the supplies of collectors and
the demands of the requester did not match, as shown in
Fig. 4(b) and (c). Since the initial price is low, it can be found
that only one collector chooses to participate, while the other
collectors choose not to participate. Therefore, the task prices
need to be adjusted continuously, as shown in Fig. 4(a). The
change of task price makes the requester and collectors change
their demands and supplies accordingly. Through continuous
interaction, on the one hand, the gap between demands and
supplies approaches gradually zero, as shown in Fig. 4(d); on
the other hand, the demands of the requester and the supplies
of collectors converge to a steady state, that is, the market
reaches the Walrasian equilibrium. In addition, we found that,
even if the given initial prices are the same for all collectors,
the equilibrium prices would still be different, as shown in
Fig. 4(a). The reason for this result is that the collectors’
intrinsic rewards and sensing costs are different, which affects
the final equilibrium price.

Next, we conducted a series of experiments to study the
effects of parameters f;, a;, and ¢; on optimal task prices and
supplies. To ensure the accuracy of experiment results, each
experiment was repeated 30 times, and we adopt the averaged
optimal value. It is worth noting that, due to multiple random
parameters, the standard deviation was still somewhat large
despite repeated experiments.

Fig. 5 illustrates the effect of parameter f; on optimal
task prices and supplies. Here, we assume that the value of
parameter f5; equals the corresponding bar charts. It can be
found that the optimal task prices increase with f;, while
the optimal supplies decrease with f;. In addition, when
collectors can obtain more benefits from serving themselves,
they will allocate less time to participating in the task, and
then, the requester have to provide more rewards, as shown in
Fig. 5(a) and (b).

In reality, some collectors have healthy living habits and
altruistic characteristics and are therefore willing to participate
in the health-data sensing task. At the same time, some
collectors participate in the health-data sensing task in order
to obtain monetary rewards. Hence, we assume that the linear
coefficient a; of intrinsic rewards equals the corresponding
bar charts, and the randomness of other parameters remains
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Fig. 4. Convergence results of iterative experiments.

unchanged. It can be found that the optimal task prices
decrease with a;, while the optimal supplies increase with a;.
Through analysis, we know that when «; is higher, the intrinsic
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rewards obtained from the sensed health data will increase.
Therefore, the requester only needs to offer a lower price to
motivate collectors to allocate more time to participating in
health-data sensing tasks, as shown in Fig. 6(a) and (b).
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Fig. 7. Effect of parameter c;.

Considering various environmental factors, e.g., whether
the device can be recharged, the collectors’ sensing costs
are different significantly. Hence, we further study how the
optimal task prices and supplies are affected by parameter
¢;. In the same way, we assumed that the cost coefficient
¢; equals the corresponding bar charts. We can find that the
optimal task prices increase with ¢;, while the optimal supplies
decrease with c¢;. Through analysis, the reason for this result
is that, when the sensing cost is higher, the requester needs
to pay more rewards to incentivize collectors to share data;
otherwise, they choose not to participate, as shown in Fig. 7(a).
In addition, we also found that collectors with lower sensing
costs will allocate more sensing time to participating in the
health-data sensing task, as shown in Fig. 7(b).

In summary, it can be known from the above experimental
results that the proposed pricing mechanism is in line with the
laws of the market economy.

VII. CONCLUSION

This study was motivated by the emergence of crowdsens-
ing applications for collecting personal health data. Through
market research, we noticed that the task price acceptable to
collectors is unknown to the platform or requester. Considering
information asymmetry between the requester and collectors,
we investigated how to design fair and reasonable task prices
for the health-data crowdsensing system. First, we use a bilevel
optimization model to formulate the interaction between the
requester and collectors. Second, according to the market
exchange theory, we proposed a Walrasian equilibrium-based
pricing mechanism and then designed a distributed iterative
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algorithm to obtain the optimal pricing strategy. Finally,
we conducted numerical experiments to verify the effective-
ness of the proposed pricing mechanism.

Based on the proposed pricing mechanism, on the one hand,
the requester and collectors can maximize their payoffs simul-
taneously; on the other hand, the proposed pricing mechanism
can be easy to implement while ensuring truthfulness and
fairness. In the future, we may introduce the social network
effect into the formulated game model to analyze the effect
on optimal pricing strategy.

APPENDIX

For convenience, u; will be utilized to replace u;(p;, x;) in
the following:

u;=p (/ yifi(yi)dyi-f‘/: (fi—xi)fi(yi)in) —hi(t;)

2
+aix; — bix; + pix; — ¢ix;

where
ti—X;

/ yi i i)dyi

. 1 —Xx;

= / YidFi(yi) = (ti — xi) Fi(t; — x;)

. i —X;
—/ Fi(yi)dy: (24)
Vi

and

Yi
/7 ‘ t — xi) fi)dy; = (t — xp)(1 = Fi(ti — x;)). (25)

Therefore,

—x;
u; = pi (fi — X —/ Fi()’z‘)dyi)
y

i

—hi(t;) + aix; — bix} + pixi — cixi. (26)

Then, the first- and second-order derivatives of u; with
respect to x; can be derived as follows, respectively:

Ou;

au- = Bi(Fi(ti —x;) — 1) = 2bix; + a; + pi — ¢

i 27)
1

52 = Aifitt —xi) = 2bi.

Due to f;(-) > 0, we can easily derive that the second-
order derivative is negative. Also, the constraints on x; in
optimization problem (6) are bounded and compact. Therefore,
problem (6) is a strictly convex optimization problem. By set-
ting the first-order derivatives to 0, the following equation is
derived:

Bi(Fi(ti — x;) — 1) = 2bjx; +a; + pi —c; =0.  (28)
Let

pi = ¢i —a; + Bi(1 — Fi(1;))

pi = ¢i —ai + Bi + 2bit;.

Due to Fi(-) € [0, 1], (0u;/0x;) = 0 is achievable only
when p; € [p;, p:]. By solving (28), we can obtain

%=t—G{ V(ei—pi—ai+Bi+2bit)  (29)

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

where
Gi(ti — xi) = BiFi(ti — x;i) + 2bi (t; — x;).

Moreover, when p; < p;, (0u;/dx;) is less than 0. Hence,
the optimal allocation strategy for the collector is X; = 0.
When p; > p;, (6u;/dx;) is greater than 0. In this situation,
the optimal allocation strategy for the collector is X; = f;. This
completes the proof.
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