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ABSTRACT

While the global healthcare market of wearable devices has been
growing significantly in recent years and is predicted to reach
$60 billion by 2028, many important healthcare applications such
as seizure monitoring, drowsiness detection, etc. have not been
deployed due to the limited battery lifetime, slow response rate,
and inadequate biosignal quality.

This study proposes PROS, an efficient pattern-driven compres-
sive sensing framework for low-power biopotential-based wear-
ables. PROS eliminates the conventional trade-off between signal
quality, response time, and power consumption by introducing tiny
pattern recognition primitives and a pattern-driven compressive
sensing technique that exploits the sparsity of biosignals. Specif-
ically, we (i) develop tiny machine learning models to eliminate
irrelevant biosignal patterns, (ii) efficiently perform compressive
sampling of relevant biosignals with appropriate sparse wavelet
domains, and (iii) optimize hardware and OS operations to push
processing efficiency. PROS also provides an abstraction layer, so
the application only needs to care about detected relevant biosignal
patterns without knowing the optimizations underneath.

We have implemented and evaluated PROS on two open biosignal
datasets with 120 subjects and six biosignal patterns. The experi-
mental results on unknown subjects of a practical use case such as
epileptic seizure monitoring are very encouraging. PROS can re-
duce the streaming data rate by 24X while maintaining high fidelity
signal. It boosts the power efficiency of the wearable device by
more than 1200% and enables the ability to react to critical events
immediately on the device. The memory and runtime overheads
of PROS are minimal, with a few KBs and 10s of milliseconds for
each biosignal pattern, respectively. PROS is currently adopted in
research projects in multiple universities and hospitals.

CCS CONCEPTS

« Computer systems organization — Embedded systems; «
Human-centered computing — Mobile devices.
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1 INTRODUCTION

The wearable healthcare market has been experiencing significant
growth in recent years, reaching $100 million in 2020 and over $60
billion globally by 2028 [1-3]. It is predicted that healthcare wear-
able devices will be the next generation of personal telemedicine
practice. This is especially important for patients with chronic dis-
eases and after surgery, where constant monitoring is essential to
prevent fatalities [4]. However, many wearable-enabled healthcare
applications have not been deployed due to limited battery lifetime,
slow response rate, and inadequate biosignal quality.

Human biosignals are the key to enabling many healthcare ap-
plications. For example, by using facial muscle signals (i.e., elec-
tromyography (EMG)), one can monitor the stress level [5, 6] and
the eating habit of a user [7-9]. When combining with the brain
(i.e., electroencephalogram (EEG)) and eye (i.e., electrooculogra-
phy (EOG)) signals, one can further supervise the user’s emotional
states [10, 11], their pain and suffering level [12], or detect emer-
gency events such as epileptic seizures [13], microsleep [14], etc.
These healthcare applications often require long-term monitoring
of high-fidelity biosignals and the ability to react to emergency
events to prevent tragedies quickly.
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The trade-off between signal fidelity, response time, and battery
life is a long-standing challenge for wearable devices [15, 16]. In
many healthcare applications, the wearable usually takes the role
of data collecting device due to their limited energy and comput-
ing resources [17]. The collected data are transmitted to nearby
mobile devices through wireless communications (e.g., Bluetooth,
WiFi) to predict emergency events or upload to users’ healthcare
providers for further diagnosis. Though maintaining the collected
signal fidelity is crucial [18], continuous wireless communication
has a high cost on the battery life [19]. E.g., Bluetooth could con-
sume up to several mWs [20], while WiFi could go as high as 10s of
mW [21], depending on the data rate. As a result, many healthcare
wearables have to reduce signal quality (i.e., by lowering data rate)
and increase response latency (i.e., by increasing communication
intervals) to improve battery lifetime [19].

In this project, we explore the challenges of building a new event-
driven compressive sensing framework, called PROS, that could
enable highly energy-efficient wearables for biopotential-based
applications. We develop PROS based on the sparsity nature of
biosignals and events. Specifically, PROS consists of tiny pattern
recognition primitives and a pattern-driven compressive sensing al-
gorithm that work together to significantly reduce transmission rate
while maintaining high fidelity signal (Fig. 1). PROS also enables
the ability to react to critical events immediately on the device.

Challenges: To realize PROS, we face the following challenges:
(1) biosignal events (e.g., seizures, microsleep, pain, etc.) require
multimodal sensing channels and a complex algorithm (e.g., ma-
chine learning) to detect, which is not feasible on low computing
resource wearable; (2) we lack a reliable domain with high sparsity
to compress biosignals on the device effectively; (3) low power
wearable devices have extremely constrained computing resource,
i.e., an MHz microcontroller (MCU) and KBs of system memory,
making it challenging to deploy advanced computations without
consuming significant energy.

Contributions: To overcome the aforementioned challenges,
we make the following contributions:

(1) We identify the pattern primitives of biosignals such as EEG,
EOG, and EMG and develop tiny recognition models (TinyPR)
for continuous on-chip detection and low-latency responses.

(2) We devise a pattern-driven compressive sensing (PDCS) tech-
nique to efficiently compress the captured signal pattern with
appropriate wavelet domains, boosting the compression factor
and recovered signal quality.

(3) We design a hardware platform and employ optimization tech-
niques in both hardware and OS levels to support advanced
signal processing and neural network operations of PROS.

(4) The prototype of PROS is evaluated on two open datasets of
120 subjects. In a practical use case such as epileptic seizure
detection, PROS can reduce the data rate by 24X, boost the
power efficiency by more than 1200%, and enable real-time
responses within 10s of milliseconds while maintaining high
fidelity signals.

Potential Applications and Impact: While we currently focus
on EEG, EOG, and EMG biosignals and a head-worn form factor
in this study, PROS is also applicable for a variety of healthcare
wearable devices such as smartwatches, earphones, smart clothes,
etc., where achieving high-fidelity biosignal streams, low-latency
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responses, and long battery life is critical to their applications. To
encourage adoption and reproducibility, PROS is available as an
open-source project [22] under the LGPLv2 license.

2 OBSERVATIONS

As biosignal events are often intermittent, monitoring them contin-
uously results in wasted energy, computing power, and memory. In
this project, we consider events that are associated with EEG, EOG,
and EMG, but the proposed solution would be generally applicable
to other biosignals in multiple application domains.

Event Sparsity. We observe that the events of interest (e.g.,
seizures, microsleeps, etc.) are important but rarely happen. Several
studies have reported that these events only occur less than 5%
of the signal duration [23]. Thus, detecting these events on the
device could help to cut a significant amount of energy needed to
stream the signals out. However, detecting these events requires
multiple signal modalities (i.e., EEG, EOG, EMG, etc.) and a com-
plex algorithm, making it challenging to implement on resource-
constrained devices. Our intuition is that we could decompose
these complex events into smaller and generic patterns of interest
(Pols). For example, an epileptic seizure waveform could consist of
EEG spike/polyspike and slow-wave (focal/generalized non-specific
seizures), 3-Hz spike-and-wave discharges (absence seizures), and
stiffing and convulsion patterns (tonic-clonic seizures). Similarly,
we can decompose a microsleep event into alpha, theta wave, slow
eye movements, and muscle contractions patterns on the EEG, EOG,
and EMG signals. Thus, it is feasible to detect these patterns directly
on the device with an efficient pattern recognition technique.

Signal Sparsity. We also observe that the sparsity property
also presents at the signal level. While biosignals are known to be
non-sparse in time or frequency domains, they could have sparse
representations in other domains (e.g., wavelets). Thus, we do not
need all the collected samples to reconstruct the signal. The com-
pressive sensing (CS) theory has been developed to exploit the
signal sparsity. It states that the number of signal measurements de-
pends on inherent information contained in the signal and is much
lower than the Nyquist rate [19]. The effectiveness of CS relies
directly on finding a reliable domain with high sparsity. However,
this is still an open challenge for non-stationary biosignals [24].

From these observations, we hypothesize that by exploiting
both event and signal sparsity, the amount of data reduction
could be significant, leading to a highly energy-efficient system.
However, we must take great care in designing such a system.
With the constrained computing resources of wearable devices, any
additional energy spent on complicated algorithms could easily
outweigh any benefits from the reduced wireless transmission.

The remaining questions are (1) How can we develop the pattern
detection models so that they can be both accurate and efficient (Sec.
4)? (2) How can we devise a compressive sensing method that could
achieve low sampling rate while maintaining high signal fidelity (Sec.
5)? and (3) How can we optimize the system to ensure the efficiency
of additional computation (Sec. 6)?

3 PROS SYSTEM OVERVIEW

We design PROS with three objectives, (1) detect signal patterns
of interest (Pols) directly on-chip to eliminate most of the irrele-
vant signal, (2) compress the detected Pol by using the recognition
information to reduce wireless transmission rate further, and (3)
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Figure 2: PROS system overview.

optimize hardware and OS operations to enhance system’s effi-
ciency. To achieve these goals, we develop three main components
for PROS as illustrated in Fig. 2, (a) a firmware framework that
detects and compress the Pols by using our developed tiny embed-
ded machine learning models and a pattern-driven compressive
sensing algorithm, (b) a low-power hardware platform that acceler-
ates advanced signal processing and embedded machine learning
operations, and (c) a mobile app to recover the compressed Pols for
further processing.

Efficient Features Extraction Pipeline. We design a feature
extraction pipeline based on the characteristics of biosignals to
compute Mel-frequency cepstral coefficients (MFCCs) from the
signals. As the computing resource is highly constrained, we tune
the MFCC processing so that the output contains enough vital
information of each pattern while being small and lightweight.
Additionally, we employ accelerated signal processing methods
available on the hardware to boost the processing speed.

Tiny Pattern Recognition Primitives. We develop tiny pattern
recognition (TinyPR) primitives to effectively detect patterns of
interest (Pols) from the captured biosignal streams. Each primitive
only detects one Pol to ensure its efficiency and flexibility in dif-
ferent applications. Each primitive only needs a few KBs memory
and milliseconds of CPU time to operate. We use TensorFlow Lite
Microcontroller (TFLM) runtime and vectorized neural operations
to push the inference performance.

Pattern-Driven Compressive Sensing. To further reduce the
amount of communication, we devise a novel compressive sensing
technique to exploit the sparsity property of each Pol. We adaptively
apply the optimal compression ratio and wavelet domain transfor-
mation based on the pattern recognition information. We use a
random binary compression technique to compress the signal with
minimal system overhead on the wearable device. To reconstruct
the signal, we employ a state-of-the-art Block Sparse Bayesian
Learning recovery algorithm combined with pattern recognition
information to reduce the required compressed samples by taking
advantage of the sparsity of biosignal. As a result, we could achieve
a high compression factor and reconstruct the signal with high
fidelity on the mobile application.

Hardware and OS Optimizations. To further enhance the pro-
cessing efficiency, we implement hardware and OS optimizations
such as (i) dynamic voltage and frequency scaling, (ii) dynamic tick-
less mode, and (iii) adaptive energy thresholding. We also develop a
scheduler that provides configurations and wakes the application’s
threads when subscribed Pols are detected.

PROS Hardware and Mobile Application. We design a low-
power hardware platform from the ground up to support PROS.
To enable advanced optimizations on the firmware, we equip it

with a energy-efficient signal processing and neural network pro-
cessor and an adaptive, high-efficiency CPU core supply. We also
developed a lightweight signal reconstruction algorithm on mobile
devices to reconstruct the compressed Pol with high fidelity. The
reconstructed Pol could be used for further processing or diagnosis.

4 TINY PATTERN RECOGNITION
PRIMITIVES

This section presents our end-to-end pipeline, called TinyPR, for rec-
ognizing biosignal patterns. The key contributions of TinyPR are (1)
identifying the generic biosignal pattern primitives that are feasible
to be efficiently recognized on the low-power hardware and (2) pro-
viding a design strategy that can be both accurate and lightweight
for those pattern primitives. The developed pattern recognition
models can be served as building blocks for biopotential-based ap-
plications requiring on-chip pattern recognition. We first highlight
key challenges and insights into the design of our framework.

4.1 Key challenges and designs

As per our system requirements, the target recognition model
should be highly expressive to detect the biosignal patterns but
also resource-efficient for the MCUs’ deployment. This expressive-
efficiency trade-off poses a critical challenge for our system design.

Detecting biosignal patterns has remained challenging, despite
some positive outcomes in preliminary works [25, 26]. Biosignals
are highly irregular and heterogeneous [27] due to the complexity
and intrinsic properties of biosystems, causing the difficulty for
understanding and detecting the interest patterns [25, 28]. For in-
stance, recent works [26, 28] find that most existing approaches
are ineffective for learning patterns for clinical analysis and event
detection. Besides, the scarcity of interest patterns [29, 30] in biosig-
nals makes the learning even harder: the training data is heavily
imbalanced. The resource restriction of MCUs adds another chal-
lenge to our design. With limited computing resources in terms of
memory, operations, and computation capacity, MCUs require the
inference system to have low memory footprints (e.g., a few KBs)
and low inference latency.

Existing methods to biosignal learning are mainly based on either
the deep learning approach or feature-based machine learning ap-
proach [26, 31]. While achieving high recognition performance and
being easier to implement on hardware, deep learning models are
usually too large for MCUs. On the other hand, simple feature-based
learning models are more resource-efficient but not sufficiently and
robustly effective at detecting complex patterns [26]. In this work,
we propose the combination of the feature-based approach with
deep learning: utilizing an informative feature extractor to reduce
the burden in learning domain knowledge features. Moreover, we
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can significantly reduce models’ sizes by leveraging quantization
techniques without degrading the recognition performance [32].
Subjects variation is also a challenge for biopotential-based sys-
tems. While biopotential signals vary among people, our intuition is
that they contain similar patterns due to the typical structure of the
human body. For example, eye blink signals usually have two op-
posite consecutive peaks corresponding to the closing and opening
phases of the eyelids; alpha brainwaves typically have cyclical or
rhythmic changes with a frequency from 8 to 12Hz when the brain
neurons become synchronized in a relaxed state. Therefore, our
intuition is that if we train the TinyPR models to target common
and generic signal patterns of interest, these models could general-
ize well to unseen subjects. We present the detection performance
evaluations of our developed TinyPR models in detail in Sec. 8.

4.2 Pattern Recognition as the Rare Event
Detection Problem

Most target patterns rarely occur in biosignals. For instance, seizure
events usually account for only 1% in EEG recording data [29]. This
results in the highly skewed distribution of training data. Standard
methods for event detection and feature selection may not work
well with the imbalanced data [33] because they tend to learn
features only from the major classes (background signals) and may
easily misclassify the minor classes (target patterns).

Therefore, we cast our pattern identification problem as the rare
event detection problem [34]. Solving this problem requires adopt-
ing either supervised or unsupervised techniques for rare-event
detection [33]. The latter requires large models with an enormous
amount of unlabeled data, which are not feasible for deploying
MCUs. Hence, we focus on the supervision approach to design a
more lightweight classification model. In particular, considering
target patterns as positive and the rest patterns as negative, the
problem becomes a binary classification task. We note that data
distribution is highly skewed as positive data is much smaller than
negative data. To deal with this issue, we apply SMOTE [35] method
to upsample the positive patterns. The next section will present the
design of our feature extractor and binary classification model.

4.3 Informative Feature Extraction

Powerful prior knowledge via informative feature extraction can
significantly reduce the complexity of recognition models. Mel
Frequency Cepstral Coefficients (MFCC), together with Wavelets
transform, are the two most common approaches used for extracting
biosignal features [36]. Since the computing resource and energy
on low-power microcontrollers (MCU) are highly constrained, we
only pick the features that are informative while being resource-
efficient. MFCC features fit well with these criteria as multiple
previous works [36, 37] have proved that MFCC features are reli-
able in detecting biosignal (EEG/EOG/EMG) events. Furthermore,
there are available components in the optimized firmware library,
such as ARM-CMSIS, for an efficient implementation. An efficient
implementation is critical for low-power MCUs since heavy pro-
cessing can easily outweigh any benefits of data reduction.

As MFCC is initially used for audio signals, we configure its
components to extract useful features from biosignal data. We note
that most of the information in biosignals (EEG, EOG, EMG) locate
at the low-frequency bands (< 300Hz) [38, 39]. We, therefore, use
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only ten bands among 39 features of MFCC to extract essential
features, further helping reduce the input size of the recognition
model. We use Hamming window to slice the signals into slicing
frames. Note that sudden chop-off at the frame’s edge can lead
to a noisy signal because of the sudden amplitude drop. Hence,
we gradually drop amplitude near the edge of frames. We apply
Discrete Cosine Transform to extract features in the frequency
domain and triangular Mel-scale filter banks to transform the signal
to Mel-scale power spectrum. Given these features, we can now
build an efficient classifier.

Though it is possible to extract meaningful features with au-
toencoders automatically, it is not efficient on low-power micro-
controllers. It has been pointed out in [40] that directly extracting
features would be much more energy and computational efficient
by taking advantage of the accelerated library of the targeted hard-
ware. Thus, we design our TinyPR models around optimized signal
processing and neural operations provided by TinyML frameworks
such as TensorFlow Lite Microcontroller [40] and CMSIS-NN [41].

It is also important to note that while MFCC could extract tempo-
ral and spectral features well, these features might not be sufficient
for all applications. Thus, we envision that PROS serves as an open
framework where multiple processing pipelines and pattern recog-
nition models could be developed for various applications.

4.4 Efficient Design for Recognition Model

We build a deep classification model on top of the extracted MFCC
features to complete the recognition framework. The resource con-
straints pose two questions for our design: how to design the best-fit
model given particular conditions on memory and power and how
to efficiently run the model on MCUs. We wish to achieve these
objectives without degrading the recognition performance.

Efficient Architecture. Recent works of TinyML [42], or ma-
chine learning for edge devices, provide potential solutions to our
problem. TinyML aims to shrink sizeable deep learning models
(millions to billions of parameters) into tiny models of a few KBs,
mainly by changing the network topology to remove the redun-
dant parameters [43, 44], reducing the input size, or loading only
parts of the network to the memory to address the memory bottle-
neck [45, 46]. However, existing models are not directly applicable
for our PROS system because the shrunk models’ sizes are still
relatively larger than our desiderata, and the designs are primarily
specific for image signals instead of biosignals. Therefore, we de-
rive a simple yet powerful architecture for our system based on the
recent advances of TinyML [42].

The critical component of our architecture is the block of depth-
wise convolution (DW-Conv) and pointwise convolution (PW-
Conv) [43], which has been proven helpful in multiple resource-
aware models, such as MobileNets [43, 44] and MicroNets [47].
DW-Conv is a type of spatial convolution that applies indepen-
dently on each channel of inputs. PW-Conv uses a 1 X 1 kernel to
iterate every point, further linearly combining DW-Conv outputs.
Compared to the standard convolution, DW-Conv and PW-Conv
require much smaller numbers of parameters, thus being more com-
putationally effective [48]. Also, these operations are supported by
the micro deep learning framework TFLMicro [49].

Our architecture consists of a convolutional layer as the input
layer, followed by a sequence of DW-PW-Conv blocks, a Dropout
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layer, and a linear layer. Each DW-PW-Conv block is a stack of a
DW-Conv and a PW-Conv with batch normalization and a Relu
activation. Under different systems, we control models’ sizes by
varying the number of DW-PW-Conv blocks and channels’ sizes
to fit the MCUs’ requirements. In particular, we apply the search
approach in MobileNetV2 [44] to search for the architecture’s con-
figurations achieving the best trade-off of efficiency and recognition
accuracy. For the deployment on MCUs, we use the TensorFlow
Lite Microcontroller framework [50] to compress the model into
the numeric domain, reducing the memory footprint and speeding
up the computation.

Post-training Dynamic Range Quantization. To further re-
duce the model’s size for inference, we apply the dynamic range
quantization technique [51]. While the floating-point format is
used for parameters of most deep learning models to achieve better
precision during training, it may be costly to store floating-point
numbers, especially on low-memory edge devices. Quantization
techniques help solve this issue by converting trained parameters
into another number representation. For instance, converting the
commonly used float32 format to the int8 format helps save 24 bits.
Weights are converted back into float32 format during the inference
for better classification performance. We find that the recognition
performances in metric-wise are nearly identical to the original
ones after this transformation.

Memory complexity. Our final models have only a few KBs in
size, highly optimized compared to MobileNetV1 and MobileNetV2
(16.9 MBs and 4 MBs, respectively). We attribute this tremendous
compression mainly to the use of an informative MFCC feature set:
with small size (10 features (Section 4.3)) and with low dimension
(22 dimensions). The input size of classification models reduces from
224 x 224 x 3 (for images in MobileNets) down to 10 X 22, leading
to small numbers of convolution channels and layers required to
learn the feature representation. As a result, our smallest models
have only nearly 3.5K parameters in total.

Inference with Confidence. Together with producing accurate
predictions, an essential requirement for recognition models in
practice is to provide the confidence of the prediction. Inspired
by the clinical procedure in diagnostics, we impose the confidence
level to the pattern recognition result. Together with each classifica-
tion’s output (binary value), our model produces a confidence score
representing the certainty of the prediction. This score is gener-
ated by thresholding the soft-max scores of the binary classes. The
application can choose the threshold to make a trade-off between
sensitivity or specificity depending on its requirements.

At this stage, we could eliminate most of the irrelevant signals.
However, as we still need to transmit the captured Pol signals, we
need to compress the data to reduce the transmission rate further.
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5 PATTERN-DRIVEN COMPRESSIVE
SENSING

This section discusses the challenges and our proposed Pattern-
driven Compressing Sensing (PDCS) technique to reduce the
amount of wireless communication in our system. While downsam-
pling is a popular technique to reduce data rate, it has been shown
that it could significantly degrade the quality of biosignal analysis
and induce higher noise and aliasing [52]. In this study, we employ
the compressive sensing (CS) theory as it could avoid signal degra-
dation while requiring minimal system processing and memory
overheads, both of which are critical for low-power biopotential-
based wearables [53]. It bases on a fundamental assumption that
biosignals have sparse representations in a transformed domain
such as frequency or time-frequency (e.g., wavelets) [54, 55]. Thus,
sampling the signal based on the fastest frequency component based
on Nyquist-Shannon theory is redundant [56].

The key contribution of PDCS is the ability to incorporate pat-
tern recognition information to build an efficient data-driven com-
pressive sensing method. Conventionally, the compressive sensing
techniques are deployed on low-power devices due to the sim-
plicity of the compression. The performance, however, depends
heavily on the choice of the compression ratio and sparse domain
basis. Since pattern recognition information was unavailable in
previous works [19, 57] due to energy and computational resource
constraints, the compression ratio and sparse domain basis are of-
ten chosen and tuned offline based on pre-collected data and apply
to the whole signal during runtime. It leads to significant variations
and inconsistent performance with non-stationary biosignals such
as EEG [24]. By enabling energy-efficient on-chip pattern recogni-
tion, we can recognize and apply different compression ratios and
sparse domain basis for each signal pattern in real-time.

It is also important to note that the merit of PDCS is complemen-
tary to TinyPRs. For example, assuming TinyPRs could reduce the
transmission rate by M times by eliminating the irrelevant signal
and PDCS compress the detected signal by N times on average, we
will have the total compression ratio of M X N. Furthermore, the
theoretical computational (and energy) cost of PDCS is much lower
than running a TinyPR model on the wearable device, i.e., only one
matrix-vector multiplication versus a convolutional neural network
inference, making the return on investment of PDCS significant.

5.1 PDCS framework design

We design our PDCS framework as illustrated in Fig. 3. PDCS is a
digital CS design where we perform compression after digitalization.
This design has the advantage that we could use precision, high-rate
ADC (e.g., ~ — A modulated ADCs [58]) to avoid high-frequency
noise and aliasing. PDCS has four important steps as follows.
First, we identify the domain and the transformation basis ¥, ,,
where the input signal X, 1 has a sparse representation sp 1, i.e.,
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X = Vs. As sampling with CS is based on the inherent infor-
mation contained in the signal rather than its frequency band-
width, the higher sparsity of the representation s, the less in-
formation is presented in the signal. Hence, a lower number of
measurements is needed. The sparsity and density are defined as
the percentage of zero and non-zeroes values in s, respectively.
Sparsity = 1 — Density.

Second, we choose an i.i.d random distribution to construct our
measurement matrices ®. We construct multiple ®s for various
compression factors (CFs). To ensure the compressed signal can be
successfully recoverable, the coherence (i) between ® and ¥, i.e.,

u=+nx | max [{®;, ¥}, is employed [55]. Lower (1 < p < v/n),
<i,j<n

means more efficient compression. Random measurement matri-
ces such as Gaussian, Bernoulli, Binary, etc. have low p with any
basis [59, 60]. Thus, they are employed as the universal encoders.

Third, on the wearable device, we compress the captured biosig-
nals (Xju,1) based on pattern recognition information from TinyPR
primitives (Sec. 4) and desired CFs (CF = n/m) for each pattern (p),
ie, Ym1 = <I>fn,an,1, with m and n are the sizes of the compressed
(Y) and the original signal (X), respectively. m should be much
smaller than n for the compression to be effective. We transmit Y
together with its recognition information to help with the recovery.

Fourth, at the receiver side (e.g., tablets, phones), we find a sparse
representation s, 1 by minimizing a Bayesian loss function. Using
the received pattern recognition information, we dynamically ap-
ply different basis functions (¥¥s) to the Block Sparse Bayesian
Learning (BSBL) algorithm to get the optimal results. The original
signal is recovered by X = ¥Ps.

We tune CF based on the acceptance loss of the recovered signal.
The configurations are evaluated on sample datasets to ensure
satisfying accuracy. We measure the loss of the CS method by using
the Structural SIMilarity index (SSIM) [61]. We employ SSIM in this
study since it has better performance on structured signals [61].
The higher SSIM is better. SSIM = 1 means perfect recovery.

5.2 Sparsity variations among patterns

Finding the optimal domain where biosignals have sparse repre-
sentations is the most crucial task and the most non-trivial one.
Previous works on compressive sensing with biosignals show the
feasibility of biosignals such as EEG, EOG, EMG to have sparse
representations in time-frequency domains such as Gabor, Spline,
and Wavelets domains [24, 62—-64]. However, as they do not take
into account individual signal pattern structure, many studies have
reported large variations to the reconstruction accuracy among
different channels and trials [24, 65].

Fig. 4 confirms the significant sparsity variations among dif-
ferent biosignal patterns in the same Daubechies 2 (db2) wavelet
domain. Six biosignal patterns are extracted from an open biosignal
dataset [66]. They include (1) eye blink (EOG), (2) spike-and-wave

(EEQG), (3) absence seizure (EEG), (4) chewing (EMG), (5) tonic-clonic
seizure (EEG), and (6) muscle contraction (EMG). We apply the same
discrete wavelet decomposition with seven levels. By keeping the
recovery similarity index, i.e., SSIM, to be at least 0.9 between the
original and recovered, we can find the minimum number of wavelet
coefficients that are needed to reconstruct the original signal.
The db2 mother wavelet has a high structural correlation with
eye blinks patterns. Thus, fewer wavelet coefficients are needed to
reconstruct the original signal with only 4% density. On the other
hand, the db2 wavelet works poorly with chewing, tonic-clonic
seizure, and muscle contraction patterns. Their density is 36, 22, and
15%, respectively. Up to 9X can be observed in the density difference
among these biosignals; hence, finding the optimal wavelet domain
is a significant challenge that we need to address.
5.3 Optimal wavelet domains search

In this study, we assume that a universal wavelet domain for all
the biosignal or even each signal group such as EEG, EOG, or
EMG might not exist. However, there exists an optimal wavelet
domain for individual biosignal pattern. Thus, by knowing the
pattern of the interested signal, we could choose the appropriate
sparse wavelet domain for each pattern to get the best compression
factor. This is not possible in conventional CS systems [24, 57, 63,
67] where we lack the pattern recognition ability from biosignal
streams. Hence, we have to trade-off between signal fidelity (i.e., by
using the smallest CF) or compression factor (i.e., by accepting the
loss with low sparsity patterns). Sec. 4 discuss how we overcome
this challenge by capturing pattern information directly on the
low-power hardware. The next step is to find the optimal wavelet
domain for each biosignal pattern of interest.

There are several quantitative metrics in literature to choose the
optimal wavelet domain such as maximum cross correlation [68],
mean squared error [69], continuous wavelet coefficients [70], min-
imum description length [71], etc., that are used for biosignals such
as EEG, EOG, EMG, or ECG. They are based on the intuition that the
optimal wavelet domain will have the highest similarity between
its transformation basis and the input signal [72]. They, however,
could not tell us the sparsity of a signal pattern, making it difficult
to estimate the compression factors. Furthermore, some studies also
point out that similarity-based methods might not always result in
optimal wavelet domains [72]. To alleviate this issue, we propose
another selection metric called Maximum Sparsity Index (MSI).
We define MSI as the maximum percentage of discrete wavelet
coefficients that are not significant to reconstruct the signal.

Listing 1 presents our search algorithm. Since there could be
an infinite number of wavelet domains [73], we only pick out 70
mother wavelet functions in six families such as Daubechies (db1-
15), Coiflet (coif1-5), Fejér-Korovkin (fk4-fk22), Symlet (sym2-15),
Biorthogonal Spline (bior1.1-6.8), Reverse B-Spline (rbior1.1-6.8),
that are commonly used for biosignals [74-76]. For each mother
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wavelet function, we apply Discrete Wavelet Transform (DWT)
to the input signal (X) with five decomposition levels to get its
wavelet coefficients (coef fs). The number of decomposition levels
is chosen to extract all the frequency information inside the input
biosignals [77]. As coef f's is near sparse (i.e., the coefficients that
are significantly larger than zero are sparse), we iteratively apply
different thresholds to get a sparse representation (s).

Algorithm 1: Optimal wavelet domains search

input :ssim_thr /*Minimum desired recovery quality™/
wavelets_list /*Wavelet domains search space*/

output:best_W /*a wavelet domain with the highest MSI*/

best_W « None;

best_MSI « 0;

for W in wavelets_list do
MSIs < None
for X in signal_list do
coeffs «— DWT(X,W)
for thr in thresholds_range do
s « thresholding(coef f's, thr)
X — IDWT(s)
if SSIM(X,X) > ssim_thr then
MSI « zeros(s)/len(s)
break

| MSIs.append(MSI)

if best_MSI < avg(MSIs) then
best_MSI «— avg(MSIs)
best W «— W

return best_ W,

We then quantify the quality of the reconstructed signal (X) from
s by applying Inverse Discrete Wavelet Transform (IDWT) and
calculating the SSIM index. Only the ones with SIMM > ssim_thr
are kept. The ssim_thr we used for optimal wavelet domain search is
0.9. From our preliminary evaluations, this is sufficient for the signal
to maintain its quality similar to the original (as discussed in Sec. 8).
Note that this threshold is adjustable depending on the application’s
requirements. The sparest wavelet representation is the one that
has the largest threshold. We calculate MSI by finding the ratio of
non-zeroes components in s. The optimal wavelet domain is the
one that has the smallest average MSI for all the input signals of
the same pattern group. Finally, we repeat the same process to find
optimal wavelet domains for all the patterns.

It is important to note that we only use DWT and IDWT to
quantify patterns’ sparsity, not running them on either the wear-
able or mobile device. After knowing the optimal domains, we can
construct different ® and ¥ matrices for individual patterns and
store them on wearable and mobile devices. However, the conven-
tional compressive sensing theory would require the compressed
sample size to be around four-time the density of a sparse repre-
sentation [60], making it very challenging to work on near-sparse
biosignals. E.g., a muscle contraction pattern (Fig. 4) with 36% den-
sity will not work as it requires the compressed signal to have 1.44X
more samples than the original signal.

5.4 Recovery with Pattern Information and
Block Sparse Bayesian Learning

We devise an efficient reconstruction algorithm based on received
pattern recognition information and the Block Sparse Bayesian
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Learning (BSBL) technique [78] as illustrated in Fig. 3. BSBL tech-
nique help to address the issue of high compressed sampling rate
by taking into account the temporal sparsity and correlation among
signal blocks.

To apply the BSBL technique, we consider a window of signal
(s) of size N as a series of blocks of size d, i.e.,

T

e sSN—d+1> >SN | (1)

s = [ 81 ... 84> Sd+1 -+ S2ds
—_——— | — —_—
sT[1], 1stblock  sT[2] sT[N/d]

A signal with few blocks that are non-zeroes is called a block-sparse
signal. This study assumes that the biosignal patterns are block-
sparse in their respective optimal wavelet domains.

Each block (s;) in the signal is modelled as a combination of
two multivariant Gaussian distributions, i.e., the noiseless signal
p(si;vi, Bi) ~ N(0,yiB;), and the noise vector p(n; ) ~ N(0, 5I).
vi and B; are the block sparsity control parameter and mutual
correlation matrix of the i-th block, respectively. d is a positive scalar
representing the noise and I is the identity matrix. We estimate the
parameters y;, B, and 8, by applying Type-II-maximum likelihood
procedure to minimize the following cost function [78, 79],

L = log|8] + d¥So(P¥)T | + YT (81 + d¥5o (@) )1y (2)

where %9 = diag{y1B1, ... YN/aBN/a}- In contract to the con-
ventional BSBL technique, we dynamically apply different wavelet
basis (¥) to the Bayesian learning process based on received pattern
information and its optimal wavelet domain. After the learning has
converged, we find s by using Maximum-A-Posteriori estimation,
ie.,s =2 (@¥)T (81 + D3 (d¥)T) L. The signal is reconstructed
as, X = ¥s.

Till this point, we could significantly reduce the wireless trans-
mission rate. However, we might reach the stage where wireless
communication is no longer the bottleneck. Thus, we will need to
look elsewhere to increase energy efficiency further.

6 HARDWARE AND OS OPTIMIZATIONS

As PROS performs neural network inferences continuously in the
background, processing efficiency is critical. We will discuss in this
section the hardware and OS optimization techniques that we have
adopted from the state-of-the-art to push the processing efficiency
of PROS further.

Dynamic Voltage & Frequency Scaling. DVFS technique im-
proves energy efficiency by reducing the operating frequency and
voltage of the CPU core based on the workload’s demand [80, 81].
We could formulate the energy consumption of a CPU core as,
Ecpu = (CVZf"'VIstatic)Trun+VIstaticTsleep- where C, V,f, Lstatic,
Trun, and Ty, ), are total gate capacitance, operating voltage, switch-
ing frequency, static leakage current, running and sleep time, respec-
tively. As switching frequency is directly related to the operating
voltage, i.e., f o< (V=Vipreshold) > [81], we can significantly reduce
the power consumption by lowering f, which also lowers V. DVFS,
however, has a point of diminishing return [82]. When we decrease
f, the time required for completing a task (T,) increases, leading
to increased static energy consumption due to Is;4¢ic. We confirm
this phenomenon on an ARM MCU. As we can observe from Fig. 5,
the power efficiency of the CPU core increases up to 30%, i.e., from
7.1 to 9.1 DMIPS/mW (Dhrystone Million Instructions per Second
per milliwatt) when we reduce f4x from 120 to 26 MHz and V
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from 1.14 to 1.05V. However, this scaling is not linear as the static
power becomes dominant at lower fs, i.e., the efficiency drop to 0.5
DMIPS/mW with f = 100kHz.

To address this issue, we develop a lightweight DVFS algorithm
inside the PROS kernel. It is based on the principle that the CPU
should run at the maximum frequency of the lowest possible volt-
age while still meeting the deadline (T;). The deadline can either
be the time where a signal window is returned by the DMA (Direct
Memory Access) peripheral or the desired value set by the devel-
oper. It follows three steps as follows. First, we set f and V at the
maximum values (fimaxs Vinax) and run all the background process-
ing (e.g., tinyPR primitives, preprocessing, compressive sensing,
etc.) required by the application to measure the CPU time (tp). Sec-
ond, we estimate the lowest possible CPU frequency that still meet
the deadline, ie., finin = [T/to * fimax |- From fmin, we can find
the lowest possible voltage range (Vinin) that could support fiin.
Finally, we set the CPU frequency to the maximum f, supported by
Vinin. This is the optimal frequency for our workload. Depending
on the application’s workload dynamic, we can run DVFES once at
the system startup or run it every scheduling cycle.

Dynamic Tickless Mode. Many OSes such as Linux or FreeR-
TOS [83] use a global hardware timer generating periodic ticks (e.g.,
100 or 1000 ticks per second). This is a nice and simple timebase for
OS tasks such as scheduling or synchronizations [84]. However, it
negatively impacts low power performance as the CPU is constantly
wakened up from its sleep mode every the timer interrupts fires.
This leads to a significant energy loss due to constantly waking up.
Fig. 6 illustrates the energy consumed by switching back and forth
between wake and sleep mode every 1ms will outweigh any energy
saved by putting the CPU to sleep.

To address this issue, we employ the dynamic tickless mode
(dyntick) [84] for PROS. Dyntick eliminates the periodic timer in-
terrupts when the system is idle. The CPU is put into sleep mode
until the next task is ready to run or an interrupt is fired. Since
the kernel still needs to wake up when its tasks are ready, we im-
plement a low power timebase (e.g., the real-time clock peripheral
on ARM Cortex-M MCUs) that can still run while the CPU is in
sleep mode. We set the alarm on this low-power timebase to wake
up the CPU when its tasks are ready. We also use it to track how
much time the CPU has slept to adjust the kernel timebase. This
significantly reduces the energy wasted due to constantly waking
up while maintaining the OS kernel’s proper operations.

Adaptive Energy Threshold. Our tinyPR primitives (Sec. 4) are
powerful tools to recognize Pols. However, they might be too ex-
pensive to run on obvious background signals. Thus, we apply a
light-weight adaptive energy threshold method, which is quite ef-
fective in eliminating non-stationary background noise in speech
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Figure 7: PROS hardware platform.

recognition systems [85, 86]. After a signal segment of size n has
been captured, we calculate its energy by E = % > 1x(i)?] and
compare with a threshold value. The signal segment with lower en-
ergy level is eliminated. We adaptively update the threshold value
(1) based on m previous measurements of background and Pol sig-
nalsby A =« Z;”zl }Ebg +p Z;"zl %EPOI [85]. As the definition of
background signals varies from one application to another, we will
need to adjust « and f accordingly.

PROS Abstractions. To provide a friendly interface for applica-
tion developers, we wrap up all underlying processing procedures
with the PROS scheduler. The scheduler provides the application
with the interfaces to (1) set up and configure the TinyPR primi-
tives needed by the application, (2) wake up the application threads
for real-time responses when a subscribed Pol is detected. It also
handles background operations such as running TinyPR primitives
and PDCS algorithm.

We wrap the tinyPR models, pre-processing pipeline, and PDCS
algorithm as C++ classes and implement the PROS scheduler as
a FreeRTOS task. At the initial state, the developer can declare
the TinyPR models, confidence threshold, compression ratio, and
their mapping to application tasks. During runtime, if the output
probability of the positive class is over the defined threshold, the
scheduler will notify the subscribed tasks for execution. Direct task-
to-task notification of FreeRTOS is employed to ensure efficiency.
The notified task could request to access the signal data buffers, but
it will need to make a copy before they are overwritten.

7 IMPLEMENTATION

PROS Firmware Framework. We implement PROS based on the
FreeRTOS real-time kernel, which provides the base OS functional-
ities: preemptive task scheduling, dynamic memory management,
and synchronizations. We implement additional optimization mod-
ules: DVFS and dynamic tickless sleep mode, then integrate them
into the FreeRTOS kernel. We train our TinyPR primitives on an
Nvidia RTX 3090 GPU and use the TensorFlow Lite Microcontroller
to perform inferences on PROS hardware. The neural network
operations, MFCC calculation, adaptive energy detector are accel-
erated by SIMD (Single Instruction Multiple Data) and single-cycle
MAC (Multiplication-and-Accumulation) instructions. We use pre-
generated binary matrices stored in MCU’s FLASH to perform the
PDCS algorithm. We also implement the optimal wavelet search
algorithm in MATLAB.

PROS hardware and mobile apps. We build a hardware pro-
totype (Fig. 7) to support all the operations of PROS. Specifically,
it contains an ARM Cortex-M4F MCU (STM32L4R5, 2MB FLASH,
640KB RAM) with four efficiency modes, accelerated DSP, and neu-
ral engines. To support DVFS, we bypass the internal regulator
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Figure 9: TinyPRs (tiny configuration) performance in unknown subjects evaluations.

with an adaptive Switched Mode Power Supply (SMPS), providing
the CPU voltage ranging from 1.00 to 1.35V. We use a dual-mode
Bluetooth module (RN4678) to provide wireless communication
with Bluetooth EDR (Enhanced Data Rate) and BLE 5 protocols. It
supports the throughput up to 48 and 256 kbps with BLE and EDR,
respectively. We put together our hardware in a headband form
factor. Finally, we deploy the signal reconstruction algorithm to
two mobile platforms, i.e., Galaxy S20 and Surface Go 2.

8 EVALUATIONS

8.1 Datasets Preparation.

In this study, we use two open biosignal datasets, namely, TUSZ
(Epileptic Seizures EEG events) and TUAG (EOG and EMG events),
to develop and evaluate our TinyPR primitives and PDCS algo-
rithms. The collection protocol was approved by Temple University
Hospital IRB [87]. From the TUSZ dataset, we pick out a subset of
60 subjects with three important epileptic seizure patterns, i.e., (1)
spike-and-sharp-wave (SPSW) patterns, (2) 3-Hertz spike-and-wave
discharges (ABSZ), and (3) muscle stiffing and convulsions patterns
(TCSZ), which represent focal/generalized non-specific, absence,
and tonic-clonic seizures. Similarly, we pick up 60 subjects together
with three EOG and EMG patterns, i.e., (1) eyes movements (EYEM),
(2) chewing (CHEW), and (3) muscle contractions (MUSC), from the
TUAG dataset. The chosen patient data were collected in various
clinical settings such as the epilepsy monitoring unit, intensive care
unit, emergency rooms, and routine EEG sessions. They contain
both inpatients and outpatients with ages from five to 83 years old.
As the sampling rate of the datasets varies (from 250 to 1024 Hz),
we uniformly resample all the data to 500 Hz, which is the optimal
data rate for EEG analysis [52].

We set aside ten subjects from each dataset for the unknown-
subjects evaluations. The remaining are split into 10-folds for
training (80%), validating (10%), and testing (10%). We then seg-
ment raw signal into non-overlapping windows. We use the dura-
tion of three seconds to cover sufficient pattern information. For
the TUSZ dataset, it results in 2,099,479 data points (background:
2059148, SPSW: 34128, TCSZ: 3651, ABSZ: 2552) for the 10-folds

cross validation and 138,340 data points (background: 136292, SPSW:
1752, TCSZ: 220, ABSZ: 76) for the unknown-subjects evaluation.
With the TUAG dataset, we have 495,338 data points (background:
440,479, EYEM: 15488, CHEW: 2993, MUSC: 36378) for the 10-folds
cross validation and 11,993 data points (background: 9467, EYEM:
99, CHEW: 104, MUSC: 2323) for the unknown-subjects evaluation.

Per each window, we apply the MFCC approach with our pa-
rameters’ configuration (see Sec. 4.3) to extract the feature set of 10
MFCC features. The window is positive if the target pattern appears
and negative, otherwise. With each fold, we apply an oversampling
technique, SMOTE [35], to enrich the amount of positive data for
the training set. Upsampling is not applied to validation, test, and
unknown-subjects sets to keep the original distribution of samples.

8.2 TinyPR Primitives.

Classification metrics. As we cast our TinyPR primitives as bi-
nary classification models (Sec. 4). We use four indices of the con-
fusion matrix: true positive (TP) is the number of actual positive
segments which are correctly classified; true negative (TN) is the
number of the actual negative segments that are correctly classi-
fied; false positive (FP) is the number of actual negative segments
that are incorrectly classified as positive; false negative (FN) is
the number of actual positive segments which are incorrectly clas-
sified as negative. With these notions, we define the sensitivity,
specificity, and G-Mean scores as follow, Sens = %;Spec =

%; G — Mean = /Sens = Spec. We plot the Receiver Operat-
ing Characteristic (ROC) curve to quantify the trade-off between

sensitivity and specificity. We also report Area Under the Curve
(AUC) as an additional performance metric.

10-folds cross-validation. We use standard Adam opti-
mizer [88] with learning rate of 1e — 2 and (1, f2) = (0.5,0.999) for
optimization. The classification loss is cross-entropy. We train each
model with batch size 32 for 200 epochs. We evaluate the G-Mean
score of models on the validation set to select the best model.

We present the results on 10-folds cross-validations in Fig. 8. All
the results are from the tiny configuration. Fig. 8a shows an example
of a normalized confusion matrix and ROC of the SPSW TinyPR
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Figure 10: ABSZ optimal domain search.

primitive. From the confusion matrix, we could see that the TinyPR
model can effectively eliminate 91% (specificity) of the irrelevant
negative windows while being able to capture 89% (sensitivity) of
the positive ones. The G-Mean and AUC scores are 90% and 96%,
respectively. Fig. 8b summarizes all the results. Among these, the
ABSZ TinyPR has the highest scores with 98% and 99% for G-Mean
and AUC, respectively. The EYEM model has the lowest scores
(78% G-Mean, 87% AUC) due to low signal amplitudes and large
variations between vertical and horizontal movements.

Unknown subjects evaluation. To further evaluate the ability
to work on unknown subjects, we use the best TinyPR primitives,
chosen by their G-Mean scores, from our 10-fold validations to test
on the unknown-subjects set. Fig. 9 presents our results. Fig. 9a
shows that our SPSW TinyPR primitive could achieve 90%, 83%, 86%,
and 94% of specificity, sensitivity, G-Mean, and AUC, respectively.
Similarly, Fig. 9b presents the results of all TinyPR primitives. The
EYEM model has the lowest G-Mean and AUC at 75% and 85%,
while all other models can achieve more than 85%. These results
show the feasibility of our developed TinyPR primitives to work
even on people that the models have not encountered.

Model and features sizes. To quantify the effects of model
sizes, we evaluate different configurations, such as tiny, small, and
medium, on the same SPSW pattern. We see that the training time
will converse quicker with larger model sizes, i.e., <50 epochs with
the medium configuration versus >100 epochs with the tiny config-
uration. However, the results do not significantly improve, i.e., 1-2%
variation, in the G-Mean score. Similar results are also observed
with larger feature sizes, i.e., 20 vs. 10 MFCC features. Since we
only need to train the model once, we can afford a longer training
time to achieve smaller model and feature sizes. Smaller sizes will
significantly reduce the latency and memory footprint during run-
time. After quantization, we observe the reduction of 63% with our
tiny configuration, i.e., from 11KB (PyTorch) to 5KB (TFLM). The
loss after quantization is minimal, with <1% of the G-Mean score.

8.3 Pattern-driven Compressive Sensing.

Optimal wavelet domains search. We conduct the optimal
wavelet domains search (Sec. 5.3) for all the patterns on the training
dataset. Fig. 10 presents the results for the ABSZ pattern. The results
confirm our intuition that the choice of wavelet domain is signif-
icantly important. For the ABSZ pattern, the global maxima and
minima of average MSI are 91.2% and 61.9% with bior4.4 and rboi3.1
wavelet domains, respectively. This means there are more than 4X
differences between the density of the two domains, making CS
unusable with the latter. Interestingly, we observe that several local
maxima in each wavelet family have similar results to the global
maxima. E.g., the db3 domain has an average MSI of 90%, which is

Figure 11: ABSZ recovery quality in bior4.4 domain.

only 1% lower. This shows overlapping among wavelet domains,
which one might exploit to further improve recovery latency by
using simpler wavelet domains. Table 1 summarizes the optimal
wavelet domains for all patterns. SPSW has the highest MSI (92.6%)
with bior6.8 domain while TCSZ has the lowest (71.4%) with sym14
due to high frequency and stochastic muscle components.

Table 1: Recovery quality with different CFs.

Pattern Wavelet | MSI | SSIM with different CFs (w=3s)
Domain | (%) | 1.5X | 2X | 3X | 4X | 5X

SPSW bior6.8 92.6 0.99 | 098 | 0.96 | 0.94 | 0.89
ABSZ bior4.4 91.2 0.99 | 097 | 094 | 0.89 | 0.82
TCSZ syml4 714 | 0.84 | 0.81 | 0.57 | 0.39 | 0.31
EYEM sym5 89.6 098 | 0.97 | 091 | 0.84 | 0.80
CHEW bior4.4 84.0 093 | 093 | 0.84 | 0.78 | 0.71
MUSC sym5 79.7 092 | 0.88 | 0.70 | 0.60 | 0.50

To measure the computational cost, we perform the search on
a Linux workstation (Core-i7 3.6x8GHz, 128GB RAM). With eight
MATLARB parallel workers, the search consumes 6981MB of memory
and takes from 38 (CHEW) to 247 (MUSC) hours to finish. As we
only need to run the search once, it will not affect the real-time
performance during the deployment.

Compression factors tuning. After knowing the optimal
wavelet domains, we conduct evaluations to quantify the recovery
signal quality with different compression factors (CFs). We run the
evaluations on the whole training dataset and note down the CFs
and the average SSIMs values in Table 1. For the SPSW pattern (MSI
= 92.6%), we can achieve the CF of more than 5X without having
the average SSIM drop below 0.85. For patterns with low MSI such
as TCSZ (71.4%), we could only achieve the CF of 1.5-2X without
deteriorating the recovered signal. We visualize the recovered ABSZ
signal quality with different SSIMs in Fig. 11. We could see that
when SSIM > 0.85, the recovered signal looks very similar to the
original one. When SSIM > 0.93, we could not visually spot the
differences. This fits with the literature that the recovery starts to
be indistinguishable by human eyes when SSIM > 0.92 [89].

Comparison with previous works. In previous works on com-
pressive sensing (CS) such as [78, 90-92], static and pre-defined
CFs and sparse recovery domains (e.g., Discrete Cosine Trans-
form) are used due to the lack a pattern recognition capability
on low-power hardware. In [92], three state-of-the-art CS algo-
rithms, namely, DCT-based BSBL-BO [78], DCT-based /1 [91], and
Block-CoSaMP [90] are compared on the EEGLab dataset [93] (32
channels, 80 3-s EEG windows). With a CF of 2X, only DCT-based
BSBL-BO achieves a satisfying SSIM of 0.85, while DCT-based Iy
and Block-CoSaMP could only reach SSIMs of 0.45 and 0.48, respec-
tively. In contrast with previous works, PROS enables the ability to
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Figure 12: Runtime experiment setup.

recognize signal patterns of interest directly on the sensing hard-
ware. This ability helps the proposed PDCS algorithm to apply
optimal CF and sparse recovery domains for individual patterns,
leading to more efficient compression.

8.4 Hardware runtime performance.

We deploy the developed TinyPR primitives and PDCS algorithm to
our PROS hardware (ARM-Cortex M4F MCU, 2MB FLASH, 640KB
RAM, GCC -Ofast) to measure their memory footprints, processing
latency, and energy consumption. We also deploy the PDCS recov-
ery algorithm on two mobile devices, i.e., (1) Galaxy S20 (Octa-core
2.2-2.7GHz Cortex-A55) and (2) Surface Go 2 (Dual-core 1.7GHz
Intel Pentium) to measure the processing performance. We use the
Otti Arc profiler to measure energy consumption with the sampling
rate at 4000Hz. Fig. 12 presents our experiment setup.

Memory footprints. With the tiny configuration, each TinyPR
primitive only consumes 5KB of FLASH (0.2% of system FLASH)
and 30KB of RAM (4.5% of system RAM). The consumed RAM
could be dynamically reused if we do not need to run multiple
TinyPR primitives concurrently. Our PDCS consumes from 4-30KB
of FLASH (0.2-1.4% of system FLASH) to store random CS matrices.

Processing latency. On our PROS hardware, the latency of
MFCC calculation, one TinyPR inference, and compressive sensing
could be aslow as 6, 26, and 1ms when we clock the MCU at 120MHz,
respectively. When we clock the MCU at 24MHz, the results are
29, 126, and 4ms. On the mobile devices, we run the recovery algo-
rithm on 2000 different signal samples. The average latency is 50
and 94ms on the Galaxy S20 and Surface Go 2. The results show
that PROS can respond to critical events within milliseconds on
the hardware. The response time on the phone only depends on
wireless communication latency as the additional processing of our
recovery algorithm is minimal.

In a real-time setting, biopotential signal windows are contin-
uously buffered and need to be processed every few seconds, e.g.,
three seconds windows in our evaluation. Our PROS prototype
could process the signals in real-time since the whole processing
latency on both the wearable and mobile devices could be as low as
88ms. This show the feasibility of PROS in real-time applications.

Energy consumption. We measure the energy consumption of
each operation on PROS hardware with and without DVFS. When
DVFS is not used, the MFCC calculation, one TinyPR inference, and
compressive sensing consume 0.6, 2.4, and 0.1mJ. When DVES is
used, the results are 0.4, 2, and 0.07m]J. Thus, we could see that our
DVFS and SMPS could increase the energy efficiency by 30-50%.

Comparison with open-source platforms. We conduct the
processing latency (L) and energy consumption (E) measurements
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Figure 13: Open-source hardware and biosensing platforms.

of our proposed TinyPR models and PDCS algorithm on an Ar-
duino Nano BLE Sense and a Raspberry Pi Zero v1.3 (Fig. 13). Table
2 summarizes the results. Since Raspberry Pi is not designed for
low-power applications, it has the largest overheads. The perfor-
mance of PROS on both the Arduino and Raspberry could be further
improved by optimizing the processing software.

Table 2: Open-source platforms evaluations.

Platform CPU/RAM TinyPR (L/E) | PDCS (L/E)
Arduino Nano BLE | 64MHz/256KB 50ms/4.2mJ 12ms/1.0m]
Raspberry Pi Zero 1GHz/512MB 92ms/108m]J 4ms/3.6m]
PROS hardware 120MHz/256KB 26ms/2.4m] 1ms/0.1m]J

We also measure the power consumption of a commercialized
biosensing platform, i.e., OpenBCI. The average consumption while
streaming is 146mW. Thus, with 250, 320, and 500mAh LiPo bat-
teries, it could last for 6.3, 8.1, and 12.7 hours, respectively. With
PROS hardware and the workload discussed in Sec. 8.5, we could
increase the battery life to 84, 107, and 168 hours.

8.5 Epileptic seizures detection use case.

We conducted our experiment to quantify the significance of PROS
in detecting epileptic seizures. We choose the seizure detection use
case because of its high-fidelity data requirement and challenging
local processing on the device.

Previous studies [94, 95] have pointed out that detecting non-
motor seizures is non-trivial and requires medical experts to analyze
and diagnose the captured signals. Thus, maintaining high-fidelity
signals is essential. Furthermore, local seizure detection on wearable
devices is challenging when considering the constrained comput-
ing resource of low-power microcontrollers. In literature, neural
networks such as VGG [96] or ResNet [97] are feasible for detecting
seizures with good accuracy. However, such networks are too large
to be run on an MCU with limited memory (<1 MB of SRAM) [98].
Even if we can extensively prune the network to run on MCUs, the
accuracy will degrade significantly, leading to unusable results) [98].
Thus, sending signals to a nearby offload device is still necessary
for further analysis, diagnosis or classification.

In this case study, we focus on focusing on three crucial seizure
types, i.e., tonic-clonic, absence, and focal/generalized non-specific
seizures. They require three seizure-related patterns, i.e., TCSZ,
ABSZ, and SPSW, respectively. To ensure practicality, we use the
unknown-subjects dataset (10 subjects, Sec. 8.1). This results in
208,246,500 samples, i.e., 29 hours of data. The CFs for TCSZ, ABSZ,
and SPSW are set at 2, 4, and 5X, respectively. Since tonic-clonic
seizures have the highest risk of fatality [99], we put TCSZ at the
highest priority, followed by ABSZ and SPSW.
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The results show that PROS can reduce the number of transmis-
sion data by 24X (8,807,370 vs. 208,246,500 samples). Our TinyPR
primitives can pick up more than 85% seizure signals and eliminate
86% non-seizure ones. The recovered signal is high-fidelity with
the average SSIMs for TCSZ, ABSZ, and SPSW: 0.93, 0.92, and 0.93,
respectively. By transmitting all the signals out to a mobile device
with Bluetooth EDR, the wearable device consumes 15.7k]J. With
PROS, the device only consumes 1.71k], giving a boost of 818%.
Interestingly, since PROS significantly reduces the transmission
data, we could use a lower-rate protocol such as BLE, while it is not
possible with the original amount of data throughput. By using BLE
and PROS, the device only consumes 1.15Kk] in total, boosting the
energy efficiency up to 1265%. Thus, with a 500mAh Li-Po battery
(Fig. 7), the device could last for a whole week while continuously
monitoring seizure events. Finally, PROS could respond to deadly
tonic-clonic seizures directly on the device within as low as 32ms.
This is especially important when the mobile device might not
be available, e.g., during charging or out of communication range.
These results show the feasibility that PROS could significantly
improve users’ experience and even reduce fatalities.

9 RELATED WORKS

Pattern recognition on microcontrollers. Tiny Machine Learn-
ing [42], TinyML, provides the solution to bring powerful deep
learning models into extremely resource-constrained devices such
as microcontrollers. Various approaches [42, 45, 100, 101] have been
proposed to optimize and achieve a compact design that satisfies the
extreme hardware constraints. MCUNet [45] mitigates the memory
bottleneck of the CNN architecture with the patch-based inference
approach,while FANN-MCU [100] provides toolkits for building
energy-efficient networks on MCUs. Unlike the prior works, our
work further considers sparsity and locality properties of biosignals
to ameliorate the system efficiency.

Compressive sensing in healthcare. CS has been applied in
processing biological data in mobile healthcare and telemonitoring
to provide a faster, more accurate, and more energy-efficient sys-
tem [102, 103]. The application widely includes medical imaging
[65, 104, 105], real-time bio-signal processing, and neuroscience
applications [102, 106, 107]. Although the benefit of CS in biosignal
processing is considerable [108-110], the lack of a reliable sparse do-
main reduces its effectiveness and creates large variations [111, 112].
We leveraged the advantage of CS and the new ability to detect
patterns directly on our hardware design to propose an efficient
system for low-power wearable devices.

Low-power wearable platforms. Power consumption is a major
concern in any wearable or IoT devices. Thus, it has attracted much
attention in recent platforms and OSes [113-116]. Amulet [117],
Mindo [118], Convergence [119], RIOT-OS [120], TinyOS [121],
FreeRTOS [83] focused on leveraging the event-driven scheduling
and low power modes to reduce the energy consumed by an MCU
and others high-power components. While existing systems pro-
vides hardware or OS optimizations, they have not considers the
sparsity of captured signals, which is our main contribution.

Commercialized biosensing platforms. There are several
commercialized biosensing platforms on the market, such as Emotiv
Epoch [122], Muse [123], and Neurosky MindWave [124]. They are
equipped with 250-600 mAh batteries and last from 5 to 9 hours of
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continuous streaming. Since none of them provides compression
or recognition ability, they rely on conventional methods such as
downsampling or proprietary wireless protocols to prolong battery
lifetime. In our PROS framework, we take advantage of on-chip
intelligence and compressive sensing to boost energy efficiency
further and enable real-time responses on the devices.

10 DISCUSSIONS

Improving TinyPR performance. The performance of TinyPR
primitives directly links to the quality of the training data. Extensive
and high-quality training data will result in more accurate pattern
recognition models. We envision that the crowdsourcing effort of
the community can address the challenge of high-quality training
data. The more data we collect, the better TinyPR primitives can be
built, and more healthcare wearable applications will be enabled.

Noise and artifacts. As motion, environmental, and muscle
artifacts could contaminate the biosignal streams; pre-processing
is needed to ensure signal integrity. We assume that motion and
environmental noise could be mitigated on the sensing hardware by
employing techniques such as active amplifying, sigma-delta mod-
ulation, and digital filters as proposed in previous works [125, 126].
For the muscle activities, it is up to the application to decide whether
they are signals of interest or unwanted artifacts. Thus, PROS pro-
vides a pattern primitive (MUSC) to detect muscle contractions.
The application can further process the signal if needed.

Dataset’s limitations. In this project, we chose the biosignal
datasets that provide practical clinical settings, so we could gauge
the effectiveness of PROS on various patients’ conditions. The clin-
ical settings, however, are relatively stable and will not reflect all
the usage patterns in daily life, such as motion and environmen-
tal noise, wearing position, etc. We would love to investigate this
further in our future work when real-life data becomes available.

Extending and sharing ability. We envision that PROS serves
as a framework where the community could develop support for var-
ious biosensors after its release. The amount of potential biosensors
and pattern primitives is significant. E.g., facial expressions (EMGs),
emotions (electrodermal activity), coughing patterns (acoustic), and
many more. Sharing the processing pipeline, such as TinyPR models
or PDCS, among multiple applications is another exciting direction
we are looking into to enhance the efficiency further.

Other considerations for daily usage. While the main focus
of PROS is on battery lifetime, other factors could impact the user’s
experience. First, wearability is important since monitoring appli-
cations such as seizure detection rely on long-term measurements
to detect sudden attacks. Second, data privacy is another critical
factor. Federated learning could tackle this issue by enabling multi-
ple edge devices to collaborate and build a common model without
exchanging local data. Finally, closed-loop control algorithms could
be developed between mobile and wearable devices so that PROS
could adapt to the changing conditions over time.

11 CONCLUSION

In this study, we propose PROS, an efficient pattern-driven com-
pressive sensing framework for low-power biosensing wearables,
by exploiting the sparsity of biosignals. In a practical use case such
as epileptic seizures detection, PROS significantly boosts the energy
efficiency and enables real-time response to critical events while
maintaining high fidelity signal.
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