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Hi-C has transformed our understanding of mammalian 
genome organization and can reliably identify high-order 
three-dimensional genome features such as compartments 

and topological-associated domains (TADs)1–4. However, when 
resolution is at the kilobase scale, Hi-C contact heatmaps quickly 
become noisy due to the increasingly complex bias structure and 
severe data sparsity5–9. To date, genome-wide mapping of chro-
matin loops, especially enhancer–promoter interactions within 
TADs (sub-TADs), remains a major challenge in Hi-C analyses. 
Consequently, scientists often turn to focused technologies, such 
as chromatin interaction analysis by paired-end tag sequencing 
(ChIA–PET), promoter capture Hi-C (pcHi-C), HiChIP/proxim-
ity ligation-assisted ChIP–seq (PLAC–seq) and so on, hoping for 
better signal-to-noise ratios at selected loci10–15, even though these 
approaches identify only a subset of all interactions

Bias and noise are two distinct types of error in Hi-C data. Here 
we define biases as ‘unwanted pattern in a Hi-C heatmap’. This defi-
nition is goal oriented. For example, to distinguish relatively weak 
loop signals, the strong nonspecific diagonal Hi-C signal needs 
to be corrected as bias. Hi-C protocols using different digestion 
enzymes have different bias structures determined by fragment size, 
distance, genomic copy (GC) content and the interactions between 
these factors5,6, and the bias structure becomes more complicated 
when the resolution increases, especially at the sub-TAD mid-range 
(that is, within 1–2 Mb). While several methods have been devel-
oped to model and correct known sources of Hi-C biases explic-
itly with joint functions, the most commonly used strategy is to  

‘normalize’ the Hi-C matrices and correct Hi-C biases implicitly 
with matrix-balancing algorithms5–7,16–18. However, both explicit 
and implicit strategies have drawbacks5,6,8,9,16,17. To improve the rigor 
of Hi-C bias correction, we recently developed a HiCorr pipeline 
that performs both explicit and implicit correction9. Unlike normal-
ization methods7,17, which preserve a strong diagonal signal in the 
contact heatmaps, HiCorr corrects distance effects in a joint func-
tion with other biases and outputs the observed/expected ratio heat-
maps for chromatin interaction profiling. When read depth is high, 
HiCorr generates sharper contact heatmaps and is more robust in 
identification of sub-TAD chromatin loops9.

Theoretically, when all biases are corrected, only data sparsity 
contributes to Hi-C noises. Therefore, reduction of Hi-C noises is 
mathematically equivalent to signal enhancement. Several recent 
studies have pioneered the application of deep learning tech-
niques to enhance Hi-C signal at the compartment, TAD and loop 
levels19–23. These pipelines share a similar framework to impute 
high-depth contact matrices from low-depth raw or normalized 
Hi-C data. It is, however, important to point out that this strategy 
‘learns’ Hi-C biases in the input matrices, which may no longer 
be properly corrected after enhancement. This flaw is critical for 
loop analysis because distance effect is a major bias for loop analy-
sis, and other Hi-C biases are also much worse at high resolution. 
To address this issue, here we developed a strategy to enhance 
HiCorr-corrected ratio heatmaps. The resulting DeepLoop pipeline 
achieved striking robustness in calling loops from low-depth Hi-C 
data. This study highlights the application of DeepLoop to single-cell 
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and allele-resolved Hi-C data analyses, both impacted by the chal-
lenge of severe data sparsity.

Results
LoopDenoise improves the robustness of Hi-C loop mapping. We 
begin with denoising of high-depth Hi-C heatmaps with a five-layer 
autoencoder (Fig. 1a and Extended Data Fig. 1a). We picked three 
replicates of Hi-C data in human fetal cerebral cortex24 for model 
training; each replicate has ~140–150 million mid-range (<2 Mb) 
cis contacts. (In this paper we use the number of mid-range cis con-
tacts to measure ‘read depth’, or the total amount of data for a Hi-C 
experiment.) We applied HiCorr to each replicate and extracted 
~18,000 submatrices at fragment resolution (~5 kb) as training 
sets (Fig. 1a,b). As previously reported, HiCorr generates sharper 
distance-corrected ratio heatmaps than ICE/KR9 (compare rows 3 
and 4 in Fig. 1c), but noise pixels are still present. When pooling the 
reads from all three replicates, HiCorr heatmaps are only slightly 
cleaner (Fig. 1b). Since true loop pixels are more reproducible than 
noise pixels between biological replicates, we set up ‘training tar-
get’ heatmaps by retaining only reproducible loop pixels (Fig. 1b, 
Extended Data Fig. 1b and Methods).

LoopDenoise removes all visible noise pixels from the 
HiCorr-corrected ratio heatmaps (Fig. 1c, compare rows 4 and 6).  
Denoised heatmaps are cleaner than the training targets (Fig. 1c, 
compare rows 5 and 6). When applied to biological replicates, 
LoopDenoise improves pairwise reproducibility to ~70–80% at the 
pixel level (Extended Data Fig. 1c,d). When applied to independent 
Hi-C datasets in human embryonic stem cells (hESCs), IMR90, 
GM12878 and mouse embryonic stem cells (mESCs)1,6,7,9,25–27 
(Supplementary Table 1), the benefits of LoopDenoise are also obvi-
ous (Fig. 1d–g and Extended Data Fig. 2a). Loop pixels are bet-
ter concentrated near CTCF, H3K4me3 and H3K27ac peaks after 
denoising1,28–31 (Extended Data Fig. 2b–d). LoopDenoise successfully 
reveals loop interactions at loci with well-established long-range 
gene regulation, such as Sox2, Wnt6 and Malt1 in mESCs, and at 
HOXAs, FTO and SHH in hESCs (Extended Data Fig. 2e)32–35.

To test whether this improved reproducibility would facilitate the 
identification of dynamic chromatin loops, we compared human 
cortex Hi-C data from the germinal zone (GZ) and cortical plate 
(CP), which are two layers of developing cortex enriched with neu-
ron progenitors and postmitotic neurons24,36. Indeed, R2 between 
GZ and CP improved (from 0.31 to 0.65) after denoising (Extended 
Data Fig. 3a). When picking those genes associated with the top 
3,000 GZ- or CP-specific loop pixels, we found that GZ loop genes 
are enriched with terms related to neural development while CP 
loop genes are enriched with neuronal function terms (Extended 
Data Fig. 3b). After denoising, the dynamic loop pixels are clearly 
recognizable at GZ-specific (such as SOX2, FOXP2 and EOMES) 
and CP-specific (such as TGFB2 and NELL2) genes, in agreement 
with GZ- or CP-specific assay for transposase-accessible chromatin 
using sequencing (ATAC–seq) peaks37 (Extended Data Fig. 3c).

LoopEnhance reliably maps Hi-C loops from low-depth data. We 
then developed a method to analyze low-depth Hi-C data. We trained 
a series of U-Net38 LoopEnhance models using downsampled cortex 
Hi-C data with ~10–250 million mid-range cis contacts. Notably, we 
used LoopDenoise outputs from high-depth data as training targets, 
which should be better representations of the ‘ground truth’ (Fig. 2a  
and Supplementary Fig. 1a). Strikingly, although loop signals are 
hardly recognizable when read depth is <50 Mb, the enhanced 
heatmaps from low-depth Hi-C data are nearly identical (Fig. 2b). 
LoopEnhance models created with cortex data also performed very 
well in the independent GM12878 datasets (Fig. 2c). When com-
paring enhanced heatmaps to full data (~380 million mid-range cis 
contacts), we found no compromise in performance (pixel-level 
reproducibility >70%) when read depth was reduced to 100 million; 

pixel-level reproducibility remained >50% even when sequencing 
depth was reduced to 12.5 million (Fig. 2d). We also trained new 
DeepLoop models (LoopDenoise and LoopEnhance) with Hi-C data 
from H9 hESCs and confirmed that the choice of training set did 
not affect results (Supplementary Fig. 1b,c). Because pixel intensity 
in the DeepLoop heatmaps represents Hi-C signal enrichment, we 
can directly term top loop pixels as interactions. Note that DeepLoop 
does not output an explicit list of discrete ‘loops’; conversion of ‘loop 
pixels’ to ‘loops’ requires new algorithms and parameters, which will 
inevitably introduce new biases. Therefore, we retain DeepLoop as a 
‘what-you-see-is-what-you-get’ method.

We next compared the DeepLoop pixels in GM12878 cells with the 
~83,000 loops called by pcHi-C in the same cell line39. We classified 
pcHi-C loops into promoter–promoter interactions (PP, the frag-
ments of both ends were captured with promoter probes) and pro-
moter–other interactions (PO, only one end of the interaction was 
captured), and further divided these loops into long-range (>100 kb) 
and short-range (<100 kb) categories. DeepLoop improved receiver 
operating characteristic (ROC) curves in all categories, especially 
the long-range examples (Fig. 2e); this is consistent with DeepLoop’s 
noise reduction function, because Hi-C matrices are noisier at long 
range due to more severe data sparsity.

We also collected five sets of ChIA–PET or HiChIP data in 
GM12878 cells performed with CTCF, PolII, RAD21, SMC1A 
and H3K27ac antibodies14,40–43. The numbers of loops from these 
datasets were highly variable (3,600–48,000), with a grand total of 
~64,000 (Fig. 2f). Clearly, each experiment captures only a subset 
of all interactions. We classified all loops based on their recur-
rence among these experiments and examined the recovery effi-
ciency of Hi-C for each category. With DeepLoop, a downsampled 
50-million-depth Hi-C map recovered 7,051 (62%) and 8,260 (72%) 
of the 11,401 ‘recurrent’ (in least two experiments) loops when call-
ing 500,000 and 1,000,000 top loop pixels, respectively, in contrast 
to only 23 and 29% before enhancement. Recovery of the ~53,000 
‘non-recurrent’ loops improved even more. In fact, the enhanced 
50-million map outperformed the unenhanced 380-million full-data 
map in all loop categories (Fig. 2f). Notably, the cost involved in 
generation of 50-million-depth Hi-C data was already lower than 
that for one ChIA–PET or HiChIP experiment.

DeepLoop Hi-C maps converge with micro-C maps. Although 
DeepLoop is trained with six-cutter Hi-C data, because its bias cor-
rection is independent from the noise-reduction module we need 
only to adjust HiCorr for DeepLoop to work for other Hi-C-like 
data. Indeed, both LoopDenoise and LoopEnhance work very well 
on MboI-based GM12878 in situ Hi-C data7 (examples in Extended 
Data Fig. 4). Interestingly, although with a conventional pipeline, 
four-cutter Hi-C heatmaps are sharper than six-cutter heatmaps 
and DeepLoop heatmaps are very similar, indicating that HiCorr is 
more efficient at removal of platform-specific biases and supports 
cross-platform comparison. For the same reason, DeepLoop sub-
stantially outperformed other Hi-C enhancing pipelines including 
HiCPlus21, HiCNN2 (ref. 44) and SRHiC23 (Extended Data Fig. 4).

To further explore cross-platform consistency we compared the 
published ultradeep Hi-C data in H1 hESCs prepared with HindIII, 
DpnII and micro-C9,27,45,46. As expected47, for raw, KR and KR-ratio 
heatmaps, micro-C was sharper than both HindIII and DpnII Hi-C 
while DpnII-Hi-C was shaper than HindIII-Hi-C (examples in Fig. 3a,b  
and Extended Data Fig. 5a). However, DeepLoop heatmaps from 
HindIII and DpnII Hi-C were much more similar at the pixel 
level, regardless of read depth (Fig. 3c). Importantly, when diges-
tion resolution was increased (from Hi-C to micro-C), KR-ratio 
heatmaps become sharper and more similar to DeepLoop outputs 
(Fig. 3a,b and Extended Data Fig. 5a). When we compared other 
signal enhancement methods using micro-C KR-ratio heatmaps 
as reference, DeepLoop showed the highest correlation coefficient 
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(Fig. 3d). Finally, we called 17,500 micro-C loops at 5-kb resolu-
tion using a standard KR-Hi-C computational unbiased peak search 
(HICCUPS) pipeline, then performed ROC analyses using these 

loops as true positives. DeepLoop-enhanced, low-depth (50 million) 
Hi-C data performed better than all other pipelines, even better 
than KR-processed full-depth data (Fig. 3e).
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Micro-C is expected to reveal more small loops (<50 kb) 
than either six- or four-cutter Hi-C with the standard HICCUPS 
pipeline45,47,48. We found that, with four-cutter Hi-C, DeepLoop 
recovered most micro-C small loops and the recovery rate was 
only slightly lower than for large loops (Extended Data Fig. 5b). 
However, because DeepLoop-enhanced six-cutter Hi-C missed most 
small micro-C loops, this indicates that HindIII hits a hard limit for 
small loop detection due to large fragment size: sufficent numbers 

of restriction sites need to be cut between the two anchors to dis-
cern a small loop. Notably, micro-C may find even smaller loops at 
higher resolution45,48. Improvement of DeepLoop resolution will be 
an interesting future direction. Regardless, DeepLoop achieves bet-
ter cross-platform convergence between Hi-C and micro-C.

Application of DeepLoop to sparse and single-cell Hi-C data. 
We firs enhanced published sparse Hi-C data in 14 human tissues 
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(depth, ~7–53 million mid-range cis contacts)29,30,49. We observed 
specific loop interactions near many tissue-marker genes after 
enhancement, such as ALB (liver), MYOZ2 (aorta, left and right ven-
tricles) and ADD2 (cortex, hippocampus, CP and GZ) (Fig. 4a and 
Extended Data Fig. 6). Quantitively, pixel-level correlation between 
related tissues improved markedly after enhancement (Fig. 4b).

We next applied DeepLoop to a mESC single-cell Hi-C dataset50. 
The average depth of this dataset was ~58,000 mid-range cis con-
tacts per cell. To test the lower limit of cell numbers required for 
loop analysis, we ranked all 4,098 cells by sequencing depth and 
generated a series of matrices (depth ~973,000–33,000,000) after 
pooling 92 of the deepest single cells. We pooled the remaining 
4,006 cells into a bulk dataset (depth 203 million) and used the top 
300,000 loop pixels from the denoised 4,006-cell data as ‘true posi-
tives’. DeepLoop heatmaps become stable with near-perfect ROC 
curves when either cell numbers reached ~10–41 or read depth 
reached ~10 million (Fig. 4c,d and Supplementary Fig. 2a). The 
enhanced data consistently recovered a large fraction of promoter 

interactions identified from an independent pcHi-C dataset10 using 
CHiCAGO51 (Supplementary Fig. 2b).

Finally we applied DeepLoop to a single-nucleus methyl-3C 
sequencing (sn-m3C–seq) dataset in human prefrontal cortex 
(PFC) in which the identities of 14 cell populations were previously 
resolved by DNA methylation profiles52. Most cell populations have 
at least 100 cells and 10-million read depth, which is adequate for 
direct observation of population-specific loop profiles. For exam-
ple, the RORB loop signal is restricted in layer 4/5 neurons but not 
in layers 2/3/6, which is highly consistent with the DNA hypometh-
ylation signal (Fig. 4e,f). Similar observations were also made for 
tissue-specific genes SATB2 (layers 2/3/4/5), MBP (ODC/OPC/
MG) and APOE (astrocytes) (Extended Data Fig. 7).

DeepLoop nominates allelic loops at imprinting or differentially 
methylated region loci. The remainder of this manuscript focuses 
on resolving human allele-specific (AS) chromatin loops, which is 
a difficult task due to the sparse and uneven distribution of hetero-
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zygous single-nucleotide polymorphisms (SNPs). Specifically, the 
GM12878 genome has ~1.7 million heterozygous SNPs (or one SNP 
per ~1.5 kb), which enforces a hard limit for data resolution because 
only those reads overlapping SNPs are usable. Starting from 4.5 bil-

lion GM12878 in situ Hi-C reads7, only 337 million (~7.5%) could 
be assigned to either the maternal or paternal genome (Fig. 5a): 
each haploid has ~56 million mid-range cis contacts. We applied 
DeepLoop to maternal and paternal data independently at 5-kb 
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resolution and called the top 300,000 loop pixels from each haploid 
genome. After enhancement, R2 between two homologs improved 
substantially, from 0.216 to 0.628 (Fig. 5b), which allows much 
more robust allelic analyses.

The best-known example of AS loops is at the H19/IGF2 
imprinting locus. Early studies using allelic chromosome con-
formation capture polymerase chain reaction (3C–PCR)53–55 and. 
more recently, allelic circular chromosome conformation capture 
(4C–seq)56 showed that, in mouse cells, a paternally methylated, 
gametic differentially methylated region (DMR) blocks CTCF bind-
ing and loop formation (insulator model). We therefore examine 
the 3,736 loop pixels anchored on all 992 DMRs previously defined 
in human GM12878 cells57 (colored dots in Fig. 5c). Only three loci, 
H19, MEST and MRPL28, have DMR and AS loops, consistent with 
the idea that the ‘insulator model’ is not a common mechanism for 
imprinting control58. For H19/IGF2, the AS loops are barely observ-
able from KR-normalized heatmaps at 25-kb resolution and the 
ambiguity is worse at 5-kb resolution (Fig. 5d, first and second col-
umns). HiCorr clearly improved 5-kb resolution bias correction and 
allowed DeepLoop to output clean maps of AS loops consistent with 
maternal-specific CTCF binding at H19 DMR (Fig. 5d,h,k).

We performed 4C–seq using DMRs as viewpoints and con-
firmed the allelic imbalance of the AS loops (Fig. 5h–j). We also 
examined the allelic imbalance of the CTCF ChIP–seq data at MEST 
and MRPL28 loci. MEST is a well-known paternally imprinted 
gene59 (Fig. 5g). The MEST DMR is close to two CTCF peaks that 
form a paternal-specific loop (Fig. 5e,i,l); one peak is ~480 base 
pairs (bp) distant from its closest heterozygous SNP that supports a 
paternal CTCF binding with marginal significance (ten versus four 
reads, P = 0.09; Fig. 5l). The MRPL28 transcriptional allele speci-
ficity is weak but the loop is highly specific (Fig. 5f,g). There is a 
strong CTCF peak near MRPL28 DMR that presumably anchors 
the paternal-specific loops (Fig. 5f,j,n). Although the allele specific-
ity of this CTCF peak is unknown due to the lack of informative 
SNPs, a small CTCF peak in this region is highly paternal specific 
(23 versus four reads, P = 1.6 × 10–4; Fig. 5n). Another CTCF peak 
at the HBA1/2 DMR is also paternal specific (60 versus 20 reads, 
P = 0.0074; Fig. 5m). In fact, the entire region between HBA1/2 and 
MRPL28 is decorated with stronger paternal CTCF signals (Fig. 5j). 
It should be noted that we are still unsure whether MRPL28 is an 
imprinting locus because it is unclear whether MRPL28 or HBA1/2 
DMRs are gametic DMRs.

DeepLoop reveals chromatin loops that escape X-inactivation. 
Allelic Hi-C analyses at low resolution in both human and mouse 
cells have reproducibly recorded the loss of TAD domains and the 
formation of megadomain and ultradistal superloops in the inac-
tivated X chromosome (Xi)2,7,60–62. However, the architectures of 
Xi and Xa (active X chromosome) have not been compared at the 
sub-TAD loop level. In human GM12878 cells the paternal chrX 
is inactive. DeepLoop called 3,550 and 806 loop pixels from Xa and 
Xi, respectively (Fig. 6a), indicating that most chromatin loops 
are repressed by X-inactivation. Most chrX genes are monoallelic 
except 17 escape genes, including the X-inactivation center (XIC) 
genes XIST and JPX (cutoff P/(M +P) >0.2; M, maternal expression; 
P, paternal expression; see Methods; Fig. 6b). As expected, escape 
loop pixels (present in both Xi and Xa) are enriched near the escape 
genes (Fig. 6c, with examples in Fig. 6e).

We next examined the relationship between chromatin loops 
and high-order megadomain or superloop structures in Xi. DXZ4 
is at the boundary of the megadomain (Fig. 6d) and also forms a 
superloop with the downstream FIRRE locus7,63. The gene bod-
ies of both DXZ4 and FIRRE gain CTCF binding in Xi, which 
may function to anchor Xi to the nucleolus61,63,64. Interestingly, we 
found that the two loci responded differently to X-inactivation. 
At the DXZ4 locus the chromatin loops, CTCF peaks and ATAC–
seq peaks were invariant between Xa and Xi, suggesting that this 
locus had escaped X-inactivation (Fig. 6e,f). In contrast, although 
the Xi FIRRE gained much-strengthened loop pixels within 
its own gene body, all loops connecting FIRRE to surrounding 
regions were lost (Fig. 6e,g), indicating that the FIRRE locus is 
X-inactivated. Consistent with these observations, FIRRE gained 
CTCF and ATAC–seq signals in its gene body but lost CTCF and 
ATAC–seq signals at the promoter (Fig. 6e,g). Notably, FIRRE is 
predominantly expressed from Xa (Fig. 6b), also indicating that it 
is X-inactivated65.

Because both DXZ4 and FIRRE form superloops but only  
DXZ4 is at the megadomain boundary, our observation sug-
gests that the escape loops near DXZ4 (presumably mediated by  
cohesin and loop extrusion) are mechanistically coupled to 
the formation of the megadomain but not the superloop; other  
mechanisms (for example, colocalization to the nucleolus) may 
result in superloops. These results agree very well with a recent 
study showing that loss of cohesin disrupts the Dxz4 megadomain 
but enhances the Dxz4–Firre superloop in mouse cells66. Taken 

Fig. 4 | DeepLoop identifies chromatin interactions from low-depth and single-cell Hi-C data. a, Contact heatmaps of exemplary marker genes in 
14 published low-depth human tissue Hi-C data. High-depth CP and GZ are also included for comparison with brain tissue maps. The numbers of 
mid-range cis contacts are indicated for each tissue. b, Reproducibility refers to the fraction of overlapped loop pixels between the top 100,000 loop pixels 
from every pair of tissues, which are used for tissue clustering before and after signal enhancement. c, Analysis of single-cell Hi-C data. After pooling 
different numbers of single mESC cells (read depth indicated for each pool), raw, HiCorr-corrected and enhanced heatmaps are shown. Heatmaps for 
the pool of 4,006 diploid cells are shown in the far-right column. d, ROC curves for each enhanced Hi-C map using the top 300,000 loop pixels from the 
4,006-cell dataset (LoopDenoise output) as true positives. e, Single cells from human PFC sn-m3C-seq data were split into 14 populations based on cell 
type. Data from the same population were pooled and processed with DeepLoop. The heatmaps are at the RORB locus; numbers in parentheses indicate the 
number of cells per population. f, Left: t-distributed stochastic neighbor-embedding (t-SNE) plot showing cell type identification by methylation profile; 
right: methylation levels of RORB for every cell are visualized on the same t-SNE plot; mCG, CpG methylation.

Fig. 5 | Homolog-specific chromatin interactions are associated with imprinting and DMR. a, Reads summary of allele-resolved in situ Hi-C data in 
GM12878 cells. b, Scatterplots comparing the loop strength of all anchor pairs between two haploid genomes. Left: HiCorr only; right: after DeepLoop. 
c, Heat scatter showing all loop pixels overlapping 992 DMRs. Loop pixels at three loci with highest allele specificity are highlighted in different colors. 
Background scatterplots are a union of the top 300,000 loop pixels from both haploid genomes. d, Contact heatmaps of the H19/IGF2 locus. e,f, Contact 
heatmaps of genes MEST (e) and MRPL28 (f) after DeepLoop. g, Gray bar plot on the left: reads per kilobase million (RPKM) of four genes in GM12878 
showing their expression level; bar plots on the right: RNA read counts on the two alleles for each gene. Note that, although H19 is expressed, its 
messenger RNA sequence does not contain heterozygous SNPs for allelic analysis. h–j, Browser tracks for the three loci in d–f, respectively; 4C–seq tracks 
showing chromatin interactions with the DMR region as viewpoint. Tracks of allelic 4C–seq analysis are included to show the maternal (red) or paternal 
(blue) preference of the 4C–seq signal. Light blue, DMR anchoring allelic loops; light orange, the other anchor of the allelic loop. k–n, Zoomed-in track 
views of h–j, respectively, showing regions with DMR. The height of browser tracks shows ChIP–seq read count pile-up.
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together we propose that, in contrast to their names, the mega-
domain uses a cohesin-dependent looping mechanism while the 
superloop does not.

DeepLoop functionally characterizes large heterozygous structure 
variants. We were intrigued to see many loop pixels showed extreme 
allele specificity (>tenfold difference, P < 0.01) after DeepLoop but 
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not before enhancement (Fig. 5b; circled scatter points in Fig. 7a). 
Interestingly, 1,533 of these 1,769 (87%) ultraspecific pixels are in 
four regions. Based on the patterns of maternal and paternal con-
tact heatmaps67, we concluded that these regions harbor large het-
erozygous deletions and inversions (Fig. 7b,c and Extended Data 
Fig. 8a–c). Del-chr14 (~300 kb) and Del-chr22 (~600 kb) are large 
heterozygous deletions at the IGH and IGL immunoglobulin loci, 
respectively, consistent with the allele-exclusive V(D)J recombina-
tion process in B lymphocytes (Fig. 7b and Extended Data Fig. 8b). 
The two inversions are even bigger (Inv-chr2, ~1.4 Mb; Inv-chr7, 
~900 kb; Fig. 7b). This extreme allele specificity is apparently due to 
incorrect distance bias correction when using the reference genome 
for structure variant (SV) alleles.

The detection of heterozygous SVs, especially large inversions, is 
notoriously difficult68–70. We looked up the four heterozygous SVs 
in published GM12878 data using various SV-detection tools53,57,58  
(Fig. 7b) and found that (1) neither short- nor long-read 
whole-genome sequencing detected any of the four SVs67,71; 
(2) optical mapping detected Del-ch22 at the IGH locus67; (3) a  

previous Hi-C analysis did not detect any of these SVs because the 
study assumed a homozygous genome and performed analysis only 
at 1-Mb resolution67; (4) the conventional fosmid subcloning-based 
method detected Inv-chr2 but showed nothing about its heterozy-
gosity72; and (5) the fosmid method detected Inv-chr7 in two inde-
pendent NA18956 and NA19129 genomes but not in NA12878, 
suggesting that Inv-chr7 is a recurrent SV in the human popula-
tion72. Taken together, allelic DeepLoop analysis appears to be a 
promising approach for detection of large heterozygous SVs.

To correctly map chromatin loops affected by inversions, we 
adjusted the orientation of the inverted allele using the anno-
tated inversion coordinate72 and repeated DeepLoop enhancement  
(Fig. 7c,d and Extended Data Fig. 8c,d). For Inv-chr2, paternal 
inversion broke up an enhancer cluster at the 3' boundary that was 
heavily interconnected in the maternal genome (A7–9 in Fig. 7d). 
Genes connected by this enhancer cluster, including LOC150776, 
CCDC74A, POTEKP, LINC01087 and C2orf27A, were all down-
regulated in the inverted paternal genome (Fig. 7d,e). On the other 
hand, Inv-chr2 moved half of the 3' boundary enhancer cluster  
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(A7–8) to the 5' boundary and new loops formed across the 5' bound-
ary between A1 and the inverted A7–8 anchors (Fig. 7d). These new 
loops help explain paternal expression of the RAB6C gene (Fig. 7e). 
Similarly, Inv-chr7 also rewired the DNA loops, which explains the 
paternal-specific CCZ1 expression (Extended Data Fig. 8d,e). These 
results demonstrate that DeepLoop can detect and predict the regu-
latory effects of large heterozygous SVs that may link to diseases  
or phenotypes73,74.

DeepLoop pinpoints SNPs that affect loops and transcription. 
Last, we investigated the impacts of heterozygous SNPs on chromatin 
loops. After exclusion of AS loop pixels associated with imprinting, 
X-inactivation and SVs, we used a simple twofold cutoff and called 

thousands of AS loop pixels at 1,959 loci (Fig. 8a). These loop pixels 
contained 91,304 heterozygous SNPs for which ‘loop-positive’ and 
‘loop-negative’ alleles could be unambiguously defined. CTCFL and 
CTCF were the top two motifs enriched in loop-positive alleles, prov-
ing the feasibility of resolving the genetics of loops with DeepLoop. 
Other motifs were also enriched, such as COE1.0.A bound by the 
B lymphocyte-specific transcription activator EBF1 and one motif 
KLF14.0.D bound by Kruppel-like factors that have been shown to 
regulate loops in other cell types75–77 (Fig. 8a). Further studies are 
necessary to verify the loop-regulatory functions of individual SNPs 
and their cognate transcription factors (TFs).

We next sought to map causal SNPs of CTCF AS loops. 
In GM12878 cells, 809 (3.9%) of all 20,772 CTCF peaks had  
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heterozygous SNPs in their cognate motifs (Fig. 8b), from which 
we narrowed this down to 28 highly credible AS-CTCF peaks 
(involving 30 SNPs in 26 loci) anchoring consistent AS loops. For 
two selected loci we confirmed their allele specificity with 4C–seq  
(Fig. 8c,d). Snapshots of the remaining 24 loci are shown in 
Extended Data Fig. 9.

We also used a dCas9-based insulator editing approach78,79 
to test whether AS-CTCF loops affect transcription in cis. With 
single-guide RNAs precisely targeting cognate CTCF motifs, both 
dCas9 and dCas9-KRAB proteins abolished the CTCF loops of 
interest (Extended Data Fig. 10a,d). In the first example (Fig. 8c and 
Extended Data Fig. 10a–c), the maternal alleles of rs141295679 and 
rs145242377 (both SNPs are within the same CTCF motif) were 
associated with stronger CTCF binding and a maternal loop encom-
passing the ACBD7 gene. Blocking of this loop increased the mater-
nal expression of ACBD7 but did not affect a control gene outside 
the loop (DCLRE1C). In the second example (Fig. 8d and Extended 
Data Fig. 10d–f), the paternal allele of rs7799435 formed a strong 
CTCF loop encompassing the GPNMB gene. Blocking of the pater-
nal CTCF loop also increased paternal GPNMB expression but did 
not affect the FAM221A gene from a different neighborhood. These 
examples demonstrate that allelic DeepLoop analysis can pinpoint 
common SNPs that directly regulate gene expression by influencing 
DNA looping.

Discussion
DeepLoop is a novel framework that enhances Hi-C ratio heatmaps 
(rather than contact heatmaps) without distance effects. Because 
bias correction and signal enhancement are carried out in two 
independent modules, each module can be modified or upgraded 
without affecting the other. DeepLoop is a universal tool that can 
be applied to different Hi-C data types if HiCorr has been properly 
adjusted. The lower limit of read depth is ~10 million mid-range cis 
contacts, which typically can be obtained from about 50–100 mil-
lion total reads. Nearly all published Hi-C datasets have adequate 
reads for DeepLoop reanalysis. Existing single-cell Hi-C technolo-
gies can yield sufficient reads from a few dozen cells. DeepLoop 
allowed us to map the human AS loops and revealed the genetic and 
epigenetic determinants of chromatin loop variations. We have set 
up a public webapp to visualize DeepLoop-enhanced heatmaps for 
around 40 datasets mentioned in this study. In summary, DeepLoop 
makes Hi-C a robust and affordable approach to revealing genome 
organization at sub-TAD loop level.
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Methods
No ethical approval was needed.

Experiments. Hi-C on H9 cells. H9 cells (WiCell, no. WA09) were maintained 
in mTeSR1 medium (StemCell Technologies, no. 05850) on plates coated with 
hESC-Qualified Matrigel (Corning, no. 354277) before harvesting for Hi-C. After 
hand-picked removal of differentiated colonies, cells were digested to single cells 
with Accutase (Innovative Cell Technologies, no. AT104) and then fixed with 1% 
formaldehyde. Hi-C was performed according to a published protocol6. First, fixed 
cells were lysed with cell lysis buffer containing 10 mM Tris-Cl pH 8.0, 10 mM 
NaCl, 0.2% NP-40 and 1× protease inhibitor cocktail (Roche, no. 11873580001) 
with douncing in between. Nuclei were then collected and digested with HindIII 
(NEB, no. R3104M) in 1× cutsmart buffer (NEB, no. B7204S) overnight at 37 °C. 
Digested fragment ends were then labeled with Biotin-14-dCTP (ThermoFisher, 
no. 19518-018) using DNA polymerase I, large fragment (NEB, no. M0210L). After 
biotin labeling, nuclei were subjected to proximity ligation using T4 DNA ligase 
(Invitrogen, no. 15224-090) in a large volume (7.5 ml). Ligated nuclei were then 
collected by spinning down at 2,500g for 5 min, followed by DNA extraction with 
phenol/chloroform after reverse linking with proteinase K overnight. Purified 
DNAs were first quantified with the Qubit dsDNA HS assay kit (Invitrogen, no. 
Q32854) then treated with T4 DNA polymerase (NEB, no. M0203L) to remove 
unligated DNAs. To generate fragments that can be sequenced, DNAs were 
subjected to sonication with a Covaris S2 sonicator under the following conditions: 
duty cycle ten, intensity four, cycles/burst 200 for 55 s. The resulting DNAs were 
end repaired using the DNA End-Repair kit (Lucigen, no. ER81050). An ‘A’ was 
then added to the ends of each fragment using Klenow fragment (3'→5' Exo-) 
(NEB, no. M0212L). Fragments of 300–500 bp were then selected using homemade 
Sera-Mag beads. C1 Streptavidin Beads (Invitrogen, no. 650.02) were used to pull 
down biotin-labeled ligates. After pulling down, beads were washed three times 
with 400 μl of 1× binding buffer (5 mM Tris-Cl pH 8.0, 0.5 mM EDTA and 1 M 
NaCl) followed twice with 100 μl of 1× ligation buffer (NEB, no. B0202S). Illunima 
Truseq adapters were then ligated using T4 DNA ligase (NEB, no. M0202L); 6 pmol 
of paired-end adapters was used for 1 μg of DNA. The resulting DNAs were then 
PCR amplified using short primers (Supplementary Table 7). Final libraries were 
sequenced on the Illumina HiSeq 3000 platform.

4C–seq. The 4C–seq procedure was performed following a published protocol80. 
First, 3–5 million cells were harvested and fixed with 2% formaldehyde then 
quenched with 125 nM glycine. Fixed cells were then lysed with a cell lysis buffer 
containing 50 mM Tris-Cl pH 7.5, 150 mM NaCl, 5 mM EDTA, 0.5% NP-40, 1% 
Triton X-100 and 1× protease inhibitor cocktail (Roche, no. 11873580001) for 
20–30 min on ice. After lysing, nuclei were collected by spinning down at 2,500g 
for 5 min at 4 °C, followed by washing once with 1× restriction enzyme buffer. 
Nuclear pellets were then resuspended in 1× restriction enzyme buffer and treated 
with 0.3% SDS for 1 h at 37 °C under shaking, followed by a further 1 h with 2.5% 
Triton X-100. Chromatin digestion was then done by incubation of samples with 
the designated restriction enzyme at the correct temperature overnight while 
rotating in an airbath. The restriction enzymes used for each locus are listed in 
Supplementary Table 7. After digestion, heat inactivation at 65 °C was applied 
to inactivate the enzymes, and nuclei were then subjected to ligation with 50 μl 
of T4 DNA ligase (Invitrogen, no. 15224-090) in a 7 ml ligation solution at 
16 °C overnight. Reverse linking was then performed by treating samples with 
proteinase K to yield proximity-ligated DNA. Purified DNAs were quantified 
and subjected to secondary restriction enzyme digestion (roughly one unit of 
restriction enzyme per 1 μg of DNA) at the suggested temperature overnight. 
After inactivation of restriction enzymes, samples were then self-ligated with T4 
DNA ligase. Ligated DNAs were recovered with sodium acetate and ethanol and 
quantified with a Qubit dsDNA HS assay kit (ThermoFisher, no. Q32851). The 
4C templates were then amplified with designed primers to generate libraries 
for sequencing. We modified the primer system to make it compatible with the 
Illunima Nextera system using two sequential PCRs. Locus-specific inverse PCR 
primers are listed in Supplementary Table 7. For each locus, the 4C templates were 
amplified with locus-specific primers using 200 ng of template in each reaction, 
and products from five parallel amplifications were pooled to generate the final 
4C library. PCR product aliquots (50 μl) were purified with homemade Sera-Mag 
beads. One-fifth of the purified DNAs was used for the second PCR using primers 
N7xx and N5xx, which are the same as Illumina Nextera sample preparation 
primers. The final products were then purified and subjected to sequencing. Reads 
for the first cutting site were used for data analysis.

Cloning. For the guide RNA expression vector we used a pX332-original plasmid 
gifted from the laboratory of J. Wysocka (Standford)81, which contains an mCherry 
expression cassette. The dCas9 and dCas9-KRAB expression vectors described 
in this study were generated on a backbone of Cas9 expression vector—pX330 
plasmid (Addgene, plasmid no. 42230) using the In-Fusion cloning method. Both 
dCas9 and dCas9-KRAB genes were amplified from pHAGE EF1α dCas9-KRAB 
(Addgene, plasmid no. 50919) with PCR and cloned separately into the AgeI and 
EcoRI sites of the pX330 plasmid, replacing the Cas9 open reading frame. Detailed 
information on primers can be found in Supplementary Table 7. All sgRNAs in this 

study were designed on the CCTop-CRISPR/Cas9 target online predictor82,83 and 
manually picked.

GM12878 cell culture and nucleofection. GM12878 cells were maintained in RPMI 
1640 medium (Gibco, no. 11875-085) supplemented with 15% FBS (Gibco, no. 
16000-044) and 1% penicillin/streptomycin (Gibco, no. 10378-016). Cells were split 
and seeded at 300,000 ml–1 in fresh medium the day before nucleofection. About 
4 million cells were prepared for each nucleofection. Briefly, cells were pelleted by 
centrifugation at 90g for 5 min and then resuspended in nucleofection reagent as 
suggested in the manufacturer's manual (Lonza, SF cell line 4D-Nucleofector X kit, 
no. V4XC-2024). For each reaction, about 5–7 μg of designated plasmids (dCas9 
or dCas9-KRAB combined with pX332-gRNAs, each around 2–4 μg) was applied. 
Nucleofection was carried out on a 4D Lonza nucleofector with program CM-137. 
Cells were then left to stand and recover for 24 h in the cell culture incubator before 
harvesting for RNA extraction or 3C analysis.

RNA extraction and quantitative PCR with reverse transcription. RNA was 
extracted with Trizol from nucleofected cells following the standard protocol. 
Complementary DNAs were generated by reverse transcription using M-MLV 
Reverse Transcriptase (Invitrogen, no. 28025013) following the manufacturer's 
manual. Quantitative PCR (qPCR) was performed in triplicate.

3C–qPCR. After nucleofection, cells were harvested for 3C assay by fixing with 
1% formaldehyde. Cells were lysed using a cell lysis buffer (10 mM Tris-Cl pH 7.5, 
10 mM NaCl, 0.2% NP-40 and 1× proteinase inhibitor cocktail) with douncing 30× 
in between, on ice, for about 20 min. Cell nuclei were pelleted by centrifugation at 
2,500g for 5 min at 4 °C, then nuclei were digested overnight with MboI (NEB, no. 
R0147M; 400 U for about 4 million cells) at 37 °C. After heat inactivation of MboI, 
proximity ligation was performed overnight with T4 DNA ligase (Invitrogen, 
no. 15224-025) at 16 °C. Proximity-ligated chromatins were reverse linked by 
treatment with proteinase K at 65 °C overnight and then purified by phenol/
chloroform. To generate random ligation control for 3C–qPCR, we picked BAC 
clones covering the two anchors of the loop of interest (a list of BAC clones is 
provided in Supplementary Table 7) and performed the 3C procedure on DNA 
prepared from BAC clones.

Sequencing data analysis. Hi-C data mapping, filtering and normalization. 
Conventional Hi-C. Because some conventional Hi-C libraries are sequenced 
with paired-end 36 bp (for example, human tissue datasets), for the purposes of 
consistency and convenience we trimmed all conventional Hi-C data to 36 bp. 
Each end of the raw reads was mapped separately to the hg19 (for human) or 
mm10 (for mouse) reference genome using bowtie (v.1.1.2)84. Sam files were 
then paired with an in-house script. After removal of PCR duplications, we first 
discarded reads with both ends mapped to the same HindIII fragments as invalid 
pairs. All remaining read pairs then represented two different HindIII fragments in 
cis. Because cut-and-ligation events are expected to generate reads within 500 bp 
upstream of HindIII cutting sites due to size selection (‘+’ strand reads should be 
within 500 bp upstream of a HindIII site and ‘−’ strand reads should be within 
500 bp downstream of a HindIII site), we retained only read pairs with both ends 
satisfying these criteria. We next split all remaining reads into three classes based 
on their strand orientation (‘same-strand’, ‘inward’ or ‘outward’). We retained 
inward read pairs if the distance between two reads was >1 kb, and outward read 
pairs if the distance between two reads was >25 kb. We then merged the filtered 
inward, filtered outward and same-strand as the cis reads pair. The HiCorr ‘HindIII’ 
mode was used to acquire bias-corrected 5-kb anchor loop files from cis and trans 
fragment read pairs.

In situ Hi-C and micro-C. Full-length reads (150 bp for in situ GM12878) were 
used for alignment to enable more reads overlapping SNPs for allele-resolved 
analysis. After removal of PCR duplicates and read pairs classification, we 
filtered out the outward read pairs with distance <5 kb and inward read pairs 
with distance >1 kb. The filtered read pairs were then mapped to Mbol fragment 
pairs, with the HiCorr ‘Bam-process-DpnII’ mode used for bias correction. H1 
micro-C processing followed similar steps: we used 5-kb bins to map read pairs 
and Juicebox (v.1.18.08)85 ‘pre’ to convert 5-kb bin pairs to ‘hic’ format and ran 
KR normalization. We then dumped the contact pairs and performed distance 
correction with in-house scripts. In brief, we split all contact pairs within 2 Mb 
by loop distance into 400 groups with 5 kb as the interval. In each distance group, 
the KR-normalized value was normalized by average values within the same 
group. Here, we called the normalized value from KR normalization and distance 
correction as KR-ratio.

Single-cell Hi-C preprocessing. Processed DpnII fragment contact files for 
4,098 mouse embryonic stem cells were downloaded from the original study 
(Supplementary Table 1). Fragment pairs were then mapped from mm9 to mm10 
using the liftover tools from UCSC. The number of cis contacts within 2 Mb was 
used to rank cells. We took the top-ranked cells of a certain number (~1–92) and 
merged the fragment contacts files for cis and trans separately and mapped them to 
~10-kb anchor pairs. HiCorr ‘DpnII’ mode was used to correct bias at the anchor 
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level. The ‘contact read pairs’ files for human PFC sn-m3C-seq and cell type labels 
identified from the methylation profiled in the same cell were downloaded from 
the original study (Supplementary Table 1). We aggregated cells from the same 
cell type, filtered reads pairs as in situ Hi-C steps and further mapped read pairs to 
DpnII fragment pairs. Due to the sparsity and limited depth of each cell type, we 
further converted fragment pairs to ~10-kb anchor pairs. For each cell type, the 
merged cis anchor contact file and trans anchor pairs were taken as input to run 
HiCorr DpnII mode.

4C–seq. Data for 4C–seq were analyzed using pipe4C (v.1.1.3)80 to generate bam 
and wig files for visualization.

AS mapping for Hi-C, ChIP–seq, RNA sequencing and 4C–seq. We first masked 
the hg19 reference genome with SNPs downloaded from the original study 
(Supplementary Table 1) and built an index for bowtie2 (v.2.2.6)86 and Hisat2 
(v.2.1.0)87.

Hi-C. Each end of the raw reads with the full length (150 bp) was mapped 
separately to the masked hg19 genome by bowtie2 (v.2.2.6). SNPsplit (v.0.3.4)88 
was utilized to assign mapped reads in bam files to two alleles using the SNP 
information. The read pairs filtering step was the same as for in situ Hi-C 
(In situ Hi-C and micro-C). HiCorr DpnII mode was used for bias correction. 
The LoopEnhance model trained by 50 million data was used to enhance the two 
5-kb-resolution contact data from the two alleles. The top 300,000 loops from two 
datasets were combined and then loops with at least twofold difference between the 
enhanced loop strength of the two alleles were defined as AS loops; ultraspecific 
loops were defined by a tenfold difference.

ChIP–seq. FASTQ files were mapped to the masked hg19 genome by bowtie2 
(v.2.2.6). SNPsplit (v.0.3.4) was used to assign mapped reads in bam files to two 
alleles using the SNP information. macs2 (v.2.2.7.1)89 was used to call peaks.

RNA sequencing. FASTQ files were mapped to the masked hg19 genome by Hisat2 
(v.2.1.0), SNPsplit (v..3.4) was used to assign mapped reads in bam files to two 
alleles using the SNP information. We used FeatureCounts (v.1.6.1) to summarize 
the mapped reads for each gene across samples. Reads on the same allele from 
different samples were merged. A binomial test was performed to calculate P values 
comparing expression levels between two alleles for each gene (background 
possibility, 0.5). X-inactivation resulted in an imbalance of gene activity between 
Xa (maternal) and Xi (paternal) genomes; escape genes were defined as those with 
a ratio >0.2:

ratio = exprXi/exprXi + exprXa

Where exprXi is the paternal (Xi) expression of the gene and exprXa is the 
maternal (Xa) expression of the gene.

4C–seq. Data for 4C–seq were analyzed using pipe4C (v.1.1.4) to generate bam 
and wig files for visualization. We further converted bam files to bed format and 
extracted the reads of overlapping SNPs and split them into maternal and paternal 
bed files. For each SNP, we summarized the overlapped reads on maternal and 
paternal genomes, calculated allele imbalance using the formula in equation (2) 
and visualized it on a UCSC genome browser:

Allele imbalance = (M − P) /M + P

Where M is 4C reads assigned to the maternal genome on each SNP and P is 
4C reads assigned to the maternal genome on each SNP.

Data representation and model structure in DeepLoop. Data representation. 
To train deep learning models on Hi-C contact matrices, we need to represent 
the data in a way that is more computationally tractable than holding each full 
chromosome matrix in memory. We took each full chromosome matrix and split it 
into nonoverlapping, equally sized submatrices lying within the 2-Mb band. For a 
single genome using our selected submatrix size of 128 × 128, we used on average 
~18,000 unique submatrices per replicate when training a model, although we used 
random cropping and shifting to further augment the training dataset. Once the 
model was trained, each of these submatrices was passed into the model separately 
and the full chromosome matrix was reconstructed from the outputs of the trained 
model.

LoopDenoise. Denoising autoencoders. A convolutional autoencoder90 is a type 
of neural network that consists of an encoder function and a decoder function. 
The encoder maps an input vector to a lower-dimensional latent representation 
using successive convolution layers combined with some form of dimensionality 
reduction, such as pooling layers or strided convolutions. The decoder then maps 
this representation to a reconstructed vector using transpose convolutions or 
some other form of upsampling. Autoencoders can be thought of as a function 
fθ parameterized by θ, which maps each input vector Xi from a given dataset to a 
reconstructed vector fθ(Xi). Classical autoencoders try to learn an approximation 

to the identity function using the input vector as the training target91. That is, for 
dataset X the model tries to minimize the loss between each input vector and the 
reconstructed output. Mean squared error is commonly used as the loss function:

θ∗

= argminθ

[

1
n

n
∑

i=1
(fθ (Xi) − Xi)

2
]

Denoising autoencoders are a specific type of autoencoder that attempts to 
learn a mapping from noisy input vectors to clean, ground truth targets92. Contrary 
to classical autoencoders, these denoising models attempt to minimize the loss 
between target vector ̂Xi and the reconstructed output:

θ∗

= argminθ

[

1
n

n
∑

i=1

(

fθ (Xi) − X̂i
)2
]

This target vector has some desirable properties, such as being noise free and 
having higher resolution than the input vector. Building a denoising autoencoder 
usually involves starting from clean ground truth data as the target vectors and 
corrupting them to generate the input vectors. If the goal of the model is to be 
robust to noise, we could corrupt ground truth data by adding random noise; 
however, in the case of Hi-C contact matrices, the data already contain noise and 
thus training a convolutional autoencoder to denoise Hi-C data requires a more 
desirable training target. We obtain cleaner training targets by statistically filtering 
out insignificant signals from high-depth data using biological replicates.

Training set. For model training, we picked a published HindIII-based Hi-C dataset 
in human fetal cerebral cortex24. The data were generated for three donors, each of 
which has one library from CP and one from GZ. All six libraries have roughly the 
same sequencing depth, and the pooled data of all six libraries have ~470 million 
mid-range cis contacts (Supplementary Table 2). We disregarded the difference 
between CP and GZ and split the Hi-C data into three biological replicates, each 
replicate having ~140–150 million mid-range cis contacts combining CP and GZ 
libraries from the same donor. We applied HiCorr to each of the three replicates 
and extracted ~18,000 submatrices at ~5–10-kb resolution (within the 2-Mb range) 
from every replicate as training sets

Training target. The training target for LoopDenoise should contain significant and 
reproducible signals with as little noise as possible. To generate these targets, we 
pooled all libraries and applied HiCorr; the heatmaps from pooled data will thus 
be less noisy due to higher sequencing depth (Fig. 1c). HiCorr provides P values 
for every pixel in the heatmaps from individual replicates and the pooled data. 
We then removed pixels from the pooled heatmaps with P > 0.05 due to lack 
of signal enrichment. We then required the remaining pixels to be significant 
(P < 0.05, negative binomial test) in at least one of the biological replicates. The 
resulting pixels were used as the ground truth training target in our convolutional 
autoencoder. All remaining pixels were assigned a zero value, indicating no 
interaction. Even though these training targets were not completely noise free, 
results show that our model is able to learn a meaningful latent representation for 
the true loop signals and also to output Hi-C submatrices that are even cleaner 
than the training target used. This is probably because the model is forced to learn 
an average of noise-free matrices that could explain the noisy observation, rather 
than learning the perfect mapping to our training target, which is not noise-free.

Model structure. The encoder of LoopDenoise (Fig. 1a and Extended Data Fig. 1a) 
consists of two instances of a convolution layer followed by a rectified linear unit 
(ReLU) activation function and a maximum pooling layer. The decoder half of 
LoopDenoise consists of two transpose convolutions followed by a final convolution 
layer and ReLU activation. Each convolution layer has eight filters except for the 
final layer, which has only one, to return the correct number of output channels. 
The convolution layers in both the encoder and final convolution layer use a filter 
size of 13 × 13 while the transpose convolutions in the decoder use a filter size of 
2 × 2. Because the maximum pooling layers act on a 2 × 2-region, after each pooling 
layer in the encoder the size of the input is halved. For each transpose convolution 
layer the size of the input is doubled, giving us the same size output as the input. 
We applied zero-padding to the edges of each input submatrix to ensure that the 
output size of each convolution or transpose convolution remained unchanged. 
The output of each convolution layer with ReLU activation was computed as 
follows:

hi (x) = max (0, wi ∗ x + bi)

where we define the discrete convolution operation * as the weighted sum of 
neighboring pixels using weights wi as the convolution kernel, bi as the bias and x 
as the input matrix—either a Hi-C submatrix for the first layer or the output of a 
previous layer for subsequent layers. This operation was performed at every pixel 
of the input matrix using a stride value of 1 to move the convolution window across 
the input space one pixel at a time. In the transpose convolutions we performed the 
same mathematical operation but we transformed the input by inserting padding 
between the input values to simulate a fractional stride value, which therefore maps 
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each pixel to multiple different values, increasing the size of the input matrix to 
perform the upsampling necessary in the decoder.

Model training. The model was trained by minimization of the mean squared error 
(MSE) of the reconstructed outputs and the combined targets using the Adam93 
optimizer, with a learning rate of 0.001 and default hyperparameters. We used a 
submatrix size of 128 × 128 and a batch size of four training for 50 epochs. Three 
normalized CP–GZ merged replicates were used for training, and chromosomes X 
and Y were ignored during training. When training this autoencoder architecture, 
MSE did not reach zero; this would indicate that our model is overfitting to our 
training targets and has memorized only mapping from inputs to targets without 
learning a useful latent representation that generalizes to novel examples. To avoid 
this, we used GM12878 replicates as a validation dataset and monitored both 
loss and reproducibility on this validation set to ensure that the model would 
successfully generalize.

Hyperparameter exploration. To find the optimal model for denoising we trained 
multiple models with different hyperparameters on human fetal brain datasets and 
validated the model using GM12878 replicates. We tested different filter sizes to 
determine whether the inclusion of more information from neighboring regions 
would lead to improved performance. We evaluated reproducibility among the 
training and validation replicates and determined the optimal filter size as 13 × 13. 
We also tested performance when using a stride value of 2 in the convolution layers 
of the encoder rather than in the pooling layers. This would perform the same 
amount of dimensionality reduction, but each convolution would potentially give 
us less information than when using pooling layers. We found that maximization 
of pooling layers slightly improved reproducibility on our training and validation 
datasets. This makes sense, because using a stride value of 2 means that some pixels 
are never convolved with their neighbors before the dimensionality reduction 
step and thus the model loses information about certain regions. Compared with 
a convolution of stride value of 1 followed by maximized pooling, we captured 
the full relationship between each pixel and its surrounding region then selected 
the maximum value among a small group of these pixels. The latter method is 
more specific in regard to the information that is forgotten when performing 
dimensionality reduction whereas the former, using a stride value of 2 without 
pooling, randomly loses information based on the location of each pixel.

LoopEnhance. Model structure. The U-Net architecture (Fig. 2a) is a fully 
convolutional network similar to, but much larger than, the convolutional 
autoencoder used in the denoise model. It contains an encoder and a decoder, 
with the main addition being skip connections that concatenate feature maps from 
each stage of the encoder to each corresponding stage of the decoder. The goal 
of these skip connections is to maintain the localization and different scales of 
features when upsampling during the decoder path. Since the receptive field of the 
convolutions at the final layer of the encoder is very large compared with the size 
of our input submatrices, we found that deep convolutional autoencoders without 
these skip connections produce very cloudy/blurry signals, whereas concatenating 
feature maps across the different depths of the model yield more precise signals 
in the output. The encoder of LoopEnhance contains ten convolution layers with 
four pooling layers. Our model has a depth of four because it has four ‘blocks’ 
of convolutions followed by dimensionality reduction steps. The input is a Hi-C 
submatrix of size 128 × 128. We successively applied two convolution layers with 
ReLU activation followed by a pooling layer to produce final feature maps with 
dimensionality 64 × 8 × 8 = 4,096. Since we use U-Net architecture, we also retain 
the feature maps at each depth of the network. The convolution layers in the 
first block of the model use four filters, and this number of filters is doubled at 
each depth, eventually reaching the 26 = 64 filters found in the final convolution 
layer. The decoder of LoopEnhance consists of 13 convolution layers with four 
upsampling layers. The upsampling layers are instances of an upconvolution 
function that simply turns each pixel into a 2 × 2-region of identical values, then 
applies a convolution layer with ReLU activation. In practice, this is very similar to 
a transpose convolution. However, in deep networks transpose convolutions can 
propagate padding artifacts to the output of the model. Following each upsampling 
layer, we applied two convolutions with ReLU activation. The number of filters is 
now halved after each upsampling layer, starting at 64 filters following the latent 
encoding and eventually reaching four filters. After the final upsampling layer and 
its following two convolutions, we applied one final convolution layer with one 
filter and ReLU activation to obtain an output with a single channel.

Model training. The input to the model is a low-depth-normalized Hi-C submatrix, 
and the training target is the corresponding denoised high-depth-normalized 
submatrix obtained using the denoise model. This is the main distinction between 
our model and previous works such as HiCPlus20 and HiCNN21. Zhang et al.20 note 
that training a neural network to map low- to high-depth Hi-C data assumes that 
the high-depth target used is the ground truth. Although many deep learning 
models are able to distinguish between noise and true signals, natural variation 
among Hi-C replicates introduces multiple valid explanations for each low-depth 
input. The increased replicate reproducibility achieved by LoopDenoise facilitates 
training of LoopEnhance using a ground truth target with less noise and variation. 

Our model minimizes MSE between the enhanced output and denoised high-depth 
targets. We also used a larger submatrix size of 128 × 128 compared with HiCPlus 
and HiCNN, which use 40 × 40. This larger submatrix size allows our model to map 
each input submatrix to a richer scale of features while still using minimal padding 
in the convolution layers. Because our model is a fully convolutional network, once 
trained it can enhance submatrices of any size, although we recommend using 
the same size used for training because padding artifacts are possible with small 
submatrix sizes.

Hyperparameter exploration. To determine the optimal model for enhancement 
of low-depth contact matrices, we trained multiple models with different 
hyperparameters on the 10% downsampled CP–GZ merged replicates and 
validated the model using downsampled GM12878 replicates. We tested different 
filter sizes to determine whether the inclusion of more information from 
neighboring regions would lead to improved performance. Like HiCPlus20, we 
found that larger filters do improve performance to an extent: filters larger than 
9 × 9 showed no substantial improvements, so we decided on a final filter size  
of 9 × 9.

Hi-C data visualization. Heatmaps were used to visualize Hi-C contact profiles. The 
color scales for heatmaps (raw, expected, ratio) were selected based on the contact 
matrix. Because the brightness of pixels in raw, ratio and DeepLoop heatmaps 
represents different things, we use different strategies to determine color scales:

	(1)	 Raw heatmaps represents read counts; the brightest red color indicates the 
98th percentile of the contact matrix. Color is proportionally scaled down to 
one read (white).

	(2)	 HiCorr heatmaps represents ratios; the brightest red color indicates at least 
twofold enrichment. Color is proportionally scaled down to onefold (no 
enrichment).

	(3)	 DeepLoop heatmaps output ‘transformed fold change’ that represents only 
relative levels of signal enrichment (that is, a value of onefold may no longer 
be the real cutoff for no enrichment). We therefore set the brightest red color 
as the lower limit of the top 300,000 pixels genome wide. Color is proportion-
ally scaled down to half of that lower limit or onefold, whichever is higher.

Loop curves in the figures were sourced from the UCSC Genome Browser by 
uploading the top 300,000 loops in the format ‘biginteract’. Triangle heatmaps were 
sourced from the UCSC Genome Browser94 by uploading the ‘hic’ file generated by 
Juicebox.

Statistics. All statistical methods and tests used in this paper are described in the 
main text, figure legends, Methods and Supplementary Information as appropriate.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Accession numbers for third-party data used in this study can be found in 
Supplementary Table 1. The raw data of H9 Hi-C and 4C–seq generated in this 
study, and reanalyzed published data, can be found at accession no. GSE167200. 
The 40 Hi-C datasets analyzed by DeepLoop can be found at https://hiview.case.
edu/public/DeepLoop/.

Code availability
The code is available is available at Zenodo (https://doi.org/10.5281/
zenodo.6495831) and github (https://github.com/JinLabBioinfo/DeepLoop).
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Extended Data Fig. 1 | LoopDenoise training procedure, performance and visualization. a, Detailed LoopDenoise convolutional autoencoder model 
architecture showing five convolution layers, two in the encoding path using eight 13 × 13 filters, two transpose convolution layers in the decoding path 
using eight 2 × 2 filters and one final convolution layer using a single 13 × 13 filter. The matrices dimensions of each layer output were also shown. Each 
layer is visualized by the filters used, the output of convolving the input with this filter, the result of applying ReLU activation and the result of max pooling. 
The convolution operation is denoted by *. b, Venn diagram showing the reproducible loop pixels between three human fetal brain replicates. The table 
showing the number of overlapped pixels between significant pixels in the pooled data and each part of pixels shown in the Venn diagram. The pixels that 
are significant in both pooled data and at least one of the three replicates are the training target in the LoopDenoise model (P < 0.05, negative binomial 
test). The significance of loop pixels come from the negative binomial test wrapped in HiCorr package. c, Pairwise reproducibility at pixel level (defined as 
the fraction of common ones when calling the same number of loop pixels from two datasets) between biological replicates of human fetal cortex Hi-C 
data, when the same numbers of the loop pixels were called. d, The heatmap examples from 7 locus in three human fetal brain replicates, and LoopDenoise 
output showing more reproducible contact patterns.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | LoopDenoise generalization across cell types and species. a, Eight heatmap examples in GM12878, the highlight row is the output 
from LoopDenoise. b, The distance distribution of top 300K pixels in H1(hESC), GM12878, IMR90 and mESC. Upper and lower limits of boxes indicate 
interquartile ranges, center lines indicate median values, whiskers indicate values with a maximum of 1.5 times the interquartile range and outliers 
indicate values beyond 1.5 times the interquartile range. c, The number of loops pixels with at least one anchor overlapped with ChIP-seq peaks out of 
top 300K pixels. d, Density plots show the distribution of distances between loop anchors (top 100K loop pixels used) and their nearest ChIP-seq peaks 
in GM12878, IMR90, H1(hESC) and mESC. e, The heatmap examples of six loci with known long-range gene regulation. The height of browser tracks 
indicating the raw counts of ChIP-seq.
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Extended Data Fig. 3 | LoopDenoise enables the quantitation of dynamic chromatin interactions. a, Scatterplots showing the pixel-level correlation 
between CP and GZ sample in human fetal cortex before and after LoopDenoise. The R-square values were also shown in the plots. b, GO analyses of genes 
associated with GZ- or CP-specific loops. Fisher’s Exact test was used to measure the gene-enrichment in annotation terms. c, The contact heatmaps of 
selected gene loci with top GZ- or CP-specific loop pixels. ATAC-seq tracks in CP (yellow) and GZ (blue) are also included for comparison. The height of 
browser tracks indicating the raw counts of ATAC-seq.
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Extended Data Fig. 4 | Compare the performance of different pipelines on 6-cutter and 4-cutter Hi-C data in GM12878 cells. For 4-cutter Hi-C datasets, 
we chose a 94M down-sampled dataset (1/16 of the original depth) used in HiCPlus, HiCNN2 and SRHiC studies, and the 1.35 billion full-depth as reference. 
For 6-cutter Hi-C datasets, we chose a 50M down-sampled dataset and the 380M full-depth as reference. For locus chr5:87,964,000-88,764000, the left 
side showed the contact heatmaps from 6-cutter (HindIII) GM12878 Hi-C processed by different pipelines (colored in background). The right side showed 
the 4-cutter (MboI) GM12878 Hi-C. The height of browser tracks indicating the raw counts of ChIP-seq.
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Extended Data Fig. 5 | Compare the consistency of Hi-C and Micro-C in H1. a, Similar to Fig. 3a, b, more heatmap examples at 4 loci. b, Size breakdown of 
recovered micro-C HICCUPS loops by 50M deep HindIII- or DpnII- Hi-C after enhancement.
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Extended Data Fig. 6 | DeepLoop reveals tissue-specific loop interactions for low-depth Hi-C data. Applying LoopEnhance to low depth Hi-C data from 14 
human tissues. Contact heatmaps of three tissue-specifically expressed genes in all the tissues were shown. a, ALB, highly expressed in liver. b, MYOZ2, 
highly expressed in heart tissues. c, ADD2, highly expressed in brain tissues.
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Extended Data Fig. 7 | DeepLoop reveals cell type specific loop interactions from sn-m3C-seq data. Same as Fig. 4e,f, single cells from the same cell type 
are pooled and enhanced by DeepLoop. The tSNE plots show the identities of each cell population (left) and the methylation level at the locus of interest 
(right).
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Extended Data Fig. 8 | Large heterozygous deletions and inversions detected by allelic DeepLoop analysis. a, The scatterplots highlight the loop pixels 
within the entire four SVs region (two inversions and two deletions). b, The contact heatmaps of paternal deletion Del-chr14 and maternal deletion 
Del-chr22. c, The contact heatmaps of Inv-chr7. d, The genome track of Inv-chr7 shows the chromatin interactions, CTCF and H3K27ac binding on the 
un-inverted allele and ‘inversion-fix’ allele. In this region, the un-inverted paternal genome has A1-A4 and A5-A6 cross-boundary CTCF loops. The 
maternal inversion created new A1-A5 and A4-A6 cross-boundary loops due to the inverted orientation the CTCF motifs. Note that in paternal genome, 
the A1-A4 loop encompass multiple enhancers, while in the inverted maternal genome the A1-A5 loop lack enhancers. e, The gene expression level of gene 
CCZ1 in two alleles. The height of browser tracks indicating the raw counts of ChIP-seq.
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Extended Data Fig. 9 | The contact heatmaps and browser snapshots of 24 loci containing 27 SNPs associated with both allelic CTCF binding and allelic 
DNA looping. For each SNP, the paternal (blue) and maternal (red) genotypes are included. The allelic loops are circled in the heatmaps. The CTCF motif 
orientation are indicated with triangles. The height of browser tracks indicating the raw counts of ChIP-seq.
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Extended Data Fig. 10 | Allele-specific chromatin loops regulate gene expression. a, 3C assays showing the loss of chromatin loop between the SNP 
(highlight in yellow) and ACBD7 locus after displacing CTCF binding with either dCas9-KRAB or dCas9 protein. b,c, Bar plots showing the changes of allelic 
gene expression upon blocking CTCF loops with dCas9 or dCas9-KRAB. d–f, CTCF blocking experiments at GPNMB locus. n = 2 biologically independent 
experiments. All data are presented as means ± SEM from 4 replicated experiments. **P < 0.01, ***P < 0.001. NS, no significant difference. Two-sided 
Wilcoxon test. The height of browser tracks indicating the raw counts of ChIP-seq.
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