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a b s t r a c t 

Bilevel integer linear programming (BILP) problems have been studied for decades. Many exact algorithms 

have been proposed in recent years for small- or medium-sized instances. However, few of these algo- 

rithms were shown to be efficient on large-sized instances. In this paper, we present an enhanced branch- 

and-bound algorithm for a class of BILP problems, which can discard a subspace from the search space 

in each iteration larger than that in a benchmark branch-and-bound algorithm. The corresponding en- 

hanced branching rule can efficiently slow down the creation of new node problems so as to significantly 

reduce the computation time. Our scheme may be suboptimal if the lower-level problem is not unique 

optimal as the enhanced branching rule may discard bilevel feasible solutions that may turn out to be 

optimal to the bilevel programming. We present computational studies to evaluate the algorithm speedup 

and solution quality of our algorithm, compared with state-of-the-art algorithms from the literature on a 

large testbed of general BILP instances, some of which are still unsolved. The computational results show 

that our enhanced branching rule can achieve significant speedup on the benchmark branching rule with 

satisfying solution quality. In particular, our algorithm shows superior performance on large-sized BILP 

instances with a relatively complex lower-level problem. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Bilevel programming describes the interaction between two au- 

onomous and possibly conflicting decision makers: a leader and 

 follower. It plays a fundamental role in many real-world appli- 

ations, when competitive agents operate in a hierarchical way 

ith conflicting objectives. Discrete bilevel linear programming 

roblems, which contain integer decision variables, have been 

ommonly seen in facility location ( Cao & Chen, 2006 ; Caramia 

 Mari, 2016 ), network design ( Ceylan & Bell, 2004 ), bilevel

napsack ( Caprara, Carvalho, Lodi & Woeginger, 2016 ; Lozano & 

mith, 2016 and Tang, Richard & Smith, 2016 ), traffic systems 

 Brotcorne, Labbé, Marcotte & Savard, 2001 , Labbé, Marcotte & 

avard, 1998 ), capacity planning ( Florensa et al., 2017 ; Garcia- 

erreros et al., 2016 ), and natural gas regulation ( Dempe, Kalash- 

ikov & RıÓs-Mercado, 2005 , 2011 ; Kalashnikov & Ríos-Mercado, 

006 ; Kalashnikov, Pérez & Kalashnykova, 2010 ). For these prob- 
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ems, specially designed exact algorithms were proposed. However, 

hese algorithms were tested efficient only on small- to medium- 

ized instances. On the other hand, there is a lack of exact algo- 

ithms dealing with large-sized instances. This can be explained by 

he inherent complexity of bilevel programming problem, which is 

nown to be NP-hard even when the leader’s and follower’s prob- 

ems are both linear programs ( Jeroslow, 1985 ). 

To fill in this gap, we propose an enhanced branch-and-bound 

lgorithm for bilevel integer linear programming (BILP) problems 

here decision variables are all integers. We take a branching rule 

reviously proposed by Xu and Wang (2014) as the benchmark 

nd embed an enhanced branching idea in it to efficiently slow 

own the creation of new node problems by eliminating newly 

reated node problems in each iteration. The corresponding en- 

anced branching rule is proved to be able to efficiently cut off

arger subspace from the search space, so as to significantly re- 

uce the computation time. However, it may discard bilevel fea- 

ible solutions if the lower-level problem is not uniquely optimal, 

hich may lead to sub-optimality in BILP. Nevertheless, we adapt 

 well-established sufficient-and-necessary condition on the solu- 

ion uniqueness of linear programming and provide a reasonable 

lobal optimality checking mechanism for BILP. To test the effi- 
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iency of our algorithm, including algorithm speedup (compared 

o the benchmark branching rule) and solution quality (i.e., the 

ap between our output solution and the optimal solution), we 

ompare our algorithm with state-of-the-art algorithms on a com- 

on testbed of three sets of general BILP instances from the liter- 

ture and a set of randomly generated BILP instances. To the best 

f our knowledge, these instances are of the largest size among 

eneral BILP instances tested in the literature. The computational 

esults show that our enhanced branching rule can achieve supe- 

iority on both algorithm speedup and solution quality, especially 

or large-sized BILP instances with a relatively complex lower-level 

roblem. 

The rest of this paper is organized as follows. In Section 2 , 

e review the most relevant approaches to discrete bilevel linear 

rogramming from the literature. We describe our model formu- 

ation and related definitions in Section 3 . We introduce our en- 

anced branch-and-bound algorithm in Section 4 . The performance 

f our algorithm is evaluated in Section 5 by means of computa- 

ional experiments on three sets of general BILP instances from the 

iterature and randomly generated ones. We draw conclusions in 

ection 6 . 

. Literature review 

Even though there exists a large body of literature devoted to 

ilevel optimization, there are relatively few exact algorithms de- 

igned for discrete bilevel linear programming. In this section, we 

ntroduce relevant references on solution methods of bilevel 0–1 

ixed integer linear programming , bilevel mixed integer linear pro- 

ramming (BMILP) and bilevel integer linear programming (BILP) . 

For bilevel 0–1 mixed integer linear programming, an early 

tudy can be found in Bard and Moore (1992) , where both upper- 

nd lower-level variables are restricted to be binary. They pro- 

osed an algorithm that implicitly enumerates upper level vari- 

bles and solves the associated lower-level problems to obtain 

ilevel feasible solutions. The authors tested their algorithm on 

nstances with up to 45 variables and 18 constraints. More than 

wenty years later, Zhang and Özaltın (2017)) proposed a branch- 

nd-cut algorithm enhanced by incorporating the ideas of value 

unction and local search for problems where upper level variables 

re restricted to be binary. Their computational results showed 

hat their algorithm can solve instances with up to 200 variables 

nd 150 constraints in a reasonable amount of time. For a spe- 

ial case known as the bilevel knapsack problem with interdiction 

onstraints, where the leader seeks to minimize the follower’s ob- 

ective, exact algorithms were proposed by Caprara et al. (2016) , 

ozano and Smith (2016) , Tang et al. (2016) and Croce and Scata- 

acchia (2019 , 2020) . Taking a straightforward cutting plane ap- 

roach for the upper level problem, Caprara et al. (2016) pro- 

osed an exact algorithm that exploits the structural properties 

f the bilevel knapsack problem. Lozano and Smith (2016) pro- 

osed a sampling scheme to optimize the bilevel knapsack prob- 

em in which the follower problem can take any form. Tang 

t al. (2016) proposed three generic solution algorithms and re- 

uired leader variables to be binary, whereas the follower’s prob- 

em can be general mixed-integer. Croce and Scatamacchia (2019 , 

020) derived effective lower bounds for the bilevel knapsack 

roblem with interdiction constraints and presented an exact 

ethod that exploits the structure of the induced follower’s prob- 

em. The authors tested their algorithms on bilevel knapsack prob- 

em instances with interdiction constraints that have up to 110 

ariables in total. 

The literature of BMILP started with early work in the 1990s by 

oore and Bard (1990) , which was first to propose a branch-and- 

ound approach. The largest instance that the authors reported 

olution results on has 40 variables and 18 constraints. Vicente, 
662 
avard and Judice (1996) derived characterizing properties for dif- 

erent types of discrete linear bilevel programming problems. The 

uthors studied the geometry of the feasible set and discussed the 

xistence of an optimal solution. About twenty years later, Xu and 

ang (2014) designed an exact algorithm within a branch-and- 

ound framework for BMILP with bounded and integral assump- 

ion on upper level variables. The authors tested their algorithm 

n instances of size rising to 920 variables and 368 constraints. The 

verage computation time ranged from 10 minutes to 4 hours, and 

he longest solution time taken was nearly six hours. Employing a 

lass of intersection cuts valid to BMILP under mild assumptions, 

ischetti, Ljubi ́c, Monaci & Sinnl, 2018 , Fischetti, Ljubi ́c, Monaci and 

innl (2016 proposed a branch-and-cut algorithm for BMILP prob- 

ems and developed a new family of cuts for BMILP problems. Fur- 

her, Fischetti, Ljubi ́c, Monaci and Sinnl (2017a) extended their al- 

orithm in Fischetti et al. (2018) by suggesting new types of in- 

ersection cuts and introduced the so-called hypercube intersec- 

ion cut, which allows for nonlinear terms to appear in both con- 

traints and objective functions. The authors tested their algorithm 

n instances with up to 80,0 0 0 variables and 50 0 0 constraints 

rom the literature. Other BMILP algorithms that use cutting plane 

echniques within a branch-and-bound framework can be found in 

emmati and Smith (2016) and Tahernejad, Ralphs and DeNegre 

2016) . Note that algorithms in these papers only solve small-sized 

nstances. 

Besides a branch-and-bound framework, a few other lines of 

esearch for BMILP were proposed based on reformulation, Ben- 

ers decomposition, and parametric programming. Zeng and An 

2014) proposed a novel scheme based on reformulation and 

ecomposition for BMILP problems with upper level constraints 

nly depending on upper level variables. Their approach was 

xtended by Yue, Gao, Zeng and You (2019) to a projection- 

ased variant, which allows upper level constraints to depend 

n lower-level variables. Saharidis and Ierapetritou (2009) pro- 

osed a Benders-decomposition-based algorithm, which is based 

n the idea of decomposing the initial problem into a relaxation 

f the original problem and a series of restriction problems. Based 

n multi-parametric programming theory, Avraamidou and Pis- 

ikopoulos (2019) and Faísca, Dua, Rustem, Saraiva and Pistikopou- 

os (2007) proposed algorithms to solve bilevel quadratic pro- 

ramming problems, where the objective functions of the upper- 

evel and lower-level problems are allowed to be quadratic. Note 

hat the above work only presented computational experiments on 

mall-sized instances. 

There are also several approaches to solving real-world appli- 

ations modeled as BMILP, e.g., Caramia and Mari (2016) for facil- 

ty location problems, Dempe et al. (2011) , Kalashnikov and Ríos- 

ercado (2006) , and Dempe et al. (2005) for natural gas regula- 

ion. Caramia and Mari (2016) proposed a decomposition based al- 

orithm that resembles the algorithm in Saharidis and Ierapetri- 

ou (2009) , but it is properly designed to cope with the bilevel 

tructure of the facility location problem and the integrality of a 

ubset of variables under the control of the leader. The authors 

ested their algorithm on a set of benchmark instances available 

n the literature with up to 150 facilities and 150 clients. Dempe 

t al. (2011) , Kalashnikov and Ríos-Mercado (2006) , and Dempe 

t al. (2005) linearized their BMILP problems and designed algo- 

ithms based on a penalty function approach. The real-world in- 

tances they solved have dimensions up to 10 0 0. Recently, Zare, 

orrero, Zeng and Prokopyev (2019) presented two strong-duality- 

ased reformulations of a class of BMILP problems with the key 

dea of exploiting the binary expansion of upper level integer vari- 

bles. They tested their approaches on three instance classes, i.e. 

ounded BMILP instances with less than 500 variables and con- 

traints, BMILP with interdiction constraints instances with less 

han 300 variables and 400 constraints, and bilevel facility location 
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nstances with up to 40 facilities and 240 products. They showed 

hat their approaches can lead to orders of magnitude reduction in 

omputation time. 

For BILP problems which are most relevant to our paper, an ear- 

ier study can be found in DeNegre and Ralphs (2009) which pro- 

osed a branch-and-cut algorithm using cutting plane techniques, 

ased on the previous branch-and-bound algorithm for BMILP in 

oore and Bard (1990) . They tested their algorithm on a set of in-

erdiction instances with knapsack constraints at the upper level 

ith up to 34 variables and 19 constraints. The computational re- 

ults showed that their approach makes improvement on Moore 

nd Bard (1990) with fewer nodes in their branch-and-bound tree. 

imilarly, in a branch-and-bound framework, Caramia and Mari 

2015) derived valid inequalities to eliminate bilevel infeasible so- 

utions for a given upper level solution. They reported solving BILP 

roblems with up to 25 variables and 25 constraints. Wang and 

u (2017) presented an excellent algorithm called watermelon al- 

orithm for BILP, which integrates branch-and-bound and cutting 

lane techniques. The watermelon algorithm is the first exact BILP 

lgorithm that does not rely on additional simplifying assump- 

ions. The authors tested their method on the same instances as 

n Xu and Wang (2014) with integrality restrictions and showed 

hat the watermelon algorithm outperforms previous branch-and- 

ound algorithms in DeNegre and Ralphs (2009) and Xu and Wang 

2014) , Moore and Bard (1990) . Besides branch-and-bound algo- 

ithms, Domínguez and Pistikopoulos (2010) introduced two multi- 

arametric algorithms for BILP and BMILP, and tested their algo- 

ithms on small-sized instances. 

. Model formulation and definitions 

We present the BILP problem as: 

ax 
x,y 

ζ = c T x + d T 1 y (1) 

 . t . A 1 x + B 1 y ≤ b 1 , (2) 

 ≤ x ≤ X, (3) 

 ∈ Z 
n 1 , (4) 

 ∈ argmax 
˜ y 

{
d T 2 ̃  y : A 2 x + B 2 ̃  y ≤ b 2 , 0 ≤ ˜ y ≤ Y, ˜ y ∈ Z 

n 2 
}
, (5) 

here A 1 ∈ Q 
m 1 ×n 1 , A 2 ∈ Z 

m 2 ×n 1 , B 1 ∈ Q 
m 1 ×n 2 , B 2 ∈ Z 

m 2 ×n 2 , b 1 ∈ 

 
m 1 , b 2 ∈ Z 

m 2 , c ∈ Q 
n 1 , d 1 ∈ Q 

n 2 , d 2 ∈ Q 
n 2 , X ∈ Q 

n 1 , and Y ∈ Q 
n 2 are

nite rational or integer parameters. 

Since rational parameters can be equivalently converted to in- 

egers by multiplication, without loss of generality, the lower-level 

arameters ( A 2 , B 2 , b 2 ) are assumed to be integers. As formulation 

1) –(5) indicates, if the lower-level problem has alternative optimal 

olutions, then the follower will select a ˆ y that maximizes the up- 

er level objective function, thus benefiting the leader. Thus the 

ormulation (1) –(5) is commonly known as the optimistic formu- 

ation of the problem. In contrast, under the pessimistic formu- 

ation, the follower will pick a ˆ y that either violates the upper 

evel constraint or otherwise makes the least contribution to the 

pper level objective function. More detailed discussions regarding 

he two formulations can be found in Dempe, Mordukhovich and 

emkoho (2014) , Lozano and Smith (2017) , Xu and Wang (2014) , 

nd Wiesemann, Tsoukalas, Kleniati and Rustem (2013) . 

In the following, we introduce several definitions to facilitate 

he description of our algorithm. We use a vector with a sub- 
663 
cript j to refer to the jth element of the vector. We define the set 
¯  = R ∪ { + ∞ } ∪ { −∞ } as the extended real number line including

ositive and negative infinity. For a given x ∈ Z 
n 1 , we denote L (x ) 

s the lower-level problem (LLP) : 

ax 
˜ y 

{
d T 2 ̃  y : A 2 x + B 2 ̃  y ≤ b 2 ; 0 ≤ ˜ y ≤ Y ; ˜ y ∈ Z 

n 2 
}
. 

For a given set of parameters ( l, u ∈ R̄ 
m 2 , w ∈ R̄ ) , we define a 

ode problem B( l, u, w ) by the following parametric BILP prob- 

em: 

ax 
x,y 

ζ = c T x + d T 1 y 

 . t . A 1 x + B 1 y ≤ b 1 , (6) 

l ≤ A 2 x ≤ u, (7) 

d T 2 y ≥ w, (8) 

0 ≤ x ≤ X, (9) 

x ∈ Z 
n 1 , (10) 

y ∈ argmax 
˜ y 

{
d T 2 ̃  y : A 2 x + B 2 ̃  y ≤ b 2 , 0 ≤ ˜ y ≤ Y, ˜ y ∈ Z 

n 2 
}
. (11) 

By definition, formulation (1) –(5) is equivalent to 

( −∞ , ∞ , −∞ ) , which will be used as the root node problem. We 

efine the relaxation problem R ( l, u, w ) by the following integer 

inear programming (ILP) problem, which is referred to as the high 

oint problem in Moore and Bard (1990) : 

ax 
x,y 

ζ = c T x + d T 1 y 

s . t . A 1 x + B 1 y ≤ b 1 , 

A 2 x + B 2 y ≤ b 2 , 

l ≤ A 2 x ≤ u, 

d T 2 y ≥ w, 

0 ≤ x ≤ X, 

0 ≤ y ≤ Y, 

x ∈ Z 
n 1 , y ∈ Z 

n 2 . 

For a given BILP B( l, u, w ) , a solution ( x, y ) is called bilevel

easible if it satisfies constraints (6) –(11) . A solution is called 

ilevel infeasible if it is not bilevel feasible. A solution ( x ∗, y ∗) is 
alled bilevel optimal if it is bilevel feasible and we have c T x ∗ + 

 
T 
1 
y ∗ ≥ c T x 0 + d T 

1 
y 0 for any other bilevel feasible solution ( x 0 , y 0 ) . 

 BILP problem is called optimal if a bilevel optimal solution ex- 

sts (unique or not). A BILP problem is called infeasible if no bilevel 

easible solution exists. In this paper, both B( l, u, w ) , its relax- 

tion R ( l, u, w ) and L (x ) are bounded for any l, u ∈ R̄ 
m 2 , w ∈ R̄ ,

nd x ∈ Z 
n 1 . Therefore, for a BILP problem defined in (1) –(5) , there

re only two possible outcomes: optimal or infeasible. 

. An enhanced branch-and-bound algorithm 

Our algorithm utilizes a branch-and-bound framework, which 

teratively solves the relaxation problem and removes its optimal 
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olution from the search space if the optimal solution of the re- 

axation problem is labeled bilevel infeasible. The novelty lies in 

n enhanced branching rule. In the following, we first introduce a 

enchmark branching rule and then propose the enhanced branch- 

ng rule. This is followed by a presentation of our algorithm. 

.1. A benchmark branching rule 

The idea of our algorithm starts by solving the relaxation prob- 

em of the root node problem. If the relaxation problem is infeasi- 

le, the BILP is also infeasible. If the relaxation problem is optimal 

ith an optimal solution ( x R , y R ) , we solve the LLP L ( x R ) . The fol-

owing Lemma 1 provides a necessary and sufficient condition for 

 x R , y R ) to be bilevel optimal. 

emma 1. Let ( x R , y R ) be an optimal solution to R ( ̂ l , ̂  u , ˆ w ) . Then

 x R , y R ) is optimal to B( ̂ l , ̂  u , ˆ w ) if and only if y R is optimal to L ( x R ) . 

roof. The “only if” direction is a direct result of the bilevel opti- 

ality of ( x R , y R ) . 

For the “if” direction, we have that if y R is optimal to L ( x R ) ,

hen ( x R , y R ) is a bilevel feasible solution to B( ̂ l , ̂  u , ˆ w ) , and thus it

rovides a lower bound of B( ̂ l , ̂  u , ˆ w ) . Meanwhile, ( x R , y R ) achieves 

n upper bound of B( ̂ l , ̂  u , ˆ w ) since it is optimal to R ( ̂ l , ̂  u , ˆ w ) .

ence, the “if” statement follows. �
However, it may be more common that y R is not optimal to 

 ( x R ) . Then ( x R , y R ) is a bilevel infeasible solution which should be

liminated from the search space. The following Lemma 2 , taking 

emmas 3 and 4 of Xu and Wang (2014) for reference, introduces 

 subspace containing ( x R , y R ) but no bilevel feasible solutions. 

emma 2. ( Xu & Wang, 2014 ). If ( x R , y R ) is optimal to R ( ̂ l , ̂  u , ˆ w ) but

ilevel infeasible. Suppose that y L is an optimal solution to L ( x R ) , then

he following subspace: 

 = 

{
( x, y ) : A 2 x + B 2 y 

L ≤ b 2 , d 
T 
2 y < d T 2 y 

L 
}

ontains ( x R , y R ) but no bilevel feasible solutions. 

roof. Since y L is an optimal solution to L ( x R ) but y R is not, we

ave y L ∈ Z 
n 2 , 0 ≤ y L ≤ Y , A 2 x 

R + B 2 y 
L ≤ b 2 and d 

T 
2 y 

R < d T 2 y 
L , that is

 x R , y R ) ∈ P . For any ( ̄x , ̄y ) ∈ P , we show that ȳ can’t be optimal to

 ( ̄x ) . Actually, we have A 2 ̄x + B 2 y 
L ≤ b 2 and d 

T 
2 ̄
y < d T 

2 
y L , namely, y L 

s a feasible solution to L ( ̄x ) and superior to ȳ . �

By Lemma 2 , we remove the subspace P from the search space, 

.e., the feasible region of R ( ̂ l , ̂  u , ˆ w ) , so as to eliminate the bilevel

nfeasible solution without eliminating any bilevel feasible solu- 

ion. The way the search space is updated could introduce addi- 

ional non-convexity for the remaining search space since it is in- 

ide the larger convex search space but outside the smaller convex 

ubspace P . To avoid introducing additional non-convexity, we par- 

ition the x - y space into ( m 2 + 2 ) pieces: P, P 1 , . . . , P m 2 +1 , where

 k , k = 1 , . . . , m 2 , are defined as: 

P k = { ( x, y ) : (A 2 x + B 2 y 
L 
)
i 

≤ ( b 2 ) i , ∀ i = 1 , . . . , k − 1 ;
(
A 2 x + B 2 y 

L 
)
k 

> ( b 2 ) k } , 
 m 2 +1 is defined as 

 m 2 +1 = { ( x, y ) : A 2 x + B 2 y 
L ≤ b 2 , d 

T 
2 y ≥ d T 2 y 

L } . 
Then we create the ( m 2 + 1 ) new node problems 

( l k , u k , w 
k ) , ∀ k = 1 , . . . , ( m 2 + 1 ) from the intersections between

he feasible region of parent node problem and the ( m 2 + 1 ) 

ieces: P 1 , . . . , P m 2 +1 , respectively. As a result, ( m 2 + 1 ) new 

ode problems are introduced with the following branching rule, 

resented by Xu and Wang (2014) . We take it as the benchmark 

ut restrict the parameters ( l, u, w ) of a node problem B( l, u, w ) 

o integers as we investigate pure integer cases in this paper. 
664 
 benchmark branching rule ( Xu & Wang, 2014 ): Let ( x R , y R ) be

n optimal solution to R ( ̂ l , ̂  u , ˆ w ) . Suppose y L is an optimal solution 

o L ( x R ) but y R is not. The following ( m 2 + 1 ) new node problems, 

enoted as B( l k , u k , w 
k ) , ∀ k = 1 , . . . , ( m 2 + 1 ) , can be created from

he parent node problem B( ̂ l , ̂  u , ˆ w ) : 

For k = 1 , . . . , m 2 , we have 

 
k 
j = 

{ (
b 2 − B 2 y 

L 
)
k 
+ 1 , if j = k, 

ˆ l j , otherwise ;

 
k 
j = 

{ 

min 

{ (
b 2 − B 2 y 

L 
)
j 
, ˆ u j 

} 

, if j = 1 , . . . , k − 1 , 

ˆ u j , otherwise ;

 
k = ˆ w . 

For k = m 2 + 1 , we have 

 
m 2 +1 = 

ˆ l , 

 
m 2 +1 = min 

{
b 2 − B 2 y 

L , ˆ u 
}
, 

 
m 2 +1 = d T 2 y 

L . 

Now we prove that the new node problems are strictly 

trengthened by proving that: (a) l k 
k 

= ( b 2 − B 2 y 
L ) k + 1 > ̂

 l k ; (b) 

 
m 2 +1 = d T 

2 
y L > ˆ w . 

For (a): we have that ( b 2 − B 2 y 
L ) k + 1 > ( b 2 − B 2 y 

L ) k ≥
 A 2 x 

R ) k ≥ ˆ l k . The first inequality is straightforward; the sec- 

nd one follows that y L is feasible to L ( x R ) ; and the last one

ollows that x R is feasible to R ( ̂ l , ̂  u , ˆ w ) . 

For (b): we have that d T 2 y 
L > d T 2 y 

R ≥ ˆ w . The former inequality 

ollows from the definition of y L and the latter follows that y R is 

easible to R ( ̂ l , ̂  u , ˆ w ) . 

The benchmark branching rule partitions the parent node prob- 

em into ( m 2 + 1 ) new node problems, and thus depends on the 

umber of lower-level constraints. If the lower-level problem has 

 large number of complex constraints, the algorithm may become 

omputationally expensive to execute as a large number of new 

ode problems need to be created each time. Next, we introduce 

he enhanced branching rule. 

.2. An enhanced branching rule 

To save the computation time, We attempt to further con- 

ract the remaining search space, after removing the subspace P
rom the search space and creating ( m 2 + 1 ) new node problems 

rom the parent node problem B( ̂ l , ̂  u , ˆ w ) . We propose an enhanced 

ranching rule which can efficiently eliminate a certain number of 

ew node problems and strengthen the remaining node problems 

t each iteration. 

First, we introduce a property of the lower-level problem as in 

he following Lemma 3 . 

emma 3. Let y L be an optimal solution to L ( x R ) for some x R ∈ Z 
n 1 .

f ∃ i ∈ { 1 , . . . , m 2 } such that ( A 2 x R + B 2 y 
L ) i < ( b 2 ) i , then y 

L is the op- 

imal solution to L (x ) for any x satisfying A 2 x 
R + B 2 y 

L ≤ A 2 x + B 2 y 
L ≤

 2 . 

roof. If there exists some x 0 satisfying A 2 x 
R + B 2 y 

L ≤ A 2 x 
0 + 

 2 y 
L ≤ b 2 such that y 

L is not optimal to L ( x 0 ) , then there ex- 

sts some y 0 ( 0 ≤ y 0 ≤ Y, y 0 ∈ Z 
n 2 ) such that A 2 x 

0 + B 2 y 
0 ≤ b 2 and 

 
T 
2 
y 0 > d T 

2 
y L . Then we have A 2 x 

R + B 2 y 
0 ≤ b 2 , which implies that y 0 

s also feasible for L ( x R ) and d T 2 y 
0 > d T 2 y 

L . This violates the opti-

ality of y L for L ( x R ) . �



S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679 

t

S

c  

x

(

f

S

b

p

i

L  

u

P

t  

d

F
g  

A

t

L  

Z

m

i  

o  

w

t

P

A

f

t  

b

Q
b

f

[

s

a

f

(

a

t

m

{
r

b  

1

f

n

b

(

(

u

(

r

t

(

o

r

 

(

B

l

u

w

w

∀

u

w

 

t

l

u

w

l

Lemma 3 motivates us to search for a bilevel feasible solution 

o BILP within the set 

 0 

(
x R , y L 

)
= 

{
x ∈ Z 

n 1 | A 2 x ∈ 

[
A 2 x 

R , b 2 − B 2 y 
L 
]}

. 

Furthermore, if y L is a unique optimal solution to L ( x R ) , we 

an prove that y L is a unique optimal solution to L ( ̂  x ) for any

ˆ  ∈ S 0 ( x R , y L ) . Then we select those ˆ x from S 0 ( x R , y L ) such that 
 ̂ x , y L ) satisfies the upper level constraints to ensure the bilevel 

easibility, i.e., ˆ x ∈ S 1 ( x R , y L ) , where 

 1 

(
x R , y L 

)
= 

{
x | A 1 x + B 1 y 

L ≤ b 1 , 0 ≤ x ≤ X, x ∈ S 0 
(
x R , y L 

)}
. 

Finally, we choose the one from S 1 ( x R , y L ) that achieves the 
est upper level objective value as the optimal solution to BILP 

roblem with A 2 x ∈ [ A 2 x 
R , b 2 − B 2 y 

L ] . We summarize the above 

dea in the following Lemma 4 and Lemma 5 . 

emma 4. If y L is a unique optimal solution to L ( x R ) , then y L is a

nique optimal solution to L ( ̂  x ) for any ˆ x ∈ S 0 ( x R , y L ) . 

roof. To prove Lemma 4 , we only need to prove that 

he feasible region of L ( x R ) contains that of L ( ̂  x ) . We

enote F( x R ) = { y ∈ [ 0 , Y ] | A 2 x R + B 2 y ≤ b 2 , y ∈ Z 
n 2 } and 

( ̂  x ) = { y ∈ [ 0 , Y ] | A 2 ̂  x + B 2 y ≤ b 2 , y ∈ Z 
n 2 } as the feasible re- 

ion of L ( x R ) and L ( ̂  x ) , respectively. Since ˆ x ∈ S 0 ( x R , y L ) , we have

 2 ̂  x ≥ A 2 x 
R . For any ˆ y ∈ F( ̂  x ) , we have B 2 ̂  y ≤ b 2 − A 2 ̂  x ≤ b 2 − A 2 x 

R , 

hat is ˆ y ∈ F( x R ) and F( ̂  x ) ⊆ F( x R ) . �

emma 5. Let y L be a unique optimal solution to L ( x R ) for some x R ∈
 
n 1 . If the following problem, denoted as Q ( x R , y L ) : 

ax 
x 

c T x + d T 1 y 
L 

s . t . A 1 x + B 1 y 
L ≤ b 1 , 

0 ≤ x ≤ X, 

A 2 x ≥ A 2 x 
R , 

A 2 x ≤ b 2 − B 2 y 
L , 

x ∈ Z 
n 1 . 

s optimal, we denote the optimal solution as x Q , then ( x Q , y L ) is an

ptimal solution to BILP (1) - (5) with A 2 x ∈ [ A 2 x 
R , b 2 − B 2 y 

L ] . Other-

ise, if Q ( x R , y L ) is infeasible, then there is no bilevel feasible solution 

o BILP (1) - (5) with A 2 x ∈ [ A 2 x 
R , b 2 − B 2 y 

L ] . 

roof. Based on Lemmas 3 and 4 , since x Q satisfies A 2 x 
R + B 2 y 

L ≤
 2 x 

Q + B 2 y 
L ≤ b 2 , y 

L is a unique optimal solution to L ( x Q ) . There- 

ore, ( x Q , y L ) is bilevel feasible. Since x Q is the optimal solution 

o Q ( x R , y L ) , ( x Q , y L ) is the best bilevel feasible solution that can

e found for formulation (1) –(5) with A 2 x ∈ [ A 2 x 
R , b 2 − B 2 y 

L ] . If 

 ( x R , y L ) is infeasible, for any x satisfies A 2 x 
R + B 2 y 

L ≤ A 2 x + B 2 y 
L ≤

 2 , ( x, y 
L ) violates at least one constraint in the upper level. There- 

ore, there is no bilevel feasible solution to (1) –(5) with A 2 x ∈ 

 A 2 x 
R , b 2 − B 2 y 

L ] . �

Based on Lemma 5 above, there is no better bilevel fea- 

ible solution than ( x Q , y L ) or no bilevel feasible solution at 

ll within the point set: { x ∈ Z 
n 1 | A 2 x ∈ [ A 2 x 

R , b 2 − B 2 y 
L ] } . There- 

ore, after removing the subspace P from the search space 

based on the benchmark branching rule), we solve Q ( x R , y L ) 

nd record the solution (if there is any), and then we carve 

he point set: { x ∈ Z 
n 1 | A 2 x ∈ [ A 2 x 

R , b 2 − B 2 y 
L ] } out from the re- 

aining search space. Specifically, we find those subscripts p ∈ 

 1 , . . . , m 2 } such that ( A 2 x R + B 2 y 
L ) p < ( b 2 ) p , and cut off the cor- 

esponding interval ( A 2 x ) p ∈ [ ( A 2 x 
R ) p , ( b 2 − B 2 y 

L ) p ] from the feasi- 

le region of the ( m 2 + 1 ) new node problems: B( l k , u k , w 
k ) , ∀ k =

 , . . . , ( m 2 + 1 ) , described in the benchmark branching rule. A 

ew new node problems will be eliminated in this process. The 

umber of the eliminated new node problems is determined 

y the relationship between [ ( A 2 x 
R ) p , ( b 2 − B 2 y 

L ) p ] and [ ̂ l p , ̂  u p ] 

contain or be contained). There are totally 4 relationships: (I). 
665 
 A 2 x 
R ) p = ̂

 l p ≤ ˆ u p ≤ ( b 2 − B 2 y 
L ) p ; (II). ( A 2 x 

R ) p = ̂
 l p ≤ ( b 2 − B 2 y 

L ) p ≤
ˆ  p − 1 ; (III). ˆ l p + 1 ≤ ( A 2 x 

R ) p ≤ ˆ u p ≤ ( b 2 − B 2 y 
L ) p ; (IV). ˆ l p + 1 ≤

 A 2 x 
R ) p ≤ ( b 2 − B 2 y 

L ) p ≤ ˆ u p − 1 . As we will see next, the first three 

elationships can reduce the number of new node problems while 

he last one will double the number of new node problems. 

We analyze the four relationships in detail as: 

(I) In relationship I, if there exists a p such that ( A 2 x 
R ) p = ̂

 l p ≤
ˆ u p ≤ ( b 2 − B 2 y 

L ) p , all the ( m 2 + 1 ) new node problems can 

be eliminated, i.e., the corresponding parent node problem 

can be totally cut off. Based on Lemma 5 , the polyhedron 

A 2 x ∈ [ A 2 x 
R , b 2 − B 2 y 

L ] can be carved out from the search 

space. That is, the interval [ ( A 2 x 
R ) p , ( b 2 − B 2 y 

L ) p ] can be cut 

off from [ ̂ l p , ̂  u p ] , which results in an empty set for ( A 2 x ) p . 

Subsequently, R ( ̂ l , ̂  u , ˆ w ) becomes infeasible. 

Consequently, if there exists a p such that ( A 2 x 
R ) p = ̂

 l p ≤ ˆ u p ≤
 b 2 − B 2 y 

L ) p , then the parent node B( ̂ l , ̂  u , ˆ w ) can be totally cut 

ff after Q ( x R , y L ) is solved and the solution (if there is any) is 

ecorded. 

(II) In relationship II, if there exists a p such that 

( A 2 x 
R ) p = ̂

 l p ≤ ( b 2 − B 2 y 
L ) p ≤ ˆ u p − 1 , then the feasible region 

of B( l k , u k , w 
k ) , ∀ k = p + 1 , . . . , m 2 + 1 , gets empty since the

corresponding bound ˆ l p ≤ ( A 2 x ) p ≤ min { ( b 2 − B 2 y 
L ) p , ̂  u p } is 

totally contained in [ ( A 2 x 
R ) p , ( b 2 − B 2 y 

L ) p ] , while the first p

node problems are strictly strengthened. 

Specially, if there exists a p such that ( A 2 x 
R ) p = ̂

 l p ≤
 b 2 − B 2 y 

L ) p ≤ ˆ u p − 1 , then the first p new node problems, 

( l k , u k , w 
k ) , ∀ k = 1 , . . . , p, can be strengthened as: 

 
k 
j = 

{(
b 2 − B 2 y 

L 
)
j 
+ 1 if j = k, p, 

ˆ l j otherwise ;

 
k 
j = 

{ 

min 

{ (
b 2 − B 2 y 

L 
)
j 
, ˆ u j 

} 

if j = 1 , . . . , k − 1 , 

ˆ u j otherwise ;

 
k = ˆ w , 

hile the other ( m 2 + 1 − p ) new node problems, B( l k , u k , w 
k ) , 

 k = p + 1 , . . . , m 2 + 1 , can be eliminated. 

(III) In relationship III, if there exists a p such that 
ˆ l p + 1 ≤ ( A 2 x 

R ) p ≤ ˆ u p ≤ ( b 2 − B 2 y 
L ) p , the feasible region 

of B( l p , u p , w 
p ) becomes empty since the corresponding 

bound ( b 2 − B 2 y 
L ) p + 1 ≤ ( A 2 x ) p ≤ ˆ u p is totally contained in 

[ ( A 2 x 
R ) p , ( b 2 − B 2 y 

L ) p ] , while the other node problems are 

strictly strengthened. 

Consequently, if there exists a p such that ˆ l p + 1 ≤ ( A 2 x 
R ) p ≤

ˆ  p ≤ ( b 2 − B 2 y 
L ) p , then the node B( l p , u p , w 

p ) can be eliminated, 

hile the other m 2 new node problems can be strengthened as: 

For node B( l k , u k , w 
k ) , ∀ k = 1 , . . . , p − 1 , p + 1 , . . . , m 2 , we have

hat 

 
k 
j = 

{ (
b 2 − B 2 y 

L 
)
k 
+ 1 if j = k, 

ˆ l j otherwise ;

 
k 
j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

min 

{ (
b 2 − B 2 y 

L 
)
j 
, ˆ u j 

} 

if j = 1 , . . . , k − 1 , j � = p, (
A 2 x 

R 
)
p 
− 1 if j = p, 

ˆ u j otherwise ;

 
k = ˆ w . 

For node B( l m 2 +1 , u m 2 +1 , w 
m 2 +1 ) , we have that 

 
m 2 +1 = 

ˆ l ;
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m 2 +1 
j 

= 

⎧ ⎨ 

⎩ 

(
A 2 x 

R 
)
p 
− 1 if j = p, 

min 

{ (
b 2 − B 2 y 

L 
)
j 
, ˆ u j 

} 

otherwise ;

 
m 2 +1 = d T 2 y 

L . 

(IV) In relationship IV, if there exists a p such that ˆ l p + 1 ≤
( A 2 x 

R ) p ≤ ( b 2 − B 2 y 
L ) p ≤ ˆ u p − 1 , the number of new node 

problems will be doubled. Actually, cutting off each interval 

[ ( A 2 x 
R ) p , ( b 2 − B 2 y 

L ) p ] from [ ̂ l p , ̂  u p ] results in two disjoint 

intervals [ ̂ l p , ( A 2 x 
R ) p − 1 ] and [ ( b 2 − B 2 y 

L ) p + 1 , ̂  u p ] , which 

corresponds to two new node problems. The algorithm will 

be drastically slowed down. Therefore, in relationship IV, we 

will not cut off the interval at all. 

From the above, we integrate the effects of relationship I, II and 

II when cutting off { x ∈ Z 
n 1 | A 2 x ∈ [ A 2 x 

R , b 2 − B 2 y 
L ] } from the re- 

aining search space, and summarize it with the following en- 

anced branching rule. 

An enhanced branching rule: Let ( x R , y R ) be an optimal solution 

o R ( ̂ l , ̂  u , ˆ w ) . Suppose y L is an optimal solution to L ( x R ) but y R is not.

(1) If there exists a p s.t. ( A 2 x 
R ) p = ̂

 l p ≤ ˆ u p ≤ ( b 2 − B 2 y 
L ) p , the 

node problem B( ̂ l , ̂  u , ˆ w ) can be totally eliminated. 

(2) Otherwise, the following ( q 1 − r ) new node problems, denoted 

as B( l k , u k , w 
k ) , k = 1 , . . . , q 1 , k � = s t , t = 1 , . . . , r, can be cre-

ated from the parent node problem B( ̂ l , ̂  u , ˆ w ) : 

l k j = 

{ (
b 2 − B 2 y 

L 
)
j 
+ 1 if j = k, q 1 , . . . , q H , 

ˆ l j otherwise ;

 
k 
j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

min 

{ (
b 2 − B 2 y 

L 
)
j 
, ˆ u j 

} 

if j = 1 , . . . , k − 1 , j / ∈ { s 1 , . . . , s T } ,(
A 2 x 

R 
)
j 
− 1 if j = s 1 , . . . , s T , 

ˆ u j otherwise ;

w 
k = 

{
d T 2 y 

L if k = m 2 + 1 , 
ˆ w otherwise , 

here q 1 < q 2 < . . . < q H are the subscripts satisfying relationship II 

if relationship II is never satisfied, denote q 1 = m 2 + 1 ), and s 1 < 

 2 < . . . < s T are the subscripts satisfying relationship III, and r is the 

umber of { s 1 , s 2 , . . . , s T } such that s t ≤ q 1 , t = 1 , . . . , T (if such sub-

cript does not exist, denote r = 0 ). 

In the following, we quantify the number of new node prob- 

ems that the enhanced branching can eliminate in Lemma 6 and 

rove that the ( q 1 − r ) new node problems created by the en- 

anced branching rule are strictly strengthened in Lemma 7 . 

emma 6. In each iteration of the branch-and-bound framework, the 

umber of new node problems that are eliminated by the enhanced 

ranching is m 2 + 1 or m 2 + 1 − q 1 + r, where q 1 is the minimum 

ubscript satisfying relationship II (if relationship II does not exist, de- 

ote q 1 = m 2 + 1 ), and r is the number of subscripts that are smaller

han q 1 and satisfy relationship III. 

roof. If there exists a subscript p such that ( A 2 x 
R ) p = ̂

 l p ≤ ˆ u p ≤
 b 2 − B 2 y 

L ) p (i.e., relationship I), cutting off [ ( A 2 x 
R ) p , ( b 2 − B 2 y 

L ) p ] 

rom [ ̂ l p , ̂  u p ] results in an empty feasible region for the parent node 

roblem. The corresponding parent node problem can be totally 

ut off, i.e., all ( m 2 + 1 ) new node problems can be eliminated. 

Otherwise, we find the smallest subscript satisfying rela- 

ionship II and denote it as q 1 , such that ( A 2 x 
R ) q 1 = ̂

 l q 1 ≤
 b 2 − B 2 y 

L ) q 1 ≤ ˆ u q 1 − 1 . Since cutting off [ ( A 2 x 
R ) q 1 , ( b 2 − B 2 y 

L ) q 1 ] 

rom [ ̂ l q , ̂  u q ] results in an empty feasible region of B( l k , u k , w 
k ) , 
1 1 

666 
 k = q 1 + 1 , . . . , m 2 + 1 , the last m 2 + 1 − q 1 new node prob-

ems are eliminated. Further, we find all the subscripts s 1 < 

 2 < . . . < s r that are smaller than q 1 and satisfy relationship III, 

.e., ˆ l s t + 1 ≤ ( A 2 x 
R ) s t ≤ ˆ u s t ≤ ( b 2 − B 2 y 

L ) s t , t = 1 , . . . , r. Since cut- 

ing off [ ( A 2 x 
R ) s t , ( b 2 − B 2 y 

L ) s t ] from [ ̂ l s t , ̂  u s t ] results in an empty 

easible region of B( l k , u k , w 
k ) , ∀ k = s 1 , s 2 , . . . , s r , the corre-

ponding r new node problems are eliminated. All in all, there are 

 2 + 1 − q 1 + r new node problems eliminated totally by the en- 

anced branching. �

emma 7. The ( q 1 − r ) new node problems created by the enhanced 

ranching rule are further strictly strengthened compared with those 

n the benchmark branching rule. 

roof. We prove the lemma by showing that: (a) ( b 2 − B 2 y 
L ) j + 

 ≥ ˆ l j ; (b) ( A 2 x 
R ) p − 1 < min { ( b 2 − B 2 y 

L ) p , ̂  u p } . For (a), we 

ave that ( b 2 − B 2 y 
L ) j + 1 > ( b 2 − B 2 y 

L ) j ≥ ( A 2 x ) j ≥ ˆ l j . For 

b), we have that ( A 2 x 
R ) p − 1 < ( A 2 x 

R ) p ≤ ( b 2 − B 2 y 
L ) p and 

 A 2 x 
R ) p − 1 < ( A 2 x 

R ) p ≤ ˆ u p . �

Our enhanced branching rule will degenerate to the bench- 

ark branching rule for the bilevel mix-integer linear program- 

ing which contains continuous lower-level problem, since the in- 

erval A 2 x ∈ [ A 2 x 
R , b 2 − B 2 y 

L ] is empty for such instances. 

We should notice that our enhanced branching rule is proposed 

ased on the assumption in Lemma 5 that the optimal solution to 

ower-level problem is unique. Otherwise, if there is any other op- 

imal solution ȳ � = y L , we cannot draw the same conclusion, and 

he enhanced branching rule in this situation may discard some 

nderlying bilevel feasible solutions, which may be superior to 

 x Q , y L ) such that the solution we get may not be bilevel optimal 

ut bilevel feasible. Next, we discuss uniqueness of the optimal so- 

ution y L to the lower-level problem L ( x R ) . 

Recall that L ( x R ) is formulated as follows: 

ax 
˜ y 

d T 2 ̃  y , 

s . t . B 2 ̃  y ≤ b 2 − A 2 x 
R , 

0 ≤ ˜ y ≤ Y, 

˜ y ∈ Z 
n 2 . 

For similarity of formulation, we omit 0 ≤ ˜ y ≤ Y by blending it 

n with B 2 ̃  y ≤ b 2 − A 2 x 
R . First, we construct a linear programming 

roblem denoted as T ( x R , y L ) as follows: 

ax 
˜ y 

0 , 

s.t. B 2 ̃  y ≤ b 2 − A 2 x 
R , 

d T 2 ̃  y = d T 2 y 
L . 

Note that any optimal solution to L ( x R ) is also optimal to 

 ( x R , y L ) . We denote ( B 2 ) i as the i th row of B 2 and define 

 = 

{
i | ( B 2 ) i y L = 

(
b 2 − A 2 x 

R 
)
i 

}
. 

We denote ( B 2 ) J as the matrice whose rows are ( B 2 ) i , i ∈ J. 

Based on Theorem 2 in Mangasarian (1979) , if and only if there 

xists no y satisfying 

 
T 
2 y = 0 , ( B 2 ) J y ≤ 0 , y � = 0 , 

 
L is a unique optimal solution to T ( x R , y L ) , and hence y L is a
nique optimal solution to L ( x R ) . We should notice that this is a
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ufficient but not necessary condition for y L to be a unique opti- 

al solution to L ( x R ) . This condition is equivalent to the following

rogram denoted as U( x R , y L ) : 

ax 
y 

y 2 , 

s . t . d T 2 y = 0 , 

( B 2 ) J y ≤ 0 , 

J = 

{
i | ( B 2 ) i y L = 

(
b 2 − A 2 x 

R 
)
i 

}
, 

as an optimal solution value of zero. 

In particular, we propose an optimality checking mechanism for 

ILP as follows. If U( x R , y L ) has an optimal solution value of zero 

n each step, the output result of our algorithm is guaranteed op- 

imal; otherwise, there is no global optimality guarantee for BILP. 

In our computational experiments ( Section 6 ), we test the so- 

ution quality of our algorithm with the enhanced branching rule, 

.e., how big the gap is between our solution and the optimal so- 

ution, in solving randomly generated BILP instances without the 

niqueness of lower-level problem’s optimal solution. 
667 
.3. An enhanced branch-and-bound algorithm 

We are now ready to present our branch-and-bound algorithm 

mploying the enhanced branching rule, which takes the param- 

ter set ( A 1 , A 2 , B 1 , B 2 , b 1 , b 2 , c, d 1 , d 2 , X, Y ) as input and outputs 

 promising solution ( x ∗, y ∗, ζ ∗) to the BILP (1) - (5) . The notation
f ( x ∗ = ∅ , y ∗ = ∅ , ζ ∗ = −∞ ) is used as the output for infeasible in- 

tance. We summarize the steps of the algorithm below, where pa- 

ameter z j is used to record the objective value of the relaxation of 

ode j for bounding purpose, OPT is set as an indicator in the algo- 

ithm that indicates the potential exactness of the output. That is, 

f OPT remains to 1 when the algorithm terminates, the output is 

uaranteed optimal based on the above optimality checking mech- 

nism. In addition, parameter N is used to specify the number of 

ctive nodes in the branch-and-bound tree. 

( x ∗, y ∗, ζ ∗) = Algorithm ( A 1 , A 2 , B 1 , B 2 , b 1 , b 2 , c, d 1 , d 2 , X, Y ) . 

Step 0 (Initialization): Create the root node B( l 1 , u 1 , w 
1 ) 

ith l 1 = −∞ , u 1 = ∞ , w 
1 = −∞ . Initialize x ∗ = ∅ , y ∗ = ∅ , ζ ∗ =

∞ , N = 1 , OPT = 1 , and z 1 = ∞ . Go to Step 1. 

Step 1 (Node management): For all k ∈ { 1 , . . . , N } such that 
 
k ≤ ζ ∗ or l k � u k , remove node k . Update N as the number of re- 

aining nodes. 
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Step 2 (Relaxation): Solve R ( ̂ l , ̂  u , ˆ w ) . 

Step 3 (Lower level): Solve L ( x R ) 

Let y L denote an optimal solution to L ( x R ) . 
668 
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Step 4 ( [ A 2 x 
R , b 2 − B 2 y 

L ] ) 

Step 5 (An enhanced branching rule): Create ( q 1 − r ) new 

ode problems, increase N by ( q 1 − r ) , and go to Step 1. For 

 = 1 , . . . , q 1 , k � = s t , t = 1 , . . . , r, node ( N + k ) is characterized by

 l N+ k , u N+ k , w 
N+ k , z N+ k ) , which is defined as 

 
N+ k 
j 

= 

{ (
b 2 − B 2 y 

L 
)
j 
+ 1 if j = k, q 1 , . . . , q H , 

ˆ l j otherwise ;

 
N+ k 
j 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

min 

{ (
b 2 − B 2 y 

L 
)
j 
, ˆ u j 

} 

if j = 1 , . . . , k − 1 , j / ∈ { s 1 , . . . , s T } ,(
A 2 x 

R 
)
j 
− 1 if j = s 1 , . . . , s T , 

ˆ u j otherwise ;

 
N+ k = 

{
d T 2 y 

L if k = m 2 + 1 , 

ˆ w otherwise ;

 
N+ k = c T x R + d T 1 y 

R . 

Next, we establish the finite termination and the correctness 

f our algorithm. Since we assume the variables to be discrete 

nd bounded, the finite termination of our enhanced branch-and- 

ound algorithm is naturally guaranteed. 

heorem 1. The output of our enhanced branch-and-bound algo- 

ithm is correct. 

roof. We show the correctness of the algorithm step by step. 

Steps 1(a), 1(b), 1(c), 1(d), 1(e), 2(a), 2(b), 2(c), 3(a), and 3(c) 

re standard procedures in a branch-and-bound algorithm. 

Step 3(b) determines that ( x Q , y L ) is a bilevel optimal solution 

o B( ̂ l , ̂  u , ˆ w ) because it is an optimal solution to R ( ̂ l , ̂  u , ˆ w ) and y L 

s an optimal solution to L ( x R ) . 
669 
Step 4(a) determines that the feasible region of the current 

ode contains no better bilevel feasible solutions, based on the dis- 

ussion of relationship I in Section 4 . 

Step 4(b) calculates the number of the remaining new node 

roblems after carving out a set of A 2 x ∈ [ A 2 x 
R , b 2 − B 2 y 

L ] of the 

easible region of the current node in Step 5. 

Step 5 carves out a set (obtained from Step 4) of A 2 x ∈ 

 A 2 x 
R , b 2 − B 2 y 

L ] out from the current node and create ( q 1 − r ) 

ew branches based on the enhanced branching rule presented in 

ection 4 . �

. Computational results 

In this section, we demonstrate the efficiency of our algorithm 

n solving BILP problem instances. We implement it in Matlab us- 

ng CPLEX 12.9 as the ILP solver and run it on a large number 

f general BILP instances. All computational experiments are con- 

ucted on a desktop computer with 2.29 GHz CPU and 8 GB of 

AM. Computing times reported in the following are in wall-clock 

econds and the time limit for each run is set to be 3600 wall- 

lock seconds. 

.1. Testbed 

We consider three sets of general BILP instances with no special 

tructure. These instances, tested in previous studies, are termed 

ANGXU, DENEGRE and MIPLIB, respectively, in the literature. We 

lso consider one set of randomly generated BILP instances to bet- 

er illustrate the superior performance of our algorithm. We term 

his set of instances, WANGXU-LARGE, in our computational study. 

• Instances of class WANGXU have been proposed in Wang 

and Xu (2017) . They are based on the BMILP instances from 
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Fig. 1. Speed-ups achieved by the enhanced branching for three instance sets. 
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Xu and Wang (2014) requiring all variables to be integers. 

For these instances, one has n 1 = n 2 ∈ { 10 , 60 , 110 , . . . , 460 } and 
m 1 = m 2 = 0 . 4 n 1 . Elements of the upper- (lower-) level matri- 

ces are real numbers (integers) uniformly distributed within a 

certain range: A 1 , B 1 , A 2 and B 2 are within [ 0 , 10 ] ; c, d 1 and d 2 
are within [ −50 , 50 ] ; b 1 is within [ 30 , 130 ] ; and b 2 is within 

[ 10 , 110 ] . The bound on variables x and y is set to be [ 0 , 10 ] .

For each ( n 1 , m 1 ) pair, 10 instances are generated. The class 

WANGXU contains 100 instances totally. Among all the algo- 

rithms tested on WANGXU, the algorithm “WaterM-II” proposed 

by Wang and Xu (2017) has the best performance, as shown in 

Wang and Xu (2017) . 
• Since our enhanced branching idea is proposed to slow down 

the creation of new node problems by the benchmark branch- 

ing rule, we expect that the enhanced branching rule can 

highlight its advantage when solving BILP instances with a 

medium- to large-sized lower-level problem. We create a new 

class WANGXU-LARGE of randomly generate BILP instances 

with a relatively large-sized lower-level problem but a small- 

sized upper-level problem by following the same procedure 

used for class WANGXU. For this new class, we have n 1 = m 1 ∈ 

{ 5 , 6 , . . . , 10 } , n 2 ∈ { 50 0 , 60 0 , . . . , 10 0 0 } and m 2 = 0 . 4 n 2 . We set

the bound of the decision variables to be [ −10 , 10 ] . We gener- 

ate 10 instances for each ( n 1 , n 2 ) pair. 
• Instances of class DENEGRE have been proposed in DeNegre 

(2011) . For these instances, one has n 1 ∈ { 5 , 10 , 15 } , while 

the lower-level variable dimension n 2 is such that n 1 + n 2 = 

15 or 20 . There are m 2 = 20 lower-level constraints and no con- 

straints in the upper-level problem. All coefficients are inte- 

gers in the range [ −50 , 50 ] . The class DENEGRE contains 50 in- 

stances totally. Among all the algorithms tested on DENEGRE, 

the algorithm “MIX ++ ” proposed by Fischetti et al. (2017a) has 

the best performance, as shown in Fischetti et al. (2017a) . 
• Instances of class MIPLIB have been introduced in Fischetti et 

al. (2016) ) and are available at Fischetti, Ljubi ́c, Monaci and 

Sinnl (2017b) . They are based on instances of MILPLIB 3.0 

( Bixby, Ceria, McZeal & Savelsbergh, 1998 ) containing only bi- 

nary variables. These instances have been transformed into 

bilevel problems by considering the first Y% (rounded up) vari- 

ables as lower-level variables, with Y ∈ { 10 , 50 , 90 } and the re- 
maining ones as upper-level variables. The objective function 

is used as the upper-level objective c T x + d T 1 y and the lower- 
670 
level objective is set to be d T y = −d T 
1 
y . All the constraints of

these instances are defined to be lower-level constraints. The 

class MIPLIB contains 57 instances with up to about 80,0 0 0 

relaxation-problem variables and 50 0 0 lower-level constraints, 

making them much larger (and often also much more difficult 

to solve) than instances of the other classes. Among all the al- 

gorithms tested on MIPLIB, the algorithms “SEP2” proposed by 

Fischetti et al. (2016) ) and “MIX ++ ” proposed by Fischetti et al. 

(2017a) have the best performance, as shown in Fischetti et al. 

(2017a) . 

.2. Computational analysis of the enhanced branching idea 

In this subsection, we computationally evaluate the effect of our 

nhanced branching idea on the benchmark branching rule, pro- 

osed by Xu and Wang (2014) . We denote the algorithm employing 

he benchmark branching rule and that employing the enhanced 

ranching rule as “XW” and “Alg-E”, respectively. We compare XW 

ith Alg-E on three instance sets to directly test the performance 

f our enhanced branching idea. 

We illustrate the importance of the enhanced branching idea 

hrough the cumulative speedup chart of Fig. 1 . The chart shows 

he speedup values over the benchmark branching rule (i.e., XW) 

n four instance sets described in Section 5.1 . The reported 

peedup ratio is calculated as ( t (XW) + t s )/( t (Alg-E) + t s ), where

 (XW) and t (Alg-E) denote the computing time (in seconds) of al- 

orithms XW and Alg-E, respectively. The time shift t s is set to 

 second to reduce the importance of instances that are easy in 

he comparison. For a given instance set, each point ( x, y ) in this 

hart indicates that y % of instances in the corresponding class have 

 speedup ratio of at least x . Notice that the values on x -axis are

iven in log-scale. We observe that different degree of speed-up is 

chieved for the four instance sets. The most significant speedup 

s achieved for MIPLIB and WANGXU-LARGE, where the former is 

he most challenging set of benchmark instances in our study. Note 

hat both sets contain BILP instances with a relatively complex 

ower-level problem. For about 35% of instances in MIPLIB, resp., 

6% of instances in WANGXU-LARGE, a speedup of at least one or- 

er of magnitude is achieved; for about 25% of instances in MIPLIB, 

esp., 11% of instances in WANGXU-LARGE, the actual speedup is of 

wo orders of magnitude or even higher, thanks to the use of the 

nhanced branching idea. For the instance set DENEGRE, a speedup 
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Fig. 2. Solution quality of Alg-E and XW for MIPLIB and WANGXU-LARGE. 
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Table 1 

Results for instance set WANGXU. 

XW WaterM-I WaterM-II Alg-E 

n1-n2 Time Time Time Time S-Q 

10–10 1 0 1 0 98.84% 

60–60 11 2 10 2 91.99% 

110–110 24 10 17 6 97.23% 

160–160 31 13 20 14 95.75% 

210–210 126 40 21 26 94.41% 

260–260 185 57 31 66 94.02% 

310–310 314 117 37 130 96.70% 

360–360 147 110 44 46 100.00% 

410–410 308 290 79 155 99.27% 

460–460 395 268 95 159 99.30% 

Average 154 91 36 60 96.75% 
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f at least one order of magnitude is achieved for nearly 20% in- 

tances. For the instance set WANGXU, a slight speedup can be 

chieved since all the instances can be solved within several min- 

tes. In few cases, a small slowdown is observed-this usually hap- 

ens for instances that can be solved within a few seconds, in 

hich case turning on the enhanced branching idea causes an un- 

ecessary overhead. 

To further analyze the effect of the enhanced branching, we 

ext illustrate the solution quality of Alg-E and XW on three in- 

tance sets. The percentage value of solution quality is calculated 

s: 

1 − ζ ∗ − ζ S 

| ζ ∗| + 10 −10 

)
× 100% , 

here ζ S is the solution value of the objective function output 

y the tested algorithm and ζ ∗ is the optimal objective function 

alue. For the instance set MIPLIB, we denote ζ ∗ as the best solu- 

ion value ever found for the instances that have not been solved 

o optimality so far. There two situations where the output solu- 

ion may not be optimal so the percentage value of solution quality 

eed to be calculated: on one hand, as mentioned in Section 4.2 , 

lg-E can achieve a bilevel feasible solution which may not be 

ptimal, since all the benchmark instances are randomly gener- 

ted and the optimal solution to lower-level problem may not be 

nique; On the other hand, if an algorithm cannot finish solving an 

nstance within one hour, we terminate the algorithm prematurely 

nd output the best bilevel feasible solution found so far. 

Fig. 2 (a) and (b) shows the cumulative chart for the percent- 

ge value of solution quality (denoted as “S-Q”) obtained within 

ne hour of XW and Alg-E for MIPLIB and WANGXU-LARGE re- 

pectively. For visualization, S-Q values smaller than 0 are set 

o 0; similarly, if an algorithm cannot find a feasible solution 

ithin one hour, we also set S-Q value to 0. For each instance 

et, each point ( x, y ) in this chart indicates that y % of all in-

tances in the corresponding class have a percentage value of so- 

ution quality of at least x % . In particular, the rightmost point in-

icates the percentage of instances solved to optimality (or for 

hich the best solution value ever found is obtained for the un- 

olved instances in MIPLIB) by the corresponding algorithm. In 

ig. 2 (a), a significant solution quality improvement is achieved by 

he enhanced branching idea for MIPLIB. For example, the S-Q is 

t least 32% for almost 90% of instances if XW is used, while it 
671 
rows to 100% of instances when using Alg-E. Similarly, the S-Q 

s at least 80% for about 84% of instances if XW is used, while it

rows to almost 90% of instances when using Alg-E. In Fig. 2 (b), 

W can solve nearly 50% instances to optimality for WANGXU- 

ARGE within one hour, but XW can only achieve an S-Q value 

f 33% for 90% instances while Alg-E can achieve an S-Q value 

f 73% for 90% instances. Actually, XW can solve all the instances 

f size ( n 1 , n 2 ) ∈ { ( 5500 ) , ( 6600 ) , ( 7700 ) } to optimality. However, 

or instances of size ( n 1 , n 2 ) ∈ { ( 8800 ) , ( 9900 ) , ( 10 , 10 0 0 ) } , XW 

chieves rather disappointing solution quality within one hour 

ince XW needs up to 2.5 hour to solve these instances to optimal- 

ty. Whereas Alg-E can solve 92% of instances to an S-Q value of at 

east 70%, and solve all the instances to an S-Q value of at least 

0%.We will show the details of the results for WANGXU-LARGE in 

he following subsection (in Table 2 ). 

For DENEGRE and WANGXU, XW can solve all the instances in 

he two set to optimality within one hour, while Alg-E can solve 

3% of instances in DENEGRE and 70% of instances in WANGXU 

o optimality. Specifically, for DENEGRE, Alg-E can solve 80% of 

nstances to an S-Q value of at least 92%, while for WANGXU, 

lg-E can solve 80% of instances to an S-Q value of at least 

4%. 

Overall, these experiments show that Alg-E adopting the en- 

anced branching rule has some unavoidable overhead and imper- 

ection on solution quality for relatively small-sized instances but 

chieves overall speedup on most instances. In particular, our en- 
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Table 2 

Results for instance set WANGXU-LARGE. 

n1-n2 WaterM-II XW Alg-E 

Time S-Q Time S-Q Time S-Q 

5–500 3600 79% 259 100% 22 91% 

6–600 3600 80% 531 100% 52 85% 

7–700 3600 82% 1121 91% 139 92% 

8–800 3600 76% 2666 87% 159 85% 

9–900 3600 47% 3600 73% 254 89% 

10–1000 3600 69% 3600 49% 411 91% 

Average 3600 72% 1963 83% 173 89% 
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anced branching rule shows it advantage of speedup more ob- 

iously on large-sized instances with complex lower-level prob- 

em. For the instance set MIPLIB, Alg-E achieves both significant 

peedup and solution quality improvement for XW. 
able 3 

esults for instance set DENEGRE. 

Instance Opti-V SEP1 

BestSol Time S-Q Nodes 

20–15–10–1 −388 −388 0 100.00% 50 

20–15–10–2 −398 −398 17 100.00% 77,323 

20–15–10–3 −42 −42 0 100.00% 2201 

20–15–10–4 −729 −729 0 100.00% 185 

20–15–10–5 −281 −281 0 100.00% 83 

20–15–10–6 −246 −246 0 100.00% 233 

20–15–10–7 −260 −260 0 100.00% 108 

20–15–10–8 −293 −293 0 100.00% 114 

20–15–10–9 −635 −635 0 100.00% 1061 

20–15–10–10 −206 −206 0 100.00% 628 

20–20–5–1 −548 −548 1 100.00% 6981 

20–20–5–2 −568 −568 1558 100.00% 6053,523 

20–20–5–3 −477 −477 0 100.00% 53 

20–20–5–4 −753 −753 0 100.00% 142 

20–20–5–5 −392 −392 0 100.00% 51 

20–20–5–6 −1033 −1033 5 100.00% 79,502 

20–20–5–7 −547 −547 0 100.00% 80 

20–20–5–8 −936 −936 0 100.00% 69 

20–20–5–9 −868 −868 0 100.00% 112 

20–20–5–10 −340 −340 0 100.00% 45 

20–20–5–11 −426 −426 0 100.00% 9 

20–20–5–12 −854 −854 0 100.00% 43 

20–20–5–13 −514 −514 116 100.00% 947,138 

20–20–5–14 −923 −923 0 100.00% 109 

20–20–5–15 −617 −617 157 100.00% 1031,098 

20–20–5–16 −833 −833 0 100.00% 2535 

20–20–5–17 −895 −895 0 100.00% 3580 

20–20–5–18 −356 −356 0 100.00% 2 

20–20–5–19 −431 −431 3 100.00% 25,762 

20–20–5–20 −438 −438 1 100.00% 3918 

20–20–10–1 −359 −359 494 100.00% 1805,080 

20–20–10–2 −659 −659 0 100.00% 939 

20–20–10–3 −618 −618 1 100.00% 9456 

20–20–10–4 −604 −604 3600 100.00% 7479,668 

20–20–10–5 −972 −972 0 100.00% 20 

20–20–10–6 −731 −707 3600 96.72% 6244,669 

20–20–10–7 −683 −683 2788 100.00% 7420,465 

20–20–10–8 −667 −667 3 100.00% 8116 

20–20–10–9 −256 −256 4 100.00% 42,945 

20–20–10–10 −441 −441 73 100.00% 256,927 

20–20–15–1 −450 −420 3600 93.33% 4313,453 

20–20–15–2 −645 −645 3600 100.00% 14,175,981 

20–20–15–3 −579 −579 838 100.00% 1420,792 

20–20–15–4 −441 −441 3600 100.00% 5448,638 

20–20–15–5 −271 −271 3600 100.00% 6169,959 

20–20–15–6 −263 −263 3260 100.00% 5955,753 

20–20–15–7 −471 −471 246 100.00% 787,848 

20–20–15–8 −360 −360 3600 100.00% 11,797,237 

20–20–15–9 −584 −584 1 100.00% 2027 

20–20–15–10 −251 −251 0 100.00% 400 

Average – – 695 99.80% 1631,542 

672 
.3. Comparison with state-of-the-art approaches from literature 

In this subsection, we compare our algorithm Alg-E against 

tate-of-the-art approaches from literature, on the same instance 

lasses tested before. 

Instance Set WANGXU. This class of instances is proposed by 

ang and Xu (2017) , where the computational results by a se- 

ies of algorithms are reported, among which three algorithms: 

XW” ( Xu & Wang, 2014 ), “WaterM-I” and “WaterM-II” ( Wang & 

u, 2017 ) are well-performed. Their results were obtained on “a 

esktop computer with 2.4 GHz” which is similar to our hardware. 

n Table 1 , we report, for Alg-E, the average computing time (in 

econds) and percentage value of solution quality (denoted as “S- 

”) for each set of 10 instances. As XW, WaterM-I and WaterM-II 

an solve all the instances to optimality within the time limit, for 

hese algorithms we only report the required computing time (in 
MIX ++ Alg-E 

Time Nodes BestSol Time S-Q Nodes OPT 

1 21 −376 1 96.91% 55 0 

8 279 −398 2 100.00% 272 0 

2 54 −42 1 100.00% 136 1 

1 56 −729 1 100.00% 61 0 

0 20 −281 0 100.00% 30 0 

16 205 −246 1 100.00% 162 0 

0 0 −260 0 100.00% 22 0 

0 22 −278 2 94.88% 134 0 

1 16 −635 4 100.00% 401 0 

0 10 −196 0 95.15% 37 0 

0 21 −545 0 99.45% 37 0 

0 49 −546 15 96.13% 688 0 

0 50 −477 0 100.00% 1 0 

0 71 −753 0 100.00% 1 0 

0 31 −392 0 100.00% 1 1 

0 92 −1018 1 98.55% 56 0 

0 16 −547 1 100.00% 42 0 

0 91 −936 0 100.00% 1 0 

0 62 −860 2 99.08% 104 0 

0 38 −330 1 97.06% 39 0 

0 11 −426 0 100.00% 1 0 

0 21 −854 0 100.00% 1 0 

0 11 −493 3 95.91% 241 0 

0 58 −923 0 100.00% 1 0 

1 197 −617 2 100.00% 163 1 

0 44 −833 2 100.00% 78 0 

0 19 −859 1 95.98% 36 0 

0 0 −356 0 100.00% 1 0 

0 95 −426 2 98.84% 93 0 

0 32 −432 1 98.63% 81 0 

2 81 −347 6 96.66% 598 0 

1 17 −659 4 100.00% 286 1 

0 52 −571 4 92.39% 269 0 

1 51 −592 15 98.01% 1347 0 

0 13 −972 0 100.00% 1 0 

10 511 −648 42 88.65% 2018 0 

0 54 −655 3 95.90% 242 0 

15 232 −599 6 89.81% 523 0 

0 71 −195 4 76.17% 307 0 

2927 8068 −326 29 73.92% 2179 0 

0 16 −450 2 100.00% 217 0 

0 6 −598 3 92.71% 371 0 

3 43 −518 2 89.46% 246 0 

5 131 −441 3 100.00% 293 1 

1392 5466 −3 6 1.11% 732 0 

50 483 −197 1 74.90% 62 0 

0 23 −471 1 100.00% 126 0 

0 3 −236 1 65.56% 159 0 

0 8 −563 0 96.40% 57 0 

0 14 −118 1 47.01% 129 0 

89 341 – 4 92.90% 263 –
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Table 4 

Results for instance set MIPLIB 

SEP2 MIX ++ Alg-E 

Instance BestSol Time Nodes S-Q BestSol Time Nodes S-Q BestSol Time Nodes S-Q OPT 

air03-0.1 382,822 3,600 146,125 98.44% 379,800 3,600 92,677 99.24% 387,656 47 191 97.16% 0 

air03-0.5 505,172 3,600 85,478 100.00% 512,698 3,600 76,005 98.51% 637,254 65 251 73.85% 0 

air03-0.9 823,130 3,600 44,697 93.11% 770,100 3,600 42,757 100.00% 900,420 52 158 83.08% 0 

air04-0.1 56,563 3,600 55,921 99.71% 56,399 3,600 61,419 100.00% 57,029 2,624 3,224 98.88% 0 

air04-0.5 60,131 3,600 35,826 99.91% 60,076 3,600 33,459 100.00% 63,333 3,600 2,574 94.58% 0 

air04-0.9 84,993 3,600 3,752 84.77% 73,759 3,600 6,658 100.00% 89,235 3,600 181 79.02% 0 

air05-0.1 26,801 3,600 101,047 99.16% 26,577 401 10,168 100.00% 27,515 516 1,285 96.47% 0 

air05-0.5 32,497 3,600 92,234 96.14% 31,290 3,600 75,980 100.00% 44,082 925 1,656 59.12% 0 

air05-0.9 44,567 3,600 82,050 90.12% 40,558 3,600 63,300 100.00% 60,217 1,487 2,358 51.53% 0 

cap6000-0.1 – 3,600 1,980 – -1,967,015 587 48,281 100.00% -1,966,874 2,083 2,177 99.99% 0 

cap6000-0.5 – 3,600 1,481 – – 3,600 1,115 – -1,634,335 2,136 2,177 100.00% 0 

cap6000-0.9 -259,599 3,600 9,709 100.00% – 3,600 328 – -364,988 3,600 3,013 100.00% 0 

enigma-0.1 0 0 990 100.00% 0 0 739 100.00% 0 0 1 100.00% 0 

enigma-0.5 0 4 13,842 100.00% 0 6 10,531 100.00% 0 0 1 100.00% 0 

enigma-0.9 0 46 2,670 100.00% 0 186 2,966 100.00% 0 0 1 100.00% 0 

fast0507-0.1 12,562 3,600 604 99.38% 12,484 2 0 100.00% 12,484 1,383 508 100.00% 1 

fast0507-0.5 61,516 3,600 7,767 99.87% 61,439 2 0 100.00% 61,439 1,169 508 100.00% 1 

fast0507-0.9 109,916 8 2 100.00% 109,916 1 0 100.00% 109,916 1,419 508 100.00% 1 

l152lav-0.1 4,722 2 367 100.00% 4,722 2 363 100.00% 4,722 1 1 100.00% 0 

l152lav-0.5 4,866 3,600 311,915 100.00% 4,868 3,600 258,223 99.96% 4,966 25 177 97.94% 0 

l152lav-0.9 5,090 3,600 211,309 99.65% 5,072 3,600 171,722 100.00% 5,518 35 227 91.21% 0 

lseu-0.1 1,120 0 15 100.00% 1,120 0 19 100.00% 1,120 1 24 100.00% 0 

lseu-0.5 2,525 3,600 13,333 90.83% 2,313 3,600 12,840 100.00% 2,563 1 75 89.19% 0 

lseu-0.9 5,838 24 299 100.00% 5,838 65 357 100.00% 5,838 1 51 100.00% 0 

mitre-0.1 122,310 3,600 20,791 99.94% 122,235 3,600 41,872 100.00% 122,250 3,600 2,062 99.99% 0 

mitre-0.5 146,730 3,600 15,611 100.00% – 3,600 19,004 – 147,030 3,600 1,970 99.80% 0 

mitre-0.9 168,885 3,600 13,066 100.00% – 3,600 10,099 – 169,215 3,600 2,027 99.80% 0 

mod010-0.1 6,554 8 739 100.00% 6,554 4 9 100.00% 6,554 16 166 100.00% 0 

mod010-0.5 6,692 3,600 117,241 98.88% 6,618 3,600 164,755 100.00% 6,828 28 265 96.83% 0 

mod010-0.9 7,448 3,600 158,667 98.74% 7,355 3,600 111,883 100.00% 7,997 26 235 91.27% 0 

nw04-0.1 17,066 820 2,884 100.00% 17,066 1,140 2,842 100.00% 17,928 70 54 94.95% 0 

nw04-0.5 23,914 3,600 18,519 100.00% 24,100 3,600 8,472 99.22% 40,000 516 81 32.73% 0 

nw04-0.9 43,374 3,600 12,282 100.00% 52,290 3,600 6,631 79.44% 58,422 144 52 65.31% 0 

p0033-0.1 3,089 0 0 100.00% 3,089 0 0 100.00% 3,089 0 1 100.00% 0 

p0033-0.5 3,095 0 2 100.00% 3,095 0 0 100.00% 3,095 0 17 100.00% 0 

p0033-0.9 4,679 0 7 100.00% 4,679 0 6 100.00% 4,679 0 29 100.00% 0 

p0201-0.1 12,465 3,600 5,092 98.04% 12,555 3,600 5,837 97.30% 12,225 1 134 100.00% 0 

p0201-0.5 13,650 3,600 649,100 99.89% 13,635 1,113 71,052 100.00% 13,850 2 442 98.42% 0 

p0201-0.9 15,025 1 150 100.00% 15,025 1 157 100.00% 15,025 1 170 100.00% 0 

p0282-0.1 260,785 3,600 371,989 100.00% 260,781 4 272 100.00% 260,781 6 625 100.00% 0 

p0282-0.5 273,069 3,600 998,732 99.85% 272,659 3,600 120,899 100.00% 274,353 40 3,490 99.38% 0 

p0282-0.9 627,411 3,600 2,075,980 97.95% 616,034 3,600 175,290 99.81% 614,837 3 648 100.00% 0 

p0548-0.1 11,301 3,600 54,071 97.74% 11,051 3,600 102,504 100.00% 11,174 4 637 98.89% 0 

p0548-0.5 22,197 3,600 5,121 97.91% – 3,600 11,943 – 21,742 18 1,692 100.00% 0 

p0548-0.9 49,235 3,600 293,986 100.00% 49,509 3,600 17,003 99.44% 49,537 23 2,196 99.39% 0 

p2756-0.1 14,444 3,600 36,718 87.70% 12,862 3,600 37,599 100.00% 12,879 1,774 10,054 99.87% 0 

p2756-0.5 23,565 3,600 58,203 100.00% 25,384 3,600 18,777 92.28% 24,989 3,600 424 93.96% 0 

p2756-0.9 35,087 3,600 13,687 95.65% 33,623 3,600 9,263 100.00% 36,309 3,600 262 92.01% 0 

seymour-0.1 486 3,600 231 97.90% 476 3,600 48,178 100.00% 476 3,600 3,495 100.00% 0 

seymour-0.5 836 3,600 564 96.41% 807 2 18 100.00% 807 3,600 2,627 100.00% 0 

seymour-0.9 1,251 9 2 100.00% 1,251 1 0 100.00% 1,251 3,600 2,948 100.00% 0 

stein27-0.1 18 22 983 100.00% 18 0 528 100.00% 18 2 119 100.00% 0 

stein27-0.5 19 7 336 100.00% 19 0 5 100.00% 19 1 119 100.00% 0 

stein27-0.9 24 0 0 100.00% 24 0 0 100.00% 24 1 119 100.00% 0 

stein45-0.1 30 1,899 12,549 100.00% 30 3 2,999 100.00% 30 13 332 100.00% 1 

stein45-0.5 32 658 18,613 100.00% 32 0 14 100.00% 32 9 332 100.00% 1 

stein45-0.9 40 0 0 100.00% 40 0 0 100.00% 40 9 332 100.00% 1 

Average – 2,398 108,409 95.06% – 1,956 34,348 90.63% – 987 1,044 94.29% –

s
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t

c

2

s

w

econds). In the last row, the average value of computing time, and 

-Q for each algorithm is reported. 

We point out that Alg-E can solve most instances to optimality 

ith the average percentage value of solution quality of 96.75%. For 

he computing time, Alg-E performs better than XW and WaterM-I, 

ut is inferior to WaterM-II. 

Instance Set WANGXU-LARGE. In Table 2 , we report results for 

he set WANGXU-LARGE where, similarly to the set WANGXU, we 

ompare our algorithm Alg-E with XW and WaterM-II (we omit 

aterM-I since it has been proved to be inferior to WaterM-II). To 

alculate the percentage value of solution quality, each instance in 
673 
his set is solved to optimality by XW with up to 2.5 hours. The 

esults show that Alg-E can efficiently speed up the algorithm XW 

ith an average “S-Q” value of 89%, which is also better than that 

f XW. In particular, Alg-E significantly outperforms WaterM-II on 

oth computing time and solution quality. 

Instance Set DENEGRE. For this set of 50 bilevel instances in- 

roduced by DeNegre (2011) , Fischetti et al. (2017a) reported the 

omputational results by two algorithms “SEP1” ( Fischetti et al., 

016 ) and “MIX ++ ”. Their results were obtained “on a cluster con- 

isting of Intel Xeon E5–2670v2 with 2.5 GHz and 12 GB of RAM”, 

hich is therefore 2–5 times faster than our hardware. In Table 3 , 
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e report, for SEP1 and Alg-E, and for each instance, the best ob- 

ained feasible solution (denoted as “BestSol”), the associated per- 

entage value of solution quality (denoted as “S-Q”), the comput- 

ng time (in seconds), and the total number of branch-and-bound 

odes. For Alg-E, we also report the indicator “OPT” which indi- 

ates the exact optimality of the output if OPT = 1, and heuristic 

f the output if OPT = 0. As MIX ++ can solve all the instances to

ptimality within one hour, for this algorithm we only report the 

equired computing time and the number of nodes. The optimal 

olution value of each instance is given in the column “Opti-V”. 

n the last row, the average value of computing time, number of 

odes, and S-Q for each algorithm is reported. 

We point out that Alg-E can finish solving all instances in a 

raction of a second to 42 seconds with an average value of S-Q 

f 92.90%, where five instances are indicated to be exactly solved 

o optimality by “OPT = 1”. Alg-E needs fewer nodes than SEP1 for 

ll but two instances. Alg-E also needs fewer nodes and shorter 

omputing time on average than SEP1 and MIX ++ . Alg-E performs 

nsatisfactorily on two instances of this class: “20–20–15–5” and 

20–20–15–10”, with S-Q value of 1.11% and 47.01%. These two 

nstances contain 15 variables and 20 constraints in the lower- 

evel problem, which results in a large optimal solution set. When 

he enhanced branching idea is performed, some well-performed 

ilevel feasible solutions including the optimal solution are carved 

ut, which causes poor performance of Alg-E. 

Instance Set MIPLIB. Table 4 compares Alg-E with the two 

est-performing algorithms from the literature; namely “SEP2” by 

ischetti et al. (2016) ) and “MIX ++ ” by Fischetti et al. (2017a) , on

he very hard MIPLIB class. Recall that this class contains some 

nstances with up to 80,0 0 0 relaxation-problem variables, hence 

n many cases, the optimal solutions are still unknown. For these 

ases, we calculate the percentage value of solution quality based 

n the best obtained feasible solution value. For the three algo- 

ithms and for each instance, Table 4 reports the best obtained 

easible solution, the computing time (in seconds), the number 

f branch-and-bound nodes, and the percentage value of solution 

uality (denoted as “S-Q”). In the last row, the average value of 

omputing time, number of nodes, and S-Q for each algorithm is 

eported (if an algorithm cannot find a feasible solution within the 

ime limit, the S-Q is calculated as 0). 

We point out that Alg-E solves 25 instances to optimality, 

here six instances are indicated to be exactly solved to optimality 

y “OPT = 1”, and obtains feasible solution for all the rest instances 

f this class. In particular, among the 30 instances in MIPLIB that 

ave not been solved to optimality, Alg-E provides the best feasi- 

le solution for four instances (i.e., “cap60 0 0–0.1”, “cap60 0 0–0.9”, 

p0282–0.9”, “p0548–0.5”). Similar to the results for DENEGRE, the 

ndicator “OPT” of the exactness of the output solution may be in- 

ensitive due to the sufficient (not necessary) condition of the op- 

imality checking mechanism on the uniqueness of lower-level op- 

imal solution. Table 4 shows that Alg-E needs the fewest nodes 

nd shortest computing time on average, while achieves an av- 

rage percentage value of solution quality of 94.29%. Alg-E per- 

orms badly on three instances of this class: “air05–0.5”, “air05–

.9” and “nw04–0.5”, with S-Q value of 59.12%, 51.53% and 32.73%. 

hese instances contain a large number of variables and a rela- 

ively small number of constraints in the lower-level problem. For 

xample, “nw04–0.5” contains 43,741 variables and 36 constraints 

n the lower-level problem. As explained in DENEGRE, such cases 

ay result in a large set of optimal solution of the lower-level 

roblem, which induces inferior performance with our algorithm. 

Consequently, our algorithm based on the enhanced branching 

ule clearly shows its superiority on general large-sized BILP in- 

tances with a relatively complex lower-level problem, such as in- 

tances of MIPLIB and WANGXU-LARGE. For these instances, the 

nhanced branching idea can significantly reduce the size of the 
674 
ranching tree, while this may cause a cost of sacrificing the op- 

imality. We can expect that when the existing algorithms can- 

ot finish solving relatively large-sized BILP instances within a re- 

tricted computation time, our algorithm can provide a promising 

ilevel feasible solution within reasonable time. 

For those interested in conducting comparative studies, we have 

ploaded our test instances and the source codes to https://person. 

ju.edu.cn/wangmingzheng#781824 . 

. Conclusions 

In this paper, we present an enhanced branch-and-bound algo- 

ithm for a class of BILP problems, where both the upper-level and 

he lower-level variables are bounded. We introduce an enhanced 

ranching idea and propose an enhanced branching rule based on 

 benchmark branching rule presented in Xu and Wang (2014) . Our 

lgorithm may discard bilevel feasible solutions if the lower-level 

roblem is not uniquely optimal, which may lead to sub-optimality 

n BILP. Nevertheless, we provide a reasonable global optimality 

hecking mechanism which is sufficient but not necessary for BILP, 

dapted from a well-established sufficient-and-necessary condition 

n the solution uniqueness of linear programming. Our computa- 

ional results show that the enhanced branching rule can achieve 

onsiderable speedup for the benchmark branching rule while the 

utput solution can achieve satisfactory solution quality. We com- 

are our algorithm with state-of-the-art algorithms from the lit- 

rature on a testbed of general BILP instances with up to 80,0 0 0 

elaxation-problem variables and 50 0 0 lower-level constraints. In 

articular, our algorithm can achieve superiority on both algorithm 

peedup and solution quality for large-sized BILP instances with 

elatively complex lower-level problem. 

In the future, we will investigate how our global optimality 

hecking mechanism can be weaken to a sufficient and necessary 

ondition. We will also improve our enhanced branching idea so as 

o promote the solution quality or even guarantee the exactness of 

he algorithm. In addition, it is worth further study on adapting the 

lgorithm for large-scale real-world instances such as those aris- 

ng in the bilevel bidding problem in electricity markets. Finally, it 

s interesting to investigate the actual implementation of state-of- 

he-art BILP algorithms for real-world instances generated by alge- 

raic modeling tools. 
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ppendix. An application on a bilevel facility location problem 

sing our algorithm in algebraic formulation 

To demonstrate how our algorithm can be used in an algebraic 

ormulation setting, we address a bilevel facility location problem 

 Zare et al., 2019 ) as an example, since this problem is modeled as

 BILP problem. The problem can be described as follows. 

A firm that produces a set of products given by G = { 1 , .., G } 
an place new facilities at the locations given by I = { 1 , . . . , q } . The
eader chooses the facilities placement, while the follower must 

etermine the number of each product’s demand that each facility 

rocesses. The firm incurs a cost of a (1) 
i 

for each facility opened at 

https://person.zju.edu.cn/wangmingzheng#781824
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100014718
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ocation i ∈ I, and incurs an opportunity cost of a (2) 
i 

for each un-

sed production capacity of any plant at location i ∈ I after it is 

pened. The follower faces a cost of c (1) 
i 

for using a unit of capac-

ty at a facility at location i ∈ I, and a cost of c (2) 
ig 

associated with

he transportation of g ∈ G from a facility at location i ∈ I. 

Let x i be the number of facilities to open at location i , and let 

 ig be the number of demand for product g that the plants at lo- 

ation i process. Q denotes the maximum number of facilities that 

an be opened at any given location. D g denotes the demand for g, 

nd r ig is the units of capacity needed to make product g at a facil- 

ty at location i , and C i is the capacity of a plant at location i , then

he bilevel facility location problem (BFLP) can be modeled as: 

BFLP: 

in 
x 

ζ = 

∑ 

i ∈ I 
a ( 

1 ) 
i 

x i + 

∑ 

i ∈ I 
a ( 

2 ) 
i 

( 

C i x i −
∑ 

g∈G 
r ig y ig 

) 

, 

 . t . 0 ≤ x i ≤ Q , i ∈ I, 

x i ∈ Z , i ∈ I, 

y ∈ argmin 
ˆ y 

{ ∑ 

i ∈ I 

∑ 

g∈G 

(
c ( 

1 ) 
i 

r ig + c ( 
2 ) 
ig 

)
ˆ y ig : 

s . t . 
∑ 

i ∈ I 
ˆ y ig ≥ D g , g ∈ G, 

∑ 

g∈G 
r ig ̂  y ig ≤ C i x i , i ∈ I, 

∑ 

g∈G 
ˆ y ig ≤

∑ 

g∈G 
D g x i , i ∈ I, 

ˆ y ig ≥ 0 , ˆ y ig ∈ Z , i ∈ I, g ∈ G. } 
Before implementing the algorithm, we should construct the 

ollowing model. 

The first model is the relaxation problem of BFLP, denoted as 

 ( BFLP ) , which contains both the upper-level and the lower-level 

onstraints. 

R ( BFLP ) (the relaxation problem of BFLP): 

in 
x 

∑ 

i ∈ I 
a ( 

1 ) 
i 

x i + 

∑ 

i ∈ I 
a ( 

2 ) 
i 

( 

C i x i −
∑ 

g∈G 
r ig y ig 

) 

, 

 . t . 0 ≤ x i ≤ Q , i ∈ I, 

x i ∈ Z , i ∈ I, 

∑ 

i ∈ I 
y ig ≥ D g , g ∈ G, 

∑ 

g∈G 
r ig y ig ≤ C i x i , i ∈ I, 

∑ 

g∈G 
y ig ≤

∑ 

g∈G 
D g x i , i ∈ I, 

y ig ≥ 0 , y ig ∈ Z , i ∈ I, g ∈ G. 

The second model is the node problem of BFLP, denoted as 

 ( ̂ l , ̂  u , ˆ w ) , which adds bound constraints to the relaxation problem 

f BFLP. 
675 
R ( ̂ l , ̂  u , ˆ w ) (the node problem of BFLP) 

in 
x 

∑ 

i ∈ I 
a ( 

1 ) 
i 

x i + 

∑ 

i ∈ I 
a ( 

2 ) 
i 

( 

C i x i −
∑ 

g∈G 
r ig y ig 

) 

, 

 . t . 0 ≤ x i ≤ Q , i ∈ I, 

x i ∈ Z , i ∈ I, 

∑ 

i ∈ I 
y ig ≥ D g , g ∈ G, 

∑ 

g∈G 
r ig y ig ≤ C i x i , i ∈ I, 

∑ 

g∈G 
y ig ≤

∑ 

g∈G 
D g x i , i ∈ I, 

y ig ≥ 0 , y ig ∈ Z , i ∈ I, g ∈ G. 

ˆ l i ≤ C i x i ≤ ˆ u i , i ∈ I, 

ˆ l I+ i ≤
∑ 

g∈G 
D g x i ≤ ˆ u I+ i , i ∈ I, 

∑ 

i ∈ I 

∑ 

g∈G 

(
c ( 

1 ) 
i 

r ig + c ( 
2 ) 
ig 

)
ˆ y ig ≤ ˆ w . 

The third model, denoted as Q ( x R , y L ) , uses the leader’s objec- 

ive function as the objective function. The constraints contain all 

he upper-level and lower-level constraints, together with a bound 

onstraint on the related part of the upper-level decision variables. 

ll the lower-level decision variables equal to y L . 

 

(
x R , y L 

)

in 
x 

∑ 

i ∈ I 
a ( 

1 ) 
i 

x i + 

∑ 

i ∈ I 
a ( 

2 ) 
i 

( 

C i x i −
∑ 

g∈G 
r ig y 

L 
ig 

) 

, 

 . t . 0 ≤ x i ≤ Q , i ∈ I, 

x i ∈ Z , i ∈ I, 

C i x i ≤ C i x 
R 
i , i ∈ I, 

∑ 

g∈G 
D g x i ≤

∑ 

g∈G 
D g x 

R 
i , i ∈ I, 

∑ 

g∈G 
r ig y 

L 
ig ≤ C i x i , i ∈ I, 

∑ 

g∈G 
y L ig ≤

∑ 

g∈G 
D g x i , i ∈ I. 

The fourth model, denoted as U( x R , y L ) , is used to propose the 

ptimality checking mechanism, which uses the sufficient and nec- 

ssary condition for linear programming to be uniquely optimal as 

onstraints. 

 

(
x R , y L 

)
ax 
y 

y 2 , 
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. 

s

f

 

1  

Q

n

s . t . 
∑ 

i ∈ I 

∑ 

g∈G 

(
c ( 

1 ) 
i 

r ig + c ( 
2 ) 
ig 

)
y ig = 0 , 

∑ 

i ∈ I 
ˆ y ig ≥ 0 , g ∈ J, 

∑ 

g∈G 
ˆ y ig ≤ 0 , i ∈ J, 

∑ 

g∈G 
r ig ̂  y ig ≤ 0 , i ∈ J, 
676 
J = 

{ 

j| ∑ 

i ∈ I 
ˆ y i j = D j or 

∑ 

g∈G 
r jg ̂  y jg = C j x j or 

∑ 

g∈G 
ˆ y jg = 

∑ 

g∈G 
D g x j 

}

We are now ready to use our branch-and-bound algorithm to 

olve the BFLP model. The detailed steps can be demonstrated as 

ollows. 

Initialization. Denote x ∗ = ∅ , y ∗ = ∅ , ζ ∗ = + ∞ , N = 1 , OPT =
 , z 1 = ∞ , and l 1 

i 
= 0 , i = 1 , . . . , 2 q , u 1 

i 
= Q C i , i = 1 , . . . , q, u 1 

i 
=

 

∑ 

g∈G 
D g , i = q + 1 , . . . , 2 q . 

Step 1. For all k ∈ { 1 , . . . , N } such that z k ≥ ζ ∗ or l k � u k , remove 

ode k . Update N as the number of remaining nodes. 
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Step 2. Solve R ( ̂ l , ̂  u , ˆ w ) . 

Step 3 (Lower level) Solve L ( x R ) 

Let y L denote an optimal solution to L ( x R ) . 
677 
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Step 4. 

Step 5. Create ( v 1 − r ) new node problems, increase N by 

 v 1 − r ) , and go to Step 1. For k = 1 , . . . , v 1 , k � = s t , t = 1 , . . . , r,

ode ( N + k ) is characterized by ( l N+ k , u N+ k , w 
N+ k , z N+ k ) , which is 

efined as 

 
N+ k 
j 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∑ 

g∈G 
r jg y 

L 
jg 

+ 1 if j = k, v 1 , . . . , v H , and j ≤ q, 

∑ 

g∈G 
y L 
j−q,g 

if j = k, v 1 , . . . , v H , and j > q ;

ˆ l j otherwise ;

 
N+ k 
j 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

min 
{∑ 

g∈G r jg y 
L 
jg 
, ̂  u j 

}
if j = 1 , . . . , k − 1 , j / ∈ { s 1 , . . . , s T } , and j ≤ q, 

min 
{∑ 

g∈G y 
L 
j−q,g 

, ̂  u j 
}

if j = 1 , . . . , k − 1 , j / ∈ { s 1 , . . . , s T } , and j > q, 

C j x 
R 
j 
− 1 if j = s 1 , . . . , s T , and j ≤ q, ∑ 

g∈G r j−q,g x 
R 
j−q 

if j = s 1 , . . . , s T , and j > q, 

ˆ u j otherwise ;

 
N+ k = 

{ ∑ 

i ∈ I 

∑ 

g∈G 

(
c ( 

1 ) 
i 

r ig + c ( 
2 ) 
ig 

)
y L 
ig 

if k = 2 q + 1 , 

ˆ w otherwise ;

 
N+ k = 

∑ 

i ∈ I 
a ( 

1 ) 
i 

x R i + 

∑ 

i ∈ I 
a ( 

2 ) 
i 

( 

C i x 
R 
i −

∑ 

g∈G 
r ig y 

L 
ig 

) 

. 
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