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A B S T R A C T   

We investigate a multi-commodity capacitated facility location problem involving sustainability 
concerns (e.g., restrained carbon emission). In addition, this problem incorporates a comple
mentarity demand function. We show that this incorporation can lead to superior decisions both 
analytically and computationally. The resultant formulation is a 0–1 mixed-integer non-concave 
quadratic program with equilibrium constraints. We adopt the piecewise-linear envelope method 
to transform the formulation into a 0–1 mixed-integer concave program. We then propose an 
efficient branch-and-refine algorithm with global convergence. Numerical examples demonstrate 
the effect of carbon emission limit and carbon trading on company decisions.   

1. Introduction 

In many industries, companies produce various commodities to satisfy diverse customer demands (Geoffrion and Graves, 1974). It 
is critical that these companies intelligently identify production facilities and set commodity prices based on production capacity and 
demand forecast to maximize profit. In this paper, we investigate a type of sustainable multi-commodity capacitated facility location 
problem (MCCFLP) with a focus on carbon emission and a refined characterization of the demand-price relationship. 

Rapid global industrialization has led to environmental issues and climate change, which have captured worldwide attentions 
(Saberi, 2018). Sustainability is currently a key issue in supply chain management (Choi et al., 2019). Achieving sustainability implies 
that companies are concerned with economic objectives as well as relevant environmental influences (Phillis et al., 2010; Azevedo 
et al., 2012). Companies therefore have to adjust their production and operations in response to external pressure due to government 
regulations and growing consumer concerns about environmental issues (e.g., carbon emission (Drake et al., 2016) and pollution (Choi 
and Cai, 2020)). In particular, the government and consumers have identified carbon emission as one of the most important metrics 
related to environmental issues (Nouira et al., 2016). Wu and Dunn (1995) pointed out that transportation is the largest source of 
environmental hazards in logistic systems. Tsao and Thanh (2019) reported that transportation provides a quarter of the total amount 
of carbon emission and the proportion continues to grow. Elhedhli and Merrick (2012) indicated that reducing vehicle total travel 
distance via strategically placed facilities could reduce transportation-related carbon emission, thus playing a vital role in reducing 
carbon footprint. In this paper, we investigate the MCCFLP with consideration of carbon emission generated by transportation. 
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Increasing globalization and diverse preferences of customers have led companies to consider offering substitutable products (i.e., 
products that consumers perceive as similar or comparable, such that one product renders others less desirable) and/or complementary 
products (i.e., products that consumers typically purchase together). Substitutable products can elicit positive cross-elasticity of de
mands, whereas complementary products contribute to negative cross-elasticity. Consumer theory generally emphasizes the need to 
incorporate potentially complex demand patterns into multi-product location decisions (Kalcsics et al., 2000). 

In much of the existing literature, MCCFLPs only involve cases in which the demand-price relationship is defined on a restricted 
price domain. This restriction is applied to simplify the characterization of the demand-price relationship by only considering local 
areas where product demands are price-sensitive. We refer to the demand-price relationship as demand function in this paper. In the 
literature, for mathematical convenience, demand functions of simplistic form, such as linear functions, are frequently used, and 
subsequently, nonnegativity restriction is imposed in location optimization. We investigate the MCCFLP with complementarity de
mand function. The motivation behind this work is that a company could set the price of one product extremely high, even presented 
with the possibility of having no demand. Nevertheless, this product could still affect consumer demands for other products. The 
following question naturally arises, namely whether limiting the prices to some restricted domain (e.g., the nonnegative domain) 
would necessarily lead to maximum revenue. This situation further implies that location decisions based on a demand function defined 
in such a domain will be suboptimal. As pointed out by Soon et al. (2009), the complementarity demand function offers a way to relax 
the aforementioned domain restriction and is applicable to a set of interrelated products. 

The following numerical example of pricing in a tight market, adopted from Soon et al. (2009), motivates the need of defining the 
price domain less restrictively. A single seller provides two mutually substitutable products (e.g., business-class and economy-class 
airfares). Demand functions for these two products are given by d1(p) = 20 −3p1 +2p2 and d2(p) = 100 + p1 −4p2, where p = (p1,

p2). In a tight market, we have 0⩽yk⩽dk(p),k = 1,2, where yk represents the quantity of product k to be sold. Assuming that the in
ventory level/production capacity is 30, then we would have y1 + y2⩽30. Without loss of generality, we further assume that the price 
of Product 1 is higher than that of Product 2; that is, p1⩾p2⩾0. The objective is to determine prices of both products and quantities to be 
sold, such that the seller’s revenue p1y1 +p2y2 is maximized. 

To solve this two-product pricing problem, let us define Ω := {p ∈ R2
+|dk(p)⩾0, k = 1, 2}, which is the price domain (see Fig. 1). 

From the constraints p1⩾p2 and d1(p)⩾0, one has that p1⩽3p1 −2p2⩽20 is derived. Hence, for any p ∈ Ω, the maximum revenue is 
bounded from above by p1y1 + p2y2⩽p1y1 + p1y2⩽30p1⩽30 × 20 = 600. Nevertheless, we can set the prices outside Ω to yield higher 
revenue. For example, when setting the price as p′

= (p′1,p′2) = (24,23), customers would only buy Product 2 in this case. It would 
therefore be optimal to sell 30 units of Product 2 and none of Product 1, that is, y1 = 0,y2 = 30. It is easy to verify that each constraint 
above is satisfied and the revenue yielded is 0 + 30 × 23 = 690 > 600. However, note that d1(p′

) = 20 −3 × 24 + 2 × 23 = −6 < 0, 
which implies that p′

∕∈ Ω. This example clearly shows that the company can achieve higher revenue by setting prices outside Ω. Soon 
et al. (2014) confirmed this result based on simulated customer behavior data. Overall, demand functions defined on a restricted price 
domain may lead to inferior pricing decisions. 

With this conclusion and given the impact of pricing on location decisions, we investigate the sustainable MCCFLP with 
complementarity demand function to answer the following two research questions:  

(1) Whether the demand function defined on the entire nonnegative price domain necessarily leads to an improved solution to the 
MCCFLP over some restricted domain (e.g., Ω in the above example); and 

Fig. 1. Relationship between price and demand.  
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(2) Whether the improved MCCFLP solution impacts the logistic decisions subject to sustainability concerns. 

The resultant MCCFLP model is novel and practical but challenging to solve. We thus develop an efficient global optimization 
algorithm via the piecewise-linear envelope method. Specifically, the MCCFLP is a 0–1 mixed-integer non-concave quadratic program 
with equilibrium constraints. Under mild conditions, we first transform this problem into a 0–1 mixed-integer non-concave program 
with linear constraints. Nevertheless, a computational challenge persists in dealing with bilinear terms. To efficiently address the 
nonlinear and non-concave functions, we further transform them into linear functions by relaxing bilinear terms using piecewise-linear 
envelopes. We also design a branch-and-refine algorithm with global convergence, which iteratively refines the linear envelopes along 
the branch-and-bound procedure. 

The main contributions of our paper are twofold:  

(1) We are the first that study the MCCFLP with incorporation of complementarity demand functions to capture the substitutable 
and/or complementary relationship among various products.  

(2) We demonstrate the benefit of considering complementarity demand functions for the MCCFLP in the context of sustainable 
low-carbon economy. 

The remainder of this paper is organized as follows. Section 2 reviews literature on four topics relevant to our study. Section 3 
presents a sustainable MCCFLP formulation. Section 4 outlines an in-depth analysis of our model with input of a less restrained 
complementarity demand function. Section 5 details the branch-and-refine algorithm and proves its global convergence. Section 6 
reports numerical experiments and presents a case study on carbon emission limit and carbon trading. Section 7 concludes the paper 
and outlines future research. 

2. Literature review 

We review four relevant areas in the literature, namely multi-source facility location decision, demand-price relationship modeling, 
mixed-integer programming with equilibrium constraints, and sustainable supply chain design. 

2.1. Multi-source capacitated facility location problem 

Extended and in-depth research on facility location problems has been conducted over the last decades (Zhang et al., 2016). Each 
customer’s demand may be split to different facilities. There is extended research on the multi-source capacitated facility location 
problem with one product; see Fernández and Landete (2015) for a literature survey. Many efficient algorithms have been proposed, 
including cutting plane method (Avella and Boccia, 2009), a Lagrangian-based branch-and-bound method (Görtz and Klose, 2012), 
and kernel search heuristic method (Guastaroba and Speranza, 2012). Nevertheless, the multi-source capacitated facility location 
problem with multiple products has received far less attention. Askin et al. (2014) designed the distribution network of a logistic 
provider with multiple products. Akyüz et al. (2012), Akyüz et al. (2012), Akyüz et al. (2019) considered multiple commodities and 
capacitated facilities for the Weber problem. Among existing studies, Nouira et al. (2016) is most relevant to our work. The authors 
investigated a sustainable supply chain design problem considering multiple products and carbon emission. However, they did not deal 
with substitutable nor complementary relationship among the products. 

2.2. Demand functions for interrelated products 

We only review the demand functions relevant to our study, i.e., demand functions defined on the entire nonnegative price domain. 
Generally, there are two such types of demand functions. The first type is to use one differentiable function to approximate the de
mands, e.g., Cobb-Douglas function (Bernstein and Federgruen, 2004) and logit function (Milgrom and Roberts, 1990). While these 
functions make the ensuing analysis more tractable, they may not necessarily reflect the interrelation between customer demands on 
substitutable and/or complementary products. For example, the demand of one product using a logit model tends to converge to 
infinity as the prices of other products converge to infinity. The other type is to use piecewise-smooth functions to approximate the 
demands, e.g., Boyer and Moreaux (1987) and Kübler and Müller (2002). Nevertheless, these demand functions have similar unde
sirable properties as those of the first type. 

The so-called complementarity demand functions are also a class of piecewise-smooth functions. This class of consumer demand 
functions has several advantages, which are highlighted in Soon et al. (2009) and Federgruen and Hu (2016, 2019). First, these 
functions possess desirable properties such as monotonicity (i.e., the law of demand in economics). Second, these functions, partic
ularly asymmetric ones, are widely applicable to combinations of direct and cross-price elasticity. Third, these functions can specify a 
product portfolio together with the products’ prices and demand quantities. This specification is unlike many widely used demand 
models. For instance, with many multinomial logit models, each product attains certain market share, irrespective of its absolute and 
relative price level. Such a property is, in practice, usually violated in the real market. On the other hand, complementarity demand 
functions approximate the demand-price relationship in a real market more accurately. Federgruen and Hu (2015, 2016, 2019) used 
complementarity demand functions in supply chain decisions. Nevertheless, the authors focused on product pricing and assortment 
decisions. In conclusion, it is important to use complementarity demand functions in many decision problems, including the facility 
location problem in this paper. 
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2.3. Mixed-integer programming with equilibrium constraints 

The optimization model proposed in this paper is a mixed-integer nonlinear program (MINLP) with bilinear objective and equi
librium constraints, which is a type of mathematical program with equilibrium constraints (MPEC). MPEC is difficult to solve, 
especially for a global optimality. The common approach is to transform the equilibrium constraints (Luo et al., 1996). For equilibrium 
constraints in our model, we equivalently transform them to linear constraints with the big-M method. The resultant program becomes 
an MINLP with bilinear objective and linear constraints. 

MINLPs with bilinear objective are a special type of MINLPs, which can be divided into concave MINLPs and non-concave MINLPs. 
Although both types are NP-hard (Sherali and Adams, 2013), concave MINLPs are typically easier to solve than their counterparts as 
their continuous relaxations remain concave. Significant progress has been made in solving concave MINLPs over the past decades with 
such methods as generalized benders decomposition (Geoffrion, 1972), branch-and-price (Sharkey et al., 2011), outer approximation 
(Hijazi et al., 2014), supporting hyperplane (Kronqvist et al., 2016) and LP/NLP-based branch-and-bound (Vielma et al., 2008). On the 
other hand, algorithm development for solving non-concave MINLPs lags far behind. 

It is common to convert a non-concave MINLP to a concave MINLP via semidefinite programming (see Helmberg et al., 2002; Sun 
et al., 2012; Dong, 2016). Another common approach is to adopt piecewise-linear functions to approximate nonlinear functions. Then 
the original MINLP is approximated by an MILP, which can be solved with using existing algorithms; see, e.g., Vielma et al. (2010) and 
Nowak et al. (2018). Unfortunately, there is usually a duality gap between the original formulation and the relaxed formulation. For 
the MINLP with bilinear objective and equilibrium constraints proposed in this paper, we, under mild conditions, can relax it to a 0–1 
mixed-integer concave program through piecewise-linear envelopes. To eliminate the duality gap, we propose a branch-and-refine 
algorithm with global convergence. 

2.4. Supply chain design with consideration of carbon emission 

Traditionally, the supply chain management literature focuses on economic performance measures considering a single product. 
Under the pressure of the government and consumers, recent studies have taken carbon emission into account (e.g., Cachon, 2014; 
Chan et al., 2018; Sun et al., 2018; Chen and Bidanda, 2019; Jabbarzadeh et al., 2019). Studies addressing environmental issues in the 
forward supply chain design are not yet abundant, as highlighted in Tang and Zhou (2012). 

Compared with studies considering a single product, there are a few studies focused on the MCCFLP with consideration of carbon 
emission reduction. Closely related to our study are the following two articles. Diabat and Simchi-Levi (2009) developed a two-stage 
capacitated facility location model with multiple products under carbon emission cap. Abdallah et al. (2010) studied a similar problem 
with multiple products and the focus on carbon offset. The objectives of these two papers are to minimize the operational costs while 
satisfying customer demand for a variety of products. However, it is usually impossible to meet all the demands in reality. Different 
from previous work, we investigate the MCCFLP combined with emission limit and carbon trading, where joint decisions of product 
pricing and multi-source are also made. 

From the above literature review, we conclude that almost all prior studies focus on some specific aspects of capacitated facility 
location, including carbon emission, product pricing, and multiple sourcing. Our study, by addressing these aspects more holistically, 
is thus more reflective of the current industry practice. Moreover, for the proposed MPEC model, we transform it into a 0–1 mixed- 
integer concave program and propose a branch-and-refine algorithm with global convergence. 

3. A sustainable MCCFLP formulation 

In this section, we present the sustainable MCCFLP formulation. We consider a one-tier supply chain system for a monopoly 
company, which intends to locate a set of capacitated production facilities to produce multiple products while satisfying customers’ 
demands (see Fig. 2). Some of the products are substitutable and some others are complementary. 

Further, we consider the carbon trading scheme, which is one of the two popular carbon regulatory policy mechanisms, together 

Fig. 2. Illustration of the MCCFLP.  
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with carbon pricing (taxation) scheme (Zakeri et al., 2015; Drake et al., 2016). Zakeri et al. (2015) indicated that the carbon trading 
scheme has better supply chain performance compared with the carbon pricing scheme. In accordance with the carbon trading scheme, 
the amount of carbon emission generated by shipping products to customers must be no more than a predetermined limit the gov
ernment sets, denoted by E. If the company’s carbon emission amount is above (below) E, it has a chance to buy additional (sell 
remaining) carbon capacity from a carbon trading market. Carbon price is assumed to be constant for its medium to long-term stability. 
Our notation is introduced in Table 1. In addition, we assume that the production cost of product k (∈ K) at facility i (∈ I) is depicted by 

a quadratic function: Gk
i (sk

i ) = γk
i sk

i +
δk

i
2 (sk

i )
2. This convex cost arises possibly because more staff work overtime, costly materials are 

used, or equipment maintenance schedules are neglected or postponed (Harkness and ReVelle, 2003). Such function has been used in 
the supply chain design literature, see, e.g., Wolf and Smeers (1997),DeMiguel and Xu (2009), and Ghaddar and Naoum-Sawaya 
(2012). 

We next describe the structure of complementarity demand function, denoted by Dj(p) := (D1
j (p), ⋯, Dk

j (p), ⋯, Dl
j(p))

T for all j ∈ J. 
Let dj(p) : Rl

+ → Rl be a given demand function, i.e., 

dj(p) := (d1
j (p), ⋯, dk

j (p), ⋯, dl
j(p))

T
,

where p = (p1, ⋯, pk, ⋯, pl)
T
, Rl

+ = {p ∈ Rl|p⩾0}. With dj(p), specify Ω := {p ∈ Rl
+|dj(p)⩾0, j ∈ J}. For p ∈ Ω, let Dj(p) = dj(p). For 

p ∕∈ Ω, let Dj(p) = dj(B(p)), where B(p) = (p1, ⋯, pk, ⋯, pl)
T on Ω is obtained from a nonlinear complementarity problem given by p, i. 

e., NCP(p) : 0⩽dj(B(p))⊥(p −B(p))⩾0, for j ∈ J, where ⊥ stands for orthogonality and dj(B(p))⊥(p −B(p)) is equivalent to 
dj(B(p))

T
(p −B(p)) = 0. NCP(p) is assumed to have a unique solution B(p) and B(p) ∈ Ω for all p ∈ Rl

+ throughout this paper. For an 
overview on solution uniqueness about complementarity problems, see Facchinei and Pang (2007). 

With the above introduction, the sustainable MCCFLP is formulated as: 

Table 1 
Nomenclature.  

Parameters  
I = {1, ⋯, i, ⋯, m} Set of candidate facility locations; 
J = {1, ⋯, j, ⋯, n} Set of customers; 
K = {1, ⋯, k, ⋯, l} Set of products; 
ci  Fixed cost of opening facility i; 

mk
i  Production capacity of facility i for product k; 

tkij  Per unit cost for shipping product k from facility i to customer j; 

gk
ij  Per unit emission for shipping product k from facility i to customer j; 

N Maximum number of facilities to open; 
E Carbon emission limit; 
pc  Carbon price; 
ηk  Price cap of product k.  

Miscellaneous  
Gk

i (sk
i ) Production cost of product k at facility i; 

sk
i  Total production quantity of product k of facility i; 

γk
i  Coefficient for linear term in production cost; 

δk
i  Coefficient for quadratic term in production cost; 

Dk
j (p) Complementarity demand function of customer j for product k; 

Dj(p) Complementarity demand function of customer j; 

dk
j (p) A demand function of customer j for product k; 

dj(p) A demand function of customer j; 
p Price vector; 
B(p) Projected price vector; 
Ω  Price domain.  

Decision variables  
yk

ij  Quantity of product k supplied by facility i to customer j; 

pk  Price of product k; 

zi  1, If location i is selected; 0, otherwise.  
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(a) max f (pk, yk
ij, zi, i ∈ I, j ∈ J, k ∈ K)

=
∑

k∈K
(
∑

i∈I

∑

j∈J
yk

ij)pk −
∑

k∈K

∑

i∈I
[γk

i

∑

j∈J
yk

ij +
δk

i

2
(
∑

j∈J
yk

ij)
2
]

−
∑

i∈I
cizi −

∑

k∈K

∑

i∈I

∑

j∈J
tk
ijy

k
ij − pc[

∑

k∈K

∑

i∈I

∑

j∈J
gk

ijy
k
ij − E]

(1)  

s.t.
∑

i∈I
yk

ij⩽Dk
j (p), ∀j ∈ J, k ∈ K; (2)  

∑

j∈J
yk

ij⩽mk
i zi, ∀i ∈ I, k ∈ K; (3)  

∑

i∈I
zi⩽N; (4)  

yk
ij⩾0, ∀i ∈ I, j ∈ J, k ∈ K; (5)  

0⩽pk⩽ηk, k ∈ K; (6)  

zi ∈ {0, 1}, ∀i ∈ I. (7) 

The objective function (1) reflects the company’s profit, that is calculated as the sales revenue minus the production cost, the 
facility setup cost, the transportation cost, and the price of carbon amount (i.e., either revenue of selling redundant carbon if the total 
carbon emission amount is less than the carbon limit, or cost of purchasing external carbon if the total amount extends the carbon 
limit). Constraints (2) ensure that the supply does not exceed the demand for each customer j and each product k. Constraints (3) 
enforce that production only takes place at an open facility and must not exceed its capacity. Constraint (4) limits the number of 
opened facilities by some upper bound N. Constraints (5) and (6) ensure that the distribution quantities and prices to be nonnegative. 

As defined earlier, Dk
j (p) = dk

j (B(p)) for each j ∈ J and k ∈ K, constraints (2) can be rewritten as: 
∑

i∈I
yk

ij⩽dk
j (B(p)), ∀j ∈ J, k ∈ K; (8)  

0⩽
∑

j∈J
dk

j (B(p))⊥(pk − pk)⩾0, ∀k ∈ K. (9)  

By replacing constraints (2) in model (a) with (8) and (9), we obtain an equivalent model as: 

(b) max f (pk, yk
ij, zi, i ∈ I, j ∈ J, k ∈ K)

s.t. Constraints (3) − (9).

Model (b) is a 0–1 mixed integer nonlinear program with equilibrium constraints, which is difficult to solve directly. Hence we 
conduct in-depth model analysis for developing an efficient solution approach. 

4. Model analysis 

In this section, we further analyze model (b) for solution consideration. With mild assumptions, we can equivalently transform 
model (b) into a 0–1 mixed-integer non-concave program with linear constraints, by introducing auxiliary binary variables (Section 
4.1). We then use piecewise-linear envelopes to linearize inherent bilinear terms when the given function d(p) is the frequently used 
linear demand function (Section 4.2). The resultant reformulation includes a concave objective function and a bounded convex 
constraint set. 

4.1. Equivalent transformation of equilibrium constraints 

Generally speaking, optimization models with equilibrium constraints are difficult to deal with because their feasible regions are 
not necessarily convex or even connected. For each equilibrium constraint in model (b), we can use the big-M method, a standard 
technique used to reformulate equilibrium terms in Ghaddar and Naoum-Sawaya (2012), to equivalently transform it into two linear 
inequalities. This ensures that the feasible region corresponding to the equilibrium constraints is transformed into a convex set, thus 
reducing the complexity of solving model (b). 

In practice, each customer location has limited demand for each product, such that there must exist an upper bound for 
∑

j∈Jd
k
j (B(p)

) (∀k ∈ K). Equilibrium constraints (9) are linearized by using binary variables vk ∈ {0, 1}, for all k ∈ K, and identical big-M 
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coefficients, denoted by M. Then we obtain a model as follows: 

(c) max f (pk, yk
ij, zi, i ∈ I, j ∈ J, k ∈ K)

s.t. Constraints (3) − (8);

0⩽
∑

j∈J
dk

j (B(p))⩽Mvk, ∀k ∈ K;
(10)  

0⩽pk − pk⩽M(1 − vk), ∀k ∈ K; (11)  

vk ∈ {0, 1}, ∀k ∈ K. (12) 

By introducing auxiliary binary variables, we transform model (b) into model (c), a 0–1 MINLP, pending equivalence of the two 
models. Due to the equivalent transformation of equilibrium constraints, models (c) and (b) are equivalent. We then solve model (c)

instead of model (b). Model (c) is a 0–1 mixed-integer quadratic program. We present the property of model (c) as follows. 

Proposition 1. The objective function of model (c) is not a concave function. 

Please see the proof in Appendix A. 
Note that all decision variables in model (c) are nonnegative and bounded; thus, the constraint set of model (c) is a bounded set. In 

the next section, for linear demand function d(p), we further reformulate the non-concave objective function, which contributes to 
development of an efficient optimization algorithm. 

4.2. Further reformulation for linear demand function d(p)

Demand for each product is related to the prices of all products available in the market. As the linear relationship prevails in 
theoretical models and empirical research, we put all our emphasis on linear structure in the following analysis. This gives rise to the 
demand function of customer j, i.e., 

dj(p) := (d1
j (p), ⋯, dk

j (p), ⋯, dl
j(p))

T
= bj − Aj(p)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

bj
1

⋮

bj
k

⋮

bj
l

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

aj
11 ⋯ aj

1k ⋯ aj
1l

⋮ ⋮ ⋮ ⋮ ⋮

aj
k1 ⋯ aj

kk ⋯ aj
kl

⋮ ⋮ ⋮ ⋮ ⋮

aj
l1 ⋯ aj

lk ⋯ aj
ll

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p1

⋮

pk

⋮

pl

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

bj
1 − (aj

11p1 + ⋯ + aj
1kpk + ⋯ + aj

1lp
l)

⋮

bj
k − (aj

k1p1 + ⋯ + aj
kkpk + ⋯ + aj

klp
l)

⋮

bj
l − (aj

l1p1 + ⋯ + aj
lkpk + ⋯ + aj

llp
l)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

If dj(p) is linear, then Aj is a P-matrix (i.e., all principal minors of Aj are positive) if and only if there exists a unique solution to the 
linear complementarity problem; that is, equilibrium constraints (9) yield a unique solution B(p). We thus assume that 

∑
j∈JAj is a P- 

matrix in the remainder of this paper. Note that we have made the assumption: ∀p ∈ Rl
+, B(p) ∈ Ω. 

Remark 1. Under the condition that dj(p) is linear and 
∑

j∈JAj is a P-matrix, to ensure this assumption, Soon et al. (2009) provided a 
necessary and sufficient condition: ∀p ∈ Rl

+, B(p) ∈ Ω if and only if (
∑

j∈JAj)
−1
K′ K′ bK′ ⩾0, ∀K′ ⊆K, where (

∑
j∈JAj)K′ K′ and bK′ are the 

principal submatrix and corresponding vector for any index set K′ ⊆K, respectively. 

Remark 2. Consider a collection of substitutable commodities; in this case, the non-negativity of all off-diagonal entries of 
∑

j∈JAj is 
guaranteed. Furthermore, if 

∑
j∈JAj is a P-matrix, the non-negativity of its inverse and all its principal submatrices is guaranteed (see 

Berman and Plemmons, 1994). That is to say, if bj⩾0, then (
∑

j∈JAj)
−1
K′ K′ bK′ ⩾0 will always be satisfied for all K′ ⊆K (Soon et al., 2009). 

Note that in addition to the P-matrix specification in the model, we may consider cases where 
∑

j∈JAj are other forms of matrices to 
ensure the uniqueness of solution of equilibrium constraints (9). Furthermore, we may not rely on the equivalence to conduct our 
investigation. Instead, we may attempt to solve model (b) directly, which is an MPEC. We leave these two potential research items to 
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future. 
Next, by further specifying constraints (8) and (10) with the linear form of the demand function d(p), we obtain the following 

equivalent model: 

(d)max f (pk, yk
ij, zi, i ∈ I, j ∈ J, k ∈ K)

s.t. Constraints (3) − (7); (11) − (12);
∑

i∈I
yk

ij + (aj
k1p1 + ⋯ + aj

kkpk + ⋯ + aj
klp

l − bj
k) ≤ 0, ∀j ∈ J, k ∈ K;

(13)  

∑

j∈J
(aj

k1p1 + ⋯ + aj
kkpk + ⋯ + aj

klp
l − bj

k) ≤ 0, ∀k ∈ K; (14)  

∑

j∈J
( − aj

k1p1 − ⋯ − aj
kkpk − ⋯ − aj

klp
l + bj

k) − Mvk ≤ 0, ∀k ∈ K. (15) 

Note that the nonlinear term in the objective function of model (d) is 
∑

k∈K[
∑

i∈I
∑

j∈Jyk
ijpk −

∑
i∈I

δk
i
2 (

∑
j∈Jyk

ij)
2
]. The bilinear terms yk

ijpk 

(∀i ∈ I, j ∈ J, k ∈ K), lead to non-concavity of the objective function. Leyffer et al. (2008) originated the idea of piecewise-linear en
velopes to approximate nonlinear functions, based on the special ordered set approximation method (Tomlin, 1981; Martin et al., 
2006). We adopt piecewise-linear envelopes of bilinear functions to transform the objective function into a concave quadratic function. 

Lemma 1. For each (x, y, xy) that satisfies Lx⩽x⩽Ux (Lx < Ux) and Ly⩽y⩽Uy (Ly < Uy), there exists a unique λi⩾0 (i = 1,2,3,4), such that 
⎛

⎝
x
y
xy

⎞

⎠ = λ1

⎛

⎝
Lx
Ly

LxLy

⎞

⎠ + λ2

⎛

⎝
Lx
Uy

LxUy

⎞

⎠ + λ3

⎛

⎝
Ux
Ly

UxLy

⎞

⎠ + λ4

⎛

⎝
Ux
Uy

UxUy

⎞

⎠

and 

∑4

i=1
λi = 1.

By Lemma 1, the linear envelope of bilinear function xy is 

w =
∑τx

s=1

∑τy

t=1
λstxsyt,

where xs, yt are breakpoints along each dimension; and τx, τy are the numbers of breakpoints in each dimension. For each bilinear term 
yk

ijpk (∀i ∈ I, j ∈ J, k ∈ K) in model (d), we obtain the linear envelopes as 

wk
ij =

∑τ(i,j,k)

s=1

∑τk

t=1
λkstyks

ij pkt, yk
ij =

∑τ(i,j,k)

s=1

∑τk

t=1
λkstyks

ij , pk =
∑τ(i,j,k)

s=1

∑τk

t=1
λkstpkt,

∑τ(i,j,k)

s=1

∑τk

t=1
λkst = 1, λkst⩾0,

where yks
ij (pkt) are the breakpoints in dimension yk

ij (pk), and τ(i,j,k) (τk) is the corresponding number of breakpoints. Following the above 
results, we can further transform model (d) to the following model: 

(e) max g(pk, yk
ij, zi, i ∈ I, j ∈ J, k ∈ K)

=
∑

k∈K
(
∑

i∈I

∑

j∈J
wk

ij) −
∑

k∈K

∑

i∈I
[γk

i

∑

j∈J
yk

ij +
δk

i

2
(
∑

j∈J
yk

ij)
2
]

−
∑

i∈I
cizi −

∑

k∈K

∑

i∈I

∑

j∈J
tk
ijy

k
ij − pc[

∑

k∈K

∑

i∈I

∑

j∈J
gk

ijy
k
ij − E]

(16)  

s.t. Constraints (3) − (7); (11) − (15);

wk
ij =

∑τ(i,j,k)

s=1

∑τk

t=1
λkstyks

ij pkt;
(17)  
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yk
ij =

∑τ(i,j,k)

s=1

∑τk

t=1
λkstyks

ij ; (18)  

pk =
∑τ(i,j,k)

s=1

∑τk

t=1
λkstpkt; (19)  

∑τ(i,j,k)

s=1

∑τk

t=1
λkst = 1; (20)  

λkst⩾0. (21) 

Note that, compared with model (d),
∑

k∈K
∑

i∈I [
δk

i
2 (

∑
j∈Jyk

ij)
2
] is the only nonlinear term in model (e). Next, we show that with this 

further reformulation with linear envelopes, a concave objective function is obtained. 

Theorem 1. The objective function g(pk, yk
ij, zi, i ∈ I, j ∈ J, k ∈ K) of model (e) is concave. 

Please see the proof in Appendix B. 

Remark 3. Although yk
ijpk and (

∑
j∈Jyk

ij)
2 both lead to non-concavity of the objective function in model (d), the objective function of 

model (e) becomes a concave function once the bilinear terms yk
ijpk are replaced by their linear envelopes. Thus, we simply need to 

linearize yk
ijpk, not (

∑
j∈Jyk

ij)
2. 

All constraints in model (e) are linear; thus, the constraint set is bounded and convex. From the above analysis, we deduce that to 
solve the MCCFLP with complementarity demand functions, we can instead solve a 0–1 mixed-integer concave program with linear 
constraints. But compared with model (a), the scale of model (e) becomes larger due to a rising number of constraints. In the next 
section, we propose an efficient optimization algorithm to address larger-scale 0–1 mixed-integer concave program problems. 

5. A branch-and-refine algorithm 

In this section, we present a branch-and-refine algorithm to solve model (e). Leyffer et al. (2008) dealt with mixed-integer nonlinear 
non-convex optimization problems by relaxing the non-convex problem to obtain a convex approximation. For the relaxation, they 
introduced intermediate variables to decompose problem functions into unary and binary functions, which lead to a large convex 
approximation problem. The bounds of intermediate variables also needed to be derived, which is computationally expensive. Unlike 
Leyffer et al. (2008), we avoid the decomposition of each function and simply relax the bilinear terms by using their linear envelopes. 
Accordingly, a 0–1 mixed-integer concave program with linear constraints is obtained. To solve model (e) effectively, we present a 
branch-and-refine algorithm, which adds more breakpoints than Leyffer et al. (2008) as we explore the branch-and-bound tree. We 
thus gradually generate tighter outer approximations. 

For convenience, this paper considers the minimization model with negation of the objective function in model (e), which is termed 
as model (e′

). Denote x = (yk
ij, pk, i ∈ I, j ∈ J, k ∈ K) and X = {x : Lx⩽x⩽Ux}, where Lx and Ux are column vectors consisting of lower and 

upper bounds of all components of x, respectively. Denote q = (zi, i ∈ I) ∈ Rm and Q = [0, 1]
m, as all components of y are 0–1 binary 

variables. 
To obtain subproblems along the branch-and-bound tree, we begin by solving the continuous relaxation program of model (e′

). If 
this program is infeasible, then the original problem is infeasible. Otherwise, we choose a variable to branch, generate two sub
problems accordingly, and place them in a stack. The algorithm repeatedly removes subproblems from the stack, solves them, and adds 
new subproblems after branching. The algorithm terminates when the stack is empty. 

Let LPR(Xκ, Qκ) denote the subproblem, where κ labels the current node, and Xκ and Qκ form the current feasible solution subspaces. 
(xκ, qκ) and zLPRκ denote the optimal solution and the associated optimal objective function value, respectively. 

We implement the branching process as follows. If qς is a fractional value, we branch on it as 

Q2κ := {q ∈ Qκ : qς = 0}, X2κ := Xκ; (22)  

Q2κ+1 := {q ∈ Qκ : qς = 1}, X2κ+1 := Xκ. (23)  

Similarly, we branch on continuous variable xς at a value x′

ς: 

X2κ := {x ∈ Xκ : xς⩽x′

ς}, Q2κ := Qκ; (24)  

X2κ+1 := {x ∈ Xκ : xς⩾x′

ς}, Q2κ+1 := Qκ. (25) 

While diving down through the tree, we alternately select an integer variable and a continuous variable to branch; the location 
decisions (modeled with integer variables) interact with pricing and supply quantity decisions (modeled with continuous variables). 

W. Liu et al.                                                                                                                                                                                                             



Transportation Research Part E 145 (2021) 102165

10

Once the variable type is determined for branching, we randomly select one such variable. To create tighter outer approximations, 
after each branching, we need to refine the linear envelopes (17)–(21) in the resultant two subproblems by selecting more breakpoints 
from the feasible solution subspace of each subproblem. For detailed information on breakpoint selection, please see the appendix on 
proving Theorem 2. 

We define NLP(Xκ, qκ) with fixed integer variables q = qκ and scope Xκ in model (d′

), which is the equivalent convex model by 
negating the objective function of model (d). (x̂κ

, qκ) and zNLPκ denote the optimal solution and the associated optimal objective 
function value, respectively. We denote εas the accuracy level. After solving LPR(Xκ,Qκ), we can fathom nodes in the branch-and-bound 
tree as long as one case occurs:  

(1) If LPR(Xκ, Qκ) is infeasible, there is no feasible point in Xκ × Qκ. Then the node is fathomed.  
(2) If LPR(Xκ, Qκ) has an integer solution qκ, and if the solution to NLP(Xκ, qκ) satisfies |zLPRκ −zNLPκ |⩽ε, the node is fathomed. Then, 

either a new incumbent is obtained, or a better solution dominates the node.  
(3) If |U −zLPRκ |⩽ε, where U is the optimal value of the incumbent, it is impossible to find a better solution in Xκ × Qκ. Then this node 

is fathomed. 

Summarizing the above, we formally state the branch-and-refine algorithm. 
The branch-and-refine algorithm.  

1 Initialize U = ∞, choose an accuracy ε > 0, integer σ > 0, κ = 1, and set L = {Xκ × Qκ}.  
2 while L ∕= ∅:  
3 Solve LPR(Xκ , Qκ), (xκ , qκ) is obtained.  
4 If LPR(Xκ , Qκ) is infeasible or zLPRκ ⩾U −ε, fathom this node.  
5 If LPR(Xκ , Qκ) cannot be pruned:  
6 If qκ is integer feasible, solve NLP(Xκ, qκ):  
7 If zNLPκ < U −ε, update U = zNLPκ , new incumbent (x*, q*) = (x̂κ

,qκ).  
8 If |zLPRκ −zNLPκ |⩽ε, fathom this node.  
9 If qκ is non-integer, select the branching variable, choose σ +κ −2 equidistantly distributed  

breakpoints from the dimension of yk
ij, pk (∀i ∈ I, j ∈ J,k ∈ K), and refine envelopes (17)-(21):  

10 If the selected variable is fractional, branch according to (22)-(23). 
11 If the selected variable is continuous, branch according to (24)-(25). 
12 Remove Xκ × Qκ from L.  
13 Return optimal solution (x*, q*).   

Theorem 2. The branch-and-refine algorithm converges to a global optimum with ε-accuracy in a finite number of iterations. 

Please see the proof in Appendix C. 

6. Numerical study 

We implement the proposed branch-and-refine algorithm in Matlab2014a and run the algorithm on a Windows 7 workstation with 
3.0 GHz Intel CPU and 16 GB RAM. We conduct five sets of experiments. First, we consider a simple scenario with two substitutable 
products, one demand location, and two candidate facility locations, to assess the impact of considering the complementarity demand 
function for facility location decisions (Section 6.1). Second, we consider a scenario with a list of complementary and substitutable 
products (Section 6.2). We then assess the effect of carbon emission limit on carbon offset and total profit (Section 6.3) and the impact 
of carbon pricing on the amount of carbon traded (Section 6.4). Finally, we test the performance of the proposed branch-and-refine 
algorithm on larger instances by comparing the computational time against the branch-and-bound algorithm in He et al. (2014) 
(Section 6.5). We recode the branch-and-bound algorithm in the same Matlab environment and run it on the same machine as the 
proposed algorithm. 

We assume that the company’s candidate locations and demand points are evenly distributed in a field of 150 × 150km2. We use 
Euclidean distance and assume ε = 10−4,M = 1010, and σ = 6. We extract the transportation cost of Product 1, the emission associated 

Table 2 
Instance parameters.  

Transportation cost of Product 1 $5/km/ 
unit 

Emission associated with shipping Product 1 0.425 kg/km/unit 

First-order coefficient of production function for Product 1 0.42 Second-order coefficient of production function for Product 1 0.2 
Transportation cost of Product 2 $6/km/ 

unit 
Emission associated with shipping Product 2 0.225 kg/km/unit 

First-order coefficient of production function for Product 2 0.45 Second-order coefficient of production function for Product 2 0.225 
Capacity for Product 1 3000 units Capacity for Product 2 2500 units 
Cost of building facility $7500 Carbon emission limit 100 kg 

Carbon price $150/ton Price cap of Product 1(2) $800($1000)  
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with shipping Product 2, and the cost of facility construction and carbon limit from Ghaddar and Naoum-Sawaya (2012). We specify 
the other parameters used in the numerical experiments, as reported in Table 2. 

6.1. A scenario with two candidate locations, a demand domain, and two substitutable products 

For this scenario, we consider identical production cost functions for two candidate locations. We further assume they take the 
forms G1

i (s) = 0.42s +0.2s2 and G2
i (s) = 0.45s + 0.225s2, i = 1, 2. The linear demand function takes the form d(p1, p2) =

(
3600
2400

)

−

(
40 −10

−30 20

)(
p1

p2

)

. Clearly, the coefficient matrix of the linear demand function is a P-matrix. We summarize the results 

in Fig. 3 and Table 3. 
As shown in Fig. 3, by considering the linear demand function, the company would install a facility at both Locations 1 and 2. At 

each location, the facility would produce Products 1 and 2 to service the demand region. The facility at Location 1 would offer 1 unit of 
Product 1 and 2 units of Product 2; the facility at Location 2 would offer 1 unit of Product 1 and 354 units of Product 2. In this case, the 
total expected profit is $14090. By contrast, with consideration of the complementarity demand function, the company would only 
install a facility at Location 2 and only produce Product 2 at this location. In this case, the company produces 56 units of Product 2 at a 
total expected profit of $24359. This profit is 72.9% higher than that obtained when considering the linear demand function. 

As listed in Table 3, the market price of Product 2 is $800 in both cases; the market price of Product 1 is $489 based on the linear 
demand function whereas it is $614 based on the complementarity demand function. These results implies that in the latter case, the 
company increases the sales of Product 2 by raising the market price of Product 1. The profit obtained from the sales of Product 2 in this 
case is higher than that obtained by selling both products at Locations 1 and 2 in the linear demand function case. Further, we find that 
d1(p1, p2) = 3600 −40p1 +10p2 < 0 if p1 = 614, p2 = 800; that is, the optimal decision is attained only at points outside the non- 
negative price domain of the linear demand function case. 

In conclusion, these results show that restriction of admissible prices may lead to inferior decisions, which implies some profit loss. 
This suggests the necessity of considering a complementarity demand function when making location decisions. 

6.2. A three-product scenario with two substitutable products and one complementary product 

For this scenario, we again consider one demand domain and two candidate locations. Different from the previous scenario, we 
consider two substitutable products here (i.e., Products 1′ and 2′ ) and one complementary product (i.e., Product 3′ ). For each product, 

we assume the two candidate locations have identical production cost functions: Gk
i (s) = 0.42s + 0.2s2(k = 1′

, 2′

), and G3′

i (s) =

0.45s + 0.225s2,i = 1,2. The linear demand function takes the form d(p1,p2,p3) =

⎛

⎝
1200
2400
2400

⎞

⎠ −

⎛

⎝
40 −10 20

−10 80 30
20 30 60

⎞

⎠

⎛

⎝
p1

p2

p3

⎞

⎠. It is easy to 

know that the coefficient matrix of the linear demand function is a P-matrix and satisfies the assumption. Thus, there exists a unique 
projected price B(p) in Ω. 

Some parameters used here can be found in Table 2. The parameters of substitutable Products 1′ and 2′ are the same as that of 
Product 1; the parameters of complementary Product 3′ are the same as that of Product 2. We summarize the results in Table 4. With 
this experiment, we conclude that the proposed model is viable to the MCCFLP with a group of products containing substitutable or 
complementary products or products of both types. 

Fig. 3. Solution when considering the (a) complementarity demand function; (b) linear demand function.  
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6.3. Evaluating the effect of carbon limit on carbon emission and profit 

In this experiment, we consider a more complex scenario with two demand regions. Our focus is to assess the impact of carbon 
emission limit on carbon offset and subsequent profit. We set the baseline carbon emission limit to be 100 kg. The optimal solution for 
the corresponding baseline MCCFLP instance implies a total emission amount of 73.3 kg of CO2 and a profit of $61735. To assess the 
effect of carbon emission limit, we decrease the limit from 100 kg at a decrement of 10 kg in each experiment. We consider two cases: 
carbon trading allowed and prohibited, with results reported in Figs. 4 and 5. 

If carbon trading is allowed, the amount of carbon offset purchased would decline significantly as the emission limit increases over 
a wide range (i.e., from 0 to more than 70). By contrast, the profit would be insensitive to the limit change (Fig. 4). When carbon 
trading is prohibited, decreasing the limit on carbon emission would lead to a lower profit (Fig. 5). We report more detailed exper
imental results in Table 5. 

If the government prohibits carbon trading, as if with a reduced carbon emission limit, then the company’s profit and emission 
would essentially have the same magnitude of reduction. Thus, with a reduced carbon emission limit, carbon trading would not hinder 
the company’s development. When the government allows carbon trading, under tightened limit, the company would consistently 
purchase enough carbon offset to maintain its carbon emission capacity at a constant level. Interestingly, carbon emission can decrease 
significantly even with a small penalty on the profit: the additional carbon offset pays a price on the profit, such that the profit would 
fall by 1.3% if the carbon limit drops to 0 kg. Therefore, the company would purchase additional carbon offset from the market when 
the allowed emission limit is insufficient to maintain production and logistic activities. This pattern confirms the role of carbon trading 
in reducing carbon footprint. 

Table 3 
Optimal location and pricing results.   

MCCFLP with complementarity demand function MCCFLP with linear demand function 

Demand for Product 1 0 2 
Market price for Product 1 614 489 
Demand for Product 2 356 355 
Market price for Product 2 800 800 
Supply from Facility 1 for Product 1 – 1 
Supply from Facility 1 for Product 2 – 2 
Supply from Facility 2 for Product 1 0 1 
Supply from Facility 2 for Product 2 356 354 
Supply from Facility 2 for Product 2 356 354 
Profit ($) 24359 14090 

Note. “–” implies that the facility is not installed. 

Table 4 
Optimal location and pricing results.   

Price Supply from Facility 1 Supply from Facility 2 

Product1′ 115 171 – 

Product2′ 112 167 – 

Product3′ 55 361 –    

Profit $885920 

Note. “–” implies that the facility is not installed. 

Fig. 4. Effect of carbon emission limit (carbon trading allowed).  
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6.4. Evaluating the effect of carbon price on the amount of carbon traded 

In this section, we use the same scenario as in Section 6.3 with an emission limit of 50 kg to illustrate the effect of carbon price on 
the amount of carbon traded in the market. The baseline carbon price is set to be $150/ton. To assess the impact of carbon price, we 
vary the price from $0/ton to 2500$/ton. We display our findings in Fig. 6. 

When the carbon price is $0/ton, the amount of carbon offset purchased is 23.3 kg. As the price increases (i.e., from $0/ton to 
$1860/ton), the amount of carbon offset purchased decreases. When the carbon price reaches $1860/ton, the amount of carbon offset 
purchased would reach 0. As the carbon price continues to climb, the company would shift from a carbon buyer to a carbon seller. 
Carbon price thus has an impact on emission reduction. However, excessive price would cause more companies to become carbon 
sellers, even with the possibility of producing few products. This trend implies that companies would likely exit the market. In 
conclusion, although the carbon price is affected by supply and demand in the market, government intervention may still be needed for 
company’s long-term development when the carbon price is set too high. 

6.5. Computational results for larger instances 

This section reports computational results on solving larger MCCFLP instances with the branch-and-refine algorithm. We compare 
the computational time with that with the branch-and-bound algorithm in He et al. (2014). We consider the scenario of two substi
tutable products (similar to the scenario in Section 6.1). All test instances are generated randomly. Different from previous experi
ments, we consider more candidate facility locations and demand domains with these instances. We run the algorithm five times for 
each instance and report the averaged CPU time in Table 6. From left to right, Table 6 reports the instance number, the number of 
candidate locations, the number of demand domains, and the instance size, i.e., the number of variables and constraints in the cor
responding model (e′

), as well as the computational time of the branch-and-refine algorithm and the branch-and-bound algorithm 
(labeled “b&r” and “b&b”). 

For Instances 1–4, we consider scenarios with six candidate facility locations and increase the number of demand domains from 6 to 
9. Compared to Instance 1, extra CPU time required for Instances 2–4 are 65s, 70s, and 183s, respectively. For Instances 5–7, we 
consider scenarios with six demand domains and increase the number of candidate locations from 8 to 10. Compared to Instance 5, 
extra CPU time required for Instances 6–7 are 94s and 166s, respectively. The computational time increases somewhat noticeably. For 
Instances 8–13, we increase the number of candidate locations from 11 to 16 and the number of demand domains from 8 to 13. 
Compared to Instance 8, extra CPU time required for Instances 9–13 are 140s, 321s, 537s, 791s, and 1018s, respectively. Small to 
medium instances can be solved within a reasonable amount of time. Nevertheless, solving large instances, especially those with a 

Fig. 5. Effect of carbon emission limit (carbon trading prohibited).  

Table 5 
Detailed sensitivity analysis results for two cases.  

Carbonemissionlimit (kg) Carbon trading prohibited Carbon trading allowed 

Profit Decrease in Decrease in Profit Carbon Decrease in 
($) carbon emission(%) profit(%) ($) offset bought(kg) profit(%) 

70 57845 4.5 3.0 59591 3.3 0.08 
60 50063 18.2 16.1 59505 13.3 0.23 
50 41697 31.8 30.1 59497 23.3 0.24 
40 32388 45.4 45.7 59386 33.3 0.43 
30 23804 59.1 60.1 59243 43.3 0.67 
20 20000 72.7 66.5 59105 53.3 0.90 
10 3253 86.4 94.6 58960 63.3 1.14 
0 0 100 100 58840 73.3 1.34  
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large number of products, may be computationally expensive. However, compared to the algorithm in He et al. (2014), the proposed 
branch-and-refine algorithm is still much faster. The larger an instance is, the more obvious the advantage is. However, when the 
instance increases to 16 candidate facility locations and 13 demand domains, the branch-and-refine algorithm does not terminate 
within 1 h, thus motivating the development of a more efficient algorithm, e.g., decomposition-based algorithms. 

7. Conclusions 

In this paper, we investigate the effect of incorporating the complementary demand function in multi-commodity capacitated 
facility location optimization. To conform to the recent trend of requiring carbon emission reduction, we formulate the MCCFLP in the 
context of sustainable supply chain design; the corresponding model thus includes carbon trading scheme. The resultant problem, a 
joint optimization of location and pricing decisions, is a 0–1 mixed-integer non-concave quadratic program with equilibrium con
straints. Acknowledging that the optimization model is difficult to solve, we transform it into a 0–1 mixed-integer concave program 
with linear constraints and design a branch-and-refine algorithm with global convergence. 

With the experiments, we conclude that the proposed algorithm works more efficiently than a state-of-the-art branch-and-bound 
algorithm. Our model analysis and numerical example analysis provide the following insight to practitioners:  

(1) Incorporating the complementarity demand function into facility location problems can lead to more profitable decisions for 
monopoly companies than commonly assumed demand-price relationships in the literature.  

(2) A small penalty on profit may help companies maintain a necessary level of production and logistic activities. This measure 
could in turn alleviate a company’s concerns about implementing carbon emission reduction mechanisms.  

(3) A substantial fluctuation in carbon price could shift a company from a carbon buyer to a carbon seller. Government intervention 
may therefore still be needed. 

Our findings point out new research questions and directions for the future. First, we plan to develop a more efficient algorithm for 

Fig. 6. Effect of carbon price on the amount of carbon traded.  

Table 6 
Computational results.  

InstanceNo. Candidatefac. loc. Dem.dom. Instance size Time (sec) 

var. con. b&r  b&b  

1 6 6 1954 454 253 729 
2 6 7 2278 518 328 924 
3 6 8 2602 582 398 1138 
4 6 9 2926 576 581 1502 
5 8 6 2604 637 482 1392 
6 9 6 2929 646 576 1526 
7 10 6 3254 698 742 2113 
8 11 8 4767 987 987 2841 
9 12 9 5848 1192 1127 – 
10 13 10 7037 1417 1448 – 
11 14 11 8332 1662 1985 – 
12 15 12 9737 1927 2776 – 
13 16 13 10418 2212 3794 – 

Note. “–” implies that the branch-and-bound algorithm does not terminate within 1 h. 
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large MCCFLP instances. In particular, the decomposable structure of the problem warrants further exploration. Second, we intend to 
characterize a demand function that reflects the reality for a wide range of price. Third, we will consider possible model extensions, 
such as considering carbon emission on the production side and customer diverse interests on low-carbon products. 
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Appendix A. Proof of Proposition 1 

The objective function of model (c)

f (pk, yk
ij, zi, i ∈ I, j ∈ J, k ∈ K)

=
∑

k∈K
(
∑

i∈I

∑

j∈J
yk

ij)pk −
∑

k∈K

∑

i∈I
[γk

i

∑

j∈J
yk

ij +
δk

i

2
(
∑

j∈J
yk

ij)
2
]

−
∑

i∈I
cizi −

∑

k∈K

∑

i∈I

∑

j∈J
tk
ijy

k
ij − pc[

∑

k∈K

∑

i∈I

∑

j∈J
gk

ijy
k
ij − E],

is a quadratic function, which is second-order differentiable, and the quadratic term is 

∑

k∈K
[
∑m

i=1

∑n

j=1
yk

ijp
k −

∑m

i=1

δk
i

2
(
∑n

j=1
yk

ij)

2

].

Next, we transform the quadratic term into the corresponding quadratic form. Let E be a matrix whose elements are all 1 and e be a 
column vector whose elements are all 1. 

For ∀k ∈ K, let 

Yik = (yk
i1, yk

i2, ⋯, yk
in)

T
, i = 1, 2, ⋯, m;  

Yk = (yk
11, yk

12, ⋯, yk
1n; yk

21, yk
22, ⋯, yk

2n; ⋯; yk
m1, yk

m2, ⋯, yk
mn)

T
= (YT

1k, YT
2k, ⋯, YT

mk);  

X = (y1
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12, ⋯, y1
1n; ⋯; y1
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m2, ⋯, y1

mn; y2
11, y2

12, ⋯, y2
1n; ⋯; y2

m1, y2
m2, ⋯, y2

mn;
⋯; yl

11, yl
12, ⋯, yl

1n; ⋯; yl
m1, yl

m2, ⋯, yl
mn; p1; p2; ⋯; pl).

Since 

(
∑n

i=1
xi)

2
= [(x1, x2, ⋯, xn)(1, 1, ⋯, 1)

T
]
2

= (x1, x2, ⋯, xn)(1, 1, ⋯, 1)
T
(1, 1, ⋯, 1)(x1, x2, ⋯, xn)

T

= (x1, x2, ⋯, xn)En×n(x1, x2, ⋯, xn)
T
,

then δk
i
2 (

∑n
i=1xi)

2
= (Yik)

T
(

δk
i
2 En×n)Yik, thus 
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∑m

i=1

δk
i
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i=1
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2
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where 

Ek ≜ diag{
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Moreover, 
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then 
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X.

Based on the above analysis, we obtain the negative Hessian matrix of f(pk, yk
ij, zi, i ∈ I, j ∈ J, k ∈ K) as 

⎡

⎢
⎢
⎣

diag{E1, ⋯, El} diag{(−
1
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)emn, ⋯, (−
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⎤

⎥
⎥
⎦.

A matrix is positive semidefinite if all its principal minors are non-negative. Obviously, this matrix is not positive semidefinite 
because there are negative principal minors. For instance, for the principal minor consisting of row 1, row 2mn + 1, column 1, column 

2mn + 1, we have 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

δ1
1

2
−

1
2

−
1
2

0

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= −1
4. Then the objective function of (c) is not concave. 
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Appendix B. Proof of Theorem 1 

It suffices to prove that 
∑

k∈K
∑

i∈I

[
δk

i
2 (

∑
j∈Jyk

ij)
2
]

is convex, which is the collection of quadratic terms in objective function g(pk,wk
ij,yk

ij,

zi, i ∈ I, j ∈ J, k ∈ K). For any x, y ∈ R and α ∈ [0,1], we have. 
(αx + (1 − α)y)

2
−(αx2 + (1 −α)y2) = α2x2 + 2α(1 −α)xy + (1 − α)

2y2 −αx2 −(1 −α)y2 

= (α)(α −1)x2 + 2α(1 −α)xy + (1 −α)( −α)y2 = (α)(α −1)(x2 −2xy + y2)⩽0, which implies that (αx + (1 − α)y)
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2. Next, we analyze two arbitrary points in the value range of yk
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ij . Based on the above derivation, we have 
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Hence, the function h(yk
ij, i ∈ I, j ∈ J, k ∈ K) is convex. Note that the sum of finite convex functions is still convex. Then 

∑
k∈K
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[
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2 (
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2
]

=
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ij, i ∈ I, j ∈ J, k ∈ K) is convex. This implies that the function −g(pk, yk

ij, zi, i ∈ I, j ∈ J, k ∈ K) is also 

convex, which completes the proof. 

Appendix C. Proof of Theorem 2 

Because the objective function of model (d′

) is continuous, the gap between the objective function of model (e′

) and that of model 
(d′

) must decrease with additional breakpoints and continuously refined envelopes. Furthermore, the difference in the two continuous 
objective functions is still continuous; there thus must exist a maximum and minimum in the closed constraint set. 

At each node associated with Xκ × Qκ, because the approximated part in the objective function of model (e′

) involves bilinear 
functions yk

ijpk(i ∈ I,j ∈ J,k ∈ K), we simply need to analyze these bilinear functions. Per Lemma 1, for each (yk
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). Therefore, the gap between the objective function of model (e′

) and 
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) satisfies the following relationship: 

|yk
ijp

k − (λ1yk(1)

ij pk
(1) + λ2yk(1)

ij pk
(2) + λ3yk(2)

ij pk
(1) + λ4yk(2)

ij pk
(2))|(

∑4

i=1
λi = 1, λi⩾0, i = 1, 2, 3, 4)

= |(λ1 + λ2 + λ3 + λ4)yk
ijp

k − (λ1yk(1)

ij pk
(1) + λ2yk(1)

ij pk
(2) + λ3yk(2)

ij pk
(1) + λ4yk(2)

ij pk
(2))|

= |λ1(yk
ijp

k − yk(1)

ij pk
(1)) + λ2(yk

ijp
k − yk(1)

ij pk
(2)) + λ3(yk

ijp
k − yk(2)

ij pk
(1)) + λ4(yk

ijp
k − yk(2)

ij pk
(2))|

⩽ λ1|yk
ijp

k − yk(1)

ij pk
(1)| + λ2|yk

ijp
k − yk(1)

ij pk
(2)| + λ3|yk

ijp
k − yk(2)

ij pk
(1)| + λ4|yk

ijp
k − yk(2)

ij pk
(2)|

⩽ λ1(yk(2)

ij pk
(2) − yk(1)

ij pk
(1)) + λ2max{yk(2)

ij pk
(2) − yk(1)

ij pk
(2), yk(1)

ij pk
(2) − yk(1)

ij pk
(1)}

+λ3max{yk(2)

ij pk
(2) − yk(2)

ij pk
(1), yk(2)

ij pk
(1) − yk(1)

ij pk
(1)} + λ4(yk(2)

ij pk
(2) − yk(1)

ij pk
(1))

⩽ λ1(yk(2)

ij pk
(2) − yk(1)

ij pk
(1)) + λ2(yk(2)

ij pk
(2) − yk(1)

ij pk
(1)) + λ3(yk(2)

ij pk
(2) − yk(1)

ij pk
(1))

+λ4(yk(2)

ij pk
(2) − yk(1)

ij pk
(1))

⩽ yk(2)

ij pk
(2) − yk(1)

ij pk
(1).

To estimate the last right-hand side item in the above inequality, we select equidistant σ +κ −2 breakpoints in the corresponding 

dimension of Lyk
ij
⩽yk

ij⩽Uyk
ij 

(0⩽Lyk
ij
⩽Uyk

ij
) and Lpk ⩽pk⩽Upk (0⩽Lpk ⩽Upk ). That is, the breakpoints in dimension yk

ij are chosen as Lyk
ij
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Uyk

ij
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ij
σ+κ−1 ,

i′

= 1,2, ⋯, σ + κ −2, and the breakpoints in dimension pk are chosen as Lpk + j′ Upk −Lpk
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= 1,2, ⋯, σ + κ −2. 
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Based on the above analysis, the maximal gap between the objective function of model (e′

) and that of model (d′

) is estimated as 
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where i′
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= 0,1,2, ⋯, σ + κ −2. 
Given that i′

,j′

= 0,1,2,⋯,σ + κ −2, one has i′

+ j′

+ 1⩽2σ + 2κ −3. Thus, the maximal gap between the objective function of model 
(e′

) and that of model (d′

) is further estimated as 
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Because Lyk
ij
, Uyk

ij
, Lpk , Upk are constant values, we have 

lim
κ→∞
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We know from the above limit that for some given tolerance ε > 0, there exists a positive integer T such that 

| − g(pk, wk
ij, yk

ij, zi, i ∈ I, j ∈ J, k ∈ K) − ( − f (pk, yk
ij, zi, i ∈ I, j ∈ J, k ∈ K))| <

ε
2  

holds for any κ > T. 
Based on the construction method of Qκ, the number of integer components in Qκ increases as κ increases. Furthermore, the number 

of all integer variables is finite. Thus, after κ(> T) steps, the algorithm will stop; that is, |zLPRκ −zNLPκ |⩽εmust be satisfied. As zLPRκ and 
zNLPκ are the lower and upper bounds of model (d′

) in Xκ × Qκ, respectively, then the difference between the optimal value of model (e′

)

and that of model (d′

) in Xκ × Qκ is less than ε2. As model (d′

) and the original problem are equivalent, the gap between the optimal value 
of model (e′

) and that of the original problem is less than ε. 
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