European Journal of Operational Research 291 (2021) 661-679

European Journal of Operational Research

UROPEAN OURNAL OF
PERATIONAL ' ESEARCH

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

An enhanced branch-and-bound algorithm for bilevel integer linear)

programming

Check for
updates

Shaonan Liu?, Mingzheng Wang"*, Nan Kong¢, Xiangpei Hu"

aSchool of Economics and Management, Dalian University of Technology, Dalian 116024, China
bSchool of Management, Zhejiang University, Hangzhou 310058, China
€Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA

ARTICLE INFO

Article history:

Received 7 November 2019
Accepted 1 October 2020
Available online 8 October 2020

Keywords:

Integer programming
Bilevel programming
Branch and bound
Enhanced branching

ABSTRACT

Bilevel integer linear programming (BILP) problems have been studied for decades. Many exact algorithms
have been proposed in recent years for small- or medium-sized instances. However, few of these algo-
rithms were shown to be efficient on large-sized instances. In this paper, we present an enhanced branch-
and-bound algorithm for a class of BILP problems, which can discard a subspace from the search space
in each iteration larger than that in a benchmark branch-and-bound algorithm. The corresponding en-
hanced branching rule can efficiently slow down the creation of new node problems so as to significantly
reduce the computation time. Our scheme may be suboptimal if the lower-level problem is not unique
optimal as the enhanced branching rule may discard bilevel feasible solutions that may turn out to be
optimal to the bilevel programming. We present computational studies to evaluate the algorithm speedup
and solution quality of our algorithm, compared with state-of-the-art algorithms from the literature on a
large testbed of general BILP instances, some of which are still unsolved. The computational results show
that our enhanced branching rule can achieve significant speedup on the benchmark branching rule with
satisfying solution quality. In particular, our algorithm shows superior performance on large-sized BILP
instances with a relatively complex lower-level problem.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Bilevel programming describes the interaction between two au-
tonomous and possibly conflicting decision makers: a leader and
a follower. It plays a fundamental role in many real-world appli-
cations, when competitive agents operate in a hierarchical way
with conflicting objectives. Discrete bilevel linear programming
problems, which contain integer decision variables, have been
commonly seen in facility location (Cao & Chen, 2006; Caramia
& Mari, 2016), network design (Ceylan & Bell, 2004), bilevel
knapsack (Caprara, Carvalho, Lodi & Woeginger, 2016; Lozano &
Smith, 2016 and Tang, Richard & Smith, 2016), traffic systems
(Brotcorne, Labbé, Marcotte & Savard, 2001, Labbé, Marcotte &
Savard, 1998), capacity planning (Florensa et al., 2017; Garcia-
Herreros et al., 2016), and natural gas regulation (Dempe, Kalash-
nikov & RiOs-Mercado, 2005, 2011; Kalashnikov & Rios-Mercado,
2006; Kalashnikov, Pérez & Kalashnykova, 2010). For these prob-

* Corresponding author.
E-mail addresses: 1_shnan@163.com (S. Liu), wangmzh@zju.edu.cn (M. Wang),
nkong@purdue.edu (N. Kong), drhxp@dlut.edu.cn (X. Hu).

https://doi.org/10.1016/j.ejor.2020.10.002
0377-2217/© 2020 Elsevier B.V. All rights reserved.

lems, specially designed exact algorithms were proposed. However,
these algorithms were tested efficient only on small- to medium-
sized instances. On the other hand, there is a lack of exact algo-
rithms dealing with large-sized instances. This can be explained by
the inherent complexity of bilevel programming problem, which is
known to be NP-hard even when the leader’s and follower’s prob-
lems are both linear programs (Jeroslow, 1985).

To fill in this gap, we propose an enhanced branch-and-bound
algorithm for bilevel integer linear programming (BILP) problems
where decision variables are all integers. We take a branching rule
previously proposed by Xu and Wang (2014) as the benchmark
and embed an enhanced branching idea in it to efficiently slow
down the creation of new node problems by eliminating newly
created node problems in each iteration. The corresponding en-
hanced branching rule is proved to be able to efficiently cut off
larger subspace from the search space, so as to significantly re-
duce the computation time. However, it may discard bilevel fea-
sible solutions if the lower-level problem is not uniquely optimal,
which may lead to sub-optimality in BILP. Nevertheless, we adapt
a well-established sufficient-and-necessary condition on the solu-
tion uniqueness of linear programming and provide a reasonable
global optimality checking mechanism for BILP. To test the effi-

https://doi.org/10.1016/j.ejor.2020.10.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.10.002&domain=pdf
mailto:l_shnan@163.com
mailto:wangmzh@zju.edu.cn
mailto:nkong@purdue.edu
mailto:drhxp@dlut.edu.cn
https://doi.org/10.1016/j.ejor.2020.10.002

S. Liu, M. Wang, N. Kong et al.

ciency of our algorithm, including algorithm speedup (compared
to the benchmark branching rule) and solution quality (i.e., the
gap between our output solution and the optimal solution), we
compare our algorithm with state-of-the-art algorithms on a com-
mon testbed of three sets of general BILP instances from the liter-
ature and a set of randomly generated BILP instances. To the best
of our knowledge, these instances are of the largest size among
general BILP instances tested in the literature. The computational
results show that our enhanced branching rule can achieve supe-
riority on both algorithm speedup and solution quality, especially
for large-sized BILP instances with a relatively complex lower-level
problem.

The rest of this paper is organized as follows. In Section 2,
we review the most relevant approaches to discrete bilevel linear
programming from the literature. We describe our model formu-
lation and related definitions in Section 3. We introduce our en-
hanced branch-and-bound algorithm in Section 4. The performance
of our algorithm is evaluated in Section 5 by means of computa-
tional experiments on three sets of general BILP instances from the
literature and randomly generated ones. We draw conclusions in
Section 6.

2. Literature review

Even though there exists a large body of literature devoted to
bilevel optimization, there are relatively few exact algorithms de-
signed for discrete bilevel linear programming. In this section, we
introduce relevant references on solution methods of bilevel 0-1
mixed integer linear programming, bilevel mixed integer linear pro-
gramming (BMILP) and bilevel integer linear programming (BILP).

For bilevel 0-1 mixed integer linear programming, an early
study can be found in Bard and Moore (1992), where both upper-
and lower-level variables are restricted to be binary. They pro-
posed an algorithm that implicitly enumerates upper level vari-
ables and solves the associated lower-level problems to obtain
bilevel feasible solutions. The authors tested their algorithm on
instances with up to 45 variables and 18 constraints. More than
twenty years later, Zhang and Ozaltin (2017)) proposed a branch-
and-cut algorithm enhanced by incorporating the ideas of value
function and local search for problems where upper level variables
are restricted to be binary. Their computational results showed
that their algorithm can solve instances with up to 200 variables
and 150 constraints in a reasonable amount of time. For a spe-
cial case known as the bilevel knapsack problem with interdiction
constraints, where the leader seeks to minimize the follower’s ob-
jective, exact algorithms were proposed by Caprara et al. (2016),
Lozano and Smith (2016), Tang et al. (2016) and Croce and Scata-
macchia (2019, 2020). Taking a straightforward cutting plane ap-
proach for the upper level problem, Caprara et al. (2016) pro-
posed an exact algorithm that exploits the structural properties
of the bilevel knapsack problem. Lozano and Smith (2016) pro-
posed a sampling scheme to optimize the bilevel knapsack prob-
lem in which the follower problem can take any form. Tang
et al. (2016) proposed three generic solution algorithms and re-
quired leader variables to be binary, whereas the follower’s prob-
lem can be general mixed-integer. Croce and Scatamacchia (2019,
2020) derived effective lower bounds for the bilevel knapsack
problem with interdiction constraints and presented an exact
method that exploits the structure of the induced follower’s prob-
lem. The authors tested their algorithms on bilevel knapsack prob-
lem instances with interdiction constraints that have up to 110
variables in total.

The literature of BMILP started with early work in the 1990s by
Moore and Bard (1990), which was first to propose a branch-and-
bound approach. The largest instance that the authors reported
solution results on has 40 variables and 18 constraints. Vicente,

662

European Journal of Operational Research 291 (2021) 661-679

Savard and Judice (1996) derived characterizing properties for dif-
ferent types of discrete linear bilevel programming problems. The
authors studied the geometry of the feasible set and discussed the
existence of an optimal solution. About twenty years later, Xu and
Wang (2014) designed an exact algorithm within a branch-and-
bound framework for BMILP with bounded and integral assump-
tion on upper level variables. The authors tested their algorithm
on instances of size rising to 920 variables and 368 constraints. The
average computation time ranged from 10 minutes to 4 hours, and
the longest solution time taken was nearly six hours. Employing a
class of intersection cuts valid to BMILP under mild assumptions,
Fischetti, Ljubi¢, Monaci & Sinnl, 2018, Fischetti, Ljubi¢, Monaci and
Sinnl (2016 proposed a branch-and-cut algorithm for BMILP prob-
lems and developed a new family of cuts for BMILP problems. Fur-
ther, Fischetti, Ljubi¢, Monaci and Sinnl (2017a) extended their al-
gorithm in Fischetti et al. (2018) by suggesting new types of in-
tersection cuts and introduced the so-called hypercube intersec-
tion cut, which allows for nonlinear terms to appear in both con-
straints and objective functions. The authors tested their algorithm
on instances with up to 80,000 variables and 5000 constraints
from the literature. Other BMILP algorithms that use cutting plane
techniques within a branch-and-bound framework can be found in
Hemmati and Smith (2016) and Tahernejad, Ralphs and DeNegre
(2016). Note that algorithms in these papers only solve small-sized
instances.

Besides a branch-and-bound framework, a few other lines of
research for BMILP were proposed based on reformulation, Ben-
ders decomposition, and parametric programming. Zeng and An
(2014) proposed a novel scheme based on reformulation and
decomposition for BMILP problems with upper level constraints
only depending on upper level variables. Their approach was
extended by Yue, Gao, Zeng and You (2019) to a projection-
based variant, which allows upper level constraints to depend
on lower-level variables. Saharidis and lerapetritou (2009) pro-
posed a Benders-decomposition-based algorithm, which is based
on the idea of decomposing the initial problem into a relaxation
of the original problem and a series of restriction problems. Based
on multi-parametric programming theory, Avraamidou and Pis-
tikopoulos (2019) and Faisca, Dua, Rustem, Saraiva and Pistikopou-
los (2007) proposed algorithms to solve bilevel quadratic pro-
gramming problems, where the objective functions of the upper-
level and lower-level problems are allowed to be quadratic. Note
that the above work only presented computational experiments on
small-sized instances.

There are also several approaches to solving real-world appli-
cations modeled as BMILP, e.g., Caramia and Mari (2016) for facil-
ity location problems, Dempe et al. (2011), Kalashnikov and Rios-
Mercado (2006), and Dempe et al. (2005) for natural gas regula-
tion. Caramia and Mari (2016) proposed a decomposition based al-
gorithm that resembles the algorithm in Saharidis and lerapetri-
tou (2009), but it is properly designed to cope with the bilevel
structure of the facility location problem and the integrality of a
subset of variables under the control of the leader. The authors
tested their algorithm on a set of benchmark instances available
in the literature with up to 150 facilities and 150 clients. Dempe
et al. (2011), Kalashnikov and Rios-Mercado (2006), and Dempe
et al. (2005) linearized their BMILP problems and designed algo-
rithms based on a penalty function approach. The real-world in-
stances they solved have dimensions up to 1000. Recently, Zare,
Borrero, Zeng and Prokopyev (2019) presented two strong-duality-
based reformulations of a class of BMILP problems with the key
idea of exploiting the binary expansion of upper level integer vari-
ables. They tested their approaches on three instance classes, i.e.
bounded BMILP instances with less than 500 variables and con-
straints, BMILP with interdiction constraints instances with less
than 300 variables and 400 constraints, and bilevel facility location

S. Liu, M. Wang, N. Kong et al.

instances with up to 40 facilities and 240 products. They showed
that their approaches can lead to orders of magnitude reduction in
computation time.

For BILP problems which are most relevant to our paper, an ear-
lier study can be found in DeNegre and Ralphs (2009) which pro-
posed a branch-and-cut algorithm using cutting plane techniques,
based on the previous branch-and-bound algorithm for BMILP in
Moore and Bard (1990). They tested their algorithm on a set of in-
terdiction instances with knapsack constraints at the upper level
with up to 34 variables and 19 constraints. The computational re-
sults showed that their approach makes improvement on Moore
and Bard (1990) with fewer nodes in their branch-and-bound tree.
Similarly, in a branch-and-bound framework, Caramia and Mari
(2015) derived valid inequalities to eliminate bilevel infeasible so-
lutions for a given upper level solution. They reported solving BILP
problems with up to 25 variables and 25 constraints. Wang and
Xu (2017) presented an excellent algorithm called watermelon al-
gorithm for BILP, which integrates branch-and-bound and cutting
plane techniques. The watermelon algorithm is the first exact BILP
algorithm that does not rely on additional simplifying assump-
tions. The authors tested their method on the same instances as
in Xu and Wang (2014) with integrality restrictions and showed
that the watermelon algorithm outperforms previous branch-and-
bound algorithms in DeNegre and Ralphs (2009) and Xu and Wang
(2014), Moore and Bard (1990). Besides branch-and-bound algo-
rithms, Dominguez and Pistikopoulos (2010) introduced two multi-
parametric algorithms for BILP and BMILP, and tested their algo-
rithms on small-sized instances.

3. Model formulation and definitions

We present the BILP problem as:

max ¢=cx+dly (1)
s.t. Aixx+ By < by, (2)
0<x<X, 3)
xezZ", (4)
y e argmax {d}y: Ayx+ByJ < by, 0<j <Y, e Z™}, (5)

y

where A; € QM>*M, Ay € ZM2*M, By e QM>*M2, By € ZM2*M2, b, €
Q™, by eZ™,ceQ"M,d; eQ™,d, e Q™, X eQ™M,and Y € Q" are
finite rational or integer parameters.

Since rational parameters can be equivalently converted to in-
tegers by multiplication, without loss of generality, the lower-level
parameters (A;, By, by) are assumed to be integers. As formulation
(1)-(5) indicates, if the lower-level problem has alternative optimal
solutions, then the follower will select a y that maximizes the up-
per level objective function, thus benefiting the leader. Thus the
formulation (1)-(5) is commonly known as the optimistic formu-
lation of the problem. In contrast, under the pessimistic formu-
lation, the follower will pick a y that either violates the upper
level constraint or otherwise makes the least contribution to the
upper level objective function. More detailed discussions regarding
the two formulations can be found in Dempe, Mordukhovich and
Zemkoho (2014), Lozano and Smith (2017), Xu and Wang (2014),
and Wiesemann, Tsoukalas, Kleniati and Rustem (2013).

In the following, we introduce several definitions to facilitate
the description of our algorithm. We use a vector with a sub-

663

European Journal of Operational Research 291 (2021) 661-679

script j to refer to the jth element of the vector. We define the set
R =RU {400} U{—o0} as the extended real number line including
positive and negative infinity. For a given x € Z", we denote L(x)
as the lower-level problem (LLP):

max {dlj: Ax+Byj <by 0<J<VY: jezm).
¥
For a given set of parameters (I,u € R™,w e R), we define a

node problem 53(l,u,w) by the following parametric BILP prob-
lem:

_ T T
max =cx+dyy

s.t. Ayx+ By < by, (6)
l<Ax<u, (7)
dly > w, (8)
0<x<X, 9)
XezZh, (10)

yeargmax {d}j: Apx+Byj < by, 0<j <Y, yez™}. (11)
y

By definition, formulation (1)-(5) is equivalent to
B(—00, 0o, —o0), which will be used as the root node problem. We
define the relaxation problem R (I, u, w) by the following integer
linear programming (ILP) problem, which is referred to as the high
point problem in Moore and Bard (1990):

_ AT T
max C=c'x+dyy
s.t. Aix + Byy < by,

Axx + By < by,

xezZ", yezm.

For a given BILP B(l,u,w), a solution (x,y) is called bilevel
feasible if it satisfies constraints (6)-(11). A solution is called
bilevel infeasible if it is not bilevel feasible. A solution (x*,y*) is
called bilevel optimal if it is bilevel feasible and we have c'x* +
dly* > cTx0 + dly0 for any other bilevel feasible solution (x0,y0).
A BILP problem is called optimal if a bilevel optimal solution ex-
ists (unique or not). A BILP problem is called infeasible if no bilevel
feasible solution exists. In this paper, both B(l,u,w), its relax-
ation R(I,u,w) and £(x) are bounded for any I,u e R™ weR,
and x € Z™M. Therefore, for a BILP problem defined in (1)-(5), there
are only two possible outcomes: optimal or infeasible.

4. An enhanced branch-and-bound algorithm

Our algorithm utilizes a branch-and-bound framework, which
iteratively solves the relaxation problem and removes its optimal

S. Liu, M. Wang, N. Kong et al.

solution from the search space if the optimal solution of the re-
laxation problem is labeled bilevel infeasible. The novelty lies in
an enhanced branching rule. In the following, we first introduce a
benchmark branching rule and then propose the enhanced branch-
ing rule. This is followed by a presentation of our algorithm.

4.1. A benchmark branching rule

The idea of our algorithm starts by solving the relaxation prob-
lem of the root node problem. If the relaxation problem is infeasi-
ble, the BILP is also infeasible. If the relaxation problem is optimal
with an optimal solution (xR, y®), we solve the LLP £(x®). The fol-
lowing Lemma 1 provides a necessary and sufficient condition for
(xR, y®) to be bilevel optimal.

Lemma 1. Let (xR, yR) be an optimal solution to R(I, 0, W). Then
(xR, yR) is optimal to B(l, @i, W) if and only if yR is optimal to £(xR).

Proof. The “only if” direction is a direct result of the bilevel opti-
mality of (xR, yR).

For the “if* direction, we have that if y® is optimal to £(x®),
then (xR, y®) is a bilevel feasible solution to B(, 4, W), and thus it
provides a lower bound of B(l, il, w). Meanwhile, (xR, yR) achieves
an upper bound of B, i, W) since it is optimal to R, 4, W).
Hence, the “if” statement follows. O

However, it may be more common that yR is not optimal to
L(x®). Then (xR, yR) is a bilevel infeasible solution which should be
eliminated from the search space. The following Lemma 2, taking
Lemmas 3 and 4 of Xu and Wang (2014) for reference, introduces
a subspace containing (xR, y®) but no bilevel feasible solutions.

Lemma 2. (Xu & Wang, 2014). If (xR, yR) is optimal to R(I, i, W) but
bilevel infeasible. Suppose that y* is an optimal solution to £(xX), then
the following subspace:

P ={(xy) : Apx+Byy* < by, djy < dyy*}
contains (xR, yR) but no bilevel feasible solutions.

Proof. Since y! is an optimal solution to £(xR) but y® is not, we
have yt € Z"2, 0 < yL <Y, ApxR + Byy! < by and dlyR < dlyL, that is
(xR, yR) € P. For any (X,y) € P, we show that y can’t be optimal to
L(X). Actually, we have AyX + Byyt < by and dly < dlyt, namely, y*
is a feasible solution to £(X) and superior to y. O

By Lemma 2, we remove the subspace P from the search space,
i.e., the feasible region of R(f, i,), so as to eliminate the bilevel
infeasible solution without eliminating any bilevel feasible solu-
tion. The way the search space is updated could introduce addi-
tional non-convexity for the remaining search space since it is in-
side the larger convex search space but outside the smaller convex
subspace P. To avoid introducing additional non-convexity, we par-
tition the x-y space into (m; +2) pieces: P, Py, ..., Ppn,41, Where
m,, are defined as:

.....

Pe=1{(xy) : (Ax+Byy"),
< (b2);, Vi=1,... . k=1; (Asx + Boy"), > (ba)y),
Pmy+1 1s defined as

Pmgi1 = {(X,¥) : ApX + Boyt < by, dly > dly'}.

Then we create the (my+1) new node problems
Bk uk wky, Vk=1,..., (my + 1) from the intersections between
the feasible region of parent node problem and the (m;+1)
pieces: Py, ..., Pm,41, respectively. As a result, (mp+1) new
node problems are introduced with the following branching rule,
presented by Xu and Wang (2014). We take it as the benchmark
but restrict the parameters (I, u,w) of a node problem B(l, u, w)
to integers as we investigate pure integer cases in this paper.

664

European Journal of Operational Research 291 (2021) 661-679

A benchmark branching rule (Xu & Wang, 2014): Let (xR, yR) be
an optimal solution to R(l, i, W). Suppose y* is an optimal solution
to L£(xR) but yR is not. The following (my + 1) new node problems,
denoted as B(IK, uk, w¥), Vk=1....,(my+1), can be created from
the parent node problem B(l, i, W):

For k=1 m,, we have

=1
! {lj,

.....

(b2 - Bzy")k +1, if j=k,
otherwise;

. N oA i
u’j: mm{(bz—Bzy)j,uj}, ifj=1,....k—1,
i;, otherwise;
w":vT/.

For k =m; + 1, we have

[m2+1 _ i
u™*! = min{b, — Boy*, 01},

it dTyt

Now we prove that the new node problems are strictly
strengthened by proving that: (a) l’k< = (by —Byyb)+1>1; (b)
w2+l = dTyl > W,

For (a): we have that (by—Byy)+1> (by—Byyl), >
(AyxR), > fk. The first inequality is straightforward; the sec-
ond one follows that y* is feasible to £(xf); and the last one
follows that x® is feasible to R([, &, W).

For (b): we have that dly! > dJyR > w. The former inequality
follows from the definition of y. and the latter follows that yR is
feasible to R ([, 4, W).

The benchmark branching rule partitions the parent node prob-
lem into (m; + 1) new node problems, and thus depends on the
number of lower-level constraints. If the lower-level problem has
a large number of complex constraints, the algorithm may become
computationally expensive to execute as a large number of new
node problems need to be created each time. Next, we introduce
the enhanced branching rule.

4.2. An enhanced branching rule

To save the computation time, We attempt to further con-
tract the remaining search space, after removing the subspace P
from the search space and creating (m; + 1) new node problems
from the parent node problem B(l, 0, W). We propose an enhanced
branching rule which can efficiently eliminate a certain number of
new node problems and strengthen the remaining node problems
at each iteration.

First, we introduce a property of the lower-level problem as in
the following Lemma 3.

Lemma 3. Let y! be an optimal solution to L£(xX) for some xR € zM.
IfJie{1,...,my} such that (AxR + Boyl); < (by);, then yt is the op-
timal solution to £(x) for any x satisfying A,xR + Boyt < Ayx + Boyt <
b,.

Proof. If there exists some x° satisfying A,xR+ Byyt < A;x0 +
Byt < b, such that y- is not optimal to £(x°), then there ex-
ists some y0 (0 <y% <Y,y% € Z™) such that Ay,x% + B,y° < b, and
dly® > dlyL. Then we have AyxR + B,y0 < by, which implies that y°
is also feasible for £(xR) and d}y° > dly'. This violates the opti-
mality of y* for £(x®). O

S. Liu, M. Wang, N. Kong et al.

Lemma 3 motivates us to search for a bilevel feasible solution
to BILP within the set

So(xF.y1) = {x € ZM|Axx € [Axx®, by — Boy*]}.

Furthermore, if y. is a unique optimal solution to £(xF), we
can prove that y! is a unique optimal solution to £(%) for any
R e Sy(xR, yb). Then we select those £ from Sy(xR, yL) such that
(%, y) satisfies the upper level constraints to ensure the bilevel
feasibility, i.e., & € Sy (xR, yL), where

Si(x*,y") = {X| Aix+ Byt < by, 0<x <X, xeSo(x*,y")}.
Finally, we choose the one from S;(xR,y') that achieves the
best upper level objective value as the optimal solution to BILP

problem with Ayx e [AyxR, by — B,y']. We summarize the above
idea in the following Lemma 4 and Lemma 5.

Lemma 4. If yL is a unique optimal solution to L£(xX), then yl is a
unique optimal solution to £(X) for any X € So(xk, yb).

Proof. To prove Lemma 4, we only need to prove that

the feasible region of L(xR) contains that of L(X). We
denote Fx®) ={y €[0,Y]|A2xR + Boy < by, y € Z"2} and
FRX)={ye[0,Y]]AyX+Byy < by, yeZ™} as the feasible re-

gion of £(xR) and £(R), respectively. Since & € So(xR, yL), we have
AR = AyxR. For any j e F(%), we have B,j < by — A% < by — AyxR,
that is § € F(x*) and F(X) c F(x®). O

Lemma 5. Let y! be a unique optimal solution to £(xR) for some xR ¢
7M., If the following problem, denoted as Q(xR, yt):
max c'x+diy*
s.t. A1x + Byt < by,
0<x=<X,

Asx > AxR,

Axx < by — Boyt,

xXeZh.

is optimal, we denote the optimal solution as x<, then (x2,yt) is an
optimal solution to BILP (1)-(5) with Ayx € [A5xR, by — ByyL]. Other-
wise, if Q(xR, yL) is infeasible, then there is no bilevel feasible solution
to BILP (1)-(5) with Ayx € [AyxR, by — Byyt].

Proof. Based on Lemmas 3 and 4, since x¢ satisfies A,xR + B,y <
AxQ + Byt < by, yL is a unique optimal solution to £(x2). There-
fore, (x2,yl) is bilevel feasible. Since x¢ is the optimal solution
to Q(xR,yL), (x2,yL) is the best bilevel feasible solution that can
be found for formulation (1)-(5) with Ayx € [A»xR, by — Boyt]. If
Q(xR, yL) is infeasible, for any x satisfies A;xR + Byyl < Ayx + Boyt <
b,, (x,y%) violates at least one constraint in the upper level. There-
fore, there is no bilevel feasible solution to (1)-(5) with Ayx
[A2XR, b2 - Bzy"]. O

Based on Lemma 5 above, there is no better bilevel fea-
sible solution than (x2,yL) or no bilevel feasible solution at
all within the point set: {x € Z" |Ayx € [A,xR, by — ByyL]}. There-
fore, after removing the subspace P from the search space
(based on the benchmark branching rule), we solve Q(xR yb)
and record the solution (if there is any), and then we carve
the point set: {x € Z™ |Ayx € [A2xR, b, — Boy]} out from the re-
maining search space. Specifically, we find those subscripts p €
{1,...,my} such that (AxR + Byy")p < (by)p, and cut off the cor-
responding interval (Ayx)p € [(A2xR) . (by — Boy*),] from the feasi-
ble region of the (my + 1) new node problems: B(I¥, uk, wk), Vk =
1,...,(my+1), described in the benchmark branching rule. A
few new node problems will be eliminated in this process. The
number of the eliminated new node problems is determined
by the relationship between [(A;xR),. (b, —Byy!),] and (L, dp)
(contain or be contained). There are totally 4 relationships: (I).

665

European Journal of Operational Research 291 (2021) 661-679

(AxR)p =1 < dip = (by — BayM)pi (). (Axx®)p = I < (by — Boy)p <
py—1; (). Iy+1 < (AxR), <tip < (by —Boyb)p; (IV). I+1<
(AgxR)p < (by — Boyh)p < 1, — 1. As we will see next, the first three
relationships can reduce the number of new node problems while
the last one will double the number of new node problems.

We analyze the four relationships in detail as:

() In relationship 1, if there exists a p such that (A;xR), = fp <
ilp < (by — Byy)p, all the (my + 1) new node problems can
be eliminated, i.e., the corresponding parent node problem
can be totally cut off. Based on Lemma 5, the polyhedron
Asx € [AyxR by —Byyt] can be carved out from the search
space. That is, the interval [(A;xR),,. (b, — Boyt),] can be cut
off from [fp,ﬁp], which results in an empty set for (Ayx)p.
Subsequently, R ([, @i, W) becomes infeasible.

Consequently, if there exists a p such that (A;xR), = fp <ip<
(by — Boyh)p, then the parent node B(, 4, W) can be totally cut
off after Q(xR, yL) is solved and the solution (if there is any) is
recorded.

(II) In relationship I, if there exists a p such that
(AyxR)p =T, < (by — Byyt)p < fip — 1, then the feasible region
of Bk, uk, wk), ¥ k=p+1,...,my + 1, gets empty since the
corresponding bound fp < (A3x)p < min{(b; — BzyL)p, ip} is
totally contained in [(A;xR),. (b, — Byy!),], while the first p
node problems are strictly strengthened.

Specially, if there exists a p such that (AxR), = l}, <
(by —Byyt)p <iip—1, then the first p new node problems,
B(*, uk, wk), Yk =1, ..., p, can be strengthened as:

o {(bz—BzyL)j+1 if j =k, p,
h=12

L otherwise;
. Y
uk = mm{(bz—BzJ/)j,uj} ifj=1,...,k—-1,
i; otherwise:

w":vT/,

while the other (m;+1—p) new node problems, B(I¥, uk wk),
Vk=p+1,...,my+1, can be eliminated.

(Il) In relationship 1II, if there exists a p such that
Ip+1 < (ApxR), < i, < (b, — Boy!),, the feasible region
of B(IP,uP,wP) becomes empty since the corresponding
bound (b, — Boyt)p + 1 < (Axx)p < iip is totally contained in
[(A2xR),, (by — Boyt),], while the other node problems are
strictly strengthened.

Consequently, if there exists a p such that fp+1 < (AR, <
ip < (by —BzyL)p, then the node B(IP,uP,wP) can be eliminated,
while the other m, new node problems can be strengthened as:

For node B(lk, uk wk), Vk=1,.. ., p—1,p+1,..., m,, we have
that
(bz - Bzyl‘)k +1 if j=k,
! TJ otherwise;

minf (b2 - By) i} ifj=1... k= 1] #p,
Wi =1 (A®) ~1if j=p,

il; otherwise;
wk =w.
For node B(IM2+1 ym2+1 wm+1) we have that
[mat+1 lA

’

S. Liu, M. Wang, N. Kong et al.

-1

(Asz)p if j=p,

! mm{ (bz — Bzyl')j, ﬂj}

ymetl

otherwise;

whtl = dlyt.

(IV) In relationship 1V, if there exists a p such that fp +1<
(ApxR)p < (by — Byy")p < iy — 1, the number of new node
problems will be doubled. Actually, cutting off each interval
[(A2xR)p, (by — Boyt),] from [y, {ip] results in two disjoint
intervals [I. (A;xR), — 1] and [(b; — Boy!), + 1,], which
corresponds to two new node problems. The algorithm will
be drastically slowed down. Therefore, in relationship IV, we
will not cut off the interval at all.

From the above, we integrate the effects of relationship I, Il and
Il when cutting off {x € Z" |Ayx € [AxR, by — Byyt]} from the re-
maining search space, and summarize it with the following en-
hanced branching rule.

An enhanced branching rule: Let (x®, yR) be an optimal solution
to R(I, i, W). Suppose yt is an optimal solution to £(x®) but yR is not.

(1) If there exists a p s.t. (AyxR)p =1, <il, < (by — BoyL)p, the

node problem B([, 4, W) can be totally eliminated.
(2) Otherwise, the following (q; —r) new node problems, denoted

as B(IK, uk, wh), k=1,....q1. k#s. t=1,....r, can be cre-
ated from the parent node problem B(l, i, w):

{(bz—BzyL)j+1 ifj=k q,..

lj
min{(bz—BzyL)j,ﬁj} =1, k=1,j¢{s1,....5r},

- qH,
k
lj

otherwise;

uk = o
i (Asz)j—l if j=51,...,57,
ii; otherwise;
wk = dgyL if k=my+1,

w otherwise,

|

where q; < @y < ... < qy are the subscripts satisfying relationship II
(if relationship Il is never satisfied, denote q4 =my+1), and s; <
Sy < ... < Sy are the subscripts satisfying relationship Ill, and r is the
number of {s1,S3,...,s7} such that st < qq, t =1,..., T (if such sub-
script does not exist, denote r = 0).

In the following, we quantify the number of new node prob-
lems that the enhanced branching can eliminate in Lemma 6 and
prove that the (g; —r) new node problems created by the en-
hanced branching rule are strictly strengthened in Lemma 7.

Lemma 6. In each iteration of the branch-and-bound framework, the
number of new node problems that are eliminated by the enhanced
branching is my+1 or my+1—qq +1, where q; is the minimum
subscript satisfying relationship II (if relationship II does not exist, de-
note q; = my + 1), and r is the number of subscripts that are smaller
than q; and satisfy relationship III.

Proof. If there exists a subscript p such that (AyxR), =1, < i, <
(b — Boyh), (ie., relationship 1), cutting off [(AyxR),. (b — Boyt),]
from [l},, ip] results in an empty feasible region for the parent node
problem. The corresponding parent node problem can be totally
cut off, i.e., all (my + 1) new node problems can be eliminated.

Otherwise, we find the smallest subscript satisfying rela-
tionship I and denote it as g;, such that (AyxR)q, =lg, <
(by — Byyt)q, <1g, — 1. Since cutting off [(A2xR)q . (by —Bayh)g,]
from [lg,, {iq,] results in an empty feasible region of B(I¥, uk, wk),

666

European Journal of Operational Research 291 (2021) 661-679

Vk=qy+1,...,my+1, the last my+1—-q; new node prob-
lems are eliminated. Further, we find all the subscripts s; <
Sy < ... < Sy that are smaller than q; and satisfy relationship III,
ie., l;t +1 < (AxR)s, < s, < (by — Boyh)s,, t=1,...,1. Since cut-
ting off [(AxR)s,. (b — Boyl)s,] from L, i,] results in an empty
feasible region of B(IK uk, wk), ¥ k=s;, sy, ..., sr, the corre-
sponding r new node problems are eliminated. All in all, there are
my +1—qq +r new node problems eliminated totally by the en-
hanced branching. O

Lemma 7. The (q; —r) new node problems created by the enhanced
branching rule are further strictly strengthened compared with those
in the benchmark branching rule.

Proof. We prove the lemma by showing that: (a) (b, —BzyL)j+
1>1;; (b) (Ax®)p —1 < minf{(b, — Boyt),. dip}. For Ea), we
have that (b; —Boyl)j+ 1> (by —Boyl)j = (Ax)j = ;. For
(b), we have that (Ax®),—1 < (AxR)p < (by —Byyt), and
(AzXR)p -1< (AzXR)p < ﬁp. O

Our enhanced branching rule will degenerate to the bench-
mark branching rule for the bilevel mix-integer linear program-
ming which contains continuous lower-level problem, since the in-
terval Ayx e [AxR, by — Byyt] is empty for such instances.

We should notice that our enhanced branching rule is proposed
based on the assumption in Lemma 5 that the optimal solution to
lower-level problem is unique. Otherwise, if there is any other op-
timal solution y + y!, we cannot draw the same conclusion, and
the enhanced branching rule in this situation may discard some
underlying bilevel feasible solutions, which may be superior to
(x2, yL) such that the solution we get may not be bilevel optimal
but bilevel feasible. Next, we discuss uniqueness of the optimal so-
lution y* to the lower-level problem £(xR).

Recall that £(x®) is formulated as follows:

max dly,
y
S.t. 8237 =< bz —AzXR,

0=<

<Y,

yez™,

For similarity of formulation, we omit 0 < J <Y by blending it
in with B, < b, — AyxR. First, we construct a linear programming
problem denoted as 7 (xR, yL) as follows:

max 0,
y
s.t. B2J7 < b2 —AQXR,

by =dly".

Note that any optimal solution to £(xR) is also optimal to
T (xR, yL). We denote (B,); as the ith row of B, and define

J={ilB2)y" = (b2 — Axx¥),}.

We denote (B,); as the matrice whose rows are (By);, i€ .
Based on Theorem 2 in Mangasarian (1979), if and only if there
exists no y satisfying

djy =0, (By),y <0, y#0,

yL is a unique optimal solution to 7 (xR, yL), and hence y! is a
unique optimal solution to £(xR). We should notice that this is a

S. Liu, M. Wang, N. Kong et al.

sufficient but not necessary condition for y* to be a unique opti-
mal solution to £(xR). This condition is equivalent to the following
program denoted as U (xR, y-):

2
max y?,
st. dly =0,
(B2)y <0,

J={ilBa)y" = (b — Axx®) }.

has an optimal solution value of zero.

In particular, we propose an optimality checking mechanism for
BILP as follows. If 2/(xR,y!) has an optimal solution value of zero
in each step, the output result of our algorithm is guaranteed op-
timal; otherwise, there is no global optimality guarantee for BILP.

In our computational experiments (Section 6), we test the so-
lution quality of our algorithm with the enhanced branching rule,
i.e.,, how big the gap is between our solution and the optimal so-
lution, in solving randomly generated BILP instances without the
uniqueness of lower-level problem’s optimal solution.

European Journal of Operational Research 291 (2021) 661-679
4.3. An enhanced branch-and-bound algorithm

We are now ready to present our branch-and-bound algorithm
employing the enhanced branching rule, which takes the param-
eter set (A{,Ay,Bq,By, by, by, c,dy,dp, X,Y) as input and outputs
a promising solution (x*,y*, ¢*) to the BILP (1)-(5). The notation
of (x* =0, y* =0, {* = —oc0) is used as the output for infeasible in-
stance. We summarize the steps of the algorithm below, where pa-
rameter zJ is used to record the objective value of the relaxation of
node j for bounding purpose, OPT is set as an indicator in the algo-
rithm that indicates the potential exactness of the output. That is,
if OPT remains to 1 when the algorithm terminates, the output is
guaranteed optimal based on the above optimality checking mech-
anism. In addition, parameter N is used to specify the number of
active nodes in the branch-and-bound tree.

(x*,y*, £*) = Algorithm (A, Ay, B1, By, b1, by, c,dq,dy, X, Y).

Step 0 (Initialization): Create the root node B(I!,u!,w!)
with 11 = —co,u! =00, W! = —cc. Initialize x*=¢,y* =0, *
—0co,N=1, OPT=1, and z' = . Go to Step 1.

Step 1 (Node management): For all ke {1,...,N} such that
zK < ¢* or I¥ ¢ uk, remove node k. Update N as the number of re-
maining nodes.

if N =0 then
if x* # @ then
if OPT =1 then

else

end

else

if OPT =1 then

| 1(c) return BILP (1)-(5) is infeasible.

else

end

end

else

end

| 1(a) return (x*,y*,{*) is an optimal solution to BILP (1)-(5).

| 1(b) return (x*,y*,{*) is a heuristically optimal solution to BILP (1)-(5).

| 1(d) return BILP (1)-(5) is heuristically infeasible.

1(e) select a node & from {1,..., N}, set (Z =k a=ukw= Wk), remove node k, reorder the remaining

nodes from 1 to N — 1, reduce N by 1, and go to Step 2.

667

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661-679

Step 2 (Relaxation): Solve R, 4, W).

if R(Z, U, W) is infeasible then

| 2(a) go to Step 1.

else

let (x®,y®) denote an optimal solution to R(I, &, W).
if c"xR+dly® <¢* then

| 2(b) go to Step 1.

else

| 2(c) go to Step 3.

end

end

Step 3 (Lower level): Solve £(xR)
Let yL denote an optimal solution to £(x®).

if dJy® =dly" then
3(a) update (x* = xR, y* = yR, ¢* = cTxR + dly®) and go to Step 1.
else
if Q(xR,y%) is optimal (denote the optimal solution as x?), and c"x? + d]y’ > ¢*,
then
update x* =x y* =yL " =cTx? +dlyt
if ¢Tx® +dlyR <¢* then
3(b) go to Step 1.

end

end

if OPT =1 and U(xR,y") has an optimal solution of 0 then
| update OPT =1.

else

| update OPT = 0.

end

3(c) go to Step 4.

end

668

S. Liu, M. Wang, N. Kong et al.

Step 4 ([A;xR. b, — Boyl])

European Journal of Operational Research 291 (2021) 661-679

if Hp € {1!2; ---;mz} S.t. (Asz)p = Z
| 4(a) go to Step 1.

else

1,..,H.
else
let q1=m2+1, H=1.

end

else

let s;=my,+1, r=0.
end

4(b) go to Step 5

end

find all the subscript q; < q; < - < qy such that (Asz)qh = iqh < (b, —BZyL)qh <1

< ﬁp < (b2 - BZyL)p then

if 3j € {1,2,..,my} st. (AxR); =1 < (b — Byy"); <10 — 1, then

qh—l,h=

if 3j € {1,2,..,my} s.t. [+1 < (4,xR); <@ < (b, — Boy");, then
find all the subscript s; <s; <+ <sr such that lASt +1< (Asz)st <, < (b, — BzyL)St,t =

1, ..., T, and count the number of {sq, s, ..., St}, such that s, < g4, and denote the number as 7.

Step 5 (An enhanced branching rule): Create (q; —r) new
node problems, increase N by (q; —r), and go to Step 1. For
k=1,...,q1, k#s:, t=1,...,r, node (N + k) is characterized by
(IN+k yN+k yN+k ZN+k) “which is defined as

vk {(szzyL)jJrl if j=k q1,....qu.
Nk =

-~

I otherwise;

min{(bz—BzyL)j,ﬁj}ifj:l,...,k—l,j¢{S],...,ST},
N+k __ [P
u;m = (Asz)j—l if j=51,...,57,
i; otherwise;
Tyl 3 —
Wk diyt ifk=my+1,
w otherwise;

ZN+k — CTXR + leyR

Next, we establish the finite termination and the correctness
of our algorithm. Since we assume the variables to be discrete
and bounded, the finite termination of our enhanced branch-and-
bound algorithm is naturally guaranteed.

Theorem 1. The output of our enhanced branch-and-bound algo-
rithm is correct.

Proof. We show the correctness of the algorithm step by step.

Steps 1(a), 1(b), 1(c), 1(d), 1(e), 2(a), 2(b), 2(c), 3(a), and 3(c)
are standard procedures in a branch-and-bound algorithm.

Step 3(b) determines that (x2,yY) is a bilevel optimal solution
to B(I, i, W) because it is an optimal solution to R(I, @i, W) and yE
is an optimal solution to £(xR).

669

Step 4(a) determines that the feasible region of the current
node contains no better bilevel feasible solutions, based on the dis-
cussion of relationship I in Section 4.

Step 4(b) calculates the number of the remaining new node
problems after carving out a set of Ayx e [AyxR, by — Byyt] of the
feasible region of the current node in Step 5.

Step 5 carves out a set (obtained from Step 4) of Ayxe
[A2xR by — Byy'] out from the current node and create (qq —1)
new branches based on the enhanced branching rule presented in
Section 4. O

5. Computational results

In this section, we demonstrate the efficiency of our algorithm
in solving BILP problem instances. We implement it in Matlab us-
ing CPLEX 12.9 as the ILP solver and run it on a large number
of general BILP instances. All computational experiments are con-
ducted on a desktop computer with 2.29GHz CPU and 8 GB of
RAM. Computing times reported in the following are in wall-clock
seconds and the time limit for each run is set to be 3600 wall-
clock seconds.

5.1. Testbed

We consider three sets of general BILP instances with no special
structure. These instances, tested in previous studies, are termed
WANGXU, DENEGRE and MIPLIB, respectively, in the literature. We
also consider one set of randomly generated BILP instances to bet-
ter illustrate the superior performance of our algorithm. We term
this set of instances, WANGXU-LARGE, in our computational study.

o Instances of class WANGXU have been proposed in Wang
and Xu (2017). They are based on the BMILP instances from

S. Liu, M. Wang, N. Kong et al.

European Journal of Operational Research 291 (2021) 661-679

100w - - -MIPLIB

LY ”“”“—1\& DENEGRE

S .Y N WANGXU
__80F ¥ L WANGXU-LAREGE
X £ *
(—]} \ 1
- A -
= 60 \ t
% . "
D N H
g “'\. \\ _
*; 40 - :.. \,__ -LR_
£ -
I+ v \\ q:

biduisiuils e
20 i .\‘. B -’ ‘\
1 N i
- ﬁ —“I
0 | LTI | = — —._'—I;, =
10° 10" 10? 10°

At least x times faster when using the enhanced cut

Fig. 1. Speed-ups achieved by the enhanced branching for three instance sets.

Xu and Wang (2014) requiring all variables to be integers.
For these instances, one has ny = n, € {10, 60, 110, ..., 460} and
my = my = 0.4n;. Elements of the upper- (lower-) level matri-
ces are real numbers (integers) uniformly distributed within a
certain range: A1, By, A, and B, are within [0, 10]; ¢, d; and d,
are within [-50, 50]; b; is within [30, 130]; and b, is within
[10, 110]. The bound on variables x and y is set to be [0, 10].
For each (ny,my) pair, 10 instances are generated. The class
WANGXU contains 100 instances totally. Among all the algo-
rithms tested on WANGXU, the algorithm “WaterM-II” proposed
by Wang and Xu (2017) has the best performance, as shown in
Wang and Xu (2017).

Since our enhanced branching idea is proposed to slow down
the creation of new node problems by the benchmark branch-
ing rule, we expect that the enhanced branching rule can
highlight its advantage when solving BILP instances with a
medium- to large-sized lower-level problem. We create a new
class WANGXU-LARGE of randomly generate BILP instances
with a relatively large-sized lower-level problem but a small-
sized upper-level problem by following the same procedure
used for class WANGXU. For this new class, we have n; =m; €
{5.6,...,10}, n € {500, 600, ...,1000} and m, = 0.4n,. We set
the bound of the decision variables to be [-10, 10]. We gener-
ate 10 instances for each (ny,ny) pair.

Instances of class DENEGRE have been proposed in DeNegre
(2011). For these instances, one has nj € {5, 10, 15}, while
the lower-level variable dimension n, is such that n; +n, =
15 or 20. There are m, = 20 lower-level constraints and no con-
straints in the upper-level problem. All coefficients are inte-
gers in the range [—50, 50]. The class DENEGRE contains 50 in-
stances totally. Among all the algorithms tested on DENEGRE,
the algorithm “MIX++" proposed by Fischetti et al. (2017a) has
the best performance, as shown in Fischetti et al. (2017a).
Instances of class MIPLIB have been introduced in Fischetti et
al. (2016)) and are available at Fischetti, Ljubi¢, Monaci and
Sinnl (2017b). They are based on instances of MILPLIB 3.0
(Bixby, Ceria, McZeal & Savelsbergh, 1998) containing only bi-
nary variables. These instances have been transformed into
bilevel problems by considering the first Y% (rounded up) vari-
ables as lower-level variables, with Y € {10, 50,90} and the re-
maining ones as upper-level variables. The objective function
is used as the upper-level objective ch-i—ley and the lower-

670

level objective is set to be d'y = —dly. All the constraints of
these instances are defined to be lower-level constraints. The
class MIPLIB contains 57 instances with up to about 80,000
relaxation-problem variables and 5000 lower-level constraints,
making them much larger (and often also much more difficult
to solve) than instances of the other classes. Among all the al-
gorithms tested on MIPLIB, the algorithms “SEP2” proposed by
Fischetti et al. (2016)) and “MIX++" proposed by Fischetti et al.
(2017a) have the best performance, as shown in Fischetti et al.
(2017a).

5.2. Computational analysis of the enhanced branching idea

In this subsection, we computationally evaluate the effect of our
enhanced branching idea on the benchmark branching rule, pro-
posed by Xu and Wang (2014). We denote the algorithm employing
the benchmark branching rule and that employing the enhanced
branching rule as “XW” and “Alg-E”, respectively. We compare XW
with Alg-E on three instance sets to directly test the performance
of our enhanced branching idea.

We illustrate the importance of the enhanced branching idea
through the cumulative speedup chart of Fig. 1. The chart shows
the speedup values over the benchmark branching rule (i.e., XW)
on four instance sets described in Section 5.1. The reported
speedup ratio is calculated as (t(XW)+ts)/(t(Alg-E)+ ts), where
t(XW) and t(Alg-E) denote the computing time (in seconds) of al-
gorithms XW and Alg-E, respectively. The time shift t; is set to
1 second to reduce the importance of instances that are easy in
the comparison. For a given instance set, each point (x,y) in this
chart indicates that y% of instances in the corresponding class have
a speedup ratio of at least x. Notice that the values on x-axis are
given in log-scale. We observe that different degree of speed-up is
achieved for the four instance sets. The most significant speedup
is achieved for MIPLIB and WANGXU-LARGE, where the former is
the most challenging set of benchmark instances in our study. Note
that both sets contain BILP instances with a relatively complex
lower-level problem. For about 35% of instances in MIPLIB, resp.,
76% of instances in WANGXU-LARGE, a speedup of at least one or-
der of magnitude is achieved; for about 25% of instances in MIPLIB,
resp., 11% of instances in WANGXU-LARGE, the actual speedup is of
two orders of magnitude or even higher, thanks to the use of the
enhanced branching idea. For the instance set DENEGRE, a speedup

S. Liu, M. Wang, N. Kong et al.

(a) S-Q of Alg-E and XW for MIPLIB

100 e
90 |- ; s =
§ -:l
2 80 x
u 1
= 'y
:.3 -
£ 70 :
I+ \
1
1
60 XW 1
---Alg-E E
50 :
0 20 40 60 80 100
%S-Q

European Journal of Operational Research 291 (2021) 661-679

(b) S-Q of Alg-E and XW for WANGXU-LARGE

Fig. 2. Solution quality of Alg-E and XW for MIPLIB and WANGXU-LARGE.

of at least one order of magnitude is achieved for nearly 20% in-
stances. For the instance set WANGXU, a slight speedup can be
achieved since all the instances can be solved within several min-
utes. In few cases, a small slowdown is observed-this usually hap-
pens for instances that can be solved within a few seconds, in
which case turning on the enhanced branching idea causes an un-
necessary overhead.

To further analyze the effect of the enhanced branching, we
next illustrate the solution quality of Alg-E and XW on three in-

stance sets. The percentage value of solution quality is calculated
as:

* _ #S
(1—M)x 100%,
1+

where ¢° is the solution value of the objective function output
by the tested algorithm and ¢* is the optimal objective function
value. For the instance set MIPLIB, we denote ¢* as the best solu-
tion value ever found for the instances that have not been solved
to optimality so far. There two situations where the output solu-
tion may not be optimal so the percentage value of solution quality
need to be calculated: on one hand, as mentioned in Section 4.2,
Alg-E can achieve a bilevel feasible solution which may not be
optimal, since all the benchmark instances are randomly gener-
ated and the optimal solution to lower-level problem may not be
unique; On the other hand, if an algorithm cannot finish solving an
instance within one hour, we terminate the algorithm prematurely
and output the best bilevel feasible solution found so far.

Fig. 2(a) and (b) shows the cumulative chart for the percent-
age value of solution quality (denoted as “S-Q”) obtained within
one hour of XW and Alg-E for MIPLIB and WANGXU-LARGE re-
spectively. For visualization, S-Q values smaller than 0 are set
to 0; similarly, if an algorithm cannot find a feasible solution
within one hour, we also set S-Q value to 0. For each instance
set, each point (x,y) in this chart indicates that y% of all in-
stances in the corresponding class have a percentage value of so-
lution quality of at least x%. In particular, the rightmost point in-
dicates the percentage of instances solved to optimality (or for
which the best solution value ever found is obtained for the un-
solved instances in MIPLIB) by the corresponding algorithm. In
Fig. 2(a), a significant solution quality improvement is achieved by
the enhanced branching idea for MIPLIB. For example, the S-Q is
at least 32% for almost 90% of instances if XW is used, while it

671

100 .
1
LN
"
I‘\
80 1
) \
2]
S .
@]
=%} [
2 60 :
<
£ |
2 2
T B
1
1
40 :
1
1
1
B
20
10 25 40 55 70 8 100
%S-Q
Table 1
Results for instance set WANGXU.
XwW WaterM-1 WaterM-II Alg-E
n1-n2 Time Time Time Time S-Q
10-10 1 0 1 0 98.84%
60-60 11 2 10 2 91.99%
110-110 24 10 17 6 97.23%
160-160 31 13 20 14 95.75%
210-210 126 40 21 26 94.41%
260-260 185 57 31 66 94.02%
310-310 314 117 37 130 96.70%
360-360 147 110 44 46 100.00%
410-410 308 290 79 155 99.27%
460-460 395 268 95 159 99.30%
Average 154 91 36 60 96.75%

grows to 100% of instances when using Alg-E. Similarly, the S-Q
is at least 80% for about 84% of instances if XW is used, while it
grows to almost 90% of instances when using Alg-E. In Fig. 2(b),
XW can solve nearly 50% instances to optimality for WANGXU-
LARGE within one hour, but XW can only achieve an S-Q value
of 33% for 90% instances while Alg-E can achieve an S-Q value
of 73% for 90% instances. Actually, XW can solve all the instances
of size (ny,ny) € {(5500), (6600), (7700)} to optimality. However,
for instances of size (ny,ny) e {(8800), (9900), (10,1000)}, XW
achieves rather disappointing solution quality within one hour
since XW needs up to 2.5 hour to solve these instances to optimal-
ity. Whereas Alg-E can solve 92% of instances to an S-Q value of at
least 70%, and solve all the instances to an S-Q value of at least
60%.We will show the details of the results for WANGXU-LARGE in
the following subsection (in Table 2).

For DENEGRE and WANGXU, XW can solve all the instances in
the two set to optimality within one hour, while Alg-E can solve
43% of instances in DENEGRE and 70% of instances in WANGXU
to optimality. Specifically, for DENEGRE, Alg-E can solve 80% of
instances to an S-Q value of at least 92%, while for WANGXU,
Alg-E can solve 80% of instances to an S-Q value of at least
94%.

Overall, these experiments show that Alg-E adopting the en-
hanced branching rule has some unavoidable overhead and imper-
fection on solution quality for relatively small-sized instances but
achieves overall speedup on most instances. In particular, our en-

S. Liu, M. Wang, N. Kong et al.

Table 2

Results for instance set WANGXU-LARGE.
nl-n2 WaterM-II XwW Alg-E

Time S-Q Time S-Q Time S-Q

5-500 3600 79% 259 100% 22 91%
6-600 3600 80% 531 100% 52 85%
7-700 3600 82% 1121 91% 139 92%
8-800 3600 76% 2666 87% 159 85%
9-900 3600 47% 3600 73% 254 89%
10-1000 3600 69% 3600 49% 411 91%
Average 3600 72% 1963 83% 173 89%

hanced branching rule shows it advantage of speedup more ob-
viously on large-sized instances with complex lower-level prob-
lem. For the instance set MIPLIB, Alg-E achieves both significant
speedup and solution quality improvement for XW.

European Journal of Operational Research 291 (2021) 661-679

5.3. Comparison with state-of-the-art approaches from literature

In this subsection, we compare our algorithm Alg-E against
state-of-the-art approaches from literature, on the same instance
classes tested before.

Instance Set WANGXU. This class of instances is proposed by
Wang and Xu (2017), where the computational results by a se-
ries of algorithms are reported, among which three algorithms:
“XW” (Xu & Wang, 2014), “WaterM-I” and “WaterM-II” (Wang &
Xu, 2017) are well-performed. Their results were obtained on “a
desktop computer with 2.4 GHz” which is similar to our hardware.
In Table 1, we report, for Alg-E, the average computing time (in
seconds) and percentage value of solution quality (denoted as “S-
Q") for each set of 10 instances. As XW, WaterM-I and WaterM-II
can solve all the instances to optimality within the time limit, for
these algorithms we only report the required computing time (in

Table 3
Results for instance set DENEGRE.
Instance Opti-V SEP1 MIX++ Alg-E
BestSol Time s-Q Nodes Time Nodes BestSol Time S-Q Nodes OPT

20-15-10-1 —388 —388 0 100.00% 50 1 21 -376 1 96.91% 55 0
20-15-10-2 —-398 —-398 17 100.00% 77,323 8 279 —-398 2 100.00% 272 0
20-15-10-3 —42 —42 0 100.00% 2201 2 54 —42 1 100.00% 136 1
20-15-10-4 -729 -729 0 100.00% 185 1 56 -729 1 100.00% 61 0
20-15-10-5 -281 -281 0 100.00% 83 0 20 -281 0 100.00% 30 0
20-15-10-6 —246 —246 0 100.00% 233 16 205 —246 1 100.00% 162 0
20-15-10-7 —-260 —260 0 100.00% 108 0 0 —-260 0 100.00% 22 0
20-15-10-8 -293 -293 0 100.00% 114 0 22 —278 2 94.88% 134 0
20-15-10-9 —-635 —-635 0 100.00% 1061 1 16 —635 4 100.00% 401 0
20-15-10-10 —-206 -206 0 100.00% 628 0 10 -196 0 95.15% 37 0
20-20-5-1 —548 —548 1 100.00% 6981 0 21 —545 0 99.45% 37 0
20-20-5-2 —568 —568 1558 100.00% 6053,523 0 49 —546 15 96.13% 688 0
20-20-5-3 —477 —-477 0 100.00% 53 0 50 —-477 0 100.00% 1 0
20-20-5-4 —-753 -753 0 100.00% 142 0 71 -753 0 100.00% 1 0
20-20-5-5 -392 -392 0 100.00% 51 0 31 —392 0 100.00% 1 1
20-20-5-6 —-1033 —-1033 5 100.00% 79,502 0 92 -1018 1 98.55% 56 0
20-20-5-7 —547 —547 0 100.00% 80 0 16 —-547 1 100.00% 42 0
20-20-5-8 -936 -936 0 100.00% 69 0 91 —936 0 100.00% 1 0
20-20-5-9 —868 —868 0 100.00% 112 0 62 —860 2 99.08% 104 0
20-20-5-10 -340 -340 0 100.00% 45 0 38 -330 1 97.06% 39 0
20-20-5-11 —426 —426 0 100.00% 9 0 11 —426 0 100.00% 1 0
20-20-5-12 —854 —-854 0 100.00% 43 0 21 —854 0 100.00% 1 0
20-20-5-13 -514 -514 116 100.00% 947,138 0 11 —493 3 95.91% 241 0
20-20-5-14 -923 -923 0 100.00% 109 0 58 -923 0 100.00% 1 0
20-20-5-15 -617 —617 157 100.00% 1031,098 1 197 —617 2 100.00% 163 1
20-20-5-16 —833 —833 0 100.00% 2535 0 44 —-833 2 100.00% 78 0
20-20-5-17 —895 —895 0 100.00% 3580 0 19 —859 1 95.98% 36 0
20-20-5-18 —356 —356 0 100.00% 2 0 0 —356 0 100.00% 1 0
20-20-5-19 —431 —431 3 100.00% 25,762 0 95 —426 2 98.84% 93 0
20-20-5-20 —438 —438 1 100.00% 3918 0 32 —432 1 98.63% 81 0
20-20-10-1 —359 —359 494 100.00% 1805,080 2 81 —347 6 96.66% 598 0
20-20-10-2 —659 —659 0 100.00% 939 1 17 —659 4 100.00% 286 1
20-20-10-3 —618 —618 1 100.00% 9456 0 52 -571 4 92.39% 269 0
20-20-10-4 —604 —604 3600 100.00% 7479,668 1 51 -592 15 98.01% 1347 0
20-20-10-5 -972 -972 0 100.00% 20 0 13 -972 0 100.00% 1 0
20-20-10-6 -731 -707 3600 96.72% 6244,669 10 511 —648 42 88.65% 2018 0
20-20-10-7 —683 —683 2788 100.00% 7420,465 0 54 —655 3 95.90% 242 0
20-20-10-8 —667 —667 3 100.00% 8116 15 232 -599 6 89.81% 523 0
20-20-10-9 -256 -256 4 100.00% 42,945 0 71 -195 4 76.17% 307 0
20-20-10-10 —441 —-441 73 100.00% 256,927 2927 8068 -326 29 73.92% 2179 0
20-20-15-1 —450 —420 3600 93.33% 4313,453 0 16 —450 2 100.00% 217 0
20-20-15-2 —645 —645 3600 100.00% 14,175,981 0 6 -598 3 92.71% 371 0
20-20-15-3 -579 -579 838 100.00% 1420,792 3 43 -518 2 89.46% 246 0
20-20-15-4 —-441 —-441 3600 100.00% 5448,638 5 131 —441 3 100.00% 293 1
20-20-15-5 -271 -271 3600 100.00% 6169,959 1392 5466 -3 6 1.11% 732 0
20-20-15-6 —263 —263 3260 100.00% 5955,753 50 483 -197 1 74.90% 62 0
20-20-15-7 —-471 —-471 246 100.00% 787,848 0 23 —471 1 100.00% 126 0
20-20-15-8 -360 -360 3600 100.00% 11,797,237 0 3 —236 1 65.56% 159 0
20-20-15-9 -584 -584 1 100.00% 2027 0 8 —563 0 96.40% 57 0
20-20-15-10 -251 -251 0 100.00% 400 0 14 —-118 1 47.01% 129 0
Average - - 695 99.80% 1631,542 89 341 - 4 92.90% 263 -

672

S. Liu, M. Wang, N. Kong et al.

European Journal of Operational Research 291 (2021) 661-679

Table 4
Results for instance set MIPLIB
SEP2 MIX++ Alg-E
Instance BestSol Time Nodes S-Q BestSol Time Nodes S-Q BestSol Time Nodes S-Q OPT
air03-0.1 382,822 3,600 146,125 98.44% 379,800 3,600 92,677 99.24% 387,656 47 191 97.16% 0
air03-0.5 505,172 3,600 85,478 100.00% 512,698 3,600 76,005 98.51% 637,254 65 251 73.85% 0
air03-0.9 823,130 3,600 44,697 93.11% 770,100 3,600 42,757 100.00% 900,420 52 158 83.08% 0
air04-0.1 56,563 3,600 55,921 99.71% 56,399 3,600 61,419 100.00% 57,029 2,624 3,224 98.88% 0
air04-0.5 60,131 3,600 35,826 99.91% 60,076 3,600 33,459 100.00% 63,333 3,600 2,574 94.58% 0
air04-0.9 84,993 3,600 3,752 84.77% 73,759 3,600 6,658 100.00% 89,235 3,600 181 79.02% 0
air05-0.1 26,801 3,600 101,047 99.16% 26,577 401 10,168 100.00% 27,515 516 1,285 96.47% 0
air05-0.5 32,497 3,600 92,234 96.14% 31,290 3,600 75,980 100.00% 44,082 925 1,656 59.12% 0
air05-0.9 44,567 3,600 82,050 90.12% 40,558 3,600 63,300 100.00% 60,217 1,487 2,358 51.53% 0
cap6000-0.1 - 3,600 1,980 - -1,967,015 587 48,281 100.00% -1,966,874 2,083 2,177 99.99% 0
cap6000-0.5 - 3,600 1,481 - - 3,600 1,115 - -1,634,335 2,136 2,177 100.00% 0
cap6000-0.9 -259,599 3,600 9,709 100.00% - 3,600 328 - -364,988 3,600 3,013 100.00% 0
enigma-0.1 0 0 990 100.00% 0 0 739 100.00% 0 0 1 100.00% 0
enigma-0.5 0 4 13,842 100.00% 0 6 10,531 100.00% 0 0 1 100.00% 0
enigma-0.9 0 46 2,670 100.00% 0 186 2,966 100.00% 0 0 1 100.00% 0
fast0507-0.1 12,562 3,600 604 99.38% 12,484 2 0 100.00% 12,484 1,383 508 100.00% 1
fast0507-0.5 61,516 3,600 7,767 99.87% 61,439 2 0 100.00% 61,439 1,169 508 100.00% 1
fast0507-0.9 109,916 8 2 100.00% 109,916 1 0 100.00% 109,916 1,419 508 100.00% 1
1152lav-0.1 4,722 2 367 100.00% 4,722 2 363 100.00% 4,722 1 1 100.00% 0
1152lav-0.5 4,866 3,600 311,915 100.00% 4,868 3,600 258,223 99.96% 4,966 25 177 97.94% 0
11521av-0.9 5,090 3,600 211,309 99.65% 5,072 3,600 171,722 100.00% 5,518 35 227 91.21% 0
Iseu-0.1 1,120 0 15 100.00% 1,120 0 19 100.00% 1,120 1 24 100.00% 0
Iseu-0.5 2,525 3,600 13,333 90.83% 2,313 3,600 12,840 100.00% 2,563 1 75 89.19% 0
Iseu-0.9 5,838 24 299 100.00% 5,838 65 357 100.00% 5,838 1 51 100.00% 0
mitre-0.1 122,310 3,600 20,791 99.94% 122,235 3,600 41,872 100.00% 122,250 3,600 2,062 99.99% 0
mitre-0.5 146,730 3,600 15,611 100.00% - 3,600 19,004 - 147,030 3,600 1,970 99.80% 0
mitre-0.9 168,885 3,600 13,066 100.00% - 3,600 10,099 - 169,215 3,600 2,027 99.80% 0
mod010-0.1 6,554 8 739 100.00% 6,554 4 9 100.00% 6,554 16 166 100.00% 0
mod010-0.5 6,692 3,600 117,241 98.88% 6,618 3,600 164,755 100.00% 6,828 28 265 96.83% 0
mod010-0.9 7,448 3,600 158,667 98.74% 7,355 3,600 111,883 100.00% 7,997 26 235 91.27% 0
nw04-0.1 17,066 820 2,884 100.00% 17,066 1,140 2,842 100.00% 17,928 70 54 94.95% 0
nw04-0.5 23,914 3,600 18,519 100.00% 24,100 3,600 8,472 99.22% 40,000 516 81 32.73% 0
nw04-0.9 43,374 3,600 12,282 100.00% 52,290 3,600 6,631 79.44% 58,422 144 52 65.31% 0
p0033-0.1 3,089 0 0 100.00% 3,089 0 0 100.00% 3,089 0 1 100.00% 0
p0033-0.5 3,095 0 2 100.00% 3,095 0 0 100.00% 3,095 0 17 100.00% 0
p0033-0.9 4,679 0 7 100.00% 4,679 0 6 100.00% 4,679 0 29 100.00% 0
p0201-0.1 12,465 3,600 5,092 98.04% 12,555 3,600 5,837 97.30% 12,225 1 134 100.00% 0
p0201-0.5 13,650 3,600 649,100 99.89% 13,635 1,113 71,052 100.00% 13,850 2 442 98.42% 0
p0201-0.9 15,025 1 150 100.00% 15,025 1 157 100.00% 15,025 1 170 100.00% 0
p0282-0.1 260,785 3,600 371,989 100.00% 260,781 4 272 100.00% 260,781 6 625 100.00% 0
p0282-0.5 273,069 3,600 998,732 99.85% 272,659 3,600 120,899 100.00% 274,353 40 3,490 99.38% 0
p0282-0.9 627,411 3,600 2,075,980 97.95% 616,034 3,600 175,290 99.81% 614,837 3 648 100.00% 0
p0548-0.1 11,301 3,600 54,071 97.74% 11,051 3,600 102,504 100.00% 11,174 4 637 98.89% 0
p0548-0.5 22,197 3,600 5,121 97.91% - 3,600 11,943 - 21,742 18 1,692 100.00% 0
p0548-0.9 49,235 3,600 293,986 100.00% 49,509 3,600 17,003 99.44% 49,537 23 2,196 99.39% 0
p2756-0.1 14,444 3,600 36,718 87.70% 12,862 3,600 37,599 100.00% 12,879 1,774 10,054 99.87% 0
p2756-0.5 23,565 3,600 58,203 100.00% 25,384 3,600 18,777 92.28% 24,989 3,600 424 93.96% 0
p2756-0.9 35,087 3,600 13,687 95.65% 33,623 3,600 9,263 100.00% 36,309 3,600 262 92.01% 0
seymour-0.1 486 3,600 231 97.90% 476 3,600 48,178 100.00% 476 3,600 3,495 100.00% 0
seymour-0.5 836 3,600 564 96.41% 807 2 18 100.00% 807 3,600 2,627 100.00% 0
seymour-0.9 1,251 9 2 100.00% 1,251 1 0 100.00% 1,251 3,600 2,948 100.00% 0
stein27-0.1 18 22 983 100.00% 18 0 528 100.00% 18 2 119 100.00% 0
stein27-0.5 19 7 336 100.00% 19 0 5 100.00% 19 1 119 100.00% 0
stein27-0.9 24 0 0 100.00% 24 0 0 100.00% 24 1 119 100.00% 0
stein45-0.1 30 1,899 12,549 100.00% 30 3 2,999 100.00% 30 13 332 100.00% 1
stein45-0.5 32 658 18,613 100.00% 32 0 14 100.00% 32 9 332 100.00% 1
stein45-0.9 40 0 0 100.00% 40 0 0 100.00% 40 9 332 100.00% 1
Average - 2,398 108,409 95.06% - 1,956 34,348 90.63% - 987 1,044 94.29% -

seconds). In the last row, the average value of computing time, and
S-Q for each algorithm is reported.

We point out that Alg-E can solve most instances to optimality
with the average percentage value of solution quality of 96.75%. For
the computing time, Alg-E performs better than XW and WaterM-I,
but is inferior to WaterM-II.

Instance Set WANGXU-LARGE. In Table 2, we report results for
the set WANGXU-LARGE where, similarly to the set WANGXU, we
compare our algorithm Alg-E with XW and WaterM-II (we omit
WaterM-I since it has been proved to be inferior to WaterM-II). To
calculate the percentage value of solution quality, each instance in

673

this set is solved to optimality by XW with up to 2.5 hours. The
results show that Alg-E can efficiently speed up the algorithm XW
with an average “S-Q” value of 89%, which is also better than that
of XW. In particular, Alg-E significantly outperforms WaterM-II on
both computing time and solution quality.

Instance Set DENEGRE. For this set of 50 bilevel instances in-
troduced by DeNegre (2011), Fischetti et al. (2017a) reported the
computational results by two algorithms “SEP1” (Fischetti et al.,
2016) and “MIX++". Their results were obtained “on a cluster con-
sisting of Intel Xeon E5-2670v2 with 2.5GHz and 12 GB of RAM”",
which is therefore 2-5 times faster than our hardware. In Table 3,

S. Liu, M. Wang, N. Kong et al.

we report, for SEP1 and Alg-E, and for each instance, the best ob-
tained feasible solution (denoted as “BestSol”), the associated per-
centage value of solution quality (denoted as “S-Q”), the comput-
ing time (in seconds), and the total number of branch-and-bound
nodes. For Alg-E, we also report the indicator “OPT” which indi-
cates the exact optimality of the output if OPT=1, and heuristic
of the output if OPT=0. As MIX++ can solve all the instances to
optimality within one hour, for this algorithm we only report the
required computing time and the number of nodes. The optimal
solution value of each instance is given in the column “Opti-V”.
In the last row, the average value of computing time, number of
nodes, and S-Q for each algorithm is reported.

We point out that Alg-E can finish solving all instances in a
fraction of a second to 42 seconds with an average value of S-Q
of 92.90%, where five instances are indicated to be exactly solved
to optimality by “OPT =1". Alg-E needs fewer nodes than SEP1 for
all but two instances. Alg-E also needs fewer nodes and shorter
computing time on average than SEP1 and MIX++. Alg-E performs
unsatisfactorily on two instances of this class: “20-20-15-5" and
“20-20-15-10", with S-Q value of 1.11% and 47.01%. These two
instances contain 15 variables and 20 constraints in the lower-
level problem, which results in a large optimal solution set. When
the enhanced branching idea is performed, some well-performed
bilevel feasible solutions including the optimal solution are carved
out, which causes poor performance of Alg-E.

Instance Set MIPLIB. Table 4 compares Alg-E with the two
best-performing algorithms from the literature; namely “SEP2” by
Fischetti et al. (2016)) and “MIX++" by Fischetti et al. (2017a), on
the very hard MIPLIB class. Recall that this class contains some
instances with up to 80,000 relaxation-problem variables, hence
in many cases, the optimal solutions are still unknown. For these
cases, we calculate the percentage value of solution quality based
on the best obtained feasible solution value. For the three algo-
rithms and for each instance, Table 4 reports the best obtained
feasible solution, the computing time (in seconds), the number
of branch-and-bound nodes, and the percentage value of solution
quality (denoted as “S-Q”). In the last row, the average value of
computing time, number of nodes, and S-Q for each algorithm is
reported (if an algorithm cannot find a feasible solution within the
time limit, the S-Q is calculated as 0).

We point out that Alg-E solves 25 instances to optimality,
where six instances are indicated to be exactly solved to optimality
by “OPT = 1", and obtains feasible solution for all the rest instances
of this class. In particular, among the 30 instances in MIPLIB that
have not been solved to optimality, Alg-E provides the best feasi-
ble solution for four instances (i.e., “cap6000-0.1", “cap6000-0.9",
“p0282-0.9", “p0548-0.5"). Similar to the results for DENEGRE, the
indicator “OPT” of the exactness of the output solution may be in-
sensitive due to the sufficient (not necessary) condition of the op-
timality checking mechanism on the uniqueness of lower-level op-
timal solution. Table 4 shows that Alg-E needs the fewest nodes
and shortest computing time on average, while achieves an av-
erage percentage value of solution quality of 94.29%. Alg-E per-
forms badly on three instances of this class: “air05-0.5", “air05-
0.9” and “nw04-0.5", with S-Q value of 59.12%, 51.53% and 32.73%.
These instances contain a large number of variables and a rela-
tively small number of constraints in the lower-level problem. For
example, “nw04-0.5" contains 43,741 variables and 36 constraints
in the lower-level problem. As explained in DENEGRE, such cases
may result in a large set of optimal solution of the lower-level
problem, which induces inferior performance with our algorithm.

Consequently, our algorithm based on the enhanced branching
rule clearly shows its superiority on general large-sized BILP in-
stances with a relatively complex lower-level problem, such as in-
stances of MIPLIB and WANGXU-LARGE. For these instances, the
enhanced branching idea can significantly reduce the size of the

674

European Journal of Operational Research 291 (2021) 661-679

branching tree, while this may cause a cost of sacrificing the op-
timality. We can expect that when the existing algorithms can-
not finish solving relatively large-sized BILP instances within a re-
stricted computation time, our algorithm can provide a promising
bilevel feasible solution within reasonable time.

For those interested in conducting comparative studies, we have
uploaded our test instances and the source codes to https://person.
zju.edu.cn/wangmingzheng#781824.

6. Conclusions

In this paper, we present an enhanced branch-and-bound algo-
rithm for a class of BILP problems, where both the upper-level and
the lower-level variables are bounded. We introduce an enhanced
branching idea and propose an enhanced branching rule based on
a benchmark branching rule presented in Xu and Wang (2014). Our
algorithm may discard bilevel feasible solutions if the lower-level
problem is not uniquely optimal, which may lead to sub-optimality
in BILP. Nevertheless, we provide a reasonable global optimality
checking mechanism which is sufficient but not necessary for BILP,
adapted from a well-established sufficient-and-necessary condition
on the solution uniqueness of linear programming. Our computa-
tional results show that the enhanced branching rule can achieve
considerable speedup for the benchmark branching rule while the
output solution can achieve satisfactory solution quality. We com-
pare our algorithm with state-of-the-art algorithms from the lit-
erature on a testbed of general BILP instances with up to 80,000
relaxation-problem variables and 5000 lower-level constraints. In
particular, our algorithm can achieve superiority on both algorithm
speedup and solution quality for large-sized BILP instances with
relatively complex lower-level problem.

In the future, we will investigate how our global optimality
checking mechanism can be weaken to a sufficient and necessary
condition. We will also improve our enhanced branching idea so as
to promote the solution quality or even guarantee the exactness of
the algorithm. In addition, it is worth further study on adapting the
algorithm for large-scale real-world instances such as those aris-
ing in the bilevel bidding problem in electricity markets. Finally, it
is interesting to investigate the actual implementation of state-of-
the-art BILP algorithms for real-world instances generated by alge-
braic modeling tools.

Acknowledgements

The authors thank the associate editor and the three anony-
mous referees for their valuable comments that have substantially
improved the paper. This research was supported by the Key Pro-
gram of the NSFC under the Grant 71931009, the General Program
of the NSFC under the Grant 71671023, National Science Founda-
tion of US under the Grant 1761022, the Foundation for Innovative
Research Groups of NSFC under the Grant 71421001 and the key
projects of of International Cooperation and Exchanges NSFC under
the Grant 72010107002.

Appendix. An application on a bilevel facility location problem
using our algorithm in algebraic formulation

To demonstrate how our algorithm can be used in an algebraic
formulation setting, we address a bilevel facility location problem
(Zare et al., 2019) as an example, since this problem is modeled as
a BILP problem. The problem can be described as follows.

A firm that produces a set of products given by G = {1, .., G}
can place new facilities at the locations given by I = {1, ..., q}. The
leader chooses the facilities placement, while the follower must
determine the number of each product’s demand that each facility
processes. The firm incurs a cost of ai(l) for each facility opened at

https://person.zju.edu.cn/wangmingzheng#781824
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100014718

S. Liu, M. Wang, N. Kong et al.

location i € I, and incurs an opportunity cost of al.(z) for each un-
used production capacity of any plant at location i eI after it is
opened. The follower faces a cost of c(]) for using a unit of capac-

ity at a facility at location i € I, and a cost of cg) associated with
the transportation of g € G from a facility at location i € I.

Let x; be the number of facilities to open at location i, and let
Yig be the number of demand for product g that the plants at lo-
cation i process. Q denotes the maximum number of facilities that
can be opened at any given location. Dg denotes the demand for g,
and r;, is the units of capacity needed to make product g at a facil-
ity at location i, and G is the capacity of a plant at location i, then
the bilevel facility location problem (BFLP) can be modeled as:

BFLP:

: _ M), O . .
min =Y aVxi+Y a®|Cxi— > rigyig |,

iel iel 8eg
st.0<x;,<9Q, iel
XieZ, iel,
2
ye argmln ZZ(r,g+c())y,g

iel geg

st. Y Jig=Dg ged,

iel

Y rigig <Cixi, i€l

8geg
Y Jg <Y Dgxi. i€l
geg geg

Vig>0, JigeZ, icl geg.}

Before implementing the algorithm, we should construct the
following model.

The first model is the relaxation problem of BFLP, denoted as
R(BFLP), which contains both the upper-level and the lower-level
constraints.

R(BFLP) (the relaxation problem of BFLP):

: (1))
min doaixi+ Y a? | Gxi =) righig |

iel iel geG

st.0<x;<Q, iel

Xi€Z, iel,

> Vig=Dg. g€,

iel

Z TigVig = CiXi, iel,

g<g
Y Vg Dexi. iel,
geg geg

Vig=0, yigeZ, i€l geg.

The second model is the node problem of BFLP, denoted as
R(l, 1, w), which adds bound constraints to the relaxation problem
of BFLP.

675

European Journal of Operational Research 291 (2021) 661-679

~

R, 0

H 1)
min doalxi+ > aP [CGxi =Y rigyig |

iel iel geg

w) (the node problem of BFLP)

st.0<x;<9Q, iel

X €Z, iel,

Zyig = ng g€ g,

iel

Zrlgylg =Gx;. iel

8eg
Zylg ZDgxu iel
geg geg

Vig=0, yigeZ, icl geg.
<Cxi<iy iel

i <) Dgxi <y, i€l
geg

(e e

iel geG

The third model, denoted as Q(x®, yL), uses the leader’s objec-
tive function as the objective function. The constraints contain all
the upper-level and lower-level constraints, together with a bound
constraint on the related part of the upper-level decision variables.
All the lower-level decision variables equal to y*.

Q(XR, yL)

: M @ L
min doalPxi+ > aP [CGxi =Y rigyiy).

iel iel geg

st.0<x;<9Q, iel

Xi€Z, iel,

Gx; < C,‘X?, iel,

> Dgxi <) Dexf, i€l

8eg 8eg

> TV =G, el
geg

> Ve <D Dgxi, el

8eg geg

The fourth model, denoted as ¢/ (xR, y!), is used to propose the
optimality checking mechanism, which uses the sufficient and nec-
essary condition for linear programming to be uniquely optimal as
constraints.

u(x®, yb)

2
max y?,
< y

S. Liu, M. Wang, N. Kong et al.

sty > (Vg +)y =0,

iel geg
Y V=0 gel
iel
Zyig < 0, i er
8eg
Z rl-gﬁ,-g < 0, i 6],
8eg

European Journal of Operational Research 291 (2021) 661-679

J= {ﬂ Y Ji=Djor Y righg=Cixjor Y ig= ZDng}~
iel 86 g6 geG
We are now ready to use our branch-and-bound algorithm to
solve the BFLP model. The detailed steps can be demonstrated as
follows.
Initialization. Denote x* =@, y* =0, {* =400, N=1, OPT =
1,z =00, and Il =0, i=1,....2q, u} =QG, i=1,....q. ul =

QY Dg, i=q+1,...,2q.
geg
Step 1. For all k € {1, ..., N} such that z¥ > ¢* or I¥ £ uk, remove

node k. Update N as the number of remaining nodes.

if N =0 then

if x* # @ then

if OPT =1 then

else

end

else

if OPT =1 then

else

end

end

else

end

| 1(c) return BFLP is infeasible.

| 1(a) return (x*,y*,{*) is an optimal solution to BFLP.

| 1(b) return (x*,y*,{*) is a heuristically optimal solution to BFLP.

| 1(d) return BFLP is heuristically infeasible.

~

1(e) select a node k from {1,..., N}, set (i =k a=ukw= wk), remove node k, reorder the remaining

nodes from 1 to N — 1, reduce N by 1, and go to Step 2.

676

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661-679

Step 2. Solve R, 4, W).

if R(Z, i, vT/) is infeasible then
| 2(a) go to Step 1.
else

let (x®,y®) denote an optimal solution to R l

if Z a(l)xR +Z (2)< lgy > ¢* then
| 2(b) go to Step 1.

else

| 2(¢) go to Step 3.

end

end

Step 3 (Lower level) Solve £(xX)
Let yL denote an optimal solution to £(x®).

2 1 2
if ZLEIdeg(()rlg + C())Y5g = Zieldeg (CL()rig ())ylg then

3(a) update (x* =xRy =y ¢ = Z ai(l)xiR + Z al.(z) <Cl-x,-R - Z rl-gyl{g)) and go to Step 1.
i€l i€l 9€G

else

if Q(xR,y) is optimal (denote the optimal solution as x¢), and Z ai(l)xiQ +Z al.(z) (CixiQ -
i€l i€l

Z rigyiLg> < (", then
9€§
i ¥ =20y =3he =Y @4y (et =Y)
i€l i€l 9€G
if Z a(l)xR +Z (2)< —Z rigy{;) > (" then
9Eey

| 3 gotostep 1.

end

end

if OPT =1and U(x®,y*) has an optimal solution of 0 then
| update OPT =1.

else

| update OPT = 0.

end

3(c) go to Step 4.

end

677

S. Liu, M. Wang, N. Kong et al.

Step 4.

European Journal of Operational Research 291 (2021) 661-679

< C, xR

if Ipe{1,2,.. < Cyxp

L, <,

4} st TgegTogVpg = Zp ST

then

R
< XgegTr—-q.9%p—q

4(a) go to Step 1.
else
if Ipef{12.. = l

R
P q

4} st Xgeg rpnyLy

L
YgegYo-q9 = lp S LgegTh—q.g

such that s, < vy, and denote the number as 7.
else

let s;=2qg+1, r=0.

end

4(b) go to Step 5

end

or Ipefqg+1,q+2,..

Cxp<up—1 ordpefqg+1,q+2,.
— 1, then

R _
1< YgegYsi-q.9 < fs, < LgegTo-q.g¥5-q» t = Loy

2q} st YgegVo—qg =

.,2q} st

find all the subscript v; < v, <+ <wy such that Ygegt, oV 5 =Ly, < Cp xX <0, —1 and
Yoo Vh —ag =y, S TgegTop—qgXn g <0y, —1, h=1,.. H.

Ise
let vi =2q, H=1.

end

if (12,9} st [+1<Tyeengyy <% <Gxf or Jj€f{g+1,q+2,..2q} st. [+1<
206 Y-q.9 < < XgegTj—q,9%—q- then
find all the subscript s; < s, < -+ < s such that Zst +1=<X4eq rst,gysLt,g < (s xst, and fst +

T, and count the number of {s1,59,...,s7},

Step 5. Create (v; —r) new node problems, increase N by
(vy—r1), and go to Step 1. For k=1,...,vy, k#s, t=1,...,1,
node (N + k) is characterized by (IN*k yN+tk wN+k zN+ky which is
defined as

ergy§g+1 if j=k,vq,...,vy, and j <q,
E

Ntk L syl if j=kvq,...,vy, and j > q;
j j-a.g
geg
fj otherwise;
min{zgeg rjgy§g, ﬁj} ifj=1,....k—=1,j¢{s1,....sr}, and j<q,
min{zgegyﬁiq'g,ﬁj} ifj=1,...,k—=1,j¢{s1.....sr}.and j > q,
u?’*k: ijg?fl if j=s1,....s7, and j <q,
Y eco rj,q.gx;‘_q if j=sq,...,s7, and j > q,
i otherwise;
(1) (2) ;
> Tig+ Cig v ifk=2q+1,
wh+k — lelgeg(3) ig
w otherwise;

1 2
- L Do 6 - Tr

iel iel geg

678

References

Avraamidou, S., & Pistikopoulos, E. N. (2019). A Multi-Parametric optimization ap-
proach for bilevel mixed-integer linear and quadratic programming problems.
Computers and Chemical Engineering, 125, 98-113.

Bard, J. F, & Moore,]. T. (1992). An algorithm for the discrete bilevel programming
problem. Naval Research Logistics (NRL), 39(3), 419-435.

Bixby, R. E., Ceria, S., McZeal, C. M., & Savelsbergh, M. W. P. (1998). An updated
mixed integer programming library: MIPLIB 3.0. Optima, 58, 12-15.

Brotcorne, L., Labbé, M., Marcotte, P, & Savard, G. (2001). A bilevel model for toll
optimization on a multicommodity transportation network. Transportation sci-
ence, 35(4), 345-358.

Cao, D., & Chen, M. (2006). Capacitated plant selection in a decentralized manufac-
turing environment: A bilevel optimization approach. European Journal of Oper-
ational Research, 169(1), 97-110.

Caprara, A., Carvalho, M., Lodi, A., & Woeginger, G. J. (2016). Bilevel knapsack with
interdiction constraints. INFORMS Journal on Computing, 28(2), 319-333.

Caramia, M., & Mari, R. (2015). Enhanced exact algorithms for discrete bilevel linear
problems. Optimization Letters, 9(7), 1447-1468.

Caramia, M., & Mari, R. (2016). A decomposition approach to solve a bilevel ca-
pacitated facility location problem with equity constraints. Optimization Letters,
10(5), 997-1019.

Ceylan, H., & Bell, M. G. H. (2004). Traffic signal timing optimization based on ge-
netic algorithm approach, including drivers’ routing. Transportation Research Part
B: Methodological, 38(4), 329-342.

Croce, F. D., & Scatamacchia, R. (2019). Lower Bounds and a New Exact Approach
for the Bilevel Knapsack with Interdiction Constraints. Integer Programming and
Combinatorial Optimization, 155-167.

Croce, F. D., & Scatamacchia, R. (2020). An exact approach for the bilevel knap-
sack problem with interdiction constraints and extensions. Mathematical Pro-
gramming, 1-33.

http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0011

S. Liu, M. Wang, N. Kong et al.

Dempe, S., Kalashnikov, V., Pérez-Valdés, G. A., & Kalashnykova, N. I. (2011). Nat-
ural gas bilevel cash-out problem: Convergence of a penalty function method.
European Journal of Operational Research, 215(3), 532-538.

Dempe, S., Kalashnikov, V., & RiOs-Mercado, R. Z. (2005). Discrete bilevel program-
ming: Application to a natural gas cash-out problem. European Journal of Oper-
ational Research, 166(2), 469-488.

Dempe, S., Mordukhovich, B. S., & Zemkoho, A. B. (2014). Necessary optimality con-
ditions in pessimistic bilevel programming. Optimization, 63(4), 505-533.

DeNegre, S. (2011). Interdiction and discrete bilevel linear programming PhD thesis.
Bethlehem, PA: Lehigh University.

DeNegre, S. T., & Ralphs, T. K. (2009). A branch-and-cut algorithm for integer bilevel
linear programs. Operations research and cyber-infrastructure (pp. 65-78). Boston,
MA: Springer.

Dominguez, L. F,, & Pistikopoulos, E. N. (2010). Multiparametric programming based
algorithms for pure integer and mixed-integer bilevel programming problems.
Computers and Chemical Engineering, 34(12), 2097-2106.

Faisca, N. P, Dua, V., Rustem, B., Saraiva, P. M., & Pistikopoulos, E. N. (2007). Para-
metric global optimisation for bilevel programming. Journal of Global Optimiza-
tion, 38(4), 609-623.

Fischetti, M., Ljubi¢, 1., Monaci, M., & Sinnl, M. (2016). Intersection cuts for bilevel
optimization. In Q. Louveaux, & M. Skutella (Eds.), Proceedings of the 18th
international conference integer programming combinatorial optimization, IPCO
(pp. 77-88). ChamSwitzerland: Springer International.

Fischetti, M., Ljubi¢, 1., Monaci, M., & Sinnl, M. (2017a). A new general-purpose al-
gorithm for mixed-integer bilevel linear programs. Operations Research, 65(6),
1615-1637.

Fischetti, M., Ljubi¢, 1., Monaci, M., & Sinnl, M. (2017b). Instances and solver soft-
ware for mixed-integer bilevel linear problems. Accessed March 2017. https:
//msinnl.github.io/pages/bilevel.html

Fischetti, M., Ljubi¢, 1., Monaci, M., & Sinnl, M. (2018). On the use of intersection
cuts for bilevel optimization. Mathematical Programming, 172(1-2), 77-103.

Florensa, C. Garcia-Herreros, P, Misra, P, Arslan, E., Mehta, S, & Gross-
mann, I. E. (2017). Capacity planning with competitive decision-makers: Trilevel
MILP formulation, degeneracy, and solution approaches. European Journal of Op-
erational Research, 262(2), 449-463.

Garcia-Herreros, P, Zhang, L., Misra, P, Arslan, E, Mehta, S, & Gross-
mann, L. E. (2016). Mixed-integer bilevel optimization for capacity planning with
rational markets. Computers and Chemical Engineering, 86, 33-47.

Hemmati, M., & Smith, J. C. (2016). A mixed-integer bilevel programming approach
for a competitive prioritized set covering problem. Discrete Optimization, 20,
105-134.

Jeroslow, R. G. (1985). The polynomial hierarchy and a simple model for competitive
analysis. Mathematical Programming, 32(2), 146-164.

Kalashnikov, V. V., Pérez, G. A., & Kalashnykova, N. I. (2010). A linearization ap-
proach to solve the natural gas cash-out bilevel problem. Annals of Operations
Research, 181(1), 423-442.

679

European Journal of Operational Research 291 (2021) 661-679

Kalashnikov, V. V., & Rios-Mercado, R. Z. (2006). A natural gas cash-out problem:
A bilevel programming framework and a penalty function method. Optimization
and Engineering, 7(4), 403-420.

Labbé, M., Marcotte, P, & Savard, G. A. (1988). Bilevel model of taxation and
its application to optimal highway pricing. Management science, 44(12-part-1),
1608-1622.

Lozano, L., & Smith, J. C. (2016). A backward sampling framework for interdiction
problems with fortification. INFORMS Journal on Computing, 29(1), 123-139.
Lozano, L, & Smith,]J. C. (2017). A value-function-based exact approach for
the bilevel mixed-integer programming problem. Operations Research, 65(3),

768-786.

Mangasarian, O. L. (1979). Uniqueness of solution in linear programming. Linear Al-
gebra and Its Applications, 25(none), 151-162.

Moore, J. T., & Bard, J. F. (1990). The mixed integer linear bilevel programming prob-
lem. Operations research, 38(5), 911-921.

Saharidis, G. K., & lerapetritou, M. G. (2009). Resolution method for mixed integer
bi-level linear problems based on decomposition technique. Journal of Global
Optimization, 44(1), 29-51.

Tahernejad, S., Ralphs, TK, .& DeNegre, S.T. (.2016). A branch-and-cut algorithm
for mixed integer bilevel linear optimization problems and its implementation.
COR@ L Laboratory Technical Report 16T-015-R3, Lehigh University.

Tang, Y., Richard, J. P. P, & Smith,]. C. (2016). A class of algorithms for mixed-integer
bilevel min-max optimization. Journal of Global Optimization, 66(2), 225-262.

Vicente, L., Savard, G., & Judice,]. (1996). Discrete linear bilevel programming prob-
lem. Journal of Optimization Theory and Applications, 89(3), 597-614.

Wang, L., & Xu, P. (2017). The watermelon algorithm for the bilevel integer linear
programming problem. SIAM Journal on Optimization, 27(3), 1403-1430.

Wiesemann, W., Tsoukalas, A., Kleniati, P. M., & Rustem, B. (2013). Pessimistic bilevel
optimization. SIAM Journal on Optimization, 23(1), 353-380.

Xu, P, & Wang, L. (2014). An exact algorithm for the bilevel mixed integer linear
programming problem under three simplifying assumptions. Computers and Op-
erations Research, 41, 309-318.

Yue, D., Gao, J., Zeng, B., & You, F. (2019). A projection-based reformulation and de-
composition algorithm for global optimization of a class of mixed integer bilevel
linear programs. Journal of Global Optimization, 73(1), 27-57.

Zare, M. H., Borrero, J. S., Zeng, B., & Prokopyev, O. A. (2019). A note on linearized
reformulations for a class of bilevel linear integer problems. Annals of Operations
Research, 272(1-2), 99-117.

Zeng, B., & An, Y. (2014). Solving bilevel mixed integer program by reformulations
and decomposition. Optimization Online, 1-34.

Zhang, J., & Ozaltin, O. Y. (2017). A branch-and-cut algorithm for discrete bilevel
linear programs. Optimization Online.

http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
https://msinnl.github.io/pages/bilevel.html
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0032
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0032
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0044

	An enhanced branch-and-bound algorithm for bilevel integer linear programming
	1 Introduction
	2 Literature review
	3 Model formulation and definitions
	4 An enhanced branch-and-bound algorithm
	4.1 A benchmark branching rule
	4.2 An enhanced branching rule
	4.3 An enhanced branch-and-bound algorithm

	5 Computational results
	5.1 Testbed
	5.2 Computational analysis of the enhanced branching idea
	5.3 Comparison with state-of-the-art approaches from literature

	6 Conclusions
	Acknowledgements
	Appendix. An application on a bilevel facility location problem using our algorithm in algebraic formulation
	References

