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ARTICLE INFO ABSTRACT
Keywords: Disentangling the relative importance of different biodiversity drivers (i.e., climate, edaphic, historical factors, or
Altitudinal gradient human impact) to predict plant species richness at the local scale is one of the most important challenges in
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ecology. Biodiversity modelling is a key tool for the integration of these drivers and the predictions generated are
essential, for example, for climate change forecast and conservation planning. However, the reliability of
biodiversity models at the local scale remains poorly understood, especially in tropical species-rich areas, where
they are required. We inventoried all woody plants with stems > 2.5 cm in 397 plots across the Andes-Amazon
gradient. We generated and mapped 19 uncorrelated biodiversity drivers at 90 m resolution, grouped into four
categories: microclimatic, microtopographic, anthropic, and edaphic. In order to evaluate the importance of the
different categories, we grouped biodiversity drivers into four different clusters by categories. For each of the
four clusters of biodiversity drivers, we modelled the observed species richness using two statistical techniques
(random forest and Bayesian inference) and two modelling procedures (including or excluding a spatial
component). All the biodiversity models produced were evaluated by cross-validation. Species richness was
accurately predicted by random forest (Spearman correlation up to 0.85 and explained variance up to 67%). The
results suggest that precipitation and temperature are important driving forces of species richness in the region.
Nonetheless, a spatial component should be considered to properly predict biodiversity. This could reflect
macroevolutionary underlying forces not considered here, such as colonization time, dispersal capacities, or
speciation rates. However, the proposed biodiversity modelling approach can predict accurately species richness
at the local scale and detailed resolution (90 m) in tropical areas, something that previous works had found
extremely challenging. The innovative methodology presented here could be employed in other areas with
conservation needs.

1. Introduction climate change scenario (Fadrique et al., 2018). To shed light on this
global issue, biodiversity modelling is broadly employed in numerous

Biological communities are threatened by intensifying human fields (D’Amen et al., 2017). Biodiversity models can be used to support
impact on ecosystems (Sheldon et al., 2011). A crucial challenge for the conservation planning (Guisan et al., 2013), or assessments of climate
immediate future will be to conserve biodiversity under the current change effects on biodiversity (Randin et al., 2009; Urban et al., 2016).
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Although biodiversity modelling has undergone substantial de-
velopments, our ability to predict biodiversity at local scales remains
limited (Urban et al., 2016; Yates et al., 2018). This is particularly true in
tropical areas due to high species diversity/complexity (Jetz et al., 2012)
and problems with data quality and availability (Cayuela et al., 2009;
Loiselle et al., 2008). The tropical Andes is one of the most species-rich
areas on the planet, as well as one of the most relevant regions for the
conservation of biodiversity (Brooks et al., 2006; Myers et al., 2000).
Significant climate change effects have been already noticed in the
tropical Andes, reshaping the spatial distribution of tree species among
other things (Fadrique et al., 2018). In this context, accurate predictions
of local biodiversity would allow to build more realistic conservation
plans (Mateo et al., 2019b).

Models to predict biodiversity patterns vary (D’Amen et al. 2017,
Guisan et al. 2017) from purely correlative (e.g., Gotelli et al., 2009;
Guisan and Rahbek, 2011) to mechanistic (e.g., Mokany and Ferrier,
2011). The different approaches try to predict various aspects of taxo-
nomic diversity such as species composition (e.g., Mateo et al., 2012),
species richness (e.g., Di Febbraro et al., 2018), and beta-diversity (e.g.,
Mokany et al., 2011), or even other dimensions of biodiversity such as
functional or phylogenetic diversities (e.g., D’Amen et al., 2018).
Regarding the modelling of local species richness (SR), the two most
recurrent options are: 1) direct modelling of species numbers, a tech-
nique named ‘macroecological modelling’ (MEM, Gotelli et al., 2009);
and 2) stacking of species distribution models for individual species
(S-SDMs; Dubuis et al., 2011; Mateo et al., 2012). These approaches
have complementary difficulties (Guisan and Rahbek, 2011). MEM
cannot derive any information about species composition, while S-SDMs
can predict species composition, but it does not include environmental
controls (biodiversity drivers) on SR that are hypothesized by MEMs,
frequently resulting in an overestimation of SR (Dubuis et al., 2011;
Mateo et al., 2012).

The importance of different biodiversity drivers, such as climate,
historical factors, or human impact, is another important challenge for
biodiversity modelling (Mateo et al., 2017; Thuiller et al., 2013). In
addition, these drivers vary from local scale environmental conditions to
historical or biogeographical factors operating at larger regional levels
(Mateo et al., 2017; Willis and Whittaker, 2002).

In the near past, SR was postulated to be largely limited by the
available energy (Wright, 1983), and it was commonly hypothesized
that SR could be predicted through a measure of the available envi-
ronmental energy, basically (precipitation and temperature; Currie,
1991). Our current understanding of SR embraces supplementary hy-
potheses (Cornell and Harrison, 2014; Harmon and Harrison, 2015),
implying that our understanding of biodiversity patterns at the local
scale requires additional information such as evolutionary or historical
drivers (i.e., processes that take place at larger regional scales, Godfray
and Lawton, 2001). At the local scale SR is shaped by the properties of
regional species pools, which in turn are the result of speciation,
immigration, range extension, diversification rates, regional area and
geological age (Cornell, 2013; Cornell and Harrison, 2014). Conse-
quently, zones with larger inputs of energy or constant climates (tropical
areas) show greater species numbers, not only as a consequence of
higher energy availability (Brown, 2014), but also due to higher sus-
tained diversification rates and, subsequently, larger regional species
pools (Cornell, 2013). Even for these hypotheses, and as a preliminary
approximation, temperature, precipitation, and climate seasonality
could be worthy SR predictors, although other drivers should be
considered when possible (Guisan and Rahbek, 2011; Mateo et al.,
2017). Regional SR drivers, such as broad-scale environmental gradients
(i.e., climate), could determine SR at broader scales; within that regional
SR, local SR spatial patterns would be shaped by other environmental
and stochastic factors, or niche and dispersal assembly rules (Guisan and
Rahbek, 2011; Hubbell, 2001; Laliberté et al., 2009). Therefore,
macroevolutionary dynamics (i.e., colonization time, differences in
speciation rates, or dispersal limitation) would generate the difference
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in community assembly process (Benicio et al., 2021) that could be re-
flected in spatial richness patterns.

Our first objective was to achieve a better understanding of the
drivers that influence the spatial organization of plant assemblages in
tropical forests at the landscape scale. Within this objective, we studied
the well-sampled forests of the Madidi region along a ca. 4000 m alti-
tudinal gradient in the eastern slopes of the Bolivian Andes (Fried-
man-Rudovsky, 2012). Climate shifts occur dramatically across this
altitudinal gradient. Therefore, our first hypothesis was that tempera-
ture and precipitation should be the primary SR predictors, even though
other factors could contribute to explain additional variation. To test
this hypothesis, we evaluated models with or without spatial patterns.
The idea was to generate spatial predictors that allow the model to
consider the spatial structure of the training data (i.e., woody plant
communities; see Dray et al, 2006, Peres-Neto et al, 2010). If macro-
evolutionary dynamics (or other biodiversity drivers not considered
here) are important in species richness assembly process at local scale in
these tropical areas (Benicio et al., 2021), improved results would be
obtained with biodiversity models that consider a spatial pattern.

Our second objective was to generate accurate predictions of SR at
the local scale and fine resolution (90 m). Our second hypothesis was
that if the biodiversity drivers were precisely generated in the previous
step, reasonably accurate biodiversity models could be generated at the
local scale. In the literature, multiple examples for predicting biodi-
versity at coarse resolution (1-50 km) are available at the country level
(Lessmann et al., 2014; Mateo et al., 2012) or regional extents in tropical
areas (de la Estrella et al., 2012), but only a few examples attempt
predicting biodiversity in tropical areas at the local scale and fine res-
olution (e.g., Pouteau et al., 2015; Pouteau et al., 2019). In these works,
the variables employed as predictors are mostly derived from remote
sensing (Pouteau et al., 2018), as the normalized-difference vegetation
index (Gillespie, 2005) or canopy structure (Fricker et al., 2015). To our
knowledge, potential biodiversity drivers (i.e., climate, topographic
heterogeneity, human impact) have not been employed as predictors
during the modelling process at the local scale.

Our aim was to implement various biodiversity models to better
understand the processes that generate plant biodiversity in the Andes-
Amazon gradient. The reliable model developed could be integrated into
a conservation management strategy for the study area (Guisan et al.,
2013; Mateo et al., 2019b), and the proposed methodology may possibly
be implemented to better understand and predict biodiversity patterns
in other tropical megadiverse areas worldwide.

2. Material and methods
2.1. Study area and vegetation plots

We studied mature forests of the Madidi National Park and sur-
rounding areas in north-western Bolivia using inventories of temporary
0.1-ha plots (20 x 50 m) across the Andes-Amazon gradient (latitudes
-12.43° to —-15.72°, longitudes —69.48° to-66.66°). A total of 397 plots
were established from 250 to c. 4000 m elevation, including plots in dry
tropical forests. Plots were located in forests with no signs of recent
human disturbance, avoiding big canopy gaps or evident heterogeneity
in soils or tree physiognomy within a plot. All woody plant stems > 2.5
cm dbh (diameter at breast height, measured at 130 cm from the
ground) were inventoried following a standard protocol (Arellano et al.,
2016). The floristic database is maintained by the Missouri Botanical
Garden and the dataset can be requested from the Madidi Project (http
s://madidiproject.weebly.com/). Superficial soil samples (0-15 cm
below the litter layer) were collected, air-dried, and sieved through a 2
mm sieve to analyse their main physico-chemical properties.

2.2. Biodiversity drivers (predictors)

In order to understand the processes that generate and maintain
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diversity, we considered potential plant biodiversity drivers in four main
categories: climate, topography, anthropic, and edaphic. These drivers
are expected to capture important factors for plant biodiversity at the
local scale.

Reliable estimation of microclimatic environments (i.e., derived
from precise topography layers, resolution lower than 100 m) is crucial
to comprehend how species interact with the environment, and it is
progressively recognised as essential for predicting species distributions
(Maclean et al., 2021). Here, a set of eight microclimatic variables were
generated in the form of accurate (~90 m resolution) raster layers
through a downscaling procedure (Mateo et al., 2019b) from variables
available at a resolution of 30 arc-seconds (~1 km? at the equator) in
CHELSA 1.2 (Karger et al., 2017). First, to avoid multicollinearity, we
implemented a pairwise correlation evaluation on all the accessible
variables (monthly precipitation, and monthly minimum, maximum,
and mean temperatures). In each pair with a correlation value greater
than 0.7 (Dormann et al., 2013), we removed one climate variable. We
obtained a final set of six representative climate variables: precipitation
of the driest month (January), precipitation of the wettest month (July),
mean temperature of the hottest month (October), mean temperature of
the coldest month (July), maximum temperature of the hottest month
(October), minimum temperature of the coldest month (July). Second,
variables were downscaled from 1 km to 30 m resolution. For temper-
ature variables, this was accomplished in R using local linear regressions
(Mateo et al., 2019b) through a relationship of temperature with a 30 m
resolution digital elevation model (DEM, https://www.usgs.gov/centers
/eros). For precipitation variables, downscaling was accomplished by
means of a bilinear approach using the resample function in R package
raster. Third, after downscaling was completed, we generated three
other climate variables: precipitation seasonality (July precipitation
minus January precipitation), temperature seasonality (October mean
temperature minus July mean temperature), and temperature spatial
heterogeneity (standard deviation of mean July temperature in a win-
dow of nine 30 x 30 m pixels). Finally, climate variables were generated
at 90 m resolution by averaging values across nine 30 x 30 m pixels
(except for temperature heterogeneity, which was already estimated at
this resolution).

Microtopography predictors (heterogeneity and moisture) were
derived from a 30 m resolution digital elevation model as follows. First,
we calculated linear aspect, slope (slope tool in ArcGIS 10.7), and
accumulated flow into each down-slope cell towards the shortest surface
distance to any stream (hydrology toolset in ArcGIS 10.7). Second, we
calculated heterogeneity predictors (90 m resolution) by the calculation
of the standard deviation in a window of nine 30 x 30 m pixels for
altitude, linear aspect, and slope. The final accumulated flow variable
was calculated at 90 m resolution as the mean of nine 30 x 30 m pixels.

We obtained information on edaphic variables at each of the 397
plots. Soil texture (percentages of sand, silt, and clay) was determined by
Bouyoucos’ hydrometer method (Bouyoucos, 1962). Soil pH was
determined in a 1:2.5 (w/v) soil-deionized water suspension. Organic
carbon (C) content was determined by wet digestion (Walkley, 1947).
Total nitrogen (N) was obtained with the semi-micro Kjeldahl method
(van Reeuwijk, 2002). We used two extractive methods for Ca, Mg and
K, applied to different sets of samples: (1) extraction using 1 M ammo-
nium acetate solution, and (2) extraction using the Mehlich-3 solution
(Mehlich, 1984). The results from both methods were standardized since
both are linearly correlated according to Arellano et al. (2016). We also
calculated the C:N ratio as this variable is considered an important in-
dicator of soil fertility in forest soil quality assessments (Schoenholtz
et al., 2000).

Finally, the human impact at each plot was obtained from the
“human footprint’” layer (~900 m resolution) created by Sanderson
et al. (2009). These data represent the relative human influence in every
biome as a percentage. As this variable was not correlated with altitude,
a meaningful downscaling was not possible.

To avoid multicollinearity across all sets of predictors, we excluded
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highly correlated predictors (Pearson’s r > 0.70, Dormann et al., 2013),
keeping 19 of them (see Table 1).

In order to evaluate our first hypothesis, the predictors (Table 1)
were grouped in four clusters by considering biodiversity driver cate-
gories (i.e., climate, topography, anthropic and edaphic). The four
clusters were generated by the consecutive inclusion of a category: 1)
climate (C); 2) climate, and topography (CT); 3) climate, topography,
and anthropic (CTA); and 4) climate, topography, anthropic, and
edaphic (CTAE). After this process, we obtained four clusters of pre-
dictors each to compare the importance of biodiversity drivers by cat-
egories to explain and predict woody plant SR patterns. The aim was to
improve the understanding of ecological processes (Houlahan et al.,
2017), answering questions such as: (1) How essential are climate var-
iables to predict SR in tropical areas at local scale? Because of the
extensive elevational gradient considered, our hypothesis is that climate
will be the main driver of SR, and the biodiversity model calibrated with
exclusively climatic variables will be accurate and it will have high
values of explained variance. (2) Do biodiversity estimations improve if
other drivers are considered? If yes, what is the magnitude of this
improvement? Our hypothesis was that the accuracy of the predictions
would increase. Furthermore, as the drivers were included by steps and
categories, we could evaluate the influence of the different drivers’
categories.

2.3. Biodiversity modelling

For each of the four clusters of drivers generated previously, we
modelled the observed SR (n = 397 plots) using both random forests (RF,
Breiman, 2001), and Bayesian inference using the integrated nested
Laplace approximation (INLA, Rue et al., 2009). RF was implemented
using a maximum of 500 trees and a Poisson distribution (D’Amen et al.,
2015). The process was repeated considering a spatial pattern. For RF,
longitude and latitude were included as predictors (Sekulic et al., 2020).
Bayesian spatial models included several covariates (see Table 1) and
continuous spatially correlated random effects defined using a Matérn
covariance function, defined using the SPDE approach with INLA
(Krainski et al., 2019; Lindgren et al., 2011). Finally, we obtained 16

Table 1

List of biodiversity drivers considered after the selection of non-correlated var-
iables classified by four main categories: microclimate, topography, anthropic
and edaphic.

Abbreviation Biodiversity driver (predictor)

Microclimate drivers (90 m):

Prec.1 Precipitation of the driest month (January)

Prec.7 Precipitation of the wettest month (July)

Tmed.10 Mean temperature or the hottest month (October)

Tmed. Temperature seasonality = Mean temperature hottest month

Seasonality (October) - Mean temperature coldest month (July)
Topography drivers (90 m):
Aspect.sd Standard deviation of linear aspect (heterogeneity)
Aspect Linear aspect
DEM.sd Standard deviation of altitude (heterogeneity)
Slope.sd Standard deviation of slope (heterogeneity)

Flow Flow accumulation (moisture)

Distance Geographical distance to main streams (moisture)
Anthropic driver (900 m):

Human activity Human footprint

Edaphic drivers (information available at plot level):

Sand Total sand in the soil (%)

Silt Total silt in the soil (%)

Clay Total clay in the soil (%)

C Organic carbon content (%)

pH Soil pH

K Available potassium content (mg/kg)

Mg Available magnesium content (mg/kg)

Ca Available calcium content (mg/kg)

N Total nitrogen content (%)

C:N Ratio between carbon content and nitrogen content
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biodiversity models (4 clusters of predictors x 2 modelling techniques x
2 spatial options).

The predictive performance of the 16 biodiversity models was
assessed by cross-validation. The models were fitted to a portion of the
data, and these fitted models were used to make predictions on the
remaining data. A good model is supposed to make good predictions on
portions of the data that were not included during the model fitting
process. In contrast, an overfitted model will make very accurate pre-
dictions on the data that were used to fit the model, but poor predictions
based on other observations, even if taken from the same population. We
followed a cross-validation procedure, where the original dataset (397
plots) was randomly divided into two partitions with a repeated (10
times) procedure, using the 80% partition for training the models and
the other 20% for model validation (D’Amen et al., 2015). For each
split-sample repetition, a Spearman rank correlation between observed
and predicted SR value was calculated as a metric of the predictive
ability of the model. Finally, the mean and the standard deviation of the
correlation values between the 10 predictions were calculated as the
overall quality of the model. RF was the technique with higher corre-
lation values (see Table 2) and the fastest (see, Mateo et al., 2019a),
therefore it was selected as the reference technique. From now on, the
analysis explained were executed only for RF to simplify the interpre-
tation of results.

We ran a final biodiversity model with 100% of the original dataset
(397 plots) to avoid biases associated with subsampling (Aratjo et al.,
2005). For RF, as model averaging enable model coefficients to fluctuate
and improve the spatial transferability (Mateo et al., 2010; Yates et al.,
2018), we ran 100 times (replicates) with a repeated split-sample pro-
cedure, and the replicates were fitted on the 80% data partition and the
other 20% for validation. The final biodiversity model was the average
of the 100 replicates. The accuracy of this model was assessed by the
mean of squared residuals, the percentage of variance explained, and the
relative under- or over-estimation of species ([observed SR - predicted
SR] / observed SR), which could be seen as model residuals weighted by
the number of observed species.

The weighted residuals were plotted by forest types and altitude.
Forest types classification was obtained from Arellano et al. (2015). The
most distinct forest formation is the semideciduous dry forest, charac-
terized by lack of precipitation during 4-5 months per year. The other
forest types were characterized by regular altitudinal belts: lowland
Amazonian forest (below 1000 m); lower montane forest (1000-1700
m); intermediate montane forest (1700-2400 m); upper montane forest
(2400-3100 m); and high Andean forest (3100-3731 m).

Edaphic data were only available for the plots, so extrapolation to the
complete study area could not include edaphic predictors. Therefore,
spatial projections of the models were only generated for three predictor
clusters: 1) climate, topography, and anthropic (CTA); 2) climate and
topography (CT), and 3) climate (C). To explore if the biodiversity maps
generated were different, we calculated the Spearman rank correlation

Table 2

The predictive performance of the biodiversity models generated with random
forest (RF) and Bayesian inference (Bayesian) with or without spatial component
(spatial) was assessed by the Spearman rank correlation between observed and
predicted species richness value following a cross-validation procedure. The
values in parentheses represent the standard deviation.

Biodiversity driver clusters RF RF + Bayesian Bayesian +
spatial spatial

Climate, topography, 0.81 0.84 0.64 0.84 (0.05)
anthropic, and edaphic (0.02) (0.02) (0.09)

Climate, topography, 0.80 0.83 0.58 0.83 (0.05)
anthropic (0.02) (0.02) (0.09)

Climate, topography 0.80 0.83 0.54 0.83 (0.05)
(0.02) (0.02) (0.08)

Climate 0.80 0.85 0.55 0.82 (0.04)
(0.02) (0.02) (0.07)
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coefficient between all pairs (Mateo et al., 2010).
3. Results
3.1. Field work

Our plant database included 2257 species or morphospecies based on
standardized taxonomy. The observed SR varies from 11 to 134 woody
plant species per 0.1-ha plot.

3.2. Comparison of modelling techniques

RF biodiversity predictions outperformed Bayesian models when the
spatial component was not considered. Higher correlation values were
obtained for the four biodiversity driver models (Table 2). However,
when a spatial component was considered, the results obtained were
very similar for both approaches.

3.3. Biodiversity drivers and species richness patterns

Counting RF biodiversity predictions, whether the spatial component
was considered or not, very similar values of correlation (Table 2), mean
of squared residuals (Table 3), and percentage of variance explained
(Table 3) were obtained, for the four biodiversity driver clusters. In
addition, high correlation values (0.86 to 0.99, Table 4) were found
when biodiversity maps were subject to pairs comparison: the biodi-
versity model did not gain any considerable improvement by including
more biodiversity drivers as predictors. Given that model complexity
could have negative effects on ecological models (see Moreno-Amat
et al., 2015 and references therein), we selected as the reference model
the one calibrated with climatic variables only, i.e. it was considered the
closest to the reality given the modelling technique and the available
data (Hernandez et al., 2006). Otherwise, the model improves if a spatial
component was included, the correlation value increase from 0.80 to
0.85 (Table 2), and the variance explained percentage raised from 60.18
to 67.74 (Table 3). We also tested the final model residuals spatial
autocorrelation, adjusted with climatic variables and the spatial
component through a Moran’s I index (I) with 99,999 permutations. We
obtained a non-significant result for this test (I = - 0.027, p-value = 0.7);
we concluded that we did not left out any important spatial driver of SR
(Chevalier et al., 2021).

An analogous trend was observed for the Bayesian model (similar
correlation values, Table 2) when a spatial component was considered.
However, if the spatial component was not included, the correlation
values increase from 0.55 (only climatic variables) to 0.64 (climate,
topography, anthropic, and edaphic).

Final average RF models of each cluster of drivers produced similar
SR projections across the whole study area (Fig. 1, Table 4). However, at

Table 3

Mean and standard deviation (in brackets) values of percentage of variance
explained and mean of squared residuals of the final RF model (100 replicates)
with or without spatial component and under four different clusters of biodi-
versity drivers: a) climate; b) climate and topography; c) climate, topography,
and anthropic; d) climate, topography, anthropic, and edaphic.

Percentage of variance ~ Mean of squared residuals

Biodiversity driver clusters RF RF + RF RF +
spatial spatial

Climate, topography, 60.47 65.17 211.70 187.32
anthropic, and edaphic (2.52) (2.30) (14.29) (11.96)
Climate, topography, 59.12 64.76 219.05 188.39
anthropic (2.57) (2.46) (13.37) (11.82)
Climate, topography 54.60 63.74 244.64 192.93
(3.08) (2.70) (15.96) (13.15)
Climate 60.18 67.34 212.95 175.02

(2.43) (2.37) (13.01) (11.99)
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Table 4

Spearman rank correlation value by pairs when comparing all the RF biodi-
versity maps generated, with or without spatial component (spatial) and under
three different clusters of biodiversity drivers: climate (C); climate and topog-
raphy (CT); climate, topography, and anthropic (CTA).

c Cr CTA  C-+spatial  CT + spatial ~ CTA —+ spatial
C 095 0.89 0.87 0.87 0.86
CT 0.93 0.88 0.92 0.90
CTA 0.85 0.88 0.92
C-+spatial 0.98 0.98
CT-+spatial 0.99

CTA+spatial

the local scale, the spatial patterns differences between them could be
important. Indeed, our results suggest that climate drivers determine a
general trend, which is then refined by spatial factors.

3.4. Forest types, altitudinal gradient, and species richness prediction

The reference biodiversity models (RF modelling technique and
climate predictors) displayed a general trend to over-prediction in the
less SR forests (high Andean and dry forest), and a slight under-
prediction in the higher SR forests (lowland Amazonian, lower
montane, and intermediate montane forests) (Fig. 2). Furthermore, the
maximum SR observed was 134 species per 0.1 ha plot, and the
maximum SR predicted was 110 species per pixel. The under-prediction
error was reduced when a spatial component was included in the model
(Fig. 2b).

Predicted richness

I 11-19 [ 53-60 [ 94 - 101
I 20-27 [ ] 60-63 [ 102- 109
B 25 - 36 [ 62 - 77 [ 110- 118
N 37-44 0 78 - 65 M 119- 126
[ 45-52 [ 6 - o3 I 127 - 134

Fig. 1. Predicted species richness by the final RF model with (bottom) o without (top) spatial component and under three different clusters of biodiversity drivers:
climate (C); climate and topography (CT); climate, topography, and anthropic (CTA). Plots are represented as green circles above a digital elevation model (DEM).
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4. Discussion
4.1. Biodiversity drivers and species richness patterns

Our results supported our two main hypotheses. Accurate biodiver-
sity models can be generated at the local scale, and climatic drivers are
important biodiversity predictor in tropical areas when an altitudinal
gradient is considered. However, climate drivers alone are not a suffi-
cient explanation for biodiversity patterns. Indeed, a spatial component,
at least, should be considered for a proper SR prediction (Table 1).
Although the maximum cross-correlation obtained for the best model
was 0.85 (Table 2), and the maximum explained variance was 67%
(Table 3), there is still room for improvement. For example, the model
presented a general trend to over-prediction in the forest with lower SR,
while displaying an under-prediction in the forests with higher SR
(Fig. 2). The inclusion of biogeographical, evolutionary and historical
drivers during the modelling process could be needed to improve the
results (Mateo et al., 2017), such as the regional species pool, coloni-
zation time, dispersal capacities, or speciation rates (Benicio et al.,
2021). If this were the case, they could be included in a step by step
process (SESAM framework, Guisan and Rahbek, 2011), or considering a
hierarchical scale framework (Mateo et al., 2019a). Finally, the impor-
tance of stochastic factors in biodiversity patterns at the local scale
(Chase, 2010), which was not possible to include in the modelling
process (D’Amen et al., 2017), might be responsible for some of the
unexplained variance. Moreover, some authors have postulated recently
that climatic drivers exert greater control over plant species assemblage
in temperate areas (Laughlin and Laughlin, 2013), whereas dispersal
limitation and historical drivers have a greater influence on tree plant
richness patterns in tropical regions (Kraft and Ackerly, 2010; Pouteau
et al., 2019).

Recently, precipitation has been associated with changes in tree
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Fig. 2. Accuracy of the final averaged RF biodiversity model generated with only climatic predictors without spatial component (a) and with spatial component (b).
It was measured by the calculation of residuals weighted by the number of observed species ([observed SR - predicted SR] / observed SR) and plotted by forest types

and altitude.

species turnover in tropical areas (e.g., Esquivel-Muelbert et al., 2017;
Hardy et al., 2012). These findings support the hypothesis that climate
might drive the regional species pool, and subsequently the regional
species pools have an important influence on the local tree communities
(e.g., Lessard et al., 2012a; Lessard et al., 2012b). Our results meet with
these past studies suggesting that precipitation is an important driver of
woody biodiversity in tropical areas.

Edaphic variables are hypothesized to have an important role in
plant richness patterns in tropical areas (e.g., Gentry, 1988; Tuomisto
et al., 2016). However, our results suggest that SR can be accurately
predicted without considering edaphic drivers directly. Indeed, when
dropping edaphic drivers from the model, the correlation value
remained high (0.80), and the explained variance decreased only
slightly (from 67% to 65%; Table 3). In contrast, edaphic variables were
found crucial for predicting the distribution of plant species at the local
scale by using the S-SDMs modelling framework (Cianfrani et al., 2019),
where each species was modelled independently, and the edaphic con-
ditions are relevant in the distribution of individual plant species. Here,
we were predicting the observed SR numbers and edaphic factors did not
show an important role; when soil factors were removed, topographic
factors became important. This might be explained because it is possible
to approximate some edaphic conditions through topographic infor-
mation. Soil texture and pH are variables strongly associated with
topographic factors as elevation and slope (Dessalegn et al., 2014),
which would justify the small reduction in explained variance in the
richness models when these edaphic variables are removed in the
analysis but topographic variables were retained. The large elevation
gradient studied (from 250 to c. 4000 m) can influence microclimate and
thus soil-forming processes. Soil pH values showed a decrease with
elevation and coarse sand sized particles increased significantly. Slope is
related to soil erosion, morphology, and deposition processes. There-
fore, soil fertility is lower on ridges and upper slopes than in hollows and
valleys (Scholten et al., 2017).

The anthropic variable did not seem to provide useful information
during the modelling process. When we compared the models that
included this variable (the climate, topography, and anthropic models)
with models that did not include it (climate and topography models),
they were practically equivalent (correlation value of 0.99 considering a
spatial component, Table 4). This may be due to the coarse resolution of

the information available for this variable (900 m). In the near future,
information obtained by drones or other forms of high-resolution aerial
or satellite imagery might be used to derive more precise and useful
anthropic variables.

The RF model was mapped under three different clusters of biodi-
versity drivers (Fig. 1): climate; climate and topography; climate,
topography, and anthropic. The three models mapped displayed similar
regional trends for biodiversity patterns (see Fig. 1), however, at the
local scale the differences between models could be important (see
Fig. 1). Therefore, these comparisons among model projections reinforce
our conclusion that climate alone is not a sufficient explanation for
current biodiversity patterns, and other biodiversity drivers should be
considered in biodiversity modelling frameworks.

4.2. Macroecological biodiversity modelling framework

Our results confirmed that random forests are reasonably resistant to
overfitting (e.g., Mi et al., 2017), and we suggest their use to predict SR.
Here, for the first time, we showed appropriate results for tropical areas.
This means that it is possible to predict accurately SR, and better un-
derstand the role of different biodiversity drivers along an altitudinal
gradient. A macroecological modelling (MEM) framework was selected
to predict SR because the importance of different biodiversity drivers
can be evaluated (Mateo et al., 2016), although species composition
cannot be predicted (Guisan and Rahbek, 2011), which was not the
objective of this study.

We achieved better results with RF than with the Bayesian procedure
when we did not include space. For RF, we generated an ensemble model
of 100 replicates with split-sample procedure, this could generate more
flexible models (Mateo et al., 2010) than the Bayesian lineal models
applied. However, when a spatial component was considered, the results
obtained were very similar for both approaches. This highlights the
importance of considering the spatial component during ecological
landscape-scale modelling at precise spatial resolution. The inclusion of
spatial components may be even more important than the statistical
method employed.

The accurate modelling performance obtained here was conditioned
by the employment of appropriate modelling practices (Aratjo et al.,
2019). We can emphasize three of them: (a) a proper selection of
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ecologically meaningful biodiversity drivers in accordance with
ecological theory (Mateo et al., 2017; McGill, 2010); (b) the generation
of different variables at fine spatial resolution, as for example down-
scaled climatic variables (Mateo et al., 2019b) or environmental het-
erogeneity; (c) the availability of accurate and taxonomically
standardized presence data at the local scale (D’Amen et al., 2017;
Guisan et al., 2017). As a first and important step in studies related to
biodiversity modelling, we suggest a cautious inspection of the data on
the distribution of the species, the generation of appropriated environ-
mental variables, and appropriate selection of the modelling approach
and the parameterization.

4.3. Future lines of research

We have presented the first step to accurately predict SR in tropical
areas at the local scale and precise resolution considering the impor-
tance of different biodiversity drivers. Future studies could consider and
improve some aspects as: 1) Compare the results with other biodiversity
modelling frameworks as S-SDMs (Dubuis et al., 2011), or hierarchical
Bayesian approaches considering different aspects of scale (Mateo et al.,
2019a). 2) Consider future climatic projections according to various
climate change scenarios. 3) Model the effect of dispersal limitation and
biotic interactions, which are important diversity drivers at local scales
(Mateo et al., 2017; Pouteau et al., 2019). The integration and combi-
nation with other biodiversity modelling techniques that consider these
drivers (Guisan and Rahbek, 2011) could be worthy. 4) Integrate
biodiversity models with information obtained from remote sensing
(Pouteau et al., 2018) or drones (Saarinen et al., 2018) to derive land use
data at fine resolutions (meters), and include these data as independent
variables in the modelling process.

5. Conclusions

We have ratified the importance of microclimate (precipitation and
temperature) controlling plant SR patterns at the local scale. Our results
suggest that climate drivers determine a general trend in plant richness
patterns, which is then refined by spatial factors. Since climate change is
expected to produce major changes in biological systems in this area
(Beaumont et al., 2011), special conservation measures should be
considered to prevent it (Edwards et al., 2019). The modelling approach
proposed here, combined with the generation of precise biodiversity
drivers (90 m resolution), could generate reliable and precise forecast
predictions and upgrade previous methodological approaches, as mul-
tiple regression models (Fricker et al., 2015) or ordinary least squares
(OLS) regression models (Tripathi et al., 2019), which usually have only
been applied at regional or continental scales and coarse resolutions.
The local and precise models obtained could serve as a valuable tool for
local conservation planning (Mateo et al., 2019b) in the region. If ac-
curate SR and spatial variables data are available, then the methodology
presented here could be employed in other tropical areas to complement
their conservation needs.
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