
European Journal of Operational Research 291 (2021) 661–679

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

An enhanced branch-and-bound algorithm for bilevel integer linear

programming

Shaonan Liu
a , Mingzheng Wang

b , ∗, Nan Kong
c , Xiangpei Hu

b

a School of Economics and Management, Dalian University of Technology, Dalian 116024, China
b School of Management, Zhejiang University, Hangzhou 310058, China
c Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA

a r t i c l e i n f o

Article history:

Received 7 November 2019

Accepted 1 October 2020

Available online 8 October 2020

Keywords:

Integer programming

Bilevel programming

Branch and bound

Enhanced branching

a b s t r a c t

Bilevel integer linear programming (BILP) problems have been studied for decades. Many exact algorithms

have been proposed in recent years for small- or medium-sized instances. However, few of these algo-

rithms were shown to be efficient on large-sized instances. In this paper, we present an enhanced branch-

and-bound algorithm for a class of BILP problems, which can discard a subspace from the search space

in each iteration larger than that in a benchmark branch-and-bound algorithm. The corresponding en-

hanced branching rule can efficiently slow down the creation of new node problems so as to significantly

reduce the computation time. Our scheme may be suboptimal if the lower-level problem is not unique

optimal as the enhanced branching rule may discard bilevel feasible solutions that may turn out to be

optimal to the bilevel programming. We present computational studies to evaluate the algorithm speedup

and solution quality of our algorithm, compared with state-of-the-art algorithms from the literature on a

large testbed of general BILP instances, some of which are still unsolved. The computational results show

that our enhanced branching rule can achieve significant speedup on the benchmark branching rule with

satisfying solution quality. In particular, our algorithm shows superior performance on large-sized BILP

instances with a relatively complex lower-level problem.

© 2020 Elsevier B.V. All rights reserved.

1

t

a

c

w

p

c

&

k

S

(

S

H

n

2

n

l

t

s

r

t

k

l

a

w

p

a

d

c

h

l

d

h

0

. Introduction

Bilevel programming describes the interaction between two au-

onomous and possibly conflicting decision makers: a leader and

 follower. It plays a fundamental role in many real-world appli-

ations, when competitive agents operate in a hierarchical way

ith conflicting objectives. Discrete bilevel linear programming

roblems, which contain integer decision variables, have been

ommonly seen in facility location (Cao & Chen, 2006 ; Caramia

 Mari, 2016), network design (Ceylan & Bell, 2004), bilevel

napsack (Caprara, Carvalho, Lodi & Woeginger, 2016 ; Lozano &

mith, 2016 and Tang, Richard & Smith, 2016), traffic systems

 Brotcorne, Labbé, Marcotte & Savard, 2001 , Labbé, Marcotte &

avard, 1998), capacity planning (Florensa et al., 2017 ; Garcia-

erreros et al., 2016), and natural gas regulation (Dempe, Kalash-

ikov & RıÓs-Mercado, 2005 , 2011 ; Kalashnikov & Ríos-Mercado,

006 ; Kalashnikov, Pérez & Kalashnykova, 2010). For these prob-
∗ Corresponding author.

E-mail addresses: l_shnan@163.com (S. Liu), wangmzh@zju.edu.cn (M. Wang),

kong@purdue.edu (N. Kong), drhxp@dlut.edu.cn (X. Hu).

s

w

a

t

g

ttps://doi.org/10.1016/j.ejor.2020.10.002

377-2217/© 2020 Elsevier B.V. All rights reserved.
ems, specially designed exact algorithms were proposed. However,

hese algorithms were tested efficient only on small- to medium-

ized instances. On the other hand, there is a lack of exact algo-

ithms dealing with large-sized instances. This can be explained by

he inherent complexity of bilevel programming problem, which is

nown to be NP-hard even when the leader’s and follower’s prob-

ems are both linear programs (Jeroslow, 1985).

To fill in this gap, we propose an enhanced branch-and-bound

lgorithm for bilevel integer linear programming (BILP) problems

here decision variables are all integers. We take a branching rule

reviously proposed by Xu and Wang (2014) as the benchmark

nd embed an enhanced branching idea in it to efficiently slow

own the creation of new node problems by eliminating newly

reated node problems in each iteration. The corresponding en-

anced branching rule is proved to be able to efficiently cut off

arger subspace from the search space, so as to significantly re-

uce the computation time. However, it may discard bilevel fea-

ible solutions if the lower-level problem is not uniquely optimal,

hich may lead to sub-optimality in BILP. Nevertheless, we adapt

 well-established sufficient-and-necessary condition on the solu-

ion uniqueness of linear programming and provide a reasonable

lobal optimality checking mechanism for BILP. To test the effi-

https://doi.org/10.1016/j.ejor.2020.10.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.10.002&domain=pdf
mailto:l_shnan@163.com
mailto:wangmzh@zju.edu.cn
mailto:nkong@purdue.edu
mailto:drhxp@dlut.edu.cn
https://doi.org/10.1016/j.ejor.2020.10.002

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

c

t

g

c

m

a

o

g

r

r

f

p

w

p

l

h

o

t

l

S

2

b

s

i

m

g

s

a

p

a

b

i

t

a

f

a

t

a

c

c

j

L

m

p

p

o

p

l

e

q

l

2

p

m

l

l

v

M

b

s

S

f

a

e

W

b

t

o

a

t

c

F

S

l

t

g

t

t

s

o

f

t

H

(

i

r

d

(

d

o

e

b

o

p

o

o

o

t

l

g

l

t

s

c

i

M

t

g

t

s

s

t

i

e

e

r

s

B

b

i

a

b

s

t

iency of our algorithm, including algorithm speedup (compared

o the benchmark branching rule) and solution quality (i.e., the

ap between our output solution and the optimal solution), we

ompare our algorithm with state-of-the-art algorithms on a com-

on testbed of three sets of general BILP instances from the liter-

ture and a set of randomly generated BILP instances. To the best

f our knowledge, these instances are of the largest size among

eneral BILP instances tested in the literature. The computational

esults show that our enhanced branching rule can achieve supe-

iority on both algorithm speedup and solution quality, especially

or large-sized BILP instances with a relatively complex lower-level

roblem.

The rest of this paper is organized as follows. In Section 2 ,

e review the most relevant approaches to discrete bilevel linear

rogramming from the literature. We describe our model formu-

ation and related definitions in Section 3 . We introduce our en-

anced branch-and-bound algorithm in Section 4 . The performance

f our algorithm is evaluated in Section 5 by means of computa-

ional experiments on three sets of general BILP instances from the

iterature and randomly generated ones. We draw conclusions in

ection 6 .

. Literature review

Even though there exists a large body of literature devoted to

ilevel optimization, there are relatively few exact algorithms de-

igned for discrete bilevel linear programming. In this section, we

ntroduce relevant references on solution methods of bilevel 0–1

ixed integer linear programming , bilevel mixed integer linear pro-

ramming (BMILP) and bilevel integer linear programming (BILP) .

For bilevel 0–1 mixed integer linear programming, an early

tudy can be found in Bard and Moore (1992) , where both upper-

nd lower-level variables are restricted to be binary. They pro-

osed an algorithm that implicitly enumerates upper level vari-

bles and solves the associated lower-level problems to obtain

ilevel feasible solutions. The authors tested their algorithm on

nstances with up to 45 variables and 18 constraints. More than

wenty years later, Zhang and Özaltın (2017)) proposed a branch-

nd-cut algorithm enhanced by incorporating the ideas of value

unction and local search for problems where upper level variables

re restricted to be binary. Their computational results showed

hat their algorithm can solve instances with up to 200 variables

nd 150 constraints in a reasonable amount of time. For a spe-

ial case known as the bilevel knapsack problem with interdiction

onstraints, where the leader seeks to minimize the follower’s ob-

ective, exact algorithms were proposed by Caprara et al. (2016) ,

ozano and Smith (2016) , Tang et al. (2016) and Croce and Scata-

acchia (2019 , 2020) . Taking a straightforward cutting plane ap-

roach for the upper level problem, Caprara et al. (2016) pro-

osed an exact algorithm that exploits the structural properties

f the bilevel knapsack problem. Lozano and Smith (2016) pro-

osed a sampling scheme to optimize the bilevel knapsack prob-

em in which the follower problem can take any form. Tang

t al. (2016) proposed three generic solution algorithms and re-

uired leader variables to be binary, whereas the follower’s prob-

em can be general mixed-integer. Croce and Scatamacchia (2019 ,

020) derived effective lower bounds for the bilevel knapsack

roblem with interdiction constraints and presented an exact

ethod that exploits the structure of the induced follower’s prob-

em. The authors tested their algorithms on bilevel knapsack prob-

em instances with interdiction constraints that have up to 110

ariables in total.

The literature of BMILP started with early work in the 1990s by

oore and Bard (1990) , which was first to propose a branch-and-

ound approach. The largest instance that the authors reported

olution results on has 40 variables and 18 constraints. Vicente,
662
avard and Judice (1996) derived characterizing properties for dif-

erent types of discrete linear bilevel programming problems. The

uthors studied the geometry of the feasible set and discussed the

xistence of an optimal solution. About twenty years later, Xu and

ang (2014) designed an exact algorithm within a branch-and-

ound framework for BMILP with bounded and integral assump-

ion on upper level variables. The authors tested their algorithm

n instances of size rising to 920 variables and 368 constraints. The

verage computation time ranged from 10 minutes to 4 hours, and

he longest solution time taken was nearly six hours. Employing a

lass of intersection cuts valid to BMILP under mild assumptions,

ischetti, Ljubi ́c, Monaci & Sinnl, 2018 , Fischetti, Ljubi ́c, Monaci and

innl (2016 proposed a branch-and-cut algorithm for BMILP prob-

ems and developed a new family of cuts for BMILP problems. Fur-

her, Fischetti, Ljubi ́c, Monaci and Sinnl (2017a) extended their al-

orithm in Fischetti et al. (2018) by suggesting new types of in-

ersection cuts and introduced the so-called hypercube intersec-

ion cut, which allows for nonlinear terms to appear in both con-

traints and objective functions. The authors tested their algorithm

n instances with up to 80,0 0 0 variables and 50 0 0 constraints

rom the literature. Other BMILP algorithms that use cutting plane

echniques within a branch-and-bound framework can be found in

emmati and Smith (2016) and Tahernejad, Ralphs and DeNegre

2016) . Note that algorithms in these papers only solve small-sized

nstances.

Besides a branch-and-bound framework, a few other lines of

esearch for BMILP were proposed based on reformulation, Ben-

ers decomposition, and parametric programming. Zeng and An

2014) proposed a novel scheme based on reformulation and

ecomposition for BMILP problems with upper level constraints

nly depending on upper level variables. Their approach was

xtended by Yue, Gao, Zeng and You (2019) to a projection-

ased variant, which allows upper level constraints to depend

n lower-level variables. Saharidis and Ierapetritou (2009) pro-

osed a Benders-decomposition-based algorithm, which is based

n the idea of decomposing the initial problem into a relaxation

f the original problem and a series of restriction problems. Based

n multi-parametric programming theory, Avraamidou and Pis-

ikopoulos (2019) and Faísca, Dua, Rustem, Saraiva and Pistikopou-

os (2007) proposed algorithms to solve bilevel quadratic pro-

ramming problems, where the objective functions of the upper-

evel and lower-level problems are allowed to be quadratic. Note

hat the above work only presented computational experiments on

mall-sized instances.

There are also several approaches to solving real-world appli-

ations modeled as BMILP, e.g., Caramia and Mari (2016) for facil-

ty location problems, Dempe et al. (2011) , Kalashnikov and Ríos-

ercado (2006) , and Dempe et al. (2005) for natural gas regula-

ion. Caramia and Mari (2016) proposed a decomposition based al-

orithm that resembles the algorithm in Saharidis and Ierapetri-

ou (2009) , but it is properly designed to cope with the bilevel

tructure of the facility location problem and the integrality of a

ubset of variables under the control of the leader. The authors

ested their algorithm on a set of benchmark instances available

n the literature with up to 150 facilities and 150 clients. Dempe

t al. (2011) , Kalashnikov and Ríos-Mercado (2006) , and Dempe

t al. (2005) linearized their BMILP problems and designed algo-

ithms based on a penalty function approach. The real-world in-

tances they solved have dimensions up to 10 0 0. Recently, Zare,

orrero, Zeng and Prokopyev (2019) presented two strong-duality-

ased reformulations of a class of BMILP problems with the key

dea of exploiting the binary expansion of upper level integer vari-

bles. They tested their approaches on three instance classes, i.e.

ounded BMILP instances with less than 500 variables and con-

traints, BMILP with interdiction constraints instances with less

han 300 variables and 400 constraints, and bilevel facility location

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

i

t

c

l

p

b

M

t

w

s

a

S

(

l

p

X

g

p

a

t

i

t

b

(

r

p

r

3

m

s

0

x

y

w

Q

fi

t

p

(

s

p

f

l

l

l

u

t

Z

a

t

s

R

p

a

m

n

l

m

s

B
d

l

p

m

f

b

c

d

A

i

f

a

a

a

4

i

nstances with up to 40 facilities and 240 products. They showed

hat their approaches can lead to orders of magnitude reduction in

omputation time.

For BILP problems which are most relevant to our paper, an ear-

ier study can be found in DeNegre and Ralphs (2009) which pro-

osed a branch-and-cut algorithm using cutting plane techniques,

ased on the previous branch-and-bound algorithm for BMILP in

oore and Bard (1990) . They tested their algorithm on a set of in-

erdiction instances with knapsack constraints at the upper level

ith up to 34 variables and 19 constraints. The computational re-

ults showed that their approach makes improvement on Moore

nd Bard (1990) with fewer nodes in their branch-and-bound tree.

imilarly, in a branch-and-bound framework, Caramia and Mari

2015) derived valid inequalities to eliminate bilevel infeasible so-

utions for a given upper level solution. They reported solving BILP

roblems with up to 25 variables and 25 constraints. Wang and

u (2017) presented an excellent algorithm called watermelon al-

orithm for BILP, which integrates branch-and-bound and cutting

lane techniques. The watermelon algorithm is the first exact BILP

lgorithm that does not rely on additional simplifying assump-

ions. The authors tested their method on the same instances as

n Xu and Wang (2014) with integrality restrictions and showed

hat the watermelon algorithm outperforms previous branch-and-

ound algorithms in DeNegre and Ralphs (2009) and Xu and Wang

2014) , Moore and Bard (1990) . Besides branch-and-bound algo-

ithms, Domínguez and Pistikopoulos (2010) introduced two multi-

arametric algorithms for BILP and BMILP, and tested their algo-

ithms on small-sized instances.

. Model formulation and definitions

We present the BILP problem as:

ax
x,y

ζ = c T x + d T 1 y (1)

 . t . A 1 x + B 1 y ≤ b 1 , (2)

 ≤ x ≤ X, (3)

 ∈ Z
n 1 , (4)

 ∈ argmax
˜ y

{
d T 2 ̃ y : A 2 x + B 2 ̃ y ≤ b 2 , 0 ≤ ˜ y ≤ Y, ˜ y ∈ Z

n 2
}
, (5)

here A 1 ∈ Q
m 1 ×n 1 , A 2 ∈ Z

m 2 ×n 1 , B 1 ∈ Q
m 1 ×n 2 , B 2 ∈ Z

m 2 ×n 2 , b 1 ∈

m 1 , b 2 ∈ Z

m 2 , c ∈ Q
n 1 , d 1 ∈ Q

n 2 , d 2 ∈ Q
n 2 , X ∈ Q

n 1 , and Y ∈ Q
n 2 are

nite rational or integer parameters.

Since rational parameters can be equivalently converted to in-

egers by multiplication, without loss of generality, the lower-level

arameters (A 2 , B 2 , b 2) are assumed to be integers. As formulation

1) –(5) indicates, if the lower-level problem has alternative optimal

olutions, then the follower will select a ˆ y that maximizes the up-

er level objective function, thus benefiting the leader. Thus the

ormulation (1) –(5) is commonly known as the optimistic formu-

ation of the problem. In contrast, under the pessimistic formu-

ation, the follower will pick a ˆ y that either violates the upper

evel constraint or otherwise makes the least contribution to the

pper level objective function. More detailed discussions regarding

he two formulations can be found in Dempe, Mordukhovich and

emkoho (2014) , Lozano and Smith (2017) , Xu and Wang (2014) ,

nd Wiesemann, Tsoukalas, Kleniati and Rustem (2013) .

In the following, we introduce several definitions to facilitate

he description of our algorithm. We use a vector with a sub-
663
cript j to refer to the jth element of the vector. We define the set
¯ = R ∪ { + ∞ } ∪ { −∞ } as the extended real number line including

ositive and negative infinity. For a given x ∈ Z
n 1 , we denote L (x)

s the lower-level problem (LLP) :

ax
˜ y

{
d T 2 ̃ y : A 2 x + B 2 ̃ y ≤ b 2 ; 0 ≤ ˜ y ≤ Y ; ˜ y ∈ Z

n 2
}
.

For a given set of parameters (l, u ∈ R̄
m 2 , w ∈ R̄) , we define a

ode problem B(l, u, w) by the following parametric BILP prob-

em:

ax
x,y

ζ = c T x + d T 1 y

 . t . A 1 x + B 1 y ≤ b 1 , (6)

l ≤ A 2 x ≤ u, (7)

d T 2 y ≥ w, (8)

0 ≤ x ≤ X, (9)

x ∈ Z
n 1 , (10)

y ∈ argmax
˜ y

{
d T 2 ̃ y : A 2 x + B 2 ̃ y ≤ b 2 , 0 ≤ ˜ y ≤ Y, ˜ y ∈ Z

n 2
}
. (11)

By definition, formulation (1) –(5) is equivalent to

(−∞ , ∞ , −∞) , which will be used as the root node problem. We

efine the relaxation problem R (l, u, w) by the following integer

inear programming (ILP) problem, which is referred to as the high

oint problem in Moore and Bard (1990) :

ax
x,y

ζ = c T x + d T 1 y

s . t . A 1 x + B 1 y ≤ b 1 ,

A 2 x + B 2 y ≤ b 2 ,

l ≤ A 2 x ≤ u,

d T 2 y ≥ w,

0 ≤ x ≤ X,

0 ≤ y ≤ Y,

x ∈ Z
n 1 , y ∈ Z

n 2 .

For a given BILP B(l, u, w) , a solution (x, y) is called bilevel

easible if it satisfies constraints (6) –(11) . A solution is called

ilevel infeasible if it is not bilevel feasible. A solution (x ∗, y ∗) is
alled bilevel optimal if it is bilevel feasible and we have c T x ∗ +

T
1
y ∗ ≥ c T x 0 + d T

1
y 0 for any other bilevel feasible solution (x 0 , y 0) .

 BILP problem is called optimal if a bilevel optimal solution ex-

sts (unique or not). A BILP problem is called infeasible if no bilevel

easible solution exists. In this paper, both B(l, u, w) , its relax-

tion R (l, u, w) and L (x) are bounded for any l, u ∈ R̄
m 2 , w ∈ R̄ ,

nd x ∈ Z
n 1 . Therefore, for a BILP problem defined in (1) –(5) , there

re only two possible outcomes: optimal or infeasible.

. An enhanced branch-and-bound algorithm

Our algorithm utilizes a branch-and-bound framework, which

teratively solves the relaxation problem and removes its optimal

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

s

l

a

b

i

4

l

b

w

l

(

L

(

P

m

t

p

a

H

L

e

L

a

L

b

t

P

c

P

h

(

L
i

i

i

t

t

s

s

t

P

P

P

B

t

p

n

p

b

t

A

a

t

d

t

l

u

w

l

u

w

s

w

(

o

f

f

f

l

n

a

c

n

t

4

t

f

f

b

n

a

t

L

I

t

b

P

B

i

d

i

m

olution from the search space if the optimal solution of the re-

axation problem is labeled bilevel infeasible. The novelty lies in

n enhanced branching rule. In the following, we first introduce a

enchmark branching rule and then propose the enhanced branch-

ng rule. This is followed by a presentation of our algorithm.

.1. A benchmark branching rule

The idea of our algorithm starts by solving the relaxation prob-

em of the root node problem. If the relaxation problem is infeasi-

le, the BILP is also infeasible. If the relaxation problem is optimal

ith an optimal solution (x R , y R) , we solve the LLP L (x R) . The fol-

owing Lemma 1 provides a necessary and sufficient condition for

 x R , y R) to be bilevel optimal.

emma 1. Let (x R , y R) be an optimal solution to R (̂ l , ̂ u , ˆ w) . Then

 x R , y R) is optimal to B(̂ l , ̂ u , ˆ w) if and only if y R is optimal to L (x R) .

roof. The “only if” direction is a direct result of the bilevel opti-

ality of (x R , y R) .

For the “if” direction, we have that if y R is optimal to L (x R) ,

hen (x R , y R) is a bilevel feasible solution to B(̂ l , ̂ u , ˆ w) , and thus it

rovides a lower bound of B(̂ l , ̂ u , ˆ w) . Meanwhile, (x R , y R) achieves

n upper bound of B(̂ l , ̂ u , ˆ w) since it is optimal to R (̂ l , ̂ u , ˆ w) .

ence, the “if” statement follows. �
However, it may be more common that y R is not optimal to

 (x R) . Then (x R , y R) is a bilevel infeasible solution which should be

liminated from the search space. The following Lemma 2 , taking

emmas 3 and 4 of Xu and Wang (2014) for reference, introduces

 subspace containing (x R , y R) but no bilevel feasible solutions.

emma 2. (Xu & Wang, 2014). If (x R , y R) is optimal to R (̂ l , ̂ u , ˆ w) but

ilevel infeasible. Suppose that y L is an optimal solution to L (x R) , then

he following subspace:

 =

{
(x, y) : A 2 x + B 2 y

L ≤ b 2 , d
T
2 y < d T 2 y

L
}

ontains (x R , y R) but no bilevel feasible solutions.

roof. Since y L is an optimal solution to L (x R) but y R is not, we

ave y L ∈ Z
n 2 , 0 ≤ y L ≤ Y , A 2 x

R + B 2 y
L ≤ b 2 and d

T
2 y

R < d T 2 y
L , that is

 x R , y R) ∈ P . For any (̄x , ̄y) ∈ P , we show that ȳ can’t be optimal to

 (̄x) . Actually, we have A 2 ̄x + B 2 y
L ≤ b 2 and d

T
2 ̄
y < d T

2
y L , namely, y L

s a feasible solution to L (̄x) and superior to ȳ . �

By Lemma 2 , we remove the subspace P from the search space,

.e., the feasible region of R (̂ l , ̂ u , ˆ w) , so as to eliminate the bilevel

nfeasible solution without eliminating any bilevel feasible solu-

ion. The way the search space is updated could introduce addi-

ional non-convexity for the remaining search space since it is in-

ide the larger convex search space but outside the smaller convex

ubspace P . To avoid introducing additional non-convexity, we par-

ition the x - y space into (m 2 + 2) pieces: P, P 1 , . . . , P m 2 +1 , where

 k , k = 1 , . . . , m 2 , are defined as:

P k = { (x, y) : (A 2 x + B 2 y
L
)
i

≤ (b 2) i , ∀ i = 1 , . . . , k − 1 ;
(
A 2 x + B 2 y

L
)
k

> (b 2) k } ,
 m 2 +1 is defined as

 m 2 +1 = { (x, y) : A 2 x + B 2 y
L ≤ b 2 , d

T
2 y ≥ d T 2 y

L } .
Then we create the (m 2 + 1) new node problems

(l k , u k , w
k) , ∀ k = 1 , . . . , (m 2 + 1) from the intersections between

he feasible region of parent node problem and the (m 2 + 1)

ieces: P 1 , . . . , P m 2 +1 , respectively. As a result, (m 2 + 1) new

ode problems are introduced with the following branching rule,

resented by Xu and Wang (2014) . We take it as the benchmark

ut restrict the parameters (l, u, w) of a node problem B(l, u, w)

o integers as we investigate pure integer cases in this paper.
664
 benchmark branching rule (Xu & Wang, 2014): Let (x R , y R) be

n optimal solution to R (̂ l , ̂ u , ˆ w) . Suppose y L is an optimal solution

o L (x R) but y R is not. The following (m 2 + 1) new node problems,

enoted as B(l k , u k , w
k) , ∀ k = 1 , . . . , (m 2 + 1) , can be created from

he parent node problem B(̂ l , ̂ u , ˆ w) :

For k = 1 , . . . , m 2 , we have

k
j =

{ (
b 2 − B 2 y

L
)
k
+ 1 , if j = k,

ˆ l j , otherwise ;

k
j =

{

min

{ (
b 2 − B 2 y

L
)
j
, ˆ u j

}

, if j = 1 , . . . , k − 1 ,

ˆ u j , otherwise ;

k = ˆ w .

For k = m 2 + 1 , we have

m 2 +1 =

ˆ l ,

m 2 +1 = min

{
b 2 − B 2 y

L , ˆ u
}
,

m 2 +1 = d T 2 y

L .

Now we prove that the new node problems are strictly

trengthened by proving that: (a) l k
k

= (b 2 − B 2 y
L) k + 1 > ̂

 l k ; (b)

m 2 +1 = d T

2
y L > ˆ w .

For (a): we have that (b 2 − B 2 y
L) k + 1 > (b 2 − B 2 y

L) k ≥
 A 2 x

R) k ≥ ˆ l k . The first inequality is straightforward; the sec-

nd one follows that y L is feasible to L (x R) ; and the last one

ollows that x R is feasible to R (̂ l , ̂ u , ˆ w) .

For (b): we have that d T 2 y
L > d T 2 y

R ≥ ˆ w . The former inequality

ollows from the definition of y L and the latter follows that y R is

easible to R (̂ l , ̂ u , ˆ w) .

The benchmark branching rule partitions the parent node prob-

em into (m 2 + 1) new node problems, and thus depends on the

umber of lower-level constraints. If the lower-level problem has

 large number of complex constraints, the algorithm may become

omputationally expensive to execute as a large number of new

ode problems need to be created each time. Next, we introduce

he enhanced branching rule.

.2. An enhanced branching rule

To save the computation time, We attempt to further con-

ract the remaining search space, after removing the subspace P
rom the search space and creating (m 2 + 1) new node problems

rom the parent node problem B(̂ l , ̂ u , ˆ w) . We propose an enhanced

ranching rule which can efficiently eliminate a certain number of

ew node problems and strengthen the remaining node problems

t each iteration.

First, we introduce a property of the lower-level problem as in

he following Lemma 3 .

emma 3. Let y L be an optimal solution to L (x R) for some x R ∈ Z
n 1 .

f ∃ i ∈ { 1 , . . . , m 2 } such that (A 2 x R + B 2 y
L) i < (b 2) i , then y

L is the op-

imal solution to L (x) for any x satisfying A 2 x
R + B 2 y

L ≤ A 2 x + B 2 y
L ≤

 2 .

roof. If there exists some x 0 satisfying A 2 x
R + B 2 y

L ≤ A 2 x
0 +

 2 y
L ≤ b 2 such that y

L is not optimal to L (x 0) , then there ex-

sts some y 0 (0 ≤ y 0 ≤ Y, y 0 ∈ Z
n 2) such that A 2 x

0 + B 2 y
0 ≤ b 2 and

T
2
y 0 > d T

2
y L . Then we have A 2 x

R + B 2 y
0 ≤ b 2 , which implies that y 0

s also feasible for L (x R) and d T 2 y
0 > d T 2 y

L . This violates the opti-

ality of y L for L (x R) . �

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

t

S

c

x

(

f

S

b

p

i

L

u

P

t

d

F
g

A

t

L

Z

m

i

o

w

t

P

A

f

t

b

Q
b

f

[

s

a

f

(

a

t

m

{
r

b

1

f

n

b

(

(

u

(

r

t

(

o

r

(

B

l

u

w

w

∀

u

w

t

l

u

w

l

Lemma 3 motivates us to search for a bilevel feasible solution

o BILP within the set

 0

(
x R , y L

)
=

{
x ∈ Z

n 1 | A 2 x ∈

[
A 2 x

R , b 2 − B 2 y
L
]}

.

Furthermore, if y L is a unique optimal solution to L (x R) , we

an prove that y L is a unique optimal solution to L (̂ x) for any

ˆ ∈ S 0 (x R , y L) . Then we select those ˆ x from S 0 (x R , y L) such that
 ̂ x , y L) satisfies the upper level constraints to ensure the bilevel

easibility, i.e., ˆ x ∈ S 1 (x R , y L) , where

 1

(
x R , y L

)
=

{
x | A 1 x + B 1 y

L ≤ b 1 , 0 ≤ x ≤ X, x ∈ S 0
(
x R , y L

)}
.

Finally, we choose the one from S 1 (x R , y L) that achieves the
est upper level objective value as the optimal solution to BILP

roblem with A 2 x ∈ [A 2 x
R , b 2 − B 2 y

L] . We summarize the above

dea in the following Lemma 4 and Lemma 5 .

emma 4. If y L is a unique optimal solution to L (x R) , then y L is a

nique optimal solution to L (̂ x) for any ˆ x ∈ S 0 (x R , y L) .

roof. To prove Lemma 4 , we only need to prove that

he feasible region of L (x R) contains that of L (̂ x) . We

enote F(x R) = { y ∈ [0 , Y] | A 2 x R + B 2 y ≤ b 2 , y ∈ Z
n 2 } and

(̂ x) = { y ∈ [0 , Y] | A 2 ̂ x + B 2 y ≤ b 2 , y ∈ Z
n 2 } as the feasible re-

ion of L (x R) and L (̂ x) , respectively. Since ˆ x ∈ S 0 (x R , y L) , we have

 2 ̂ x ≥ A 2 x
R . For any ˆ y ∈ F(̂ x) , we have B 2 ̂ y ≤ b 2 − A 2 ̂ x ≤ b 2 − A 2 x

R ,

hat is ˆ y ∈ F(x R) and F(̂ x) ⊆ F(x R) . �

emma 5. Let y L be a unique optimal solution to L (x R) for some x R ∈

n 1 . If the following problem, denoted as Q (x R , y L) :

ax
x

c T x + d T 1 y
L

s . t . A 1 x + B 1 y
L ≤ b 1 ,

0 ≤ x ≤ X,

A 2 x ≥ A 2 x
R ,

A 2 x ≤ b 2 − B 2 y
L ,

x ∈ Z
n 1 .

s optimal, we denote the optimal solution as x Q , then (x Q , y L) is an

ptimal solution to BILP (1) - (5) with A 2 x ∈ [A 2 x
R , b 2 − B 2 y

L] . Other-

ise, if Q (x R , y L) is infeasible, then there is no bilevel feasible solution

o BILP (1) - (5) with A 2 x ∈ [A 2 x
R , b 2 − B 2 y

L] .

roof. Based on Lemmas 3 and 4 , since x Q satisfies A 2 x
R + B 2 y

L ≤
 2 x

Q + B 2 y
L ≤ b 2 , y

L is a unique optimal solution to L (x Q) . There-

ore, (x Q , y L) is bilevel feasible. Since x Q is the optimal solution

o Q (x R , y L) , (x Q , y L) is the best bilevel feasible solution that can

e found for formulation (1) –(5) with A 2 x ∈ [A 2 x
R , b 2 − B 2 y

L] . If

 (x R , y L) is infeasible, for any x satisfies A 2 x
R + B 2 y

L ≤ A 2 x + B 2 y
L ≤

 2 , (x, y
L) violates at least one constraint in the upper level. There-

ore, there is no bilevel feasible solution to (1) –(5) with A 2 x ∈

 A 2 x
R , b 2 − B 2 y

L] . �

Based on Lemma 5 above, there is no better bilevel fea-

ible solution than (x Q , y L) or no bilevel feasible solution at

ll within the point set: { x ∈ Z
n 1 | A 2 x ∈ [A 2 x

R , b 2 − B 2 y
L] } . There-

ore, after removing the subspace P from the search space

based on the benchmark branching rule), we solve Q (x R , y L)

nd record the solution (if there is any), and then we carve

he point set: { x ∈ Z
n 1 | A 2 x ∈ [A 2 x

R , b 2 − B 2 y
L] } out from the re-

aining search space. Specifically, we find those subscripts p ∈

 1 , . . . , m 2 } such that (A 2 x R + B 2 y
L) p < (b 2) p , and cut off the cor-

esponding interval (A 2 x) p ∈ [(A 2 x
R) p , (b 2 − B 2 y

L) p] from the feasi-

le region of the (m 2 + 1) new node problems: B(l k , u k , w
k) , ∀ k =

 , . . . , (m 2 + 1) , described in the benchmark branching rule. A

ew new node problems will be eliminated in this process. The

umber of the eliminated new node problems is determined

y the relationship between [(A 2 x
R) p , (b 2 − B 2 y

L) p] and [̂ l p , ̂ u p]

contain or be contained). There are totally 4 relationships: (I).
665
 A 2 x
R) p = ̂

 l p ≤ ˆ u p ≤ (b 2 − B 2 y
L) p ; (II). (A 2 x

R) p = ̂
 l p ≤ (b 2 − B 2 y

L) p ≤
ˆ p − 1 ; (III). ˆ l p + 1 ≤ (A 2 x

R) p ≤ ˆ u p ≤ (b 2 − B 2 y
L) p ; (IV). ˆ l p + 1 ≤

 A 2 x
R) p ≤ (b 2 − B 2 y

L) p ≤ ˆ u p − 1 . As we will see next, the first three

elationships can reduce the number of new node problems while

he last one will double the number of new node problems.

We analyze the four relationships in detail as:

(I) In relationship I, if there exists a p such that (A 2 x
R) p = ̂

 l p ≤
ˆ u p ≤ (b 2 − B 2 y

L) p , all the (m 2 + 1) new node problems can

be eliminated, i.e., the corresponding parent node problem

can be totally cut off. Based on Lemma 5 , the polyhedron

A 2 x ∈ [A 2 x
R , b 2 − B 2 y

L] can be carved out from the search

space. That is, the interval [(A 2 x
R) p , (b 2 − B 2 y

L) p] can be cut

off from [̂ l p , ̂ u p] , which results in an empty set for (A 2 x) p .

Subsequently, R (̂ l , ̂ u , ˆ w) becomes infeasible.

Consequently, if there exists a p such that (A 2 x
R) p = ̂

 l p ≤ ˆ u p ≤
 b 2 − B 2 y

L) p , then the parent node B(̂ l , ̂ u , ˆ w) can be totally cut

ff after Q (x R , y L) is solved and the solution (if there is any) is

ecorded.

(II) In relationship II, if there exists a p such that

(A 2 x
R) p = ̂

 l p ≤ (b 2 − B 2 y
L) p ≤ ˆ u p − 1 , then the feasible region

of B(l k , u k , w
k) , ∀ k = p + 1 , . . . , m 2 + 1 , gets empty since the

corresponding bound ˆ l p ≤ (A 2 x) p ≤ min { (b 2 − B 2 y
L) p , ̂ u p } is

totally contained in [(A 2 x
R) p , (b 2 − B 2 y

L) p] , while the first p

node problems are strictly strengthened.

Specially, if there exists a p such that (A 2 x
R) p = ̂

 l p ≤
 b 2 − B 2 y

L) p ≤ ˆ u p − 1 , then the first p new node problems,

(l k , u k , w
k) , ∀ k = 1 , . . . , p, can be strengthened as:

k
j =

{(
b 2 − B 2 y

L
)
j
+ 1 if j = k, p,

ˆ l j otherwise ;

k
j =

{

min

{ (
b 2 − B 2 y

L
)
j
, ˆ u j

}

if j = 1 , . . . , k − 1 ,

ˆ u j otherwise ;

k = ˆ w ,

hile the other (m 2 + 1 − p) new node problems, B(l k , u k , w
k) ,

 k = p + 1 , . . . , m 2 + 1 , can be eliminated.

(III) In relationship III, if there exists a p such that
ˆ l p + 1 ≤ (A 2 x

R) p ≤ ˆ u p ≤ (b 2 − B 2 y
L) p , the feasible region

of B(l p , u p , w
p) becomes empty since the corresponding

bound (b 2 − B 2 y
L) p + 1 ≤ (A 2 x) p ≤ ˆ u p is totally contained in

[(A 2 x
R) p , (b 2 − B 2 y

L) p] , while the other node problems are

strictly strengthened.

Consequently, if there exists a p such that ˆ l p + 1 ≤ (A 2 x
R) p ≤

ˆ p ≤ (b 2 − B 2 y
L) p , then the node B(l p , u p , w

p) can be eliminated,

hile the other m 2 new node problems can be strengthened as:

For node B(l k , u k , w
k) , ∀ k = 1 , . . . , p − 1 , p + 1 , . . . , m 2 , we have

hat

k
j =

{ (
b 2 − B 2 y

L
)
k
+ 1 if j = k,

ˆ l j otherwise ;

k
j =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

min

{ (
b 2 − B 2 y

L
)
j
, ˆ u j

}

if j = 1 , . . . , k − 1 , j � = p, (
A 2 x

R
)
p
− 1 if j = p,

ˆ u j otherwise ;

k = ˆ w .

For node B(l m 2 +1 , u m 2 +1 , w
m 2 +1) , we have that

m 2 +1 =

ˆ l ;

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

u

w

I

m

h

t

u

w

(

s

n

s

l

p

h

L

n

b

s

n

t

P

(

f

p

c

t

(

f

∀

l

s

i

t

f

s

m

h

L

b

i

P

1

h

(

(

m

m

t

b

l

t

t

u

(

b

l

m

i

p

m

T

J

e

d

y

u

m 2 +1
j

=

⎧ ⎨

⎩

(
A 2 x

R
)
p
− 1 if j = p,

min

{ (
b 2 − B 2 y

L
)
j
, ˆ u j

}

otherwise ;

m 2 +1 = d T 2 y

L .

(IV) In relationship IV, if there exists a p such that ˆ l p + 1 ≤
(A 2 x

R) p ≤ (b 2 − B 2 y
L) p ≤ ˆ u p − 1 , the number of new node

problems will be doubled. Actually, cutting off each interval

[(A 2 x
R) p , (b 2 − B 2 y

L) p] from [̂ l p , ̂ u p] results in two disjoint

intervals [̂ l p , (A 2 x
R) p − 1] and [(b 2 − B 2 y

L) p + 1 , ̂ u p] , which

corresponds to two new node problems. The algorithm will

be drastically slowed down. Therefore, in relationship IV, we

will not cut off the interval at all.

From the above, we integrate the effects of relationship I, II and

II when cutting off { x ∈ Z
n 1 | A 2 x ∈ [A 2 x

R , b 2 − B 2 y
L] } from the re-

aining search space, and summarize it with the following en-

anced branching rule.

An enhanced branching rule: Let (x R , y R) be an optimal solution

o R (̂ l , ̂ u , ˆ w) . Suppose y L is an optimal solution to L (x R) but y R is not.

(1) If there exists a p s.t. (A 2 x
R) p = ̂

 l p ≤ ˆ u p ≤ (b 2 − B 2 y
L) p , the

node problem B(̂ l , ̂ u , ˆ w) can be totally eliminated.

(2) Otherwise, the following (q 1 − r) new node problems, denoted

as B(l k , u k , w
k) , k = 1 , . . . , q 1 , k � = s t , t = 1 , . . . , r, can be cre-

ated from the parent node problem B(̂ l , ̂ u , ˆ w) :

l k j =

{ (
b 2 − B 2 y

L
)
j
+ 1 if j = k, q 1 , . . . , q H ,

ˆ l j otherwise ;

k
j =

⎧ ⎪ ⎨

⎪ ⎩

min

{ (
b 2 − B 2 y

L
)
j
, ˆ u j

}

if j = 1 , . . . , k − 1 , j / ∈ { s 1 , . . . , s T } ,(
A 2 x

R
)
j
− 1 if j = s 1 , . . . , s T ,

ˆ u j otherwise ;

w
k =

{
d T 2 y

L if k = m 2 + 1 ,
ˆ w otherwise ,

here q 1 < q 2 < . . . < q H are the subscripts satisfying relationship II

if relationship II is never satisfied, denote q 1 = m 2 + 1), and s 1 <

 2 < . . . < s T are the subscripts satisfying relationship III, and r is the

umber of { s 1 , s 2 , . . . , s T } such that s t ≤ q 1 , t = 1 , . . . , T (if such sub-

cript does not exist, denote r = 0).

In the following, we quantify the number of new node prob-

ems that the enhanced branching can eliminate in Lemma 6 and

rove that the (q 1 − r) new node problems created by the en-

anced branching rule are strictly strengthened in Lemma 7 .

emma 6. In each iteration of the branch-and-bound framework, the

umber of new node problems that are eliminated by the enhanced

ranching is m 2 + 1 or m 2 + 1 − q 1 + r, where q 1 is the minimum

ubscript satisfying relationship II (if relationship II does not exist, de-

ote q 1 = m 2 + 1), and r is the number of subscripts that are smaller

han q 1 and satisfy relationship III.

roof. If there exists a subscript p such that (A 2 x
R) p = ̂

 l p ≤ ˆ u p ≤
 b 2 − B 2 y

L) p (i.e., relationship I), cutting off [(A 2 x
R) p , (b 2 − B 2 y

L) p]

rom [̂ l p , ̂ u p] results in an empty feasible region for the parent node

roblem. The corresponding parent node problem can be totally

ut off, i.e., all (m 2 + 1) new node problems can be eliminated.

Otherwise, we find the smallest subscript satisfying rela-

ionship II and denote it as q 1 , such that (A 2 x
R) q 1 = ̂

 l q 1 ≤
 b 2 − B 2 y

L) q 1 ≤ ˆ u q 1 − 1 . Since cutting off [(A 2 x
R) q 1 , (b 2 − B 2 y

L) q 1]

rom [̂ l q , ̂ u q] results in an empty feasible region of B(l k , u k , w
k) ,
1 1

666
 k = q 1 + 1 , . . . , m 2 + 1 , the last m 2 + 1 − q 1 new node prob-

ems are eliminated. Further, we find all the subscripts s 1 <

 2 < . . . < s r that are smaller than q 1 and satisfy relationship III,

.e., ˆ l s t + 1 ≤ (A 2 x
R) s t ≤ ˆ u s t ≤ (b 2 − B 2 y

L) s t , t = 1 , . . . , r. Since cut-

ing off [(A 2 x
R) s t , (b 2 − B 2 y

L) s t] from [̂ l s t , ̂ u s t] results in an empty

easible region of B(l k , u k , w
k) , ∀ k = s 1 , s 2 , . . . , s r , the corre-

ponding r new node problems are eliminated. All in all, there are

 2 + 1 − q 1 + r new node problems eliminated totally by the en-

anced branching. �

emma 7. The (q 1 − r) new node problems created by the enhanced

ranching rule are further strictly strengthened compared with those

n the benchmark branching rule.

roof. We prove the lemma by showing that: (a) (b 2 − B 2 y
L) j +

 ≥ ˆ l j ; (b) (A 2 x
R) p − 1 < min { (b 2 − B 2 y

L) p , ̂ u p } . For (a), we

ave that (b 2 − B 2 y
L) j + 1 > (b 2 − B 2 y

L) j ≥ (A 2 x) j ≥ ˆ l j . For

b), we have that (A 2 x
R) p − 1 < (A 2 x

R) p ≤ (b 2 − B 2 y
L) p and

 A 2 x
R) p − 1 < (A 2 x

R) p ≤ ˆ u p . �

Our enhanced branching rule will degenerate to the bench-

ark branching rule for the bilevel mix-integer linear program-

ing which contains continuous lower-level problem, since the in-

erval A 2 x ∈ [A 2 x
R , b 2 − B 2 y

L] is empty for such instances.

We should notice that our enhanced branching rule is proposed

ased on the assumption in Lemma 5 that the optimal solution to

ower-level problem is unique. Otherwise, if there is any other op-

imal solution ȳ � = y L , we cannot draw the same conclusion, and

he enhanced branching rule in this situation may discard some

nderlying bilevel feasible solutions, which may be superior to

 x Q , y L) such that the solution we get may not be bilevel optimal

ut bilevel feasible. Next, we discuss uniqueness of the optimal so-

ution y L to the lower-level problem L (x R) .

Recall that L (x R) is formulated as follows:

ax
˜ y

d T 2 ̃ y ,

s . t . B 2 ̃ y ≤ b 2 − A 2 x
R ,

0 ≤ ˜ y ≤ Y,

˜ y ∈ Z
n 2 .

For similarity of formulation, we omit 0 ≤ ˜ y ≤ Y by blending it

n with B 2 ̃ y ≤ b 2 − A 2 x
R . First, we construct a linear programming

roblem denoted as T (x R , y L) as follows:

ax
˜ y

0 ,

s.t. B 2 ̃ y ≤ b 2 − A 2 x
R ,

d T 2 ̃ y = d T 2 y
L .

Note that any optimal solution to L (x R) is also optimal to

 (x R , y L) . We denote (B 2) i as the i th row of B 2 and define

 =

{
i | (B 2) i y L =

(
b 2 − A 2 x

R
)
i

}
.

We denote (B 2) J as the matrice whose rows are (B 2) i , i ∈ J.

Based on Theorem 2 in Mangasarian (1979) , if and only if there

xists no y satisfying

T
2 y = 0 , (B 2) J y ≤ 0 , y � = 0 ,

L is a unique optimal solution to T (x R , y L) , and hence y L is a
nique optimal solution to L (x R) . We should notice that this is a

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

s

m

p

m

h

B

i

t

l

i

l

u

4

e

e

a

o

s

r

n

r

i

g

a

a

w

−

z

m

ufficient but not necessary condition for y L to be a unique opti-

al solution to L (x R) . This condition is equivalent to the following

rogram denoted as U(x R , y L) :

ax
y

y 2 ,

s . t . d T 2 y = 0 ,

(B 2) J y ≤ 0 ,

J =

{
i | (B 2) i y L =

(
b 2 − A 2 x

R
)
i

}
,

as an optimal solution value of zero.

In particular, we propose an optimality checking mechanism for

ILP as follows. If U(x R , y L) has an optimal solution value of zero

n each step, the output result of our algorithm is guaranteed op-

imal; otherwise, there is no global optimality guarantee for BILP.

In our computational experiments (Section 6), we test the so-

ution quality of our algorithm with the enhanced branching rule,

.e., how big the gap is between our solution and the optimal so-

ution, in solving randomly generated BILP instances without the

niqueness of lower-level problem’s optimal solution.
667
.3. An enhanced branch-and-bound algorithm

We are now ready to present our branch-and-bound algorithm

mploying the enhanced branching rule, which takes the param-

ter set (A 1 , A 2 , B 1 , B 2 , b 1 , b 2 , c, d 1 , d 2 , X, Y) as input and outputs

 promising solution (x ∗, y ∗, ζ ∗) to the BILP (1) - (5) . The notation
f (x ∗ = ∅ , y ∗ = ∅ , ζ ∗ = −∞) is used as the output for infeasible in-

tance. We summarize the steps of the algorithm below, where pa-

ameter z j is used to record the objective value of the relaxation of

ode j for bounding purpose, OPT is set as an indicator in the algo-

ithm that indicates the potential exactness of the output. That is,

f OPT remains to 1 when the algorithm terminates, the output is

uaranteed optimal based on the above optimality checking mech-

nism. In addition, parameter N is used to specify the number of

ctive nodes in the branch-and-bound tree.

(x ∗, y ∗, ζ ∗) = Algorithm (A 1 , A 2 , B 1 , B 2 , b 1 , b 2 , c, d 1 , d 2 , X, Y) .

Step 0 (Initialization): Create the root node B(l 1 , u 1 , w
1)

ith l 1 = −∞ , u 1 = ∞ , w
1 = −∞ . Initialize x ∗ = ∅ , y ∗ = ∅ , ζ ∗ =

∞ , N = 1 , OPT = 1 , and z 1 = ∞ . Go to Step 1.

Step 1 (Node management): For all k ∈ { 1 , . . . , N } such that

k ≤ ζ ∗ or l k � u k , remove node k . Update N as the number of re-

aining nodes.

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679
Step 2 (Relaxation): Solve R (̂ l , ̂ u , ˆ w) .

Step 3 (Lower level): Solve L (x R)

Let y L denote an optimal solution to L (x R) .
668

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

n

k

(

l

u

w

z

o

a

b

T

r

P

a

t

i

n

c

p

f

[

n

S

5

i

i

o

d

R

s

c

5

s

W

a

t

t

Step 4 ([A 2 x
R , b 2 − B 2 y

L])

Step 5 (An enhanced branching rule): Create (q 1 − r) new

ode problems, increase N by (q 1 − r) , and go to Step 1. For

 = 1 , . . . , q 1 , k � = s t , t = 1 , . . . , r, node (N + k) is characterized by

 l N+ k , u N+ k , w
N+ k , z N+ k) , which is defined as

N+ k
j

=

{ (
b 2 − B 2 y

L
)
j
+ 1 if j = k, q 1 , . . . , q H ,

ˆ l j otherwise ;

N+ k
j

=

⎧ ⎪ ⎨

⎪ ⎩

min

{ (
b 2 − B 2 y

L
)
j
, ˆ u j

}

if j = 1 , . . . , k − 1 , j / ∈ { s 1 , . . . , s T } ,(
A 2 x

R
)
j
− 1 if j = s 1 , . . . , s T ,

ˆ u j otherwise ;

N+ k =

{
d T 2 y

L if k = m 2 + 1 ,

ˆ w otherwise ;

N+ k = c T x R + d T 1 y

R .

Next, we establish the finite termination and the correctness

f our algorithm. Since we assume the variables to be discrete

nd bounded, the finite termination of our enhanced branch-and-

ound algorithm is naturally guaranteed.

heorem 1. The output of our enhanced branch-and-bound algo-

ithm is correct.

roof. We show the correctness of the algorithm step by step.

Steps 1(a), 1(b), 1(c), 1(d), 1(e), 2(a), 2(b), 2(c), 3(a), and 3(c)

re standard procedures in a branch-and-bound algorithm.

Step 3(b) determines that (x Q , y L) is a bilevel optimal solution

o B(̂ l , ̂ u , ˆ w) because it is an optimal solution to R (̂ l , ̂ u , ˆ w) and y L

s an optimal solution to L (x R) .
669
Step 4(a) determines that the feasible region of the current

ode contains no better bilevel feasible solutions, based on the dis-

ussion of relationship I in Section 4 .

Step 4(b) calculates the number of the remaining new node

roblems after carving out a set of A 2 x ∈ [A 2 x
R , b 2 − B 2 y

L] of the

easible region of the current node in Step 5.

Step 5 carves out a set (obtained from Step 4) of A 2 x ∈

 A 2 x
R , b 2 − B 2 y

L] out from the current node and create (q 1 − r)

ew branches based on the enhanced branching rule presented in

ection 4 . �

. Computational results

In this section, we demonstrate the efficiency of our algorithm

n solving BILP problem instances. We implement it in Matlab us-

ng CPLEX 12.9 as the ILP solver and run it on a large number

f general BILP instances. All computational experiments are con-

ucted on a desktop computer with 2.29 GHz CPU and 8 GB of

AM. Computing times reported in the following are in wall-clock

econds and the time limit for each run is set to be 3600 wall-

lock seconds.

.1. Testbed

We consider three sets of general BILP instances with no special

tructure. These instances, tested in previous studies, are termed

ANGXU, DENEGRE and MIPLIB, respectively, in the literature. We

lso consider one set of randomly generated BILP instances to bet-

er illustrate the superior performance of our algorithm. We term

his set of instances, WANGXU-LARGE, in our computational study.

• Instances of class WANGXU have been proposed in Wang

and Xu (2017) . They are based on the BMILP instances from

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

Fig. 1. Speed-ups achieved by the enhanced branching for three instance sets.

5

e

p

t

b

w

o

t

t

o

s

t

g

1

t

c

a

g

a

i

t

t

l

7

d

r

t

e

Xu and Wang (2014) requiring all variables to be integers.

For these instances, one has n 1 = n 2 ∈ { 10 , 60 , 110 , . . . , 460 } and
m 1 = m 2 = 0 . 4 n 1 . Elements of the upper- (lower-) level matri-

ces are real numbers (integers) uniformly distributed within a

certain range: A 1 , B 1 , A 2 and B 2 are within [0 , 10] ; c, d 1 and d 2
are within [−50 , 50] ; b 1 is within [30 , 130] ; and b 2 is within

[10 , 110] . The bound on variables x and y is set to be [0 , 10] .

For each (n 1 , m 1) pair, 10 instances are generated. The class

WANGXU contains 100 instances totally. Among all the algo-

rithms tested on WANGXU, the algorithm “WaterM-II” proposed

by Wang and Xu (2017) has the best performance, as shown in

Wang and Xu (2017) .
• Since our enhanced branching idea is proposed to slow down

the creation of new node problems by the benchmark branch-

ing rule, we expect that the enhanced branching rule can

highlight its advantage when solving BILP instances with a

medium- to large-sized lower-level problem. We create a new

class WANGXU-LARGE of randomly generate BILP instances

with a relatively large-sized lower-level problem but a small-

sized upper-level problem by following the same procedure

used for class WANGXU. For this new class, we have n 1 = m 1 ∈

{ 5 , 6 , . . . , 10 } , n 2 ∈ { 50 0 , 60 0 , . . . , 10 0 0 } and m 2 = 0 . 4 n 2 . We set

the bound of the decision variables to be [−10 , 10] . We gener-

ate 10 instances for each (n 1 , n 2) pair.
• Instances of class DENEGRE have been proposed in DeNegre

(2011) . For these instances, one has n 1 ∈ { 5 , 10 , 15 } , while

the lower-level variable dimension n 2 is such that n 1 + n 2 =

15 or 20 . There are m 2 = 20 lower-level constraints and no con-

straints in the upper-level problem. All coefficients are inte-

gers in the range [−50 , 50] . The class DENEGRE contains 50 in-

stances totally. Among all the algorithms tested on DENEGRE,

the algorithm “MIX ++ ” proposed by Fischetti et al. (2017a) has

the best performance, as shown in Fischetti et al. (2017a) .
• Instances of class MIPLIB have been introduced in Fischetti et

al. (2016)) and are available at Fischetti, Ljubi ́c, Monaci and

Sinnl (2017b) . They are based on instances of MILPLIB 3.0

(Bixby, Ceria, McZeal & Savelsbergh, 1998) containing only bi-

nary variables. These instances have been transformed into

bilevel problems by considering the first Y% (rounded up) vari-

ables as lower-level variables, with Y ∈ { 10 , 50 , 90 } and the re-
maining ones as upper-level variables. The objective function

is used as the upper-level objective c T x + d T 1 y and the lower-
670
level objective is set to be d T y = −d T
1
y . All the constraints of

these instances are defined to be lower-level constraints. The

class MIPLIB contains 57 instances with up to about 80,0 0 0

relaxation-problem variables and 50 0 0 lower-level constraints,

making them much larger (and often also much more difficult

to solve) than instances of the other classes. Among all the al-

gorithms tested on MIPLIB, the algorithms “SEP2” proposed by

Fischetti et al. (2016)) and “MIX ++ ” proposed by Fischetti et al.

(2017a) have the best performance, as shown in Fischetti et al.

(2017a) .

.2. Computational analysis of the enhanced branching idea

In this subsection, we computationally evaluate the effect of our

nhanced branching idea on the benchmark branching rule, pro-

osed by Xu and Wang (2014) . We denote the algorithm employing

he benchmark branching rule and that employing the enhanced

ranching rule as “XW” and “Alg-E”, respectively. We compare XW

ith Alg-E on three instance sets to directly test the performance

f our enhanced branching idea.

We illustrate the importance of the enhanced branching idea

hrough the cumulative speedup chart of Fig. 1 . The chart shows

he speedup values over the benchmark branching rule (i.e., XW)

n four instance sets described in Section 5.1 . The reported

peedup ratio is calculated as (t (XW) + t s)/(t (Alg-E) + t s), where

 (XW) and t (Alg-E) denote the computing time (in seconds) of al-

orithms XW and Alg-E, respectively. The time shift t s is set to

 second to reduce the importance of instances that are easy in

he comparison. For a given instance set, each point (x, y) in this

hart indicates that y % of instances in the corresponding class have

 speedup ratio of at least x . Notice that the values on x -axis are

iven in log-scale. We observe that different degree of speed-up is

chieved for the four instance sets. The most significant speedup

s achieved for MIPLIB and WANGXU-LARGE, where the former is

he most challenging set of benchmark instances in our study. Note

hat both sets contain BILP instances with a relatively complex

ower-level problem. For about 35% of instances in MIPLIB, resp.,

6% of instances in WANGXU-LARGE, a speedup of at least one or-

er of magnitude is achieved; for about 25% of instances in MIPLIB,

esp., 11% of instances in WANGXU-LARGE, the actual speedup is of

wo orders of magnitude or even higher, thanks to the use of the

nhanced branching idea. For the instance set DENEGRE, a speedup

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

Fig. 2. Solution quality of Alg-E and XW for MIPLIB and WANGXU-LARGE.

o

s

a

u

p

w

n

n

s

a(

w

b

v

t

t

t

n

A

o

a

u

i

a

a

o

s

t

w

s

s

l

d

w

s

F

t

a

Table 1

Results for instance set WANGXU.

XW WaterM-I WaterM-II Alg-E

n1-n2 Time Time Time Time S-Q

10–10 1 0 1 0 98.84%

60–60 11 2 10 2 91.99%

110–110 24 10 17 6 97.23%

160–160 31 13 20 14 95.75%

210–210 126 40 21 26 94.41%

260–260 185 57 31 66 94.02%

310–310 314 117 37 130 96.70%

360–360 147 110 44 46 100.00%

410–410 308 290 79 155 99.27%

460–460 395 268 95 159 99.30%

Average 154 91 36 60 96.75%

g

i

g

X

L

o

o

o

f

a

s

i

l

6

t

t

4

t

i

A

9

h

f

a

f at least one order of magnitude is achieved for nearly 20% in-

tances. For the instance set WANGXU, a slight speedup can be

chieved since all the instances can be solved within several min-

tes. In few cases, a small slowdown is observed-this usually hap-

ens for instances that can be solved within a few seconds, in

hich case turning on the enhanced branching idea causes an un-

ecessary overhead.

To further analyze the effect of the enhanced branching, we

ext illustrate the solution quality of Alg-E and XW on three in-

tance sets. The percentage value of solution quality is calculated

s:

1 − ζ ∗ − ζ S

| ζ ∗| + 10 −10

)
× 100% ,

here ζ S is the solution value of the objective function output

y the tested algorithm and ζ ∗ is the optimal objective function

alue. For the instance set MIPLIB, we denote ζ ∗ as the best solu-

ion value ever found for the instances that have not been solved

o optimality so far. There two situations where the output solu-

ion may not be optimal so the percentage value of solution quality

eed to be calculated: on one hand, as mentioned in Section 4.2 ,

lg-E can achieve a bilevel feasible solution which may not be

ptimal, since all the benchmark instances are randomly gener-

ted and the optimal solution to lower-level problem may not be

nique; On the other hand, if an algorithm cannot finish solving an

nstance within one hour, we terminate the algorithm prematurely

nd output the best bilevel feasible solution found so far.

Fig. 2 (a) and (b) shows the cumulative chart for the percent-

ge value of solution quality (denoted as “S-Q”) obtained within

ne hour of XW and Alg-E for MIPLIB and WANGXU-LARGE re-

pectively. For visualization, S-Q values smaller than 0 are set

o 0; similarly, if an algorithm cannot find a feasible solution

ithin one hour, we also set S-Q value to 0. For each instance

et, each point (x, y) in this chart indicates that y % of all in-

tances in the corresponding class have a percentage value of so-

ution quality of at least x % . In particular, the rightmost point in-

icates the percentage of instances solved to optimality (or for

hich the best solution value ever found is obtained for the un-

olved instances in MIPLIB) by the corresponding algorithm. In

ig. 2 (a), a significant solution quality improvement is achieved by

he enhanced branching idea for MIPLIB. For example, the S-Q is

t least 32% for almost 90% of instances if XW is used, while it
671
rows to 100% of instances when using Alg-E. Similarly, the S-Q

s at least 80% for about 84% of instances if XW is used, while it

rows to almost 90% of instances when using Alg-E. In Fig. 2 (b),

W can solve nearly 50% instances to optimality for WANGXU-

ARGE within one hour, but XW can only achieve an S-Q value

f 33% for 90% instances while Alg-E can achieve an S-Q value

f 73% for 90% instances. Actually, XW can solve all the instances

f size (n 1 , n 2) ∈ { (5500) , (6600) , (7700) } to optimality. However,

or instances of size (n 1 , n 2) ∈ { (8800) , (9900) , (10 , 10 0 0) } , XW

chieves rather disappointing solution quality within one hour

ince XW needs up to 2.5 hour to solve these instances to optimal-

ty. Whereas Alg-E can solve 92% of instances to an S-Q value of at

east 70%, and solve all the instances to an S-Q value of at least

0%.We will show the details of the results for WANGXU-LARGE in

he following subsection (in Table 2).

For DENEGRE and WANGXU, XW can solve all the instances in

he two set to optimality within one hour, while Alg-E can solve

3% of instances in DENEGRE and 70% of instances in WANGXU

o optimality. Specifically, for DENEGRE, Alg-E can solve 80% of

nstances to an S-Q value of at least 92%, while for WANGXU,

lg-E can solve 80% of instances to an S-Q value of at least

4%.

Overall, these experiments show that Alg-E adopting the en-

anced branching rule has some unavoidable overhead and imper-

ection on solution quality for relatively small-sized instances but

chieves overall speedup on most instances. In particular, our en-

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

Table 2

Results for instance set WANGXU-LARGE.

n1-n2 WaterM-II XW Alg-E

Time S-Q Time S-Q Time S-Q

5–500 3600 79% 259 100% 22 91%

6–600 3600 80% 531 100% 52 85%

7–700 3600 82% 1121 91% 139 92%

8–800 3600 76% 2666 87% 159 85%

9–900 3600 47% 3600 73% 254 89%

10–1000 3600 69% 3600 49% 411 91%

Average 3600 72% 1963 83% 173 89%

h

v

l

s

5

s

c

W

r

“

X

d

I

s

Q

c

t

T

R

anced branching rule shows it advantage of speedup more ob-

iously on large-sized instances with complex lower-level prob-

em. For the instance set MIPLIB, Alg-E achieves both significant

peedup and solution quality improvement for XW.
able 3

esults for instance set DENEGRE.

Instance Opti-V SEP1

BestSol Time S-Q Nodes

20–15–10–1 −388 −388 0 100.00% 50

20–15–10–2 −398 −398 17 100.00% 77,323

20–15–10–3 −42 −42 0 100.00% 2201

20–15–10–4 −729 −729 0 100.00% 185

20–15–10–5 −281 −281 0 100.00% 83

20–15–10–6 −246 −246 0 100.00% 233

20–15–10–7 −260 −260 0 100.00% 108

20–15–10–8 −293 −293 0 100.00% 114

20–15–10–9 −635 −635 0 100.00% 1061

20–15–10–10 −206 −206 0 100.00% 628

20–20–5–1 −548 −548 1 100.00% 6981

20–20–5–2 −568 −568 1558 100.00% 6053,523

20–20–5–3 −477 −477 0 100.00% 53

20–20–5–4 −753 −753 0 100.00% 142

20–20–5–5 −392 −392 0 100.00% 51

20–20–5–6 −1033 −1033 5 100.00% 79,502

20–20–5–7 −547 −547 0 100.00% 80

20–20–5–8 −936 −936 0 100.00% 69

20–20–5–9 −868 −868 0 100.00% 112

20–20–5–10 −340 −340 0 100.00% 45

20–20–5–11 −426 −426 0 100.00% 9

20–20–5–12 −854 −854 0 100.00% 43

20–20–5–13 −514 −514 116 100.00% 947,138

20–20–5–14 −923 −923 0 100.00% 109

20–20–5–15 −617 −617 157 100.00% 1031,098

20–20–5–16 −833 −833 0 100.00% 2535

20–20–5–17 −895 −895 0 100.00% 3580

20–20–5–18 −356 −356 0 100.00% 2

20–20–5–19 −431 −431 3 100.00% 25,762

20–20–5–20 −438 −438 1 100.00% 3918

20–20–10–1 −359 −359 494 100.00% 1805,080

20–20–10–2 −659 −659 0 100.00% 939

20–20–10–3 −618 −618 1 100.00% 9456

20–20–10–4 −604 −604 3600 100.00% 7479,668

20–20–10–5 −972 −972 0 100.00% 20

20–20–10–6 −731 −707 3600 96.72% 6244,669

20–20–10–7 −683 −683 2788 100.00% 7420,465

20–20–10–8 −667 −667 3 100.00% 8116

20–20–10–9 −256 −256 4 100.00% 42,945

20–20–10–10 −441 −441 73 100.00% 256,927

20–20–15–1 −450 −420 3600 93.33% 4313,453

20–20–15–2 −645 −645 3600 100.00% 14,175,981

20–20–15–3 −579 −579 838 100.00% 1420,792

20–20–15–4 −441 −441 3600 100.00% 5448,638

20–20–15–5 −271 −271 3600 100.00% 6169,959

20–20–15–6 −263 −263 3260 100.00% 5955,753

20–20–15–7 −471 −471 246 100.00% 787,848

20–20–15–8 −360 −360 3600 100.00% 11,797,237

20–20–15–9 −584 −584 1 100.00% 2027

20–20–15–10 −251 −251 0 100.00% 400

Average – – 695 99.80% 1631,542

672
.3. Comparison with state-of-the-art approaches from literature

In this subsection, we compare our algorithm Alg-E against

tate-of-the-art approaches from literature, on the same instance

lasses tested before.

Instance Set WANGXU. This class of instances is proposed by

ang and Xu (2017) , where the computational results by a se-

ies of algorithms are reported, among which three algorithms:

XW” (Xu & Wang, 2014), “WaterM-I” and “WaterM-II” (Wang &

u, 2017) are well-performed. Their results were obtained on “a

esktop computer with 2.4 GHz” which is similar to our hardware.

n Table 1 , we report, for Alg-E, the average computing time (in

econds) and percentage value of solution quality (denoted as “S-

”) for each set of 10 instances. As XW, WaterM-I and WaterM-II

an solve all the instances to optimality within the time limit, for

hese algorithms we only report the required computing time (in
MIX ++ Alg-E

Time Nodes BestSol Time S-Q Nodes OPT

1 21 −376 1 96.91% 55 0

8 279 −398 2 100.00% 272 0

2 54 −42 1 100.00% 136 1

1 56 −729 1 100.00% 61 0

0 20 −281 0 100.00% 30 0

16 205 −246 1 100.00% 162 0

0 0 −260 0 100.00% 22 0

0 22 −278 2 94.88% 134 0

1 16 −635 4 100.00% 401 0

0 10 −196 0 95.15% 37 0

0 21 −545 0 99.45% 37 0

0 49 −546 15 96.13% 688 0

0 50 −477 0 100.00% 1 0

0 71 −753 0 100.00% 1 0

0 31 −392 0 100.00% 1 1

0 92 −1018 1 98.55% 56 0

0 16 −547 1 100.00% 42 0

0 91 −936 0 100.00% 1 0

0 62 −860 2 99.08% 104 0

0 38 −330 1 97.06% 39 0

0 11 −426 0 100.00% 1 0

0 21 −854 0 100.00% 1 0

0 11 −493 3 95.91% 241 0

0 58 −923 0 100.00% 1 0

1 197 −617 2 100.00% 163 1

0 44 −833 2 100.00% 78 0

0 19 −859 1 95.98% 36 0

0 0 −356 0 100.00% 1 0

0 95 −426 2 98.84% 93 0

0 32 −432 1 98.63% 81 0

2 81 −347 6 96.66% 598 0

1 17 −659 4 100.00% 286 1

0 52 −571 4 92.39% 269 0

1 51 −592 15 98.01% 1347 0

0 13 −972 0 100.00% 1 0

10 511 −648 42 88.65% 2018 0

0 54 −655 3 95.90% 242 0

15 232 −599 6 89.81% 523 0

0 71 −195 4 76.17% 307 0

2927 8068 −326 29 73.92% 2179 0

0 16 −450 2 100.00% 217 0

0 6 −598 3 92.71% 371 0

3 43 −518 2 89.46% 246 0

5 131 −441 3 100.00% 293 1

1392 5466 −3 6 1.11% 732 0

50 483 −197 1 74.90% 62 0

0 23 −471 1 100.00% 126 0

0 3 −236 1 65.56% 159 0

0 8 −563 0 96.40% 57 0

0 14 −118 1 47.01% 129 0

89 341 – 4 92.90% 263 –

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

Table 4

Results for instance set MIPLIB

SEP2 MIX ++ Alg-E

Instance BestSol Time Nodes S-Q BestSol Time Nodes S-Q BestSol Time Nodes S-Q OPT

air03-0.1 382,822 3,600 146,125 98.44% 379,800 3,600 92,677 99.24% 387,656 47 191 97.16% 0

air03-0.5 505,172 3,600 85,478 100.00% 512,698 3,600 76,005 98.51% 637,254 65 251 73.85% 0

air03-0.9 823,130 3,600 44,697 93.11% 770,100 3,600 42,757 100.00% 900,420 52 158 83.08% 0

air04-0.1 56,563 3,600 55,921 99.71% 56,399 3,600 61,419 100.00% 57,029 2,624 3,224 98.88% 0

air04-0.5 60,131 3,600 35,826 99.91% 60,076 3,600 33,459 100.00% 63,333 3,600 2,574 94.58% 0

air04-0.9 84,993 3,600 3,752 84.77% 73,759 3,600 6,658 100.00% 89,235 3,600 181 79.02% 0

air05-0.1 26,801 3,600 101,047 99.16% 26,577 401 10,168 100.00% 27,515 516 1,285 96.47% 0

air05-0.5 32,497 3,600 92,234 96.14% 31,290 3,600 75,980 100.00% 44,082 925 1,656 59.12% 0

air05-0.9 44,567 3,600 82,050 90.12% 40,558 3,600 63,300 100.00% 60,217 1,487 2,358 51.53% 0

cap6000-0.1 – 3,600 1,980 – -1,967,015 587 48,281 100.00% -1,966,874 2,083 2,177 99.99% 0

cap6000-0.5 – 3,600 1,481 – – 3,600 1,115 – -1,634,335 2,136 2,177 100.00% 0

cap6000-0.9 -259,599 3,600 9,709 100.00% – 3,600 328 – -364,988 3,600 3,013 100.00% 0

enigma-0.1 0 0 990 100.00% 0 0 739 100.00% 0 0 1 100.00% 0

enigma-0.5 0 4 13,842 100.00% 0 6 10,531 100.00% 0 0 1 100.00% 0

enigma-0.9 0 46 2,670 100.00% 0 186 2,966 100.00% 0 0 1 100.00% 0

fast0507-0.1 12,562 3,600 604 99.38% 12,484 2 0 100.00% 12,484 1,383 508 100.00% 1

fast0507-0.5 61,516 3,600 7,767 99.87% 61,439 2 0 100.00% 61,439 1,169 508 100.00% 1

fast0507-0.9 109,916 8 2 100.00% 109,916 1 0 100.00% 109,916 1,419 508 100.00% 1

l152lav-0.1 4,722 2 367 100.00% 4,722 2 363 100.00% 4,722 1 1 100.00% 0

l152lav-0.5 4,866 3,600 311,915 100.00% 4,868 3,600 258,223 99.96% 4,966 25 177 97.94% 0

l152lav-0.9 5,090 3,600 211,309 99.65% 5,072 3,600 171,722 100.00% 5,518 35 227 91.21% 0

lseu-0.1 1,120 0 15 100.00% 1,120 0 19 100.00% 1,120 1 24 100.00% 0

lseu-0.5 2,525 3,600 13,333 90.83% 2,313 3,600 12,840 100.00% 2,563 1 75 89.19% 0

lseu-0.9 5,838 24 299 100.00% 5,838 65 357 100.00% 5,838 1 51 100.00% 0

mitre-0.1 122,310 3,600 20,791 99.94% 122,235 3,600 41,872 100.00% 122,250 3,600 2,062 99.99% 0

mitre-0.5 146,730 3,600 15,611 100.00% – 3,600 19,004 – 147,030 3,600 1,970 99.80% 0

mitre-0.9 168,885 3,600 13,066 100.00% – 3,600 10,099 – 169,215 3,600 2,027 99.80% 0

mod010-0.1 6,554 8 739 100.00% 6,554 4 9 100.00% 6,554 16 166 100.00% 0

mod010-0.5 6,692 3,600 117,241 98.88% 6,618 3,600 164,755 100.00% 6,828 28 265 96.83% 0

mod010-0.9 7,448 3,600 158,667 98.74% 7,355 3,600 111,883 100.00% 7,997 26 235 91.27% 0

nw04-0.1 17,066 820 2,884 100.00% 17,066 1,140 2,842 100.00% 17,928 70 54 94.95% 0

nw04-0.5 23,914 3,600 18,519 100.00% 24,100 3,600 8,472 99.22% 40,000 516 81 32.73% 0

nw04-0.9 43,374 3,600 12,282 100.00% 52,290 3,600 6,631 79.44% 58,422 144 52 65.31% 0

p0033-0.1 3,089 0 0 100.00% 3,089 0 0 100.00% 3,089 0 1 100.00% 0

p0033-0.5 3,095 0 2 100.00% 3,095 0 0 100.00% 3,095 0 17 100.00% 0

p0033-0.9 4,679 0 7 100.00% 4,679 0 6 100.00% 4,679 0 29 100.00% 0

p0201-0.1 12,465 3,600 5,092 98.04% 12,555 3,600 5,837 97.30% 12,225 1 134 100.00% 0

p0201-0.5 13,650 3,600 649,100 99.89% 13,635 1,113 71,052 100.00% 13,850 2 442 98.42% 0

p0201-0.9 15,025 1 150 100.00% 15,025 1 157 100.00% 15,025 1 170 100.00% 0

p0282-0.1 260,785 3,600 371,989 100.00% 260,781 4 272 100.00% 260,781 6 625 100.00% 0

p0282-0.5 273,069 3,600 998,732 99.85% 272,659 3,600 120,899 100.00% 274,353 40 3,490 99.38% 0

p0282-0.9 627,411 3,600 2,075,980 97.95% 616,034 3,600 175,290 99.81% 614,837 3 648 100.00% 0

p0548-0.1 11,301 3,600 54,071 97.74% 11,051 3,600 102,504 100.00% 11,174 4 637 98.89% 0

p0548-0.5 22,197 3,600 5,121 97.91% – 3,600 11,943 – 21,742 18 1,692 100.00% 0

p0548-0.9 49,235 3,600 293,986 100.00% 49,509 3,600 17,003 99.44% 49,537 23 2,196 99.39% 0

p2756-0.1 14,444 3,600 36,718 87.70% 12,862 3,600 37,599 100.00% 12,879 1,774 10,054 99.87% 0

p2756-0.5 23,565 3,600 58,203 100.00% 25,384 3,600 18,777 92.28% 24,989 3,600 424 93.96% 0

p2756-0.9 35,087 3,600 13,687 95.65% 33,623 3,600 9,263 100.00% 36,309 3,600 262 92.01% 0

seymour-0.1 486 3,600 231 97.90% 476 3,600 48,178 100.00% 476 3,600 3,495 100.00% 0

seymour-0.5 836 3,600 564 96.41% 807 2 18 100.00% 807 3,600 2,627 100.00% 0

seymour-0.9 1,251 9 2 100.00% 1,251 1 0 100.00% 1,251 3,600 2,948 100.00% 0

stein27-0.1 18 22 983 100.00% 18 0 528 100.00% 18 2 119 100.00% 0

stein27-0.5 19 7 336 100.00% 19 0 5 100.00% 19 1 119 100.00% 0

stein27-0.9 24 0 0 100.00% 24 0 0 100.00% 24 1 119 100.00% 0

stein45-0.1 30 1,899 12,549 100.00% 30 3 2,999 100.00% 30 13 332 100.00% 1

stein45-0.5 32 658 18,613 100.00% 32 0 14 100.00% 32 9 332 100.00% 1

stein45-0.9 40 0 0 100.00% 40 0 0 100.00% 40 9 332 100.00% 1

Average – 2,398 108,409 95.06% – 1,956 34,348 90.63% – 987 1,044 94.29% –

s

S

w

t

b

t

c

W

c

t

r

w

o

b

t

c

2

s

w

econds). In the last row, the average value of computing time, and

-Q for each algorithm is reported.

We point out that Alg-E can solve most instances to optimality

ith the average percentage value of solution quality of 96.75%. For

he computing time, Alg-E performs better than XW and WaterM-I,

ut is inferior to WaterM-II.

Instance Set WANGXU-LARGE. In Table 2 , we report results for

he set WANGXU-LARGE where, similarly to the set WANGXU, we

ompare our algorithm Alg-E with XW and WaterM-II (we omit

aterM-I since it has been proved to be inferior to WaterM-II). To

alculate the percentage value of solution quality, each instance in
673
his set is solved to optimality by XW with up to 2.5 hours. The

esults show that Alg-E can efficiently speed up the algorithm XW

ith an average “S-Q” value of 89%, which is also better than that

f XW. In particular, Alg-E significantly outperforms WaterM-II on

oth computing time and solution quality.

Instance Set DENEGRE. For this set of 50 bilevel instances in-

roduced by DeNegre (2011) , Fischetti et al. (2017a) reported the

omputational results by two algorithms “SEP1” (Fischetti et al.,

016) and “MIX ++ ”. Their results were obtained “on a cluster con-

isting of Intel Xeon E5–2670v2 with 2.5 GHz and 12 GB of RAM”,

hich is therefore 2–5 times faster than our hardware. In Table 3 ,

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

w

t

c

i

n

c

o

o

r

s

I

n

f

o

t

a

c

u

“

i

l

t

b

o

b

F

t

i

i

c

o

r

f

o

q

c

r

t

w

b

o

h

b

“

i

s

t

t

a

e

f

0

T

t

e

i

m

p

r

s

s

e

b

t

n

s

b

u

z

6

r

t

b

a

a

p

i

c

a

o

t

c

o

p

e

r

p

s

r

c

c

t

t

a

i

i

t

b

A

m

i

g

o

t

R

p

t

A

u

f

(

a

c

l

d

p

e report, for SEP1 and Alg-E, and for each instance, the best ob-

ained feasible solution (denoted as “BestSol”), the associated per-

entage value of solution quality (denoted as “S-Q”), the comput-

ng time (in seconds), and the total number of branch-and-bound

odes. For Alg-E, we also report the indicator “OPT” which indi-

ates the exact optimality of the output if OPT = 1, and heuristic

f the output if OPT = 0. As MIX ++ can solve all the instances to

ptimality within one hour, for this algorithm we only report the

equired computing time and the number of nodes. The optimal

olution value of each instance is given in the column “Opti-V”.

n the last row, the average value of computing time, number of

odes, and S-Q for each algorithm is reported.

We point out that Alg-E can finish solving all instances in a

raction of a second to 42 seconds with an average value of S-Q

f 92.90%, where five instances are indicated to be exactly solved

o optimality by “OPT = 1”. Alg-E needs fewer nodes than SEP1 for

ll but two instances. Alg-E also needs fewer nodes and shorter

omputing time on average than SEP1 and MIX ++ . Alg-E performs

nsatisfactorily on two instances of this class: “20–20–15–5” and

20–20–15–10”, with S-Q value of 1.11% and 47.01%. These two

nstances contain 15 variables and 20 constraints in the lower-

evel problem, which results in a large optimal solution set. When

he enhanced branching idea is performed, some well-performed

ilevel feasible solutions including the optimal solution are carved

ut, which causes poor performance of Alg-E.

Instance Set MIPLIB. Table 4 compares Alg-E with the two

est-performing algorithms from the literature; namely “SEP2” by

ischetti et al. (2016)) and “MIX ++ ” by Fischetti et al. (2017a) , on

he very hard MIPLIB class. Recall that this class contains some

nstances with up to 80,0 0 0 relaxation-problem variables, hence

n many cases, the optimal solutions are still unknown. For these

ases, we calculate the percentage value of solution quality based

n the best obtained feasible solution value. For the three algo-

ithms and for each instance, Table 4 reports the best obtained

easible solution, the computing time (in seconds), the number

f branch-and-bound nodes, and the percentage value of solution

uality (denoted as “S-Q”). In the last row, the average value of

omputing time, number of nodes, and S-Q for each algorithm is

eported (if an algorithm cannot find a feasible solution within the

ime limit, the S-Q is calculated as 0).

We point out that Alg-E solves 25 instances to optimality,

here six instances are indicated to be exactly solved to optimality

y “OPT = 1”, and obtains feasible solution for all the rest instances

f this class. In particular, among the 30 instances in MIPLIB that

ave not been solved to optimality, Alg-E provides the best feasi-

le solution for four instances (i.e., “cap60 0 0–0.1”, “cap60 0 0–0.9”,

p0282–0.9”, “p0548–0.5”). Similar to the results for DENEGRE, the

ndicator “OPT” of the exactness of the output solution may be in-

ensitive due to the sufficient (not necessary) condition of the op-

imality checking mechanism on the uniqueness of lower-level op-

imal solution. Table 4 shows that Alg-E needs the fewest nodes

nd shortest computing time on average, while achieves an av-

rage percentage value of solution quality of 94.29%. Alg-E per-

orms badly on three instances of this class: “air05–0.5”, “air05–

.9” and “nw04–0.5”, with S-Q value of 59.12%, 51.53% and 32.73%.

hese instances contain a large number of variables and a rela-

ively small number of constraints in the lower-level problem. For

xample, “nw04–0.5” contains 43,741 variables and 36 constraints

n the lower-level problem. As explained in DENEGRE, such cases

ay result in a large set of optimal solution of the lower-level

roblem, which induces inferior performance with our algorithm.

Consequently, our algorithm based on the enhanced branching

ule clearly shows its superiority on general large-sized BILP in-

tances with a relatively complex lower-level problem, such as in-

tances of MIPLIB and WANGXU-LARGE. For these instances, the

nhanced branching idea can significantly reduce the size of the
674
ranching tree, while this may cause a cost of sacrificing the op-

imality. We can expect that when the existing algorithms can-

ot finish solving relatively large-sized BILP instances within a re-

tricted computation time, our algorithm can provide a promising

ilevel feasible solution within reasonable time.

For those interested in conducting comparative studies, we have

ploaded our test instances and the source codes to https://person.

ju.edu.cn/wangmingzheng#781824 .

. Conclusions

In this paper, we present an enhanced branch-and-bound algo-

ithm for a class of BILP problems, where both the upper-level and

he lower-level variables are bounded. We introduce an enhanced

ranching idea and propose an enhanced branching rule based on

 benchmark branching rule presented in Xu and Wang (2014) . Our

lgorithm may discard bilevel feasible solutions if the lower-level

roblem is not uniquely optimal, which may lead to sub-optimality

n BILP. Nevertheless, we provide a reasonable global optimality

hecking mechanism which is sufficient but not necessary for BILP,

dapted from a well-established sufficient-and-necessary condition

n the solution uniqueness of linear programming. Our computa-

ional results show that the enhanced branching rule can achieve

onsiderable speedup for the benchmark branching rule while the

utput solution can achieve satisfactory solution quality. We com-

are our algorithm with state-of-the-art algorithms from the lit-

rature on a testbed of general BILP instances with up to 80,0 0 0

elaxation-problem variables and 50 0 0 lower-level constraints. In

articular, our algorithm can achieve superiority on both algorithm

peedup and solution quality for large-sized BILP instances with

elatively complex lower-level problem.

In the future, we will investigate how our global optimality

hecking mechanism can be weaken to a sufficient and necessary

ondition. We will also improve our enhanced branching idea so as

o promote the solution quality or even guarantee the exactness of

he algorithm. In addition, it is worth further study on adapting the

lgorithm for large-scale real-world instances such as those aris-

ng in the bilevel bidding problem in electricity markets. Finally, it

s interesting to investigate the actual implementation of state-of-

he-art BILP algorithms for real-world instances generated by alge-

raic modeling tools.

cknowledgements

The authors thank the associate editor and the three anony-

ous referees for their valuable comments that have substantially

mproved the paper. This research was supported by the Key Pro-

ram of the NSFC under the Grant 71931009 , the General Program

f the NSFC under the Grant 71671023, National Science Founda-

ion of US under the Grant 1761022, the Foundation for Innovative

esearch Groups of NSFC under the Grant 71421001 and the key

rojects of of International Cooperation and Exchanges NSFC under

he Grant 72010107002.

ppendix. An application on a bilevel facility location problem

sing our algorithm in algebraic formulation

To demonstrate how our algorithm can be used in an algebraic

ormulation setting, we address a bilevel facility location problem

 Zare et al., 2019) as an example, since this problem is modeled as

 BILP problem. The problem can be described as follows.

A firm that produces a set of products given by G = { 1 , .., G }
an place new facilities at the locations given by I = { 1 , . . . , q } . The
eader chooses the facilities placement, while the follower must

etermine the number of each product’s demand that each facility

rocesses. The firm incurs a cost of a (1)
i

for each facility opened at

https://person.zju.edu.cn/wangmingzheng#781824
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100014718

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

l

u

o

i

t

y

c

c

a

i

t

m

s

f

R
c

m

s

R
o

m

s

t

t

c

A

Q

m

s

o

e

c

U

m

ocation i ∈ I, and incurs an opportunity cost of a (2)
i

for each un-

sed production capacity of any plant at location i ∈ I after it is

pened. The follower faces a cost of c (1)
i

for using a unit of capac-

ty at a facility at location i ∈ I, and a cost of c (2)
ig

associated with

he transportation of g ∈ G from a facility at location i ∈ I.

Let x i be the number of facilities to open at location i , and let

 ig be the number of demand for product g that the plants at lo-

ation i process. Q denotes the maximum number of facilities that

an be opened at any given location. D g denotes the demand for g,

nd r ig is the units of capacity needed to make product g at a facil-

ty at location i , and C i is the capacity of a plant at location i , then

he bilevel facility location problem (BFLP) can be modeled as:

BFLP:

in
x

ζ =

∑

i ∈ I
a (

1)
i

x i +

∑

i ∈ I
a (

2)
i

(

C i x i −
∑

g∈G
r ig y ig

)

,

 . t . 0 ≤ x i ≤ Q , i ∈ I,

x i ∈ Z , i ∈ I,

y ∈ argmin
ˆ y

{ ∑

i ∈ I

∑

g∈G

(
c (

1)
i

r ig + c (
2)
ig

)
ˆ y ig :

s . t .
∑

i ∈ I
ˆ y ig ≥ D g , g ∈ G,

∑

g∈G
r ig ̂ y ig ≤ C i x i , i ∈ I,

∑

g∈G
ˆ y ig ≤

∑

g∈G
D g x i , i ∈ I,

ˆ y ig ≥ 0 , ˆ y ig ∈ Z , i ∈ I, g ∈ G. }
Before implementing the algorithm, we should construct the

ollowing model.

The first model is the relaxation problem of BFLP, denoted as

 (BFLP) , which contains both the upper-level and the lower-level

onstraints.

R (BFLP) (the relaxation problem of BFLP):

in
x

∑

i ∈ I
a (

1)
i

x i +

∑

i ∈ I
a (

2)
i

(

C i x i −
∑

g∈G
r ig y ig

)

,

 . t . 0 ≤ x i ≤ Q , i ∈ I,

x i ∈ Z , i ∈ I,

∑

i ∈ I
y ig ≥ D g , g ∈ G,

∑

g∈G
r ig y ig ≤ C i x i , i ∈ I,

∑

g∈G
y ig ≤

∑

g∈G
D g x i , i ∈ I,

y ig ≥ 0 , y ig ∈ Z , i ∈ I, g ∈ G.

The second model is the node problem of BFLP, denoted as

 (̂ l , ̂ u , ˆ w) , which adds bound constraints to the relaxation problem

f BFLP.
675
R (̂ l , ̂ u , ˆ w) (the node problem of BFLP)

in
x

∑

i ∈ I
a (

1)
i

x i +

∑

i ∈ I
a (

2)
i

(

C i x i −
∑

g∈G
r ig y ig

)

,

 . t . 0 ≤ x i ≤ Q , i ∈ I,

x i ∈ Z , i ∈ I,

∑

i ∈ I
y ig ≥ D g , g ∈ G,

∑

g∈G
r ig y ig ≤ C i x i , i ∈ I,

∑

g∈G
y ig ≤

∑

g∈G
D g x i , i ∈ I,

y ig ≥ 0 , y ig ∈ Z , i ∈ I, g ∈ G.

ˆ l i ≤ C i x i ≤ ˆ u i , i ∈ I,

ˆ l I+ i ≤
∑

g∈G
D g x i ≤ ˆ u I+ i , i ∈ I,

∑

i ∈ I

∑

g∈G

(
c (

1)
i

r ig + c (
2)
ig

)
ˆ y ig ≤ ˆ w .

The third model, denoted as Q (x R , y L) , uses the leader’s objec-

ive function as the objective function. The constraints contain all

he upper-level and lower-level constraints, together with a bound

onstraint on the related part of the upper-level decision variables.

ll the lower-level decision variables equal to y L .

(
x R , y L

)

in
x

∑

i ∈ I
a (

1)
i

x i +

∑

i ∈ I
a (

2)
i

(

C i x i −
∑

g∈G
r ig y

L
ig

)

,

 . t . 0 ≤ x i ≤ Q , i ∈ I,

x i ∈ Z , i ∈ I,

C i x i ≤ C i x
R
i , i ∈ I,

∑

g∈G
D g x i ≤

∑

g∈G
D g x

R
i , i ∈ I,

∑

g∈G
r ig y

L
ig ≤ C i x i , i ∈ I,

∑

g∈G
y L ig ≤

∑

g∈G
D g x i , i ∈ I.

The fourth model, denoted as U(x R , y L) , is used to propose the

ptimality checking mechanism, which uses the sufficient and nec-

ssary condition for linear programming to be uniquely optimal as

onstraints.

(
x R , y L

)
ax
y

y 2 ,

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

.

s

f

1

Q

n

s . t .
∑

i ∈ I

∑

g∈G

(
c (

1)
i

r ig + c (
2)
ig

)
y ig = 0 ,

∑

i ∈ I
ˆ y ig ≥ 0 , g ∈ J,

∑

g∈G
ˆ y ig ≤ 0 , i ∈ J,

∑

g∈G
r ig ̂ y ig ≤ 0 , i ∈ J,
676
J =

{

j| ∑

i ∈ I
ˆ y i j = D j or

∑

g∈G
r jg ̂ y jg = C j x j or

∑

g∈G
ˆ y jg =

∑

g∈G
D g x j

}

We are now ready to use our branch-and-bound algorithm to

olve the BFLP model. The detailed steps can be demonstrated as

ollows.

Initialization. Denote x ∗ = ∅ , y ∗ = ∅ , ζ ∗ = + ∞ , N = 1 , OPT =
 , z 1 = ∞ , and l 1

i
= 0 , i = 1 , . . . , 2 q , u 1

i
= Q C i , i = 1 , . . . , q, u 1

i
=

∑

g∈G
D g , i = q + 1 , . . . , 2 q .

Step 1. For all k ∈ { 1 , . . . , N } such that z k ≥ ζ ∗ or l k � u k , remove

ode k . Update N as the number of remaining nodes.

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679
Step 2. Solve R (̂ l , ̂ u , ˆ w) .

Step 3 (Lower level) Solve L (x R)

Let y L denote an optimal solution to L (x R) .
677

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

(

n

d

l

u

w

z

R

A

B

B

B

C

C

C

C

C

C

C
Step 4.

Step 5. Create (v 1 − r) new node problems, increase N by

 v 1 − r) , and go to Step 1. For k = 1 , . . . , v 1 , k � = s t , t = 1 , . . . , r,

ode (N + k) is characterized by (l N+ k , u N+ k , w
N+ k , z N+ k) , which is

efined as

N+ k
j

=

⎧ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎩

∑

g∈G
r jg y

L
jg

+ 1 if j = k, v 1 , . . . , v H , and j ≤ q,

∑

g∈G
y L
j−q,g

if j = k, v 1 , . . . , v H , and j > q ;

ˆ l j otherwise ;

N+ k
j

=

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

min
{∑

g∈G r jg y
L
jg
, ̂ u j

}
if j = 1 , . . . , k − 1 , j / ∈ { s 1 , . . . , s T } , and j ≤ q,

min
{∑

g∈G y
L
j−q,g

, ̂ u j
}

if j = 1 , . . . , k − 1 , j / ∈ { s 1 , . . . , s T } , and j > q,

C j x
R
j
− 1 if j = s 1 , . . . , s T , and j ≤ q, ∑

g∈G r j−q,g x
R
j−q

if j = s 1 , . . . , s T , and j > q,

ˆ u j otherwise ;

N+ k =

{ ∑

i ∈ I

∑

g∈G

(
c (

1)
i

r ig + c (
2)
ig

)
y L
ig

if k = 2 q + 1 ,

ˆ w otherwise ;

N+ k =

∑

i ∈ I
a (

1)
i

x R i +

∑

i ∈ I
a (

2)
i

(

C i x
R
i −

∑

g∈G
r ig y

L
ig

)

.
678
eferences

vraamidou, S. , & Pistikopoulos, E. N. (2019). A Multi-Parametric optimization ap-

proach for bilevel mixed-integer linear and quadratic programming problems.
Computers and Chemical Engineering, 125 , 98–113 .

ard, J. F. , & Moore, J. T. (1992). An algorithm for the discrete bilevel programming
problem. Naval Research Logistics (NRL), 39 (3), 419–435 .

ixby, R. E. , Ceria, S. , McZeal, C. M. , & Savelsbergh, M. W. P. (1998). An updated
mixed integer programming library: MIPLIB 3.0. Optima, 58 , 12–15 .

rotcorne, L. , Labbé, M. , Marcotte, P. , & Savard, G. (2001). A bilevel model for toll

optimization on a multicommodity transportation network. Transportation sci-
ence, 35 (4), 345–358 .

ao, D. , & Chen, M. (2006). Capacitated plant selection in a decentralized manufac-
turing environment: A bilevel optimization approach. European Journal of Oper-

ational Research, 169 (1), 97–110 .
aprara, A. , Carvalho, M. , Lodi, A. , & Woeginger, G. J. (2016). Bilevel knapsack with

interdiction constraints. INFORMS Journal on Computing, 28 (2), 319–333 .

aramia, M. , & Mari, R. (2015). Enhanced exact algorithms for discrete bilevel linear
problems. Optimization Letters, 9 (7), 1447–1468 .

aramia, M. , & Mari, R. (2016). A decomposition approach to solve a bilevel ca-
pacitated facility location problem with equity constraints. Optimization Letters,

10 (5), 997–1019 .
eylan, H. , & Bell, M. G. H. (2004). Traffic signal timing optimization based on ge-

netic algorithm approach, including drivers’ routing. Transportation Research Part
B: Methodological, 38 (4), 329–342 .

roce, F. D. , & Scatamacchia, R. (2019). Lower Bounds and a New Exact Approach

for the Bilevel Knapsack with Interdiction Constraints. Integer Programming and
Combinatorial Optimization , 155–167 .

roce, F. D. , & Scatamacchia, R. (2020). An exact approach for the bilevel knap-
sack problem with interdiction constraints and extensions. Mathematical Pro-

gramming , 1–33 .

http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0008
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0011

S. Liu, M. Wang, N. Kong et al. European Journal of Operational Research 291 (2021) 661–679

D

D

D

D

D

D

F

F

F

F

F

F

G

H

J

K

K

L

L

L

M

M

S

T

T

V

W

W

X

Y

Z

Z

Z

empe, S. , Kalashnikov, V. , Pérez-Valdés, G. A. , & Kalashnykova, N. I. (2011). Nat-
ural gas bilevel cash-out problem: Convergence of a penalty function method.

European Journal of Operational Research, 215 (3), 532–538 .
empe, S. , Kalashnikov, V. , & RıÓs-Mercado, R. Z. (2005). Discrete bilevel program-

ming: Application to a natural gas cash-out problem. European Journal of Oper-
ational Research, 166 (2), 469–488 .

empe, S. , Mordukhovich, B. S. , & Zemkoho, A. B. (2014). Necessary optimality con-
ditions in pessimistic bilevel programming. Optimization, 63 (4), 505–533 .

eNegre, S. (2011). Interdiction and discrete bilevel linear programming PhD thesis.

Bethlehem, PA: Lehigh University .
eNegre, S. T. , & Ralphs, T. K. (2009). A branch-and-cut algorithm for integer bilevel

linear programs. Operations research and cyber-infrastructure (pp. 65–78). Boston,
MA: Springer .

omínguez, L. F. , & Pistikopoulos, E. N. (2010). Multiparametric programming based
algorithms for pure integer and mixed-integer bilevel programming problems.

Computers and Chemical Engineering, 34 (12), 2097–2106 .

aísca, N. P. , Dua, V. , Rustem, B. , Saraiva, P. M. , & Pistikopoulos, E. N. (2007). Para-
metric global optimisation for bilevel programming. Journal of Global Optimiza-

tion, 38 (4), 609–623 .
ischetti, M. , Ljubi ́c, I. , Monaci, M. , & Sinnl, M. (2016). Intersection cuts for bilevel

optimization. In Q. Louveaux, & M. Skutella (Eds.), Proceedings of the 18th
international conference integer programming combinatorial optimization, IPCO

(pp. 77–88). ChamSwitzerland: Springer International .

ischetti, M. , Ljubi ́c, I. , Monaci, M. , & Sinnl, M. (2017a). A new general-purpose al-
gorithm for mixed-integer bilevel linear programs. Operations Research, 65 (6),

1615–1637 .
ischetti, M., Ljubi ́c, I., Monaci, M., & Sinnl, M. (2017b). Instances and solver soft-

ware for mixed-integer bilevel linear problems. Accessed March 2017. https:
//msinnl.github.io/pages/bilevel.html

ischetti, M. , Ljubi ́c, I. , Monaci, M. , & Sinnl, M. (2018). On the use of intersection

cuts for bilevel optimization. Mathematical Programming, 172 (1–2), 77–103 .
lorensa, C. , Garcia-Herreros, P. , Misra, P. , Arslan, E. , Mehta, S. , & Gross-

mann, I. E. (2017). Capacity planning with competitive decision-makers: Trilevel
MILP formulation, degeneracy, and solution approaches. European Journal of Op-

erational Research, 262 (2), 449–463 .
arcia-Herreros, P. , Zhang, L. , Misra, P. , Arslan, E. , Mehta, S. , & Gross-

mann, I. E. (2016). Mixed-integer bilevel optimization for capacity planning with

rational markets. Computers and Chemical Engineering, 86 , 33–47 .
emmati, M. , & Smith, J. C. (2016). A mixed-integer bilevel programming approach

for a competitive prioritized set covering problem. Discrete Optimization, 20 ,
105–134 .

eroslow, R. G. (1985). The polynomial hierarchy and a simple model for competitive
analysis. Mathematical Programming, 32 (2), 146–164 .

alashnikov, V. V. , Pérez, G. A. , & Kalashnykova, N. I. (2010). A linearization ap-

proach to solve the natural gas cash-out bilevel problem. Annals of Operations
Research, 181 (1), 423–442 .
679
alashnikov, V. V. , & Ríos-Mercado, R. Z. (2006). A natural gas cash-out problem:
A bilevel programming framework and a penalty function method. Optimization

and Engineering, 7 (4), 403–420 .
abbé, M. , Marcotte, P. , & Savard, G. A. (1988). Bilevel model of taxation and

its application to optimal highway pricing. Management science, 44 (12-part-1),
1608–1622 .

ozano, L. , & Smith, J. C. (2016). A backward sampling framework for interdiction
problems with fortification. INFORMS Journal on Computing, 29 (1), 123–139 .

ozano, L. , & Smith, J. C. (2017). A value-function-based exact approach for

the bilevel mixed-integer programming problem. Operations Research, 65 (3),
768–786 .

angasarian, O. L. (1979). Uniqueness of solution in linear programming. Linear Al-
gebra and Its Applications, 25 (none), 151–162 .

oore, J. T. , & Bard, J. F. (1990). The mixed integer linear bilevel programming prob-
lem. Operations research, 38 (5), 911–921 .

aharidis, G. K. , & Ierapetritou, M. G. (2009). Resolution method for mixed integer

bi-level linear problems based on decomposition technique. Journal of Global
Optimization, 44 (1), 29–51 .

ahernejad, S., Ralphs, T.K., .& DeNegre, S.T. (.2016). A branch-and-cut algorithm

for mixed integer bilevel linear optimization problems and its implementation.

COR@ L Laboratory Technical Report 16T-015-R3, Lehigh University.
ang, Y. , Richard, J. P. P. , & Smith, J. C. (2016). A class of algorithms for mixed-integer

bilevel min–max optimization. Journal of Global Optimization, 66 (2), 225–262 .

icente, L. , Savard, G. , & Judice, J. (1996). Discrete linear bilevel programming prob-
lem. Journal of Optimization Theory and Applications, 89 (3), 597–614 .

ang, L. , & Xu, P. (2017). The watermelon algorithm for the bilevel integer linear
programming problem. SIAM Journal on Optimization, 27 (3), 1403–1430 .

iesemann, W. , Tsoukalas, A. , Kleniati, P. M. , & Rustem, B. (2013). Pessimistic bilevel
optimization. SIAM Journal on Optimization, 23 (1), 353–380 .

u, P. , & Wang, L. (2014). An exact algorithm for the bilevel mixed integer linear

programming problem under three simplifying assumptions. Computers and Op-
erations Research, 41 , 309–318 .

ue, D. , Gao, J. , Zeng, B. , & You, F. (2019). A projection-based reformulation and de-
composition algorithm for global optimization of a class of mixed integer bilevel

linear programs. Journal of Global Optimization, 73 (1), 27–57 .
are, M. H. , Borrero, J. S. , Zeng, B. , & Prokopyev, O. A. (2019). A note on linearized

reformulations for a class of bilevel linear integer problems. Annals of Operations

Research, 272 (1–2), 99–117 .
eng, B. , & An, Y. (2014). Solving bilevel mixed integer program by reformulations

and decomposition. Optimization Online , 1–34 .
hang, J. , & Özaltın, O. Y. (2017). A branch-and-cut algorithm for discrete bilevel

linear programs. Optimization Online .

http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0020
https://msinnl.github.io/pages/bilevel.html
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0032
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0032
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0033
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0034
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0036
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0037
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0038
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0039
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0040
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0041
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0042
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0043
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0044
http://refhub.elsevier.com/S0377-2217(20)30861-4/sbref0044

	An enhanced branch-and-bound algorithm for bilevel integer linear programming
	1 Introduction
	2 Literature review
	3 Model formulation and definitions
	4 An enhanced branch-and-bound algorithm
	4.1 A benchmark branching rule
	4.2 An enhanced branching rule
	4.3 An enhanced branch-and-bound algorithm

	5 Computational results
	5.1 Testbed
	5.2 Computational analysis of the enhanced branching idea
	5.3 Comparison with state-of-the-art approaches from literature

	6 Conclusions
	Acknowledgements
	Appendix. An application on a bilevel facility location problem using our algorithm in algebraic formulation
	References

