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Abstract
Trauma continues to be the leading cause of death and disability in the U.S. for those under the age of 44, making it a prominent
public health problem. Recent literature suggests that geographical maldistribution of Trauma Centers (TCs), and the resultant
increase of the access time to the nearest TC, could impact patient safety and increase disability or mortality. To address this issue,
we introduce the Trauma Center Location Problem (TCLP) that determines the optimal number and location of TCs in order to
improve patient safety. We model patient safety through a surrogate measure of mistriages, which refers to a mismatch in the
injury severity of a trauma patient and the destination hospital. Our proposed bi-objective optimizationmodel directly accounts for
the two types of mistriages, system-related under-triage (srUT) and over-triage (srOT), both of which are estimated using a
notional tasking algorithm. We propose a heuristic based on the Particle Swarm Optimization framework to efficiently derive a
near-optimal solution to the TCLP for realistic problem sizes. Based on 2012 data from the state of Ohio, we observe that the
solutions are sensitive to the choice of weights for srUT and srOT, volume requirements at a TC, and the two thresholds used to
mimic EMS decisions. Using our approach to optimize that network resulted in over 31.5% reduction in the objective with only 1
additional TC; redistribution of the existing 21 TCs led to 30.4% reduction.
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Highlights

& We address the problem of optimally locating trauma cen-
ters in a region.

& A patient safety objective is defined based on two types of
mistriages.

& An optimization model and an efficient heuristic is pre-
sented to solve large-scale problems.

& Case study using real data suggested over 30% improve-
ment in the patient safety objective.

1 Introduction

Trauma is a body wound caused by sudden physical injury
likely from a motor-vehicle crash, gunshot, fall, or violence
and requires immediate medical attention [1]. It is the #1 cause
of death, disability, and morbidity for those under the age of 44
in the United States, resulting in almost 200,000 deaths and an
economic burden of over $670 billion annually [2].

The hospitals equipped and operated to provide a designated
level of care for patients suffering from major traumatic injuries
are referred to as trauma centers, TCs [1]. The American College
of Surgeons (ACS) has verified and categorized TCs based on
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their level of care, from Level I (L1) to Level V (L5). Both L1
and L2 are designated major trauma centers with access to high-
quality medical and nursing care, and highly sophisticated surgi-
cal and diagnostic equipment. They are required to have 24/7 in-
house coverage and prompt availability in surgical specialties
such as orthopedic, neurology, radiology, and even burn. On
the other hand, the lower level of trauma centers (L3-L5) are
intermediate facilities that only provide a subset of these services,
only part of the day, and serve as centers for initial care, resusci-
tation, and transfer to L1/L2 centers (TCs). Because L1/L2 cen-
ters are destinations for appropriate care of severely injured trau-
ma patients, we refer to them as trauma centers (TCs) in this
study; all other lower level trauma facilities and community hos-
pitals are referred to as non-trauma centers (NTCs), which are
ideal destinations for the non-severely injured trauma patients.

1.1 On-field EMS decision making

When a trauma event occurs, the subsequent EmergencyMedical
Service (EMS) decision making process involves two compo-
nents; (i) injury assessment and (ii) destination determination.
In (i), the EMS providers focuses on the extent of the injury using
various diagnostic tests and underlying clinical factors to deter-
mine if the injury is severe or not. In (ii), the providers use this
injury severity level and the network of hospitals nearby to de-
termine which hospital is reachable in a certain time-frame and
usingwhat transportationmode (ground or air). Both components
of the EMS decision-making are vital for the appropriate triage of
the patient. An error during any step of EMS decision-making
results in themistriage of the patient. In (i), incorrect classification
of the injury type (severe or non-severe) results in the ‘clinical
mistriage.’ For instance, classifying a severely injured patient as
non-severe (during the diagnosis on the scene) and subsequently
transporting toNTC.While in (ii), if a patient is not transported to
the right hospital based on injury severity due to any reason, then
it results in ‘system-related mistriage.’ For example, transporting
a severely injured patient to NTC is a type of ‘system-related
mistriage.’ We included the modifier ‘system-related’ because
these mistriages are due to system-related parameters such as
network of hospitals and transportation resources that impact
the determination of the hospital type (TC vs. NTC).

1.2 State-of-the art in trauma care

While a number of approaches have been proposed for injury
assessment [3, 4], the impact of the underlying network on des-
tination determination has recently received significant attention.
Because trauma is a time-sensitive condition, timely access to an
L1/L2 TC is one of the key determinants of outcome in a trauma
care system [5, 6]. If a severely injured trauma patient is able to
receive care at a L1 trauma center, then his/her survival improves
by 25% relative to the care delivered at an NTC [7].

However, according to the Centers for Disease Control and
Prevention, “there is no access to an advanced trauma center for
nearly 45 million Americans within the golden hour (60 mi-
nutes)” [2]. The reason for this is the geographic maldistribution
of TCs in theU.S.; in 2010, nearly 9 states had a clustered pattern,
22 had a dispersed pattern, and 10 had a random pattern of TC
distribution in the U.S. [12]. Figure 1 shows the distribution of
nearly 520 L1/L2 TCs in the U.S. with a coverage of 90.8% of
the total population in 60 minutes across 30.38% land via ambu-
lance and helicopter; for 45minutes coverage, the coverage drops
substantially to 76.72% population and 14.09% land [8, 9].

1.3 System-related mistriages

The geographical maldistribution of TCs affects the time to
reach a TC from the incidence location (i.e., field) by the EMS
provider, and subsequently result in either system-related un-
der-triage (srUT) or system- related over-triage (srOT). A lack
of a TC within a prespecified time (per clinical recommenda-
tions, usually 45 min upon EMS arrival) from the field can
compel the EMS providers to take a severely injured patient to
a nearby NTC, which is referred to as system-related under-
triage (srUT). Figure 2a illustrates of the case of a severely
injured patient transported to a nearby NTC because the
nearest TC is not accessible within prespecified time
(45 min) via ground and air. Note that in case of severe inju-
ries, it is vital to transport such patients to the nearest TC, and
not just to any TC which meets the prespecified time [10, 11].

Similarly, an excess (or cluster per [12]) of TCs in the vicinity
of a field can induce the EMS providers to take a less severely
injured patient to one of those TCs (instead of an NTC), which is
referred to system-related over-triage (srOT), the other form of
mistriage [13]. An example of srOT is shown in Fig. 2b.

Note that an appropriate clinical triage (severely injured pa-
tient identified as such) can still result in system-related under-
triage because a TC is too far away, and this patient, therefore,
has to be taken to a local NTC. In that sense, the EMS decision
around ‘destination determination’ is similar to a binary

Fig. 1 Network of L1/L2 TCs in U.S. Dark dots = TCs, dark shade =
60-min coverage via ground and air, and light gray shade = U.S. popu-
lation distribution
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classification problem with four possible outcomes; true positive
(severely injured patient is taken to a TC), true negative (less
severely injured patient is taken to an NTC), false positive (a less
severely patient is taken to a TC, leading to srOT), and false
negative (a severely injured patient is taken to an NTC, leading
to srUT). The srUT rate is then calculated as (1-sensitivity), while
srOT rate is calculated as (1-specificity).

Both srUT and srOT have negative implications on patient
safety. srUT can cause a delay in providing definitive care and
increase the likelihood of an adverse outcome such as disability,
morbidity, and even mortality [4]. In contrast, srOT can cause
overcrowding at emergency departments [14], unnecessary trau-
ma activation requiring trauma providers (physicians and nurses)
to suspend their care of admitted trauma patients in an operating
room and/or trauma inpatient unit to attend the arriving trauma
patient (who does not have major trauma injuries), and loss of
other salvageable lives in mass casualty trauma [15, 16].

While the ACS has developed a guideline, Needs Based
Assessment of Trauma Systems (NBATS), which suggests the
number of TCs in a region using a score derived based on trauma
providers’ experiences, it does not suggest the locations of these
TCs and cannot evaluate the impact of these TCs on srUT and
srOT rates. A few studies have emerged that attempt to use
optimization-based approaches (see Section 2), but they do not
account for srOT and provide insights on the effect of changes in
the system parameters (e.g., weights for srUT and srOT rates,

required volume at TC, and thresholds used to mimic EMS de-
cision making) on the optimal network of TCs.

1.4 Focus of this work

Our work contributes to this field by addressing the questions
posed to us by our collaborating trauma decision-makers and
researchers, but cannot be done so using existing approaches:
(i) What is the optimal network of TCs that minimizes the
weighted sum of mistriages (i.e., srUT and srOT)? and (ii)
How sensitive is the network to changes in system
parameters? To address these questions, we propose the
Trauma Center Location Problem (TCLP) of determining
the optimal number and locations of TCs in order to minimize
the Weighted Sum of Mistriages (WSM) and present a bi-
objective optimization model.

The key contributions of our approach are as follows.

& First, we present a bi-objective optimization model for
TCLP that determines which hospitals, among candidate lo-
cations, should be TC or NTC such that the weighted sum of
srUT and srOT rates are minimized. Essentially, our model
optimizes the network’s performance in terms of patient safe-
ty. This model extends the multi-facility and multi-customer
location models by incorporating individual customer char-
acteristics and individualized network-dependent allocation,
along with multi-transportation modes.

& Second, the patient safety surrogates (i.e., srUT and srOT
rates) are estimated based on actual incidences; incidences
are typically used in the Trauma literature to estimate srUT
and srOT as the population may not always be a good
surrogate [17]. This is done through our proposed high-
fidelity modeling of the mistriages via a notional tasking
algorithm that emulates the ‘destination determination’
part (subsequent to the injury assessment part) of the
EMS decision making process. We consider a variety of
factors including the network of TCs (xj), thresholds (α
and β; see Appendix 1 for details), the severity of the
injury (Si), and ambulance and helicopter parameters. We
also use estimated driving times (using Google Distance
Matrix API) and air times (using the Haversine formula)
from the field to all the candidate hospital locations.

& Third, we propose a heuristic using binary particle swarm
optimization to efficiently solve the proposedMIPmodel for
the TCLP for real world instances. The complexity of the
resulting mixed integer programming model limited the use
of state-of-the-art optimization solvers for realistic problem
size (1000s of cases in a network of over 150 hospitals).

& Fourth, we evaluate the sensitivity of our solutions to
trauma volume, choice of weights that dictate the empha-
sis on srUT vs. srOT rates, and threshold values for srUT
and srOT estimation. In so doing, we provide quantitative
guidance to state trauma policy makers on appropriate

(a)

(b)
Fig. 2 a An example of srUT, b An example of srOT
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choices of these parameters and their impact on patient
safety across the state. For our experiments, we use a
representative sample of 6002 de-identified trauma patient
data from 2012 available from the US state of OH. We
illustrate the use of our approach through a case study
based on the actual network of this US state where we
derive a ‘greenfield’ design and also a ‘redistribution’ of
the TCs existing in 2012.

Our findings suggest that there is a direct relationship between
the number of TCs in the region and the corresponding srUT and
srOT rates. That is, as the number of TCs increases, for severely
injured patients the access to these TCs becomes easier, which
can lower the srUT rate. However, a larger number of TCs in the
vicinity can prompt the EMS providers to transport less severely
injured patients to these TCs, leading to a higher srOT rate.While
the number and location of TCs are sensitive to the choice of
weights that dictate the contribution of srUT and srOT rates in
the objective function, they are also sensitive to the volume re-
quirements and the threshold values. The application of our ap-
proach on the real 2012 trauma network in OH demonstrated
over 31.5% decrease in the weighted objective (51.8% decrease
in srUT rate and 1% increase in srOT rate) with only one addi-
tional TC.Redistribution of the 21 TCs led to a 30.4%decrease in
the weighted objective (46.6% decrease in srUT rate and 4.95%
decrease in srOT rate). Essentially, our approach not only pro-
vides a benchmark to evaluate an existing trauma network in the
state, but can also be used to redistribute TCs (within a region or
the entire state) to unearth latent benefits in terms of patient safety.

The rest of the paper is organized as follows. Section 2 sum-
marizes relevant literature, Section 3 presents the mathematical
model that involves the estimation of srUT and srOT rates based
on the mathematical programming-based formalization of a no-
tional tasking algorithm (that approximates the EMS decision
making process). Our proposed Binary PSO is detailed in
Section 4 and insights based on our experimental study with a
real dataset are presented in Section 5. Section 6 presents a case
study where we use our approach to identify greenfield and
redistribution networks for OH. Finally, Section 7 summarizes
our work and offers guidance in future research in this area.

2 Literature review

The literature on healthcare facility location is vast and in-
cludes locating long-term health care facilities [18], blood
bank locations [19], organ-transplant centers [20], tuberculo-
sis testing laboratories [21], and mobile healthcare units [22].
See Reuter-Oppermann et al. [23], Ahmadi-Javid et al. [24],
and Gunes et al. [25] for a comprehensive review of healthcare
facility location models. These models vary in their objec-
tives, may it be cost-based or patient safety-based. Several
cost-based models have been proposed; e.g., location-

allocation of organ-transplant centers [26], design of medical
service [27], and health centers for traumatic brain injury [28,
29]. Because the focus of our work is on patient safety, we
now summarize key literature below.

Access to a facility has often been used as a surrogate for
patient safety; for instance, (i) minimizing the total distance or
time traveled across all constituents and (ii) maximizing the
demand coverage within a fixed assess time. Objective (i) has
been used to improve access to healthcare facilities [30]; e.g.,
optimizing the locations of organ transplant centers [31], loca-
tion and dispatching decisions for an ambulance system [32,
33], and shelter location in humanitarian logistics [34, 35].
Similarly, objective (ii) has been preferred in general healthcare
facility planning [36, 37]; e.g., optimizing the location of am-
bulances [38], distribution centers in a relief network [39], and
emergency response facility during an earthquake [40], as well
as the relocation of ambulance stations [41].

A few approaches have been proposed in the IE/OR litera-
ture for multi-facility and multi-customer problems. Marianov
and Taborga [42] presented a hierarchical p-covering typemod-
el to locate public health centers providing non-vital services in
the presence of competing private centers to maximize low-
income coverage. Yasenovskiy and Hodgson [43] proposed a
hierarchical location-allocation model that allows for by-
passing to maximize patron's benefits. Teixeira and Antunes
[44] presented a hierarchical location model with two different
types of assignment constraints: closest-assignment constraint
and path-assignment constraint. Recently, Nasrabadi et. al. [45]
proposed a bi-hierarchy multi-service capacitated facility
location-allocation problemwith the bi-objective of minimizing
total weighted travel time, and the fixed and operating cost of
facilities. These studies, however, do not account for the time-
sensitive nature of the assignment and only consider ground
transport mode.

Patient safety has been an important criterion in trauma fa-
cility location literature. Branas et al. [46] propose a linear pro-
gramming model, namely the Trauma Resource Allocation
Model for Ambulance and Hospitals (TRAMAH), to simulta-
neously locate trauma centers and air ambulance with an objec-
tive of maximizing coverage of severely injured patients using
Maryland as a test region. TRAMAH, first of its kind, considers
Rand-McNally TripMaker Version 1.0 to calculate the shortest
driving time and Euclidean distance for air time and is solved
using CPLEX Version 1.2. The model, however, uses a proxy
for incident location, lacking geographical granularity and does
not account for less severely injured patients. Cho et al. [1]
present a model that simultaneously locates trauma centers
and medical helicopters with the objective of maximizing the
expected number of patients transported to a TC within 60 mi-
nutes. The authors not only incorporate busy fraction for med-
ical helicopters, but also develop the Shifting Quadratic
Envelopes algorithm to optimize the problem. However, the
model only considers severely injured patients (ISS>15),
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employed Euclidean distance between the demand region and
each TC, and did not consider the aspect of mistriages that occur
for both severely and less severely injured patients.

Jansen et al. [6] propose a novel data-driven approach with a
bi-objective of minimizing the total access time and the number
of exceptions or system-related UT (srUT) for Scotland. The
authors extend the model formulation in Handing et al. [47]
and solve the extended formulation with a multi-fidelity
surrogate-management strategy via NSGA-II. They demon-
strate the viability of their approach using real data from the
state of Colorado’s trauma system [48]. In contrast, the model
is computationally complex requiring considerable processing
time and also fails explicitly in considering the over-triage cases,
an important factor of a patient-safety metric. The ACS
Committee on Trauma suggested tool, Needs-Based
Assessment of Trauma System (NBATS), helps determine the
required number of TCs in a specified geographical region by
allocating points based on population, transport time, commu-
nity support, where are severely injured patients transported
(TCs and NTCs), and the total number of TCs [49]. However,
the tool does not determine the location of the TCs.

Our review of the above literature reveals the following
gaps. First, the derivation of OT rates, based on injury score
and its on-field operational decision-making process, has nev-
er been explicitly considered and accounted in the optimiza-
tion models. Second, none of the prior approaches consider the
fact that the determination of medically-appropriate time to
access a suitable hospital (TC or NTC) varies by the type
and volume of the injuries. For a severely injured patient, the
proposed transportation times to the TC are as low as 30 and as
high as 60 minutes (depending on the region/state), but for a
less-severely injured patient, there is no such reasonable trans-
port time to the NTC proposed in the literature. Third, the
sensitivity of the ‘access’ and ‘bypass’ thresholds for a patient
to reach their designated level of care, used for determining the
srUT and srOT rates, has not been explored. Finally, we know
of no literature that jointly considers the metrics of mistriages
(i.e., srUT and srOT) to determine the optimal number and
location of TCs.

To fill the gap as mentioned above, we propose a bi-
objective trauma facility location optimization model to deter-
mine the optimal number and location of trauma centers with
the aim of minimizing the weighted sum of mistriages. The
key feature of our model is the inclusion of patient level
decision-making related to destination selection, which is in
turn based on patient’s severity of injuries and estimated drive
times to each candidate location (TC or NTC). Our proposed
notional tasking algorithm helps to estimate the resulting srUT
and srOT rates. Several practical insights are presented based
on the sensitivity analysis conducted by varying minimum
trauma case volume, weights of mistriages, and threshold
values for the srUT and srOT rates. We now present our pro-
posed model.

3 A bi-objective model for TCLP

We define the Trauma Center Location Problem (TCLP) as
determining the optimal location of TCs that minimizes the
weighted sum of mistriages (srUT and srOT) in the entire
trauma care network. The model assumes that a geographical-
ly defined area, typically known in the trauma literature as the
Trauma Service Area (TSA), is known. This defined region
could be a county, a region in the state, or the state itself.

Before we present the model, it is important to effectively
capture the EMS decision making around destination determi-
nation. Based on the existing trauma literature [48] and our
discussions with EMS providers in our region, this process
requires both clinical and resource considerations. To mimic
this decision-making process, we propose two thresholds: (i)
‘access’ and (ii) ‘bypass.’ Here the ‘access’ threshold is a
clinically-driven value that prespecifies the time to reach a
hospital for a severely injured patient; this time is specified
by the American College of Surgeons or state regulations. On
the other hand, the ‘bypass’ threshold is a resource-driven
value that prespecifies the maximum additional minutes (com-
pared to a nearby TC) the EMS can dedicate towards a non-
severely injured patient in order to transport them to an NTC.

Further, in line with the existing trauma literature, we use
Injury Severity Score (ISS) as a surrogate for the severity of
injuries on the field; ISS is a post-hoc metric evaluated after
the patient arrives at the hospital. For a severely injured patient
(ISS>15), the EMS providers often first check if a TC (the
appropriate hospital) is accessible within the ‘access’ thresh-
old time. If yes, then the patient is transported to that TC,
resulting in a system-related appropriate triage positive
(srATP). If no, then they check if an air ambulance can be
called in to transport the patient to the nearest TC (srATP via
air). However, if the sum of the inbound-to-field, loading, and
transport-to-TC times for the air ambulance is higher than the
‘access’ threshold, then the EMS would most likely transport
the patient to a nearby NTC, resulting in a srUT.

In contrast, the case of a srOT is a bit more complicated. A
TC may be located close to the trauma incidence site com-
pared to an NTC. In this case, if for a less severely injured
patient (with ISS ≤ 15) the additional time (beyond the time to
TC) to reach an NTC (the appropriate hospital for this patient)
is within the ‘bypass’ threshold, then the EMS will likely take
the patient to the NTC; this would be deemed as system-
related appropriate triage negative (srATN). Otherwise, the
EMS would likely take the patient to the nearby TC; this
would be deemed as srOT. Anecdotally, such situations may
arise due to EMS perception of a nearby TC’s reputation to be
higher (i.e., the bigger the hospital the better the care), patient/
family choice, insurance situation, and even negotiated con-
tracts between the EMS and TC.

Both srUT and srOT are estimated based on, and as indi-
cated earlier, the EMS decision making process for
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‘destination determination’ which is similar to a binary clas-
sification problem. Accordingly, we can generate a confusion
matrix with srATP (true positive), srATN (true negative), srUT
(type-1 error), or srOT (type-2 error); see Table 1. The notion-
al tasking algorithm provides a means to classify each patient
into these 4 categories in the confusion matrix; as explained
above (see Appendix 1 for examples); corresponding analyt-
ical expressions are in the optimization model below. If
there are multiple patients at the incidence site (say, dur-
ing a multi-vehicle crash), then each patient will be eval-
uated individually (as suggested by the EMS providers
and specified in the data).

The srUT rate is then calculated as (1-sensitivity), where
the true positive value is the count of total system-related
appropriate triages (via ground or air), and the false negative
value or type-1 error is the total number of system-related
under-triage cases for incidents with ISS > 15 and for a given
configuration. Similarly, the srOT rate is calculated as (1-
specificity), where the true negative value is the count of total
system-related appropriate triages, and the false positive value
or type-2 error is the total number of system-related over-tri-
age cases for incidents with ISS ≤ 15 and for a given config-

uration. The two rates can be determined by srUT ¼ 1–

sensitivity ¼ 1− srATP

srATPþsrUT

� �
and srOT ¼ 1−specificity ¼ 1

− srATN

srATNþsrOT

� �
[13].

Given this background, we now present our model under
the following assumptions:

& The candidate locations for the TCs and NTCs are known
and finite.

& Injury Severity Score (ISS) is used as a surrogate to esti-
mate a patient’s injury severity at the field.

& While ground ambulance services are available without
constraints, the availability of air ambulance was restricted
to 6.6% based on historical available data.

& In line with the existing trauma literature, air ambulance is
only allowed for severely injured patients.

Tables 2 and 3 summarize the parameters and decision
variables, respectively, used in our model.

Minimize : ω1 1−
∑

i:si¼1
∑ j y1ij þ y2ij

� �

∑isi

0
BB@

1
CCA

þ ω2 1−
∑

i:si¼0
∑ jy

1
ij

∑i 1−sið Þ

0
B@

1
CA

Subject to:

Determining the nearest TC via ground

z1ij≤x j;∀i∈I ;∀ j∈J ð1Þ
∑ jz

1
ij ¼ 1;∀i∈I ð2Þ

x j þ ∑l∈SGij
z1il ≤1;∀i∈I ;∀ j∈J ð3Þ

Determining the nearest NTC via ground

z0ij≤ 1−x j
� �

;∀i∈I : Si ¼ 0;∀ j∈J ð4Þ
∑ jz

0
ij ¼ 1;∀i∈I : Si ¼ 0 ð5Þ

1−x j
� �þ ∑l∈SGij

z0il ≤1;∀i∈I : Si ¼ 0;∀ j∈J ð6Þ

Each severely injured case is assigned to only one category
(to TC via ground, to TC via air, or srUT)

∑ j y1ij þ y2ij þ y3ij
� �

¼ 1;∀i∈I : Si ¼ 1 ð7Þ

Assign severely injured cases to nearest TC that is within
‘access’ time threshold via ground

y1ij ¼ 0;∀i∈I : Si ¼ 1;∀ j∈J ; TGij > α ð8Þ
y1ij ¼ z1ij;∀i∈I : Si ¼ 1;∀ j∈J ; TGij≤ α ð9Þ

Table 1 Confusion matrix

Injury Severity Score (ISS)

ISS > 15 ISS ≤ 15

Destination To TC System-related appropriate-triage (srATP) System-related over-triage (srOT)

To NTC System-related under-triage (srUT) System-related appropriate-triage (srATN)
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Assign severely injured cases to nearest TC that is within
‘access’ time threshold via air

y2ij ¼ 0;∀i∈I : Si ¼ 1;∀ j∈J; TAij þ Tin þ Tload > α ð10Þ
x j þ ∑l∈SAij

y2il ≤1;∀i∈I : Si ¼ 1;∀ j∈J ð11Þ
∑i∑ jy

2
ij≤Z ð12Þ

Assign severely injured cases to nearest TC located outside
‘access’ time threshold via ground (transfer srUT cases to TC
from NTC)

y3ij≤z
1
ij;∀i∈I : Si ¼ 1;∀ j∈J ; TGij > α ð13Þ

Assign non-severely injured cases to nearest NTC if ‘bypass’
time criteria met

∑ j z0ijTGij

� �
−∑ j z1ijTGij

� �
−β≤M 1−∑ jy

1
ij

� �
;∀i∈I : Si

¼ 0 ð14Þ
y1ij≤z

0
ij;∀i∈I : Si ¼ 0;∀ j∈J ð15Þ

Allowable number of TCs, and their minimum and maximum
volume

∑ jx j≤C ð16Þ

∑i:Si¼1 y1ij þ y2ij þ y3ij
� �

≤x jVmax;∀ j∈J ð17Þ

∑i:Si¼1 y1ij þ y2ij þ y3ij
� �

≥x jVmin;∀ j∈J ð18Þ

Table 2 Parameters in the model
Notation Definition

i Index for trauma incidence (case); i=1, 2,…, I

j Index for candidate location for TC and NTC; j=1, 2,…, J

α ‘Access’ time threshold for srUT (in minutes)

β ‘Bypass’ time threshold for srOT (in minutes)

Si Injury severity of case i, 1 if severely injured (ISS>15); 0, otherwise

Tin Inbound time for an air ambulance from its base to field (in minutes)

Tload Loading time of a patient to an air ambulance (in minutes)

Z Maximum allowable air ambulance use

Vmin, Vmax Minimum and maximum volume of a severely-injured patient if TC is located at j

C Maximum number of allowable TCs in the TSA

ω1, ω2 Weights for the srUT and srOT terms in the objective function; ω1 + ω2=1

TGij Travel time from the location of case i to any candidate location j via ground

TAij Travel time from the location of case i to any candidate location j via air

SGij {l ∈ J: TGij <TGil}, i ∈ I, j ∈ J, that is the subset of candidate locations with higher time from case
i than candidate location j via ground

SAij {l ∈ J: TAij <TAil}, i ∈ I, j ∈ J, that is the subset of candidate locations with higher time from case i
than candidate location j via air

M Big number

Table 3 Decision variables in the model

Notation Definition

xj 1, if a candidate location j is designated to be a TC; 0, otherwise

z1ij 1, if location j is marked as TC and is the nearest TC for case i via ground; 0, otherwise

z0ij 1, if location j is marked as NTC and is the nearest NTC for case i via ground; 0, otherwise

y1ij 1, if case i is transported to location j via ground transport; 0, otherwise (i.e., if j is a TC, then case i is srATP and if j is an NTC, then case i is
srATN)

y2ij 1, if a severely injured case i is transported to location j (that is marked as TC) via air transport; 0, otherwise (i.e., this case is considered srATP

via air)

y3ij 1, if case i is transported to location j that is marked as TC via ground transport; 0, otherwise (i.e., this case is considered srUT)
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Bounds on decision variables

x j; z1ij; z
0
ij; y

1
ij; y

2
ij; y

3
ij∈ 0; 1f g;∀i∈I ;∀ j∈J ð19Þ

The objective of the TCLP is to minimize the weighted
sum of total srUT and srOT rates (referred to as WSM from
now on) for the TSA. In the above objective function, the first
term in bracket represents srUT rate ¼ 1 – sensitivity

¼ 1− appropriately triaged cases to a TC
cases with ISS>15 ¼ 1−

∑
i:si¼1

∑ j y1ij þ y2ij
� �

∑iSi
and

the second term represents srOT rate ¼ 1–specificity ¼ 1

− appropriately triaged cases to a NTC
cases with ISS ≤15 ¼ 1−

∑
i:si¼0

∑ jy
1
ij

∑i 1−Sið Þ .

Note that a severely injured case i is classified as srUT if it
is not accessible to any TC (within the ‘access’ time threshold)

via air or ground ∑ j y1ij þ y2ij ¼ 0
� �� �

. On the other hand, a

non-severely injured case i is classified as srOT if the differ-
ence between nearest NTC and TC time (via ground) exceeds

the ‘bypass’ time threshold ∑ jy
1
ij ¼ 0

� �
; i.e., this case would

likely be transported to a TC via ground as the NTC (correct
hospital) is much further from the nearest TC (which mimics
the practice among EMS). The values of srUT and srOT rates
in the above objective function are weighted by multipliers ω1

and ω2, respectively.
Constraints (1)-(3) determine the nearest TC. While

Constraints (1) ensure that candidate location j must be a TC
to be considered as the nearest TC, Constraints (2) ensure that
for every case i, only one TC should be considered as the
nearest TC. For any pair of case i and candidate location j, if
candidate location j is marked as TC, then Constraints (3) rule
out the assignment of case i to candidate location(s) l that are
located further (in terms of time) than j (the nearest TC for
case i). Constraints (4)-(6) serve the same purpose as (1)-(3),
respectively, for the nearest NTC via ground.

Constraints (7) ensure that each severely injured case is
either assigned to a TC within the ‘access’ time threshold
via air or ground (resulting in srATP) or transferred to a TC
located outside of the ‘access’ time threshold after the case i
has been stabilized at a nearby NTC (resulting in srUT).
Constraints (8) rule out the assignment of severely injured
cases to candidate locations that are not accessible within ‘ac-
cess’ threshold via ground. Constraints (9) enforce the assign-
ment to the nearest TC when a nearest TC exists within the
‘access’ threshold for a severely injured case i.

Constraints (7), (10), and (11) assign the remaining severe-
ly injured patients (unassigned via ground) to the TC via air if
the total time to the TC is within the ‘access’ threshold.
Constraints (10) rule out an assignment of severely injured
cases to candidate locations that require total transport time

more than the ‘access’ threshold via air. Constraints (11) rule
out an assignment of severely injured cases to further located
candidate location(s) via air if a given candidate location j
marked as TC. Constraint (12) makes sure that the air trans-
port usage does not exceed their availability Z = ⌊μ ∑iSi⌋,
where μ = availability of air ambulance; 0 ≤ μ ≤ 1.

As mentioned earlier, every srUT case (originally
transported from the scene to an NTC) is eventually trans-
ferred to a TC to receive definitive care. Constraints (13) cap-
ture such transferred srUT cases to the nearest TC (considered
from the incidence location) for eventual volume estimation at
this TC. Here we assume that the reason a severely injured
patient is transported to a NTC (srUT case) is because there is
no nearby TC (say TC-1) within ‘access’ threshold from the
incidence. Our analysis of real data from a US midwestern
state (see Section 5.1) indicated that the ratio of NTC to TC
was 6.57 in 2012; i.e., there are a lot more NTCs than TCs.
That is, there is a fairly low likelihood that another TC (say
TC-2) is closer to the NTC than TC-1 (which was the closest
from the incidence, but outside of the ‘access’ threshold). We
use this low likelihood as the basis of assigning a srUT case to
a TC that was closer to the incidence (i.e., TC-1, which was
already identified as part of the constraints), instead of adding
new constraints to locate a nearby TC from the NTC.

Further, an NTC is not designed to provide definitive care
for severely injured patients. A srUT patient is only
resuscitated/stabilized at an NTC before an eventual transfer
to a TC. This would typically happen within 24 hours of arrival
to the NTC. Because of that, NTCs do not have any capacity
requirements associated with treating severely injured patients,
and hence we do not need such constraints on NTC.

For each non-severely injured case i, Constraints (14) rule
out the assignment of non-severely injured case i to an NTC if
the ‘bypass’ threshold criterion is not met for that case; this
case is marked as srOT. That is, it captures the situation when
the nearest TC is located closer to the incidence site than the
nearest NTC. Given that we have already categorized such a
case as srOT, we do not need to explicitly assign srOT to a TC
as they are not counted towards trauma volume; these are non-
severely injured cases and are often discharged from the ED of
a TC (without admission to the inpatient trauma unit). For
non-severely injured cases where the ‘bypass’ time threshold
is met, Constraints (15) assign those cases to the nearest NTC
and mark them as srATN.

Constraint (16) ensures that the total number of TCs must
be less than or equal to the maximum allowable TC.
Constraints (17) and (18) calculate the volume of severely
injured cases at each candidate location j that is designated
as a TC location and ensures that the volume is within the
allowable bound. As mentioned before, besides the srATP,
srUT cases are also counted in TC volume. The minimum
bound essentially reflects the recommendations from the
American College of Surgeons to ensure the financial viability
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of a TC; each TCmust be able to offset the high cost of trauma
readiness (physician, staff, equipment, and infrastructure).

Clearly, TCLP is a specific case of the discrete multi-
facility location optimization problem with specific focus on
patient-level safety measures. Such problem is combinatorial
in nature and has been shown to be NP-hard [50]. TCLP
exhibits the same characteristic where the decision to open
TC or NTC at each of the n candidate locations. For n =
159, this results in 2159 = 7.3x1047 solutions. A commercial
solver such as CPLEX 12.10 and Gurobi were not able to
obtain an optimal solution to our original problem due to the
large problem size and resulting out-of-memory issues. We
noticed that runtime increased exponentially with an increase
in the number of candidate locations (xj). For problem sizes
withmore than 47 candidate locations, we encountered out-of-
memory issues with commercial solvers; see Fig. 3.

Considering this limitation of solving TCLP exactly, we
explored the use of a heuristic-based approach via Particle
Swarm Optimization (PSO) to derive near-optimal solutions
within a reasonable amount of time. We now discuss our
proposed PSO algorithm.

4 Binary particle swarm optimization

PSO is a nature-inspired population-based metaheuristic algo-
rithm that optimizes continuous nonlinear function [51]. The
approach mimics the social behavior of birds flocking and fish
schooling. It is easy to implement, makes fewer assumptions
about the problem, is flexible and robust, and can be applied in
a parallel manner. It has been implemented in a wide range of
research areas such as facility location [52, 53], network de-
sign [54, 55], and scheduling [56, 57].

The algorithm starts with a randomly distributed set of par-
ticles (potential solutions). With mathematical operators, the
algorithm tries to progress to a solution with quality measure
(fitness function). As the swarm of particles searches over time,
they tend to fly towards better search regions, resulting in the
convergence to a global optimum solution [58]. Each particle
keeps track of its position which associates with the best solu-
tion it has achieved so far, known as particle best (pbest). On the
other hand, global best (gbest) keeps track of the overall best
value obtained thus far by any particle in the swarm.

For example, the ith particle is represented as xi = (xi1, xi2,
…, xid) in a d-dimensional search space. The previous best
position of the ith particle is represented as pbesti = (pbesti1,
pbesti2, …, pbestid). The location of the best particle in the
swarm is designated as gbest = (gbest1, gbest2, …, gbestd).
The rate of position change (velocity) for the particle is repre-
sented as vi = (vi1, vi2,…, vid). The velocity vid and particle xid
used to update the dth dimension of the ith particle for the tth
iteration are given by:

xtid ¼ xt−1id þ vtid; ð20Þ

vtid ¼ K vt−1id þ c1r1 pbestid−x
t−1
id

� �þ c2r2 gbestd−x
t−1
id

� �� �
;

ð21Þ
where c1 and c2 are acceleration constants; c1 = 2.05 [58],
while c2 is initially set to c1/5 and gradually increase by
0.41 for every 25 iterations to allow particles to move
slowly toward the global best solution. Further, r1 and r2
are two uniformly distributed random numbers in [0,1].
Constriction coefficient, K, aids in the convergence of
the particle swarm algorithm; K=0.7298 [58]. The particle
velocity given in equation (21) is composed of three pri-
mary parts: velocity from the previous iterations, cogni-
tive or selfish influence (which uses the particle’s person-
al best to improve the individual particle), and social in-
fluence (which represents alliance among the particle in
the swarm using global best).

Recall that the decision variables in the TCLP are binary.
We, therefore, use the binary version of the PSO, referred to as
the BPSO [59]. Accordingly, each particle represents its posi-
tion in binary values, and the velocity of a particle is defined as
the probability that might change the particle to either zero or
one. The behavior and meaning of the velocity clamping and
the inertia weight in the BPSO differ considerably from the
real-valued PSO [60]. However, the velocity update equation
(21) remains unchanged, except that now the positions are
binary and particle update equation (20) is replaced by:

if rand ðÞ < S vidð Þð Þ; then xid ¼ 1; else xid ¼ 0; ð22Þ
where function S(v) is a sigmoid limiting transformation func-
tion, S vidð Þ ¼ 1= 1þ e�vidð Þ, and rand () ∼ Uniform [0, 1].

The likelihood of a change in a bit-value depends on S(v).
Furthermore, the probability that a bit will be 1 equals S(vid),
and that a bit will be 0 equals 1 - S(vid) [59]. The high-level
structure of the PSO is as follows:
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solver
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Initialize a population of particle with positions and velocities

Do
For each particle:

Evaluate fitness function using the notional tasking algorithm

Evaluate constraints

If feasible:

If the fitness value is better than the particle best:

Set the current solution as particle best

If the fitness value is better than the global best:

Set the current solution as global best

Else:

Reject the solution

End
For each particle:

Update the particle velocity

Update the particle position

End
Until the termination criterion is met

In our proposed BPSO, we consider a swarm of 40
initial feasible particles, each representing a network of
TCs, with the following representation: H = {0, 1, 0, 1,
1, 0, ..., 0, 1}; where 1 represents TC and 0 represents
NTC, and |H| represents the total number of existing hos-
pitals. As the optimization model aims to minimize the
objective function, the value given to an infeasible solu-
tion is set much higher. Hence, keeping them out of the
loop. Equation (21) and (22) are applied to updating the
velocity and particle, respectively.

We used R to implement our proposed BPSO and the
notional tasking algorithm on a computer with 2 nodes,
each node had 12 cores and each core had 2 threads (i.e.,
a total of 48 parallel processing options). Each core had
a 3 gigahertz processor. The total RAM across all 12
cores was 256 GB. We also implemented parallel pro-
cessing in R to allow for faster evaluation of each parti-
cle, which helped reduce the computation time to about 8
hours. Preliminary experiments suggested that 40 parti-
cles sufficiently balanced solution quality and solution
time. Further, we implemented a dynamic change in the
value of acceleration constant c2, which gradually in-
creased the attraction to the global best (compared to
personal best). This allowed the particles sufficient time
to explore the search space around their personal best
instead of speedy attraction to the global best position.
We used two termination criteria based on preliminary
experiments: maximum iterations (set to 1,000) and less
than 0.1% improvement in the global best solution with-
in 100 iterations.

5 Experimental setting

To generate managerial insights, we conducted a series of
experiments using a sample dataset made available for Ohio
state by the Ohio Department of Public Safety (ODPS). The
Wright State University’s Institutional Review Board ap-
proved this study as not involving human subjects
(IRB#06027). We first summarize the characteristics of this
dataset and then present our insights.

5.1 Data collection

We considered the 2012 network of hospital locations (TCs
and NTCs) made available to us by the ODPS. The 2012 data
corresponded to a network of a total of 159 hospital sites; 21
TCs and 138 NTCs. We were able to obtain the (latitude,
longitude) information for each of these sites. We were also
able to derive a sample of 6,002 de-identified trauma inci-
dences from the data provided by the ODPS for that year.
This sample was about 1/11th of the typical number of trauma
incidences occurring in the state; 67,542 cases in 2018 [61];
the correlation of a number of cases in each county between
them was 0.84 suggesting that the 2012 data sample is a good
enough representation of the spatial distribution of incidences.
Figure 4 illustrates the heat map of 6,002 incidents, and the
location of TCs and NTCs in 2012.

We used the Google Distance Matrix API to estimate drive
time based on the quickest route from each incident to a hos-
pital site. We used the Haversine formula for the correspond-
ing air travel time (assuming the helicopter speed of 120mph).
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The resulting time matrix for ground and air (each 159 × 6002
in size) served as a look-up table to the notional tasking algo-
rithm in order to estimate srUT and srOT rates. Because heli-
pad locations were not available, we let the time from helicop-
ter depot to the field be 10 minutes; in a similar vein, the
loading of the patient was set to 5 minutes. Aggregating these
two with the airtime from field to the nearest TC calculated
using the Haversine formula, we estimated the total air trans-
port time.

5.2 Experimental study and insights

Based on preliminary experiments, we noticed that the solu-
tions were sensitive to four key factors, which are summarized
in Table 4 along with their levels and values. Further, the
American College of Surgeons recommends having at least
240 trauma cases per year for a TC to be viable; i.e., Vmin =
240 cases with severe injuries estimated as ISS>15 [4]. Hence,
to correspond with the sample of 6,002, we scaled Vmin to 22
(=⌈240/11⌉).

We set our ‘base case’ with Vmin = 22 and α = 45, and β =
0 to mimic the current protocols in most states in the US. We
set (ω1, ω2) = (0.8, 0.2) to allow for more focus on patient
safety; again, attempting to mimic how state governments try
to locate TCs. We set Vmax = 91 (equivalent to 1,000 cases) as

the upper bound on a TC volume and C = 159 in all our
experiments. Maximum air ambulance usage for severely in-
jured patients was bounded; i.e., Z = 61 to match with sample
2012 data. Below we summarize the results and insights from
the sensitivity analysis.

Insight 1: A higher emphasis on reducing the srUT rate
means a corresponding increase in the number of TCs, but
this can lead to a higher srOT rate

The selection of the weights plays a vital role in determin-
ing the optimal number and location of TCs. We varied both
weights (ω1,ω2) between 0 and 1 in steps of 0.2 such thatω1 +
ω2 = 1. Note that when ω1 ≫ ω2, the emphasis is towards
reducing the srUT rate (likely resulting in more TCs); while
for ω1 ≪ ω2, the emphasis is towards reducing the srOT rate
(likely resulting in less TCs).

Figure 5 represents the trend in srUT and srOT rates, and
WSM value over the weights. The figure shows that as ω1

decreased the srUT rate increased and as ω2 increased the
srOT rate decreased, resulting in a drop in the number of
TCs. Although a solution with (1.0, 0.0) may be attractive in
terms of the lowest WSM, it comes at a cost. First, the corre-
sponding network has the highest number of TCs, which puts
a financial burden on the state and the hospital system.
Second, a higher corresponding srOT rate (0.14) means a
higher number of less severely injured patients at a TC, which
is muchmore expensive than treating such patients at an NTC.
Because such costs are difficult to estimate, we expect that this
analysis will allow the trauma decision makers to make an
informed judgement on the most appropriate network suitable
for their region. From what we have learnt first-hand from
trauma network designers, srUT is given a much higher em-
phasis compared to srOT. We would expect trauma decision
makers to use our tools and start with a high ω1 and then
gradually lower it until a tolerable srUT is achieved to effec-
tively trade-off srUT and srOT.

Insight 2: An increase in the minimum required volume of
severely injured patients at a TC reduces the number of
TCs in the network, but substantially increases srUT

We varied Vmin between 0 and 33 in increments of 11 to
evaluate the impact of the minimum trauma volume on the TC

Fig. 4 Trauma Care in OH for 8 regions; stars indicate TCs and crosses
indicate NTCs. Darker shades of grey indicate higher values of incidences

Table 4 Summary of the
parameters, levels, and values in
the sensitivity analysis

Parameter Levels Values

Weights (ω1,ω2) 5 (1,0), (0.8,0.2), (0.6,0.4), (0.4,0.6), (0.2,0.8)

Vmin 4 0, 11, 22, 33

Access threshold (α) 3 15, 30, 45 min

Bypass threshold (β) 3 −10, 0, 10 min
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network. As mentioned earlier, the 240 cases (22 in our scaled
down version) is a suggestion by the ACS based on empirical
evidences, and, therefore, this sensitivity analysis provided a
much-needed quantitative evaluation of the impact of changes
in this value on the TC network and resulting srUT and srOT
rates. Our results suggest that as minimum total trauma vol-
ume requirement at TC increased, the WSM value also in-
creased. For a smaller value of the Vmin, the network tends to
have more TCs in order to minimize the srUT rate; recall, we
used ω1 = 0.8 for srUT (base case). This is intuitive as an
increase in the number of TCs would likely allow more se-
verely injured patients to reach a TC, which results in a de-
crease in the srUT rate. However, it also means that less se-
verely injured patients may now be transported to a TC (as
there is likely a TC as close to the field as an NTC) resulting in
an increase in the srOT rate. However, as the Vmin increased,
the number of TCs decreased in order to satisfy the Vmin con-
straint. As a result, the srUT rate and the WSM value both
increased. Figure 6 illustrates this trend.

Essentially, a lower volume requirement can result in
higher TCs and better patient safety. The implication of this

is that the trauma decision-maker must appropriately set the
minimum volume requirement as a TC with a low volume
may not be financially viable.

Insight 3: An increase in the ‘access’ threshold reduces the
number of TCs

For this analysis, we considered the ‘access’ threshold
(α) at 15, 30, and 45 minutes and a constant ‘bypass’
threshold of 0 minutes. Figure 7 illustrates the trend in
the srUT and srOT rates, the WSM, and the number of
TCs. Note that as the ‘access’ threshold (α) increased, the
WSM (objective function) decreased. This is intuitive as,
for the same network, an increase in α would mean that
there is more allowable time for the EMS to transport a
severely injured patient to a TC further away from the field
(as compared to lower values of α). This means that the
corresponding network will need fewer TCs to achieve
lower levels of srUT rate. Fewer TCs also means a lower
srOT rate. As both srUT and srOT rates decrease, the WSM
will also experience a drop with an increase in α.
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Insight 4: An increase in the ‘bypass’ threshold has a slight
impact on the number of TCs

For this analysis, we considered the ‘bypass’ threshold (β)
at -10, 0, and 10 minutes and a constant ‘access’ threshold of
45 minutes. Table 5 summarizes the corresponding number of
TCs and the resulting srUT, srOT, and WSM. Notice the in-
crease in the number of TCs is only marginal. The reason is
that as the ‘bypass’ threshold increases, the EMS providers
now have more opportunities to skip the nearby TC and reach
the appropriate NTC for a less severely injured patient. This,
in turn, means that even if the number of TCs increases mar-
ginally (as seen in Table 5), the NTCs are still reachable from
the incidence location, resulting in a reduction in srOT. Note
that because of higher access threshold and reasonable num-
ber of TCs, srUT rates are fairly low and their effect on the
WSM is negligible. Any further increase from 18 TCs, for the
case of (45, 10), led to an increase in the srOT rate (as more
TCs means an increased likelihood of srOT cases) causing
WSM to increase.

5.3 Performance of the derived network with respect
to unseen demand

Asmentioned earlier, there is a significant cost associatedwith
upgrading an NTC to a TC. Consequently, it is important to
evaluate if the PSO-derived, near-optimal, TC network based
on historical data would perform reasonably well with respect

to the unseen, future demand. To do this, we used the Train-
Test approach. Accordingly, we apportioned the 2012 data
(6,002 cases) into Train (4,002) and Test (2,000) datasets,
approximately a 2/3:1/3 split. To ensure that the spatial distri-
bution of trauma incidences in each of these two datasets is
similar to the Full dataset, we conducted the apportionment at
the county level. The GIS-generated heatmaps in Fig. 8 indi-
cate that the apportionment was reasonable. We ran our pro-
posed solution approach on the ‘base case’ (i.e., access thresh-
old = 45 min, bypass threshold = 0 min) and adjusted other
parameters corresponding to the reduced train and test sets.

The following are the key observations from this analysis;
see Table 6 for a summary:

& The number of TCs found through the Train data set is
identical to that found when using the full data set; WSMs
are also similar.

& Test WSM on the same network (obtained through Train
data) is very similar to Train WSM.

This analysis provides evidence that a near-optimal net-
work obtained using 2012 (Full) data will work reasonably
well with respect to unseen, future demand.

6 Case study based on OH’s trauma network

We now illustrate how we used our proposed approach using
the 2012 data from OH to derive (i) an optimal network
(greenfield problem) and (ii) an optimal redistribution of
existing TCs within that network (redistribution problem).
Due to limited data fields in this data set, we used the overall
UT and OT rates (that could also include clinical mistriages)
for this case study; these were UT rate = 0.20 and OT rate =
0.515 (which we use as srUT and srOT rate, respectively, in
our discussion below). Because we observed variations in

Fig. 7 Representation of trend in
srUT rate, srOT rate, objective
function, and number of TCs

Table 5 Impact of ‘bypass’ threshold on srOT and the number of TCs

Thresholds #TC srOT srUT WSM

(45, −10) 16 0.492 0.002 0.100

(45, 0) 17 0.131 0.001 0.027

(45, 10) 18 0.018 0.000 0.004

303Locating trauma centers considering patient safety



EMS practice on ‘access (α)’ and ‘bypass (β)’ thresholds in
the state, and in order to conduct a fair comparison, we treated
both thresholds as meta-parameters that encompass the
existing variations in EMS-practice when it came to ‘destina-
tion determination.’ Subsequently, we empirically derivedα =
30 minutes and β = -9 minutes ensuring that the resulting
performance of the network met the 2012 srUT and srOT rates
(0.20 and 0.515, respectively). Note that due to limited data
fields, it was difficult for us to tease out the clinical mistriages;
we, therefore, used these values of 0.2 and 0.515 as surrogate
estimates for srUT and srOT rates, respectively.

Our analysis of the 2012 trauma network is shown in Fig. 4,
which shows the distribution of the 21 TCs in the state. These
TCs are generally located in areas with higher population den-
sity, resulting in a clustered pattern (also alluded in [12]); the
resulting WSM at ω1=0.8 and ω2=0.2 was 0.270. Not surpris-
ingly, Regions 7 and 8 with no TCs experienced the highest
srUT rate (=1.00) and a zero srOT rate; in contrast, Regions 2
and 5 yielded a much lower srUT rate (0.078 and 0.084), but
higher srOT rates of 0.527 and 0.772, respectively. On the other
hand, Region 1 with 5 TCs still produced an unusually high
srUT rate of 0.47, largely because of the clustering of 3 out of 5
TCs in a single urban area (Toledo), which result in high access
times for incidences that occur outside of Toledo.

6.1 Greenfield design of OH’s trauma network

To optimize the network, we used identical system parame-
ters: (ω1, ω2) = (0.8, 0.2), α = 30, β = -9, Vmax = 91, C = 159;
we set Vmin = 22 tomeet the ACS guidelines. The best solution
obtained by BPSO (with 40 particles) resulted in 22 TCs with
WSM=0.185 (a 31.5% decrease from the 2012 estimate of
0.270). This optimized network reduced the srUT rate by

51.9% (i.e., 0.099 vs. 0.206 in 2012), with srOT rate increased
by around 1% (i.e., 0.530 vs. 0.525 in 2012). Evaluation of the
results depicted a rather dispersed pattern of TCs across the
state (see Table 7). Specifically, Regions 7 and 8 (with TC in
Region 8 near to the boundary of the Region 7) now experi-
enced a lower srUT rate of 0.786 and 0.278, respectively. But
the counter effect is that because of a TC in the region or near
to the boundary of the region, the srOT rates increased in both
Regions 7 and 8 (i.e., 0.229 and 0.324, respectively).
Alternatively, a reduction from 5 TCs to 2 TCs in Region 1
resulted in the srUT rate dropping to 0.313 (compared to 0.47
in 2012) with a significant decrease in the srOT rate (0.252
compared to 0.41 in 2012). That is, while the state of OHmay
have a nearly optimal number of TCs, their suboptimal distri-
bution leads to high WSM.

6.2 Redistribution of 21 TCs in OH

If a ‘greenfield’ design may not be possible, then could a
redistribution of the 21 TCs within the state reduce the
mistriages rate? To answer this question, we set C = 21 in
Constraint (16) of the TCLP model and kept the rest of the
parameters identical to Section 6.1. Figure 9 illustrates the
differences in the heat maps for srUT and srOT across the 3
networks (2012, greenfield, and redistributed).

The results were quite interesting; the 21 TCswere distributed
quite differently across the state (see Table 8 region-wise com-
parison). This redistribution likely allowed more trauma patients
to access a TC within the ‘access’ threshold (via ground or air).
This is evident from a substantial drop in the srUT rate (by 46.6%
to 0.11); the srOT rate also decreased by 4.95% to 0.499; WSM
reduced to 0.188 compared to 0.270 (a 30.4% decrease).

Full Data (6002 Incidences) Train Data (4002 Incidences) Test Data (2000 Incidences)

Fig. 8 Heatmap of incidences (darker area indicate higher values of incidences)

Table 6 Comparison of
performance of network for full
data and train data, and
performance of test data for the
network obtained through train
data

Full Data (6002 incidences) Train Data (4002 incidences) Test Data (2000 incidences)

WSM 0.0271 0.0291 0.0299

# TCs 17 17 –
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The above two illustrations of our approach (i.e., greenfield
and redistribution) using an actual state-wide network of all
hospitals (TCs and NTCs) not only demonstrate that opportu-
nities exist in the state to substantially improve patient safety,
but also that our proposed approach is able to unearth those by
specifying better networks.

7 Summary and future research

Timely access of severely injured trauma victims to trauma
centers can improve survival by 25%. Given the limitations of
existing approaches in locating trauma facilities to address
patient safety, we proposed the Trauma Center Location
Problem (TCLP). The TCLP is to determine the optimal num-
ber and location of TCs in order tominimize the weighted sum
of mistriages (srUT and srOT). This problem is an extension
of multi-facility and multi-customer location models, which
incorporates individual customer characteristics and individu-
alized network-dependent allocation, along with multi-
transportation modes.

We introduced an optimization model for TCLP that ex-
plicitly models patient safety via srUT and srOT rates, both
estimated using our proposed notional tasking algorithm
based on the standing guidelines in the trauma literature. To
efficiently solve the resulting model, we proposed a Binary
Particle SwarmOptimization (BPSO) approach and illustrated
its use on 2012 data for the state of Ohio. The Train-Test
approach provided further validity to our approach.

The key insights from our study include the following:

(i) While an increase in the number of TCs can reduce srUT,
it can increase srOT; setting an appropriate emphasis on
their reduction (via weights) in the objective function is
critical.

(ii) There is an inverse relationship between TC volume re-
quirement and the number of TCs in the network. As a

minimum volume requirement increases, some of the TCs
need to downgrade to NTC’s because of infeasibility due
to low volume. A downgrade of TC increases the srUT
rate that eventually decreases patient safety.

(iii) While requiring EMS to transport severely-injured
patients to the nearest TC is desirable (reflected by
a lower ‘access’ threshold), this can only be achieved
through an increase in the number of TCs in the
network (with the corresponding effect indicated in
(i) above).

(iv) The illustration of our approach using real data from
OH suggested that state has the nearly optimal solu-
tion in terms of the number of TC but significantly
suboptimal objective value. A state can achieve up to
51.9% reduction in srUT at almost the same srOT
rates can be realized with 1 addit ional TC;
redistributing the same 21 TCs can still achieve the
high reduction in srUT (46.6%) along with a 4.95%
reduction in srOT.

We believe our proposed approach is effective and ef-
ficient in helping state trauma decision makers not only
evaluate their current system, but also optimize it (either
as a greenfield or redistribution problem). They can also
conduct ‘what-if’ analysis by fixing certain TCs in their
current locations and allowing the optimization approach
to find the locations of other TCs in the state. This latter
approach can be of particular interest to those states where
a mass reallocation of TCs is not possible; instead, they
are seeking a gradual change over a period of time, or
evaluating the viability of a proposal by a healthcare sys-
tem to upgrade an NTC to a TC or downgrade an existing
TC to an NTC.

While the notional tasking algorithm closely matches
with what ideally EMS providers are expected to do (per
state EMS department), future work could include en-
hancing the tasking algorithm with additional features

Table 7 Comparison of 2012 network and optimized greenfield network

Region # of TCs srUT rate srOT rate

2012 allocation TCLP allocation 2012 allocation TCLP allocation 2012 allocation TCLP allocation

1 5 2 0.470 0.313 0.410 0.252

2 3 3 0.078 0.000 0.527 0.525

3 2 4 0.227 0.061 0.553 0.668

4 4 4 0.184 0.143 0.576 0.588

5 6 5 0.084 0.036 0.772 0.515

6 1 3 0.174 0.062 0.302 0.553

7 0 0 1.000 0.786 0.000 0.229

8 0 1 1.000 0.278 0.000 0.324

Overall 21 22 0.206 0.099 0.525 0.530
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such as patient/family choice and other operational
criteria. The inclusion of the cost incurred in upgrading
an NTC to a TC through a multi-criteria optimization
model would allow trauma policy-makers to appropriately
tradeoff cost vs. care in designing their network. Models

to jointly optimizing the network of L1-L2 TCs and L3-
L5 TCs (that provide intermediate care) could be devised
based on this foundational work to help local and state
government trauma officials to effectively tradeoff be-
tween patient safety and system cost.

srUT = 0.206                    srOT = 0.525

(a) 2012 Network = 21 TCs

srUT = 0.099 srOT = 0.530

(b) Greenfield Network = 22 TCs

srUT = 0.110 srOT = 0.499

(c) Redistributed Network = 21 TCs

Fig. 9 Heat maps of mistriage.
(Note: Darker shades indicates
higher values; Stars represents
TCs)
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Appendix 1. Notional Tasking Algorithm
to estimate srUT and srOT

Figure 10 presents a schematic of the notional tasking algo-
rithm. Accordingly, let tTC-gnd and tTC-air refer to the total time
from field to the TC via ground and air, respectively, and tNTC
is the time from field to NTC via ground (i.e., road). While tin
and tload refer inbound and loading time for the air ambulance,
respectively. If taccess and tbypass refer to the ‘access’ and ‘by-
pass’ thresholds, then

& If ISS > 15 (i.e., severe injuries), then
○ If tTC-gnd ≤ taccess, then transport to TC
○ Elseif (helicopter available), then

⁃ If tTC-air + tin + tload ≤ taccess, then transport to
TC

⁃ Else transport to NTC (and mark the case as
srUT)

○ Else transport to NTC (and mark the case as srUT)
& Elseif ISS ≤ 15 (i.e., less severe injuries), then

○ If tNTC- tTC-gnd ≤ tbypass, then transport to NTC
○ Else transport to TC (and mark the case as srOT)

Table 9 presents a few representative cases to illustrate
how the tasking algorithm helps classify a specific trauma
incidence as appropriately triaged (srATP for triaged to TC

Table 8 Comparison of 2012
network and redistributed
network

Region # of TCs srUT rate srOT rate

2012
allocation

TCLP
allocation

TCLP
allocation

2012
allocation

TCLP
allocation

2012
allocation

1 5 2 0.470 0.253 0.410 0.223

2 3 4 0.078 0.022 0.527 0.341

3 2 4 0.227 0.055 0.553 0.668

4 4 2 0.184 0.156 0.576 0.540

5 6 5 0.084 0.080 0.772 0.504

6 1 3 0.174 0.056 0.302 0.553

7 0 0 1.000 0.786 0.000 0.229

8 0 1 1.000 0.389 0.000 0.324

Overall 21 21 0.206 0.110 0.525 0.499

Fig. 10 Notional Tasking Algorithm
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and srATN for triaged to NTC) or mistriaged (srUT or
srOT). In these cases, we assume taccess = 30 min and
tbypass = 15 min.

In Table 9 consider trauma incidence #1 with ISS > 15,
suggesting the need to transport this patient to the nearest TC.
The algorithm first finds the nearest TC from the incident field
in a given network and compares the EMS ground transpor-
tation to this TC (tTC-gnd) to the ‘access’ threshold. Because
tTC-Gnd < taccess = 25 < 30, driving to this TC is feasible, and
so the case is categorized as srATP. However, for incidence #2
also with ISS > 15, tTC-Gnd > taccess (40 > 30), and so the
possibility of air transportation is explored. The algorithm
then compares the total flight time to this TC (tTC-air), which
accounts for inbound from the nearest helicopter base, patient
loading, and outbound to the TC, with taccess. Assuming an
inbound time of 5 min and a loading time of 5 min, the total air
transportation time will result in 25 min. In this case, tTC-air <
taccess (25 < 30), and thus this incidence is classified as trans-
portation via air, also resulting in srATP. But the total air
transportation time incorporating inbound and loading time
may not be feasible, as in the case of incidence #3 where
tTC-air > taccess (35 + 5 + 5 = 45 > 30), in which case the
patient will be assigned to the nearest NTC by road, and the
incidence will be classified as a srUT. Similarly, all the pa-
tients meeting the inclusion criteria are run through the tasking
algorithm. A similar process is followed for patients with ISS
≤ 15; air transportation is not considered as the injuries are
less severe, in line with the actual EMS practice.
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