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DeepLoop robustly maps chromatin interactions
from sparse allele-resolved or single-cell Hi-C
data at kilobase resolution

Shanshan Zhang'25, Dylan Plummer®$, Leina Lu'¢, Jian Cui'¢, Wanying Xu'?, Miao Wang?,
Xiaoxiao Liu®1, Nachiketh Prabhakar3, Jatin Shrinet®©4, Divyaa Srinivasan®#4, Peter Fraser®?,
Yan Li®"™, Jing Li®3>7™ and Fulai Jin®3572

Mapping chromatin loops from noisy Hi-C heatmaps remains a major challenge. Here we present DeepLoop, which performs
rigorous bias correction followed by deep-learning-based signal enhancement for robust chromatin interaction mapping from
low-depth Hi-C data. DeepLoop enables loop-resolution, single-cell Hi-C analysis. It also achieves a cross-platform convergence
between different Hi-C protocols and micrococcal nuclease (micro-C). DeepLoop allowed us to map the genetic and epigenetic
determinants of allele-specific chromatin interactions in the human genome. We nominate new loci with allele-specific inter-
actions governed by imprinting or allelic DNA methylation. We also discovered that, in the inactivated X chromosome (X)),
local loops at the DXZ4 ‘megadomain’ boundary escape X-inactivation but the FIRRE ‘superloop’ locus does not. Importantly,
Deeploop can pinpoint heterozygous single-nucleotide polymorphisms and large structure variants that cause allelic chromatin
loops, many of which rewire enhancers with transcription consequences. Taken together, DeepLoop expands the use of Hi-C to

provide loop-resolution insights into the genetics of the three-dimensional genome.

genome organization and can reliably identify high-order
three-dimensional genome features such as compartments
and topological-associated domains (TADs)'~". However, when
resolution is at the kilobase scale, Hi-C contact heatmaps quickly
become noisy due to the increasingly complex bias structure and
severe data sparsity””. To date, genome-wide mapping of chro-
matin loops, especially enhancer-promoter interactions within
TADs (sub-TADs), remains a major challenge in Hi-C analyses.
Consequently, scientists often turn to focused technologies, such
as chromatin interaction analysis by paired-end tag sequencing
(ChIA-PET), promoter capture Hi-C (pcHi-C), HiChIP/proxim-
ity ligation-assisted ChIP-seq (PLAC-seq) and so on, hoping for
better signal-to-noise ratios at selected loci'""*, even though these
approaches identify only a subset of all interactions
Bias and noise are two distinct types of error in Hi-C data. Here
we define biases as ‘unwanted pattern in a Hi-C heatmap. This defi-
nition is goal oriented. For example, to distinguish relatively weak
loop signals, the strong nonspecific diagonal Hi-C signal needs
to be corrected as bias. Hi-C protocols using different digestion
enzymes have different bias structures determined by fragment size,
distance, genomic copy (GC) content and the interactions between
these factors™, and the bias structure becomes more complicated
when the resolution increases, especially at the sub-TAD mid-range
(that is, within 1-2Mb). While several methods have been devel-
oped to model and correct known sources of Hi-C biases explic-
itly with joint functions, the most commonly used strategy is to
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‘normalize’ the Hi-C matrices and correct Hi-C biases implicitly
with matrix-balancing algorithms®”'*'*. However, both explicit
and implicit strategies have drawbacks>**>'®"". To improve the rigor
of Hi-C bias correction, we recently developed a HiCorr pipeline
that performs both explicit and implicit correction’. Unlike normal-
ization methods”", which preserve a strong diagonal signal in the
contact heatmaps, HiCorr corrects distance effects in a joint func-
tion with other biases and outputs the observed/expected ratio heat-
maps for chromatin interaction profiling. When read depth is high,
HiCorr generates sharper contact heatmaps and is more robust in
identification of sub-TAD chromatin loops’.

Theoretically, when all biases are corrected, only data sparsity
contributes to Hi-C noises. Therefore, reduction of Hi-C noises is
mathematically equivalent to signal enhancement. Several recent
studies have pioneered the application of deep learning tech-
niques to enhance Hi-C signal at the compartment, TAD and loop
levels'>-**. These pipelines share a similar framework to impute
high-depth contact matrices from low-depth raw or normalized
Hi-C data. It is, however, important to point out that this strategy
‘learns’ Hi-C biases in the input matrices, which may no longer
be properly corrected after enhancement. This flaw is critical for
loop analysis because distance effect is a major bias for loop analy-
sis, and other Hi-C biases are also much worse at high resolution.
To address this issue, here we developed a strategy to enhance
HiCorr-corrected ratio heatmaps. The resulting DeepLoop pipeline
achieved striking robustness in calling loops from low-depth Hi-C
data. This study highlights the application of DeepLoop to single-cell
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and allele-resolved Hi-C data analyses, both impacted by the chal-
lenge of severe data sparsity.

Results

LoopDenoise improves the robustness of Hi-C loop mapping. We
begin with denoising of high-depth Hi-C heatmaps with a five-layer
autoencoder (Fig. 1a and Extended Data Fig. 1a). We picked three
replicates of Hi-C data in human fetal cerebral cortex** for model
training; each replicate has ~140-150 million mid-range (<2Mb)
cis contacts. (In this paper we use the number of mid-range cis con-
tacts to measure ‘read depth’ or the total amount of data for a Hi-C
experiment.) We applied HiCorr to each replicate and extracted
~18,000 submatrices at fragment resolution (~5kb) as training
sets (Fig. 1a,b). As previously reported, HiCorr generates sharper
distance-corrected ratio heatmaps than ICE/KR’ (compare rows 3
and 4 in Fig. 1c), but noise pixels are still present. When pooling the
reads from all three replicates, HiCorr heatmaps are only slightly
cleaner (Fig. 1b). Since true loop pixels are more reproducible than
noise pixels between biological replicates, we set up ‘training tar-
get’ heatmaps by retaining only reproducible loop pixels (Fig. 1b,
Extended Data Fig. 1b and Methods).

LoopDenoise removes all visible noise pixels from the
HiCorr-corrected ratio heatmaps (Fig. 1c, compare rows 4 and 6).
Denoised heatmaps are cleaner than the training targets (Fig. Ic,
compare rows 5 and 6). When applied to biological replicates,
LoopDenoise improves pairwise reproducibility to ~70-80% at the
pixel level (Extended Data Fig. 1¢,d). When applied to independent
Hi-C datasets in human embryonic stem cells (hESCs), IMR90,
GM12878 and mouse embryonic stem cells (mESCs)"*7**-%
(Supplementary Table 1), the benefits of LoopDenoise are also obvi-
ous (Fig. 1d-g and Extended Data Fig. 2a). Loop pixels are bet-
ter concentrated near CTCF, H3K4me3 and H3K27ac peaks after
denoising"**-*! (Extended Data Fig. 2b-d). LoopDenoise successfully
reveals loop interactions at loci with well-established long-range
gene regulation, such as Sox2, Wnt6 and Malt]l in mESCs, and at
HOXAs, FTO and SHH in hESCs (Extended Data Fig. 2e)* .

To test whether this improved reproducibility would facilitate the
identification of dynamic chromatin loops, we compared human
cortex Hi-C data from the germinal zone (GZ) and cortical plate
(CP), which are two layers of developing cortex enriched with neu-
ron progenitors and postmitotic neurons***. Indeed, R* between
GZ and CP improved (from 0.31 to 0.65) after denoising (Extended
Data Fig. 3a). When picking those genes associated with the top
3,000 GZ- or CP-specific loop pixels, we found that GZ loop genes
are enriched with terms related to neural development while CP
loop genes are enriched with neuronal function terms (Extended
Data Fig. 3b). After denoising, the dynamic loop pixels are clearly
recognizable at GZ-specific (such as SOX2, FOXP2 and EOMES)
and CP-specific (such as TGFB2 and NELL2) genes, in agreement
with GZ- or CP-specific assay for transposase-accessible chromatin
using sequencing (ATAC-seq) peaks® (Extended Data Fig. 3c).

LoopEnhance reliably maps Hi-C loops from low-depth data. We
then developed a method to analyze low-depth Hi-C data. We trained
a series of U-Net* LoopEnhance models using downsampled cortex
Hi-C data with ~10-250 million mid-range cis contacts. Notably, we
used LoopDenoise outputs from high-depth data as training targets,
which should be better representations of the ‘ground truth’ (Fig. 2a
and Supplementary Fig. 1a). Strikingly, although loop signals are
hardly recognizable when read depth is <50Mb, the enhanced
heatmaps from low-depth Hi-C data are nearly identical (Fig. 2b).
LoopEnhance models created with cortex data also performed very
well in the independent GM12878 datasets (Fig. 2c). When com-
paring enhanced heatmaps to full data (~380 million mid-range cis
contacts), we found no compromise in performance (pixel-level
reproducibility >70%) when read depth was reduced to 100 million;
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pixel-level reproducibility remained >50% even when sequencing
depth was reduced to 12.5million (Fig. 2d). We also trained new
DeepLoop models (LoopDenoise and LoopEnhance) with Hi-C data
from H9 hESCs and confirmed that the choice of training set did
not affect results (Supplementary Fig. 1b,c). Because pixel intensity
in the DeepLoop heatmaps represents Hi-C signal enrichment, we
can directly term top loop pixels as interactions. Note that DeepLoop
does not output an explicit list of discrete ‘loops’; conversion of ‘loop
pixels’ to ‘loops’ requires new algorithms and parameters, which will
inevitably introduce new biases. Therefore, we retain DeepLoop as a
‘what-you-see-is-what-you-get’ method.

We next compared the DeepLoop pixelsin GM 12878 cells with the
~83,0001loops called by pcHi-C in the same cell line®. We classified
pcHi-C loops into promoter-promoter interactions (PP, the frag-
ments of both ends were captured with promoter probes) and pro-
moter-other interactions (PO, only one end of the interaction was
captured), and further divided these loops into long-range (>100kb)
and short-range (<100kb) categories. DeepLoop improved receiver
operating characteristic (ROC) curves in all categories, especially
the long-range examples (Fig. 2¢); this is consistent with DeepLoop’s
noise reduction function, because Hi-C matrices are noisier at long
range due to more severe data sparsity.

We also collected five sets of ChIA-PET or HiChIP data in
GM12878 cells performed with CTCE Polll, RAD21, SMC1A
and H3K27ac antibodies'**-*. The numbers of loops from these
datasets were highly variable (3,600-48,000), with a grand total of
~64,000 (Fig. 2f). Clearly, each experiment captures only a subset
of all interactions. We classified all loops based on their recur-
rence among these experiments and examined the recovery effi-
ciency of Hi-C for each category. With DeepLoop, a downsampled
50-million-depth Hi-C map recovered 7,051 (62%) and 8,260 (72%)
of the 11,401 ‘recurrent’ (in least two experiments) loops when call-
ing 500,000 and 1,000,000 top loop pixels, respectively, in contrast
to only 23 and 29% before enhancement. Recovery of the ~53,000
‘non-recurrent’ loops improved even more. In fact, the enhanced
50-million map outperformed the unenhanced 380-million full-data
map in all loop categories (Fig. 2f). Notably, the cost involved in
generation of 50-million-depth Hi-C data was already lower than
that for one ChIA-PET or HiChIP experiment.

DeepLoop Hi-C maps converge with micro-C maps. Although
DeepLoop is trained with six-cutter Hi-C data, because its bias cor-
rection is independent from the noise-reduction module we need
only to adjust HiCorr for DeepLoop to work for other Hi-C-like
data. Indeed, both LoopDenoise and LoopEnhance work very well
on Mbol-based GM12878 in situ Hi-C data’ (examples in Extended
Data Fig. 4). Interestingly, although with a conventional pipeline,
four-cutter Hi-C heatmaps are sharper than six-cutter heatmaps
and DeepLoop heatmaps are very similar, indicating that HiCorr is
more efficient at removal of platform-specific biases and supports
cross-platform comparison. For the same reason, DeepLoop sub-
stantially outperformed other Hi-C enhancing pipelines including
HiCPlus*, HICNN2 (ref. *) and SRHiC* (Extended Data Fig. 4).

To further explore cross-platform consistency we compared the
published ultradeep Hi-C data in H1 hESCs prepared with HindIII,
DpnlI and micro-C>***, As expected, for raw, KR and KR-ratio
heatmaps, micro-C was sharper than both HindIII and DpnII Hi-C
while DpnII-Hi-Cwasshaperthan HindIII-Hi-C(examplesinFig.3a,b
and Extended Data Fig. 5a). However, DeepLoop heatmaps from
HindIIl and Dpnll Hi-C were much more similar at the pixel
level, regardless of read depth (Fig. 3c). Importantly, when diges-
tion resolution was increased (from Hi-C to micro-C), KR-ratio
heatmaps become sharper and more similar to DeepLoop outputs
(Fig. 3a,b and Extended Data Fig. 5a). When we compared other
signal enhancement methods using micro-C KR-ratio heatmaps
as reference, DeepLoop showed the highest correlation coefficient
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Fig. 1| HiCorr and LoopDenoise reveal chromatin loops from noisy Hi-C datasets. a, Scheme showing the LoopDenoise model architecture and training. The

three HiCorr-corrected human fetal brain datasets are used as training sets. Training targets are the reproducible pixels in the heatmaps from pooled data.

b, Example heatmaps from human fetal cortex Hi-C data, including three HiCorr-corrected replicates (Rep), pooled data, training target and output from
LoopDenoise. €, LoopDenoise performance in the training human fetal cortex Hi-C data at four loci. Heatmaps of raw and various processed data are compared.
Highlighted row is LoopDenoise output. d-g, Heatmaps showing the application of LoopDenoise to four independent Hi-C datasets in hESC (d), GM12878 (e),

IMR9O (f) and mESC (g). ChlIP-seq tracks show raw reads pile-up. See Methods for information on how to determine the color scale of each heatmap.

(Fig. 3d). Finally, we called 17,500 micro-C loops at 5-kb resolu-
tion using a standard KR-Hi-C computational unbiased peak search
(HICCUPS) pipeline, then performed ROC analyses using these
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loops as true positives. DeepLoop-enhanced, low-depth (50 million)
Hi-C data performed better than all other pipelines, even better
than KR-processed full-depth data (Fig. 3e).
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Fig. 2 | LoopEnhance enables sensitive and robust loop calling from low-depth Hi-C data. a, Scheme showing the architecture and training of the
LoopEnhance model. Left: downsampling from high-depth human fetal cortex Hi-C data as training sets after HiCorr correction. Middle: U-Net architecture
of LoopEnhance. Right: training targets are high-depth human fetal brain data following both HiCorr and LoopDenoise. b, Heatmap examples showing the

outputs of LoopEnhance when applied to downsampled human fetal cortex dat:
LoopDenoise output using the full dataset (training target). ¢, Heatmap exampl

a (training sets) at variable depth. Two loci are shown. The bottom row is
es showing the application of LoopEnhance to downsampled independent

GM12878 data. The full GM12878 data were analyzed with LoopDenoise (bottom row). b,c, Sequencing depth on the left indicates the numbers of
mid-range (<2 Mb) cis contacts (M, million). d, Reproducibility, the fraction of overlapped loop pixels, between downsampled and full-depth GM12878
data when the same numbers of loop pixels were called. For comparison, LoopDenoise was used on full-depth GM12878 data. Solid lines: HiCorr and

LoopEnhance applied to downsampled data; dashed lines: only HiCorr was appl
enhanced low-depth Hi-C data. Significant (P< 0.01, three-parameter Weibull
as true positives. Solid lines: HiCorr + LoopDenoise; dashed lines: HiCorr only. f,

ied. e, ROC curves showing the recovery of GM12878 pcHi-C loops with
distribution) pcHi-C interactions (PP and PO) in GM12878 are considered
Loops identified from five published ChIA-PET and HiChlIP studies in

GM12878 were grouped by their recurrence among these experiments. Loop number and subtotal for each ‘recurrence’ group are listed. Pie charts indicate
the percentage of each group of loops recovered by the Hi-C map when calling the top 500,000 or 1million loop pixels. Green: 380-million-depth HiCorr
map; blue: 50-million-depth HiCorr map; orange: 50-million-depth DeepLoop-enhanced map. TPR, true positive rate; FPR, false positive rate.

Micro-C is expected to reveal more small loops (<50kb)
than either six- or four-cutter Hi-C with the standard HICCUPS
pipeline®**. We found that, with four-cutter Hi-C, DeepLoop
recovered most micro-C small loops and the recovery rate was
only slightly lower than for large loops (Extended Data Fig. 5b).
However, because DeepLoop-enhanced six-cutter Hi-C missed most
small micro-C loops, this indicates that HindIII hits a hard limit for
small loop detection due to large fragment size: sufficent numbers

1016

of restriction sites need to be cut between the two anchors to dis-
cern a small loop. Notably, micro-C may find even smaller loops at
higher resolution**. Improvement of DeepLoop resolution will be
an interesting future direction. Regardless, DeepLoop achieves bet-
ter cross-platform convergence between Hi-C and micro-C.

Application of DeepLoop to sparse and single-cell Hi-C data.
We firs enhanced published sparse Hi-C data in 14human tissues
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Fig. 3 | DeepLoop outputs convergent Hi-C loop profiles regardless of read depth and digestion resolution. a, Heatmap examples showing the outputs of
different pipelines with full depth or downsampled (50M) HindllI- or Dpnll-based Hi-C data in H1 hESCs. The last column shows KR-processed heatmaps
from ultradeep micro-C data. b, Similar to a at different locus. ¢, Left: Spearman correlations between Hi-C experiments with different restriction enzymes
and read depths when KR-ratio contact heatmaps were compared at the pixel level. Right: same, except that DeepLoop outputs were used in the comparison.
d, Spearman correlations between micro-C KR-ratio heatmaps and outputs of various pipelines with Hindlll- or Dpnll-based Hi-C data. e, ROC curves
comparing the performance of different enhancing pipelines in recovery of micro-C loops when applied to Hindlll- or Dpnll-based H1 hESC Hi-C data. For all
Hi-C analysis pipelines, loop pixels were called from ratio heatmaps after ranking by intensity. Pixels in micro-C HICCUPS loops (after KR normalization)
were treated as true positives. KR-ratio heatmaps from full-depth (solid black curve) or downsampled Hi-C (dashed black curve) were plotted as reference.

(depth, ~7-53 million mid-range cis contacts)****. We observed
specific loop interactions near many tissue-marker genes after
enhancement, such as ALB (liver), MYOZ2 (aorta, left and right ven-
tricles) and ADD?2 (cortex, hippocampus, CP and GZ) (Fig. 4a and
Extended Data Fig. 6). Quantitively, pixel-level correlation between
related tissues improved markedly after enhancement (Fig. 4b).

We next applied DeepLoop to a mESC single-cell Hi-C dataset™.
The average depth of this dataset was ~58,000 mid-range cis con-
tacts per cell. To test the lower limit of cell numbers required for
loop analysis, we ranked all 4,098 cells by sequencing depth and
generated a series of matrices (depth ~973,000-33,000,000) after
pooling 92 of the deepest single cells. We pooled the remaining
4,006 cells into a bulk dataset (depth 203 million) and used the top
300,0001loop pixels from the denoised 4,006-cell data as ‘true posi-
tives. DeepLoop heatmaps become stable with near-perfect ROC
curves when either cell numbers reached ~10-41 or read depth
reached ~10million (Fig. 4c,d and Supplementary Fig. 2a). The
enhanced data consistently recovered a large fraction of promoter

NATURE GENETICS | VOL 54 | JULY 2022 | 1013-1025 | www.nature.com/naturegenetics

interactions identified from an independent pcHi-C dataset'® using
CHiCAGO®' (Supplementary Fig. 2b).

Finally we applied DeepLoop to a single-nucleus methyl-3C
sequencing (sn-m3C-seq) dataset in human prefrontal cortex
(PEC) in which the identities of 14 cell populations were previously
resolved by DNA methylation profiles™. Most cell populations have
at least 100 cells and 10-million read depth, which is adequate for
direct observation of population-specific loop profiles. For exam-
ple, the RORB loop signal is restricted in layer 4/5 neurons but not
in layers 2/3/6, which is highly consistent with the DNA hypometh-
ylation signal (Fig. 4e,f). Similar observations were also made for
tissue-specific genes SATB2 (layers 2/3/4/5), MBP (ODC/OPC/
MG) and APOE (astrocytes) (Extended Data Fig. 7).

DeepLoop nominates allelic loops at imprinting or differentially
methylated region loci. The remainder of this manuscript focuses
on resolving human allele-specific (AS) chromatin loops, which is
a difficult task due to the sparse and uneven distribution of hetero-
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zygous single-nucleotide polymorphisms (SNPs). Specifically, the
GM12878 genome has ~1.7 million heterozygous SNPs (or one SNP
per ~1.5kb), which enforces a hard limit for data resolution because
only those reads overlapping SNPs are usable. Starting from 4.5 bil-
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lion GM12878 in situ Hi-C reads’, only 337 million (~7.5%) could
be assigned to either the maternal or paternal genome (Fig. 5a):
each haploid has ~56 million mid-range cis contacts. We applied
DeepLoop to maternal and paternal data independently at 5-kb

NATURE GENETICS | VOL 54 | JULY 2022 | 1013-1025 | www.nature.com/naturegenetics


http://www.nature.com/naturegenetics

NATURE GENETICS

ARTICLES

‘

Fig. 4 | DeepLoop identifies chromatin interactions from low-depth and single-cell Hi-C data. a, Contact heatmaps of exemplary marker genes in

14 published low-depth human tissue Hi-C data. High-depth CP and GZ are also included for comparison with brain tissue maps. The numbers of
mid-range cis contacts are indicated for each tissue. b, Reproducibility refers to the fraction of overlapped loop pixels between the top 100,000 loop pixels
from every pair of tissues, which are used for tissue clustering before and after signal enhancement. ¢, Analysis of single-cell Hi-C data. After pooling
different numbers of single mESC cells (read depth indicated for each pool), raw, HiCorr-corrected and enhanced heatmaps are shown. Heatmaps for

the pool of 4,006 diploid cells are shown in the far-right column. d, ROC curves for each enhanced Hi-C map using the top 300,000 loop pixels from the
4,006-cell dataset (LoopDenoise output) as true positives. e, Single cells from human PFC sn-m3C-seq data were split into 14 populations based on cell
type. Data from the same population were pooled and processed with DeepLoop. The heatmaps are at the RORB locus; numbers in parentheses indicate the
number of cells per population. f, Left: t-distributed stochastic neighbor-embedding (t-SNE) plot showing cell type identification by methylation profile;
right: methylation levels of RORB for every cell are visualized on the same t-SNE plot; mCG, CpG methylation.

resolution and called the top 300,000 loop pixels from each haploid
genome. After enhancement, R* between two homologs improved
substantially, from 0.216 to 0.628 (Fig. 5b), which allows much
more robust allelic analyses.

The best-known example of AS loops is at the HI9/IGF2
imprinting locus. Early studies using allelic chromosome con-
formation capture polymerase chain reaction (3C-PCR)**** and.
more recently, allelic circular chromosome conformation capture
(4C-seq)™ showed that, in mouse cells, a paternally methylated,
gametic differentially methylated region (DMR) blocks CTCF bind-
ing and loop formation (insulator model). We therefore examine
the 3,736loop pixels anchored on all 992 DMRs previously defined
in human GM12878 cells*” (colored dots in Fig. 5¢). Only three loci,
H19, MEST and MRPL28, have DMR and AS loops, consistent with
the idea that the ‘insulator model’ is not a common mechanism for
imprinting control®®. For H19/IGF2, the AS loops are barely observ-
able from KR-normalized heatmaps at 25-kb resolution and the
ambiguity is worse at 5-kb resolution (Fig. 5d, first and second col-
umns). HiCorr clearly improved 5-kb resolution bias correction and
allowed DeepLoop to output clean maps of AS loops consistent with
maternal-specific CTCF binding at H19 DMR (Fig. 5d,h,k).

We performed 4C-seq using DMRs as viewpoints and con-
firmed the allelic imbalance of the AS loops (Fig. 5h-j). We also
examined the allelic imbalance of the CTCF ChIP-seq data at MEST
and MRPL28 loci. MEST is a well-known paternally imprinted
gene® (Fig. 5g). The MEST DMR is close to two CTCF peaks that
form a paternal-specific loop (Fig. 5e,i,l); one peak is ~480base
pairs (bp) distant from its closest heterozygous SNP that supports a
paternal CTCF binding with marginal significance (ten versus four
reads, P=0.09; Fig. 5]). The MRPL28 transcriptional allele speci-
ficity is weak but the loop is highly specific (Fig. 5f,g). There is a
strong CTCF peak near MRPL28 DMR that presumably anchors
the paternal-specific loops (Fig. 5f,j,n). Although the allele specific-
ity of this CTCF peak is unknown due to the lack of informative
SNPs, a small CTCF peak in this region is highly paternal specific
(23 versus four reads, P=1.6x10"% Fig. 5n). Another CTCF peak
at the HBA1/2 DMR is also paternal specific (60 versus 20reads,
P=0.007% Fig. 5m). In fact, the entire region between HBA1/2 and
MRPL28 is decorated with stronger paternal CTCF signals (Fig. 5j).
It should be noted that we are still unsure whether MRPL28 is an
imprinting locus because it is unclear whether MRPL28 or HBA1/2
DMRs are gametic DMRSs.

DeepLoop reveals chromatin loops that escape X-inactivation.
Allelic Hi-C analyses at low resolution in both human and mouse
cells have reproducibly recorded the loss of TAD domains and the
formation of megadomain and ultradistal superloops in the inac-
tivated X chromosome (X,)>%-®2, However, the architectures of
X, and X, (active X chromosome) have not been compared at the
sub-TAD loop level. In human GM12878 cells the paternal chrX
is inactive. DeepLoop called 3,550 and 806loop pixels from X, and
X,, respectively (Fig. 6a), indicating that most chromatin loops
are repressed by X-inactivation. Most chrX genes are monoallelic
except 17 escape genes, including the X-inactivation center (XIC)
genes XIST and JPX (cutoff P/(M +P) >0.2; M, maternal expression;
P, paternal expression; see Methods; Fig. 6b). As expected, escape
loop pixels (present in both X; and X,) are enriched near the escape
genes (Fig. 6¢, with examples in Fig. 6e).

We next examined the relationship between chromatin loops
and high-order megadomain or superloop structures in X;. DXZ4
is at the boundary of the megadomain (Fig. 6d) and also forms a
superloop with the downstream FIRRE locus™®. The gene bod-
ies of both DXZ4 and FIRRE gain CTCF binding in X, which
may function to anchor X; to the nucleolus®-¢*. Interestingly, we
found that the two loci responded differently to X-inactivation.
At the DXZ4 locus the chromatin loops, CTCF peaks and ATAC-
seq peaks were invariant between X, and X,, suggesting that this
locus had escaped X-inactivation (Fig. 6e,f). In contrast, although
the X; FIRRE gained much-strengthened loop pixels within
its own gene body, all loops connecting FIRRE to surrounding
regions were lost (Fig. 6e,g), indicating that the FIRRE locus is
X-inactivated. Consistent with these observations, FIRRE gained
CTCF and ATAC-seq signals in its gene body but lost CTCF and
ATAC-seq signals at the promoter (Fig. 6e,g). Notably, FIRRE is
predominantly expressed from Xa (Fig. 6b), also indicating that it
is X-inactivated®.

Because both DXZ4 and FIRRE form superloops but only
DXZ4 is at the megadomain boundary, our observation sug-
gests that the escape loops near DXZ4 (presumably mediated by
cohesin and loop extrusion) are mechanistically coupled to
the formation of the megadomain but not the superloop; other
mechanisms (for example, colocalization to the nucleolus) may
result in superloops. These results agree very well with a recent
study showing that loss of cohesin disrupts the Dxz4 megadomain
but enhances the Dxz4-Firre superloop in mouse cells®. Taken

>
>

Fig. 5 | Homolog-specific chromatin interactions are associated with imprinting and DMR. a, Reads summary of allele-resolved in situ Hi-C data in
GM12878 cells. b, Scatterplots comparing the loop strength of all anchor pairs between two haploid genomes. Left: HiCorr only; right: after DeepLoop.

¢, Heat scatter showing all loop pixels overlapping 992 DMRs. Loop pixels at three loci with highest allele specificity are highlighted in different colors.
Background scatterplots are a union of the top 300,000 loop pixels from both haploid genomes. d, Contact heatmaps of the H19/IGF2 locus. e f, Contact
heatmaps of genes MEST (e) and MRPL28 (f) after DeepLoop. g, Gray bar plot on the left: reads per kilobase million (RPKM) of four genes in GM12878
showing their expression level; bar plots on the right: RNA read counts on the two alleles for each gene. Note that, although H19 is expressed, its
messenger RNA sequence does not contain heterozygous SNPs for allelic analysis. h-j, Browser tracks for the three loci in d-f, respectively; 4C-seq tracks
showing chromatin interactions with the DMR region as viewpoint. Tracks of allelic 4C-seq analysis are included to show the maternal (red) or paternal
(blue) preference of the 4C-seq signal. Light blue, DMR anchoring allelic loops; light orange, the other anchor of the allelic loop. k-n, Zoomed-in track
views of h-j, respectively, showing regions with DMR. The height of browser tracks shows ChIP-seq read count pile-up.
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together we propose that, in contrast to their names, the mega-
domain uses a cohesin-dependent looping mechanism while the
superloop does not.
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chr16: 221,675-231,401 bp chr16: 416,679-421,766 bp

DeepLoop functionally characterizes large heterozygous structure
variants. We were intrigued to see many loop pixels showed extreme
allele specificity (>tenfold difference, P<0.01) after DeepLoop but
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Fig. 6 | Homolog-specific chromatin interactions are associated with X-inactivation. a, Heat scatterplot of all chrX loops, shown in color. Gray
background dots represent the union of the top 300,000 loops in both haploid genomes. b, Scatterplot showing gene expression from the two chrX
copies. X axis: fraction of RNA reads on paternal alleles from total of both alleles; y axis: RPKM of total expression in log scale; genes of interest in d,e are
highlighted in different colors. Dashed vertical line indicates cutoff to define escape genes. ¢, Bar plot showing percentages of ‘escape loop pixels' (present
in both X, and X,) and ‘inactivated loop pixels' anchored to the 17 escape genes (transcriptional start site £100 kb) defined in b. d, chrX heatmaps with

KR normalization at 500-kb resolution showing the megadomain. e, DeepLoop-enhanced Hi-C heatmaps for two homologs at seven representative loci,
including escaping loci (yellow), XIC (green), X-inactivated loci (red) and X; megadomain or superloop loci (blue). f,g, Genome browser tracks at DXZ4 (f)
and FIRRE (g) loci. ChIP-seq tracks show raw reads pile-up.
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Del-chr22 chr22: 22,544,651-23,244,244 Maternal deletion, /GL Optical, Dixon et al., 2019
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Fig. 7 | Allelic DeepLoop maps detect and functionally characterize large heterozygous SVs. a, Scatterplot showing ultraspecific loops (bounded by red
ellipses). b, Four large heterozygous SVs containing the majority of ultraspecific loops. €, Raw contact heatmaps of the Inv-chr2 locus. The ‘corrected’ raw
heatmap of the inverted paternal allele is included (‘fix inversion’). Resolution level shown at right. d, Genome browser track of the Inv-chr2 locus showing
CTCF and H3K27ac binding and chromatin loops in the uninverted maternal allele and inverted paternal allele. e, Bar plots showing allelic expression of

genes highlighted in d at inversion boundaries. NA, not applicable.

not before enhancement (Fig. 5b; circled scatter points in Fig. 7a).
Interestingly, 1,533 of these 1,769 (87%) ultraspecific pixels are in
four regions. Based on the patterns of maternal and paternal con-
tact heatmaps®, we concluded that these regions harbor large het-
erozygous deletions and inversions (Fig. 7b,c and Extended Data
Fig. 8a—c). Del-chr14 (~300kb) and Del-chr22 (~600kb) are large
heterozygous deletions at the IGH and IGL immunoglobulin loci,
respectively, consistent with the allele-exclusive V(D)] recombina-
tion process in Blymphocytes (Fig. 7b and Extended Data Fig. 8b).
The two inversions are even bigger (Inv-chr2, ~1.4Mb; Inv-chr7,
~900kb; Fig. 7b). This extreme allele specificity is apparently due to
incorrect distance bias correction when using the reference genome
for structure variant (SV) alleles.

The detection of heterozygous SVs, especially large inversions, is
notoriously difficult®™"". We looked up the four heterozygous SVs
in published GM12878 data using various SV-detection tools*>*"**
(Fig. 7b) and found that (1) neither short- nor long-read
whole-genome sequencing detected any of the four SVs“7}
(2) optical mapping detected Del-ch22 at the IGH locus®; (3) a
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previous Hi-C analysis did not detect any of these SVs because the
study assumed a homozygous genome and performed analysis only
at 1-Mb resolution®; (4) the conventional fosmid subcloning-based
method detected Inv-chr2 but showed nothing about its heterozy-
gosity’% and (5) the fosmid method detected Inv-chr7 in two inde-
pendent NA18956 and NA19129 genomes but not in NA12878,
suggesting that Inv-chr7 is a recurrent SV in the human popula-
tion”’. Taken together, allelic DeepLoop analysis appears to be a
promising approach for detection of large heterozygous SVs.

To correctly map chromatin loops affected by inversions, we
adjusted the orientation of the inverted allele using the anno-
tated inversion coordinate’ and repeated DeepLoop enhancement
(Fig. 7c,d and Extended Data Fig. 8c,d). For Inv-chr2, paternal
inversion broke up an enhancer cluster at the 3'boundary that was
heavily interconnected in the maternal genome (A7-9 in Fig. 7d).
Genes connected by this enhancer cluster, including LOC150776,
CCDC74A, POTEKP, LINC01087 and C2orf27A, were all down-
regulated in the inverted paternal genome (Fig. 7d,e). On the other
hand, Inv-chr2 moved half of the 3'boundary enhancer cluster
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Fig. 8 | Allelic DeepLoop maps pinpoint common SNPs that affect chromatin loops. a, Flowchart showing de novo motif findings associated with AS
chromatin loops, highlighted in the scatterplot. The 51-base sequences (25 bp up/down) around SNPs were used to scan for motifs significantly enriched
in loop-positive alleles. Fisher's exact test was performed to measure motif enrichment. b, Summary of the procedure used to identify causal SNPs for

AS CTCF loops and TF occupancy. €, Using ‘insulator epigenome editing’ to validate the transcription regulatory functions of two selected allelic-specific
CTCF loops. Both contact heatmaps and genome browser tracks are included to show the locations of SNPs, specific CTCF peaks and DNA loops. 4C-seq
tracks show chromatin interactions with the SNP region as viewpoint (highlighted in yellow). Tracks of allelic 4C-seq analysis show the maternal (red) or
paternal (blue) preference of the 4C-seq signal. Regions of interest are highlighted in light blue. Bar plots show changes in nearby gene expression with AS
using quantitative PCR with reverse transcription following CTCF blocking with dCas9. n=2 biologically independent experiments. All data are presented
as means = s.e.m. from four replicated experiments. ***P < 0.001; two-sided Wilcoxon test. NS, no significant difference (additional results in Extended

Data Fig. 10). d, Similar to ¢ at different locus.

(A7-8) to the 5'boundary and new loops formed across the 5'bound-
ary between Al and the inverted A7-8 anchors (Fig. 7d). These new
loops help explain paternal expression of the RAB6C gene (Fig. 7¢).
Similarly, Inv-chr7 also rewired the DNA loops, which explains the
paternal-specific CCZ1 expression (Extended Data Fig. 8d,e). These
results demonstrate that DeepLoop can detect and predict the regu-
latory effects of large heterozygous SVs that may link to diseases
or phenotypes™’.

DeepLoop pinpoints SNPs that affect loops and transcription.
Last, we investigated the impacts of heterozygous SNPs on chromatin
loops. After exclusion of AS loop pixels associated with imprinting,
X-inactivation and SV, we used a simple twofold cutoff and called
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thousands of AS loop pixels at 1,9591oci (Fig. 8a). These loop pixels
contained 91,304 heterozygous SNPs for which ‘loop-positive’ and
‘loop-negative’ alleles could be unambiguously defined. CTCFL and
CTCF were the top two motifs enriched in loop-positive alleles, prov-
ing the feasibility of resolving the genetics of loops with DeepLoop.
Other motifs were also enriched, such as COEL.0.A bound by the
Blymphocyte-specific transcription activator EBF1 and one motif
KLF14.0.D bound by Kruppel-like factors that have been shown to
regulate loops in other cell types™” (Fig. 8a). Further studies are
necessary to verify the loop-regulatory functions of individual SNPs
and their cognate transcription factors (TFs).

We next sought to map causal SNPs of CTCF AS loops.
In GM12878 cells, 809 (3.9%) of all 20,772CTCF peaks had
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heterozygous SNPs in their cognate motifs (Fig. 8b), from which
we narrowed this down to 28highly credible AS-CTCF peaks
(involving 30SNPs in 26loci) anchoring consistent AS loops. For
two selected loci we confirmed their allele specificity with 4C-seq
(Fig. 8c,d). Snapshots of the remaining 24loci are shown in
Extended Data Fig. 9.

We also used a dCas9-based insulator editing approach’™”
to test whether AS-CTCF loops affect transcription in cis. With
single-guide RNAs precisely targeting cognate CTCF motifs, both
dCas9 and dCas9-KRAB proteins abolished the CTCF loops of
interest (Extended Data Fig. 10a,d). In the first example (Fig. 8c and
Extended Data Fig. 10a—c), the maternal alleles of rs141295679 and
1145242377 (both SNPs are within the same CTCF motif) were
associated with stronger CTCF binding and a maternal loop encom-
passing the ACBD?7 gene. Blocking of this loop increased the mater-
nal expression of ACBD7 but did not affect a control gene outside
the loop (DCLREIC). In the second example (Fig. 8d and Extended
Data Fig. 10d-f), the paternal allele of rs7799435 formed a strong
CTCF loop encompassing the GPNMB gene. Blocking of the pater-
nal CTCF loop also increased paternal GPNMB expression but did
not affect the FAM221A gene from a different neighborhood. These
examples demonstrate that allelic DeepLoop analysis can pinpoint
common SNPs that directly regulate gene expression by influencing
DNA looping.

Discussion

DeepLoop is a novel framework that enhances Hi-C ratio heatmaps
(rather than contact heatmaps) without distance effects. Because
bias correction and signal enhancement are carried out in two
independent modules, each module can be modified or upgraded
without affecting the other. DeepLoop is a universal tool that can
be applied to different Hi-C data types if HiCorr has been properly
adjusted. The lower limit of read depth is ~10 million mid-range cis
contacts, which typically can be obtained from about 50-100 mil-
lion total reads. Nearly all published Hi-C datasets have adequate
reads for DeepLoop reanalysis. Existing single-cell Hi-C technolo-
gies can vyield sufficient reads from a few dozen cells. DeepLoop
allowed us to map the human AS loops and revealed the genetic and
epigenetic determinants of chromatin loop variations. We have set
up a public webapp to visualize DeepLoop-enhanced heatmaps for
around 40 datasets mentioned in this study. In summary, DeepLoop
makes Hi-C a robust and affordable approach to revealing genome
organization at sub-TAD loop level.
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Methods

No ethical approval was needed.

Experiments. Hi-C on H9 cells. H9 cells (WiCell, no. WA09) were maintained

in mTeSR1 medium (StemCell Technologies, no. 05850) on plates coated with
hESC-Qualified Matrigel (Corning, no. 354277) before harvesting for Hi-C. After
hand-picked removal of differentiated colonies, cells were digested to single cells
with Accutase (Innovative Cell Technologies, no. AT104) and then fixed with 1%
formaldehyde. Hi-C was performed according to a published protocol’. First, fixed
cells were lysed with cell lysis buffer containing 10 mM Tris-Cl pH 8.0, 10 mM
NaCl, 0.2% NP-40 and 1X protease inhibitor cocktail (Roche, no. 11873580001)
with douncing in between. Nuclei were then collected and digested with HindIII
(NEB, no. R3104M) in 1X cutsmart buffer (NEB, no. B7204S) overnight at 37°C.
Digested fragment ends were then labeled with Biotin-14-dCTP (ThermoFisher,
no. 19518-018) using DNA polymeraseI, large fragment (NEB, no. M0210L). After
biotin labeling, nuclei were subjected to proximity ligation using T4 DNA ligase
(Invitrogen, no. 15224-090) in a large volume (7.5ml). Ligated nuclei were then
collected by spinning down at 2,500¢ for 5min, followed by DNA extraction with
phenol/chloroform after reverse linking with proteinase K overnight. Purified
DNAs were first quantified with the Qubit dsDNA HS assay kit (Invitrogen, no.
Q32854) then treated with T4 DNA polymerase (NEB, no. M0203L) to remove
unligated DNAs. To generate fragments that can be sequenced, DNAs were
subjected to sonication with a Covaris S2 sonicator under the following conditions:
duty cycle ten, intensity four, cycles/burst 200 for 55s. The resulting DNAs were
end repaired using the DNA End-Repair kit (Lucigen, no. ER81050). An ‘A’ was
then added to the ends of each fragment using Klenow fragment (3'=5' Exo-)
(NEB, no. M0212L). Fragments of 300-500 bp were then selected using homemade
Sera-Mag beads. C1 Streptavidin Beads (Invitrogen, no. 650.02) were used to pull
down biotin-labeled ligates. After pulling down, beads were washed three times
with 400 pl of 1x binding buffer (5mM Tris-Cl pH 8.0, 0.5mM EDTA and 1M
NaCl) followed twice with 100 pl of 1x ligation buffer (NEB, no. B0202S). Illunima
Truseq adapters were then ligated using T4 DNA ligase (NEB, no. M0202L); 6 pmol
of paired-end adapters was used for 1 pg of DNA. The resulting DNAs were then
PCR amplified using short primers (Supplementary Table 7). Final libraries were
sequenced on the Illumina HiSeq 3000 platform.

4C-seq. The 4C-seq procedure was performed following a published protocol*.
First, 3-5million cells were harvested and fixed with 2% formaldehyde then
quenched with 125nM glycine. Fixed cells were then lysed with a cell lysis buffer
containing 50 mM Tris-Cl pH 7.5, 150 mM NaCl, 5mM EDTA, 0.5% NP-40, 1%
Triton X-100 and 1X protease inhibitor cocktail (Roche, no. 11873580001) for
20-30min on ice. After lysing, nuclei were collected by spinning down at 2,500g
for 5min at 4°C, followed by washing once with 1X restriction enzyme buffer.
Nuclear pellets were then resuspended in 1X restriction enzyme buffer and treated
with 0.3% SDS for 1h at 37°C under shaking, followed by a further 1h with 2.5%
Triton X-100. Chromatin digestion was then done by incubation of samples with
the designated restriction enzyme at the correct temperature overnight while
rotating in an airbath. The restriction enzymes used for each locus are listed in
Supplementary Table 7. After digestion, heat inactivation at 65 °C was applied

to inactivate the enzymes, and nuclei were then subjected to ligation with 50 pl

of T4 DNA ligase (Invitrogen, no. 15224-090) in a 7 ml ligation solution at

16°C overnight. Reverse linking was then performed by treating samples with
proteinaseK to yield proximity-ligated DNA. Purified DNAs were quantified

and subjected to secondary restriction enzyme digestion (roughly one unit of
restriction enzyme per 1 pg of DNA) at the suggested temperature overnight.
After inactivation of restriction enzymes, samples were then self-ligated with T4
DNA ligase. Ligated DNAs were recovered with sodium acetate and ethanol and
quantified with a Qubit dsDNA HS assay kit (ThermoFisher, no. Q32851). The
4C templates were then amplified with designed primers to generate libraries

for sequencing. We modified the primer system to make it compatible with the
Tllunima Nextera system using two sequential PCRs. Locus-specific inverse PCR
primers are listed in Supplementary Table 7. For each locus, the 4C templates were
amplified with locus-specific primers using 200 ng of template in each reaction,
and products from five parallel amplifications were pooled to generate the final
4C library. PCR product aliquots (50 pl) were purified with homemade Sera-Mag
beads. One-fifth of the purified DNAs was used for the second PCR using primers
N7xx and N5xx, which are the same as Illumina Nextera sample preparation
primers. The final products were then purified and subjected to sequencing. Reads
for the first cutting site were used for data analysis.

Cloning. For the guide RNA expression vector we used a pX332-original plasmid
gifted from the laboratory of J. Wysocka (Standford)*', which contains an mCherry
expression cassette. The dCas9 and dCas9-KRAB expression vectors described

in this study were generated on a backbone of Cas9 expression vector—pX330
plasmid (Addgene, plasmid no. 42230) using the In-Fusion cloning method. Both
dCas9 and dCas9-KRAB genes were amplified from pHAGE EF1a dCas9-KRAB
(Addgene, plasmid no. 50919) with PCR and cloned separately into the Agel and
EcoRI sites of the pX330 plasmid, replacing the Cas9 open reading frame. Detailed
information on primers can be found in Supplementary Table 7. All sgRNAs in this

study were designed on the CCTop-CRISPR/Cas9 target online predictor®>** and
manually picked.

GM12878 cell culture and nucleofection. GM12878 cells were maintained in RPMI
1640 medium (Gibco, no. 11875-085) supplemented with 15% FBS (Gibco, no.
16000-044) and 1% penicillin/streptomycin (Gibco, no. 10378-016). Cells were split
and seeded at 300,000 ml™ in fresh medium the day before nucleofection. About

4 million cells were prepared for each nucleofection. Briefly, cells were pelleted by
centrifugation at 90g for 5min and then resuspended in nucleofection reagent as
suggested in the manufacturer's manual (Lonza, SF cell line 4D-Nucleofector X kit,
no. V4XC-2024). For each reaction, about 5-7 pug of designated plasmids (dCas9

or dCas9-KRAB combined with pX332-gRNAs, each around 2-4 pig) was applied.
Nucleofection was carried out on a 4D Lonza nucleofector with program CM-137.
Cells were then left to stand and recover for 24 h in the cell culture incubator before
harvesting for RNA extraction or 3C analysis.

RNA extraction and quantitative PCR with reverse transcription. RNA was
extracted with Trizol from nucleofected cells following the standard protocol.
Complementary DNAs were generated by reverse transcription using M-MLV
Reverse Transcriptase (Invitrogen, no. 28025013) following the manufacturer's
manual. Quantitative PCR (qPCR) was performed in triplicate.

3C-gPCR. After nucleofection, cells were harvested for 3C assay by fixing with
1% formaldehyde. Cells were lysed using a cell lysis buffer (10 mM Tris-Cl pH7.5,
10mM NacCl, 0.2% NP-40 and 1x proteinase inhibitor cocktail) with douncing 30x
in between, on ice, for about 20 min. Cell nuclei were pelleted by centrifugation at
2,500¢ for 5min at 4°C, then nuclei were digested overnight with MboI (NEB, no.
R0147M; 400 U for about 4 million cells) at 37 °C. After heat inactivation of Mbol,
proximity ligation was performed overnight with T4 DNA ligase (Invitrogen,

no. 15224-025) at 16 °C. Proximity-ligated chromatins were reverse linked by
treatment with proteinase K at 65 °C overnight and then purified by phenol/
chloroform. To generate random ligation control for 3C-qPCR, we picked BAC
clones covering the two anchors of the loop of interest (a list of BAC clones is
provided in Supplementary Table 7) and performed the 3C procedure on DNA
prepared from BAC clones.

Sequencing data analysis. Hi-C data mapping, filtering and normalization.
Conventional Hi-C. Because some conventional Hi-C libraries are sequenced

with paired-end 36 bp (for example, human tissue datasets), for the purposes of
consistency and convenience we trimmed all conventional Hi-C data to 36 bp.
Each end of the raw reads was mapped separately to the hgl9 (for human) or
mm10 (for mouse) reference genome using bowtie (v.1.1.2)*. Sam files were

then paired with an in-house script. After removal of PCR duplications, we first
discarded reads with both ends mapped to the same HindIII fragments as invalid
pairs. All remaining read pairs then represented two different HindIII fragments in
cis. Because cut-and-ligation events are expected to generate reads within 500 bp
upstream of HindIII cutting sites due to size selection (‘+ strand reads should be
within 500 bp upstream of a HindIII site and ‘— strand reads should be within
500bp downstream of a HindIlII site), we retained only read pairs with both ends
satisfying these criteria. We next split all remaining reads into three classes based
on their strand orientation (‘same-strand; ‘inward’ or ‘outward’). We retained
inward read pairs if the distance between two reads was >1kb, and outward read
pairs if the distance between two reads was >25kb. We then merged the filtered
inward, filtered outward and same-strand as the cis reads pair. The HiCorr ‘HindIIT
mode was used to acquire bias-corrected 5-kb anchor loop files from cis and trans
fragment read pairs.

In situ Hi-C and micro-C. Full-length reads (150 bp for in situ GM12878) were
used for alignment to enable more reads overlapping SNPs for allele-resolved
analysis. After removal of PCR duplicates and read pairs classification, we
filtered out the outward read pairs with distance <5kb and inward read pairs
with distance >1kb. The filtered read pairs were then mapped to Mbol fragment
pairs, with the HiCorr ‘Bam-process-DpnII’ mode used for bias correction. H1
micro-C processing followed similar steps: we used 5-kb bins to map read pairs
and Juicebox (v.1.18.08)* ‘pre’ to convert 5-kb bin pairs to ‘hic’ format and ran
KR normalization. We then dumped the contact pairs and performed distance
correction with in-house scripts. In brief, we split all contact pairs within 2Mb
by loop distance into 400 groups with 5kb as the interval. In each distance group,
the KR-normalized value was normalized by average values within the same
group. Here, we called the normalized value from KR normalization and distance
correction as KR-ratio.

Single-cell Hi-C preprocessing. Processed DpniI fragment contact files for

4,098 mouse embryonic stem cells were downloaded from the original study
(Supplementary Table 1). Fragment pairs were then mapped from mm9 to mm10
using the liftover tools from UCSC. The number of cis contacts within 2 Mb was
used to rank cells. We took the top-ranked cells of a certain number (~1-92) and
merged the fragment contacts files for cis and trans separately and mapped them to
~10-kb anchor pairs. HiCorr ‘DpnIlI’ mode was used to correct bias at the anchor
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level. The ‘contact read pairs’ files for human PFC sn-m3C-seq and cell type labels
identified from the methylation profiled in the same cell were downloaded from
the original study (Supplementary Table 1). We aggregated cells from the same
cell type, filtered reads pairs as in situ Hi-C steps and further mapped read pairs to
DpnlII fragment pairs. Due to the sparsity and limited depth of each cell type, we
further converted fragment pairs to ~10-kb anchor pairs. For each cell type, the
merged cis anchor contact file and trans anchor pairs were taken as input to run
HiCorr DpnlI mode.

4C-seq. Data for 4C-seq were analyzed using pipe4C (v.1.1.3)* to generate bam
and wig files for visualization.

AS mapping for Hi-C, ChIP-seq, RNA sequencing and 4C-seq. We first masked
the hg19 reference genome with SNPs downloaded from the original study
(Supplementary Table 1) and built an index for bowtie2 (v.2.2.6)* and Hisat2
(v.2.1.0)".

Hi-C. Each end of the raw reads with the full length (150 bp) was mapped
separately to the masked hgl9 genome by bowtie2 (v.2.2.6). SNPsplit (v.0.3.4)*

was utilized to assign mapped reads in bam files to two alleles using the SNP
information. The read pairs filtering step was the same as for in situ Hi-C

(In situ Hi-C and micro-C). HiCorr Dpnll mode was used for bias correction.

The LoopEnhance model trained by 50 million data was used to enhance the two
5-kb-resolution contact data from the two alleles. The top 300,0001oops from two
datasets were combined and then loops with at least twofold difference between the
enhanced loop strength of the two alleles were defined as AS loops; ultraspecific
loops were defined by a tenfold difference.

ChIP-seq. FASTQ files were mapped to the masked hg19 genome by bowtie2
(v.2.2.6). SNPsplit (v.0.3.4) was used to assign mapped reads in bam files to two
alleles using the SNP information. macs2 (v.2.2.7.1)* was used to call peaks.

RNA sequencing. FASTQ files were mapped to the masked hg19 genome by Hisat2
(v.2.1.0), SNPsplit (v..3.4) was used to assign mapped reads in bam files to two
alleles using the SNP information. We used FeatureCounts (v.1.6.1) to summarize
the mapped reads for each gene across samples. Reads on the same allele from
different samples were merged. A binomial test was performed to calculate Pvalues
comparing expression levels between two alleles for each gene (background
possibility, 0.5). X-inactivation resulted in an imbalance of gene activity between
X, (maternal) and X; (paternal) genomes; escape genes were defined as those with
aratio >0.2:

ratio = expry;/expry; + expry,

Where expry; is the paternal (X;) expression of the gene and expry, is the
maternal (X,) expression of the gene.

4C-seq. Data for 4C-seq were analyzed using pipe4C (v.1.1.4) to generate bam
and wig files for visualization. We further converted bam files to bed format and
extracted the reads of overlapping SNPs and split them into maternal and paternal
bed files. For each SNP, we summarized the overlapped reads on maternal and
paternal genomes, calculated allele imbalance using the formula in equation (2)
and visualized it on a UCSC genome browser:

Allele imbalance = (M — P) /M + P

Where M is 4C reads assigned to the maternal genome on each SNP and P is
4C reads assigned to the maternal genome on each SNP.

Data representation and model structure in DeepLoop. Data representation.

To train deep learning models on Hi-C contact matrices, we need to represent

the data in a way that is more computationally tractable than holding each full
chromosome matrix in memory. We took each full chromosome matrix and split it
into nonoverlapping, equally sized submatrices lying within the 2-Mb band. For a
single genome using our selected submatrix size of 128 X 128, we used on average
~18,000 unique submatrices per replicate when training a model, although we used
random cropping and shifting to further augment the training dataset. Once the
model was trained, each of these submatrices was passed into the model separately
and the full chromosome matrix was reconstructed from the outputs of the trained
model.

LoopDenoise. Denoising autoencoders. A convolutional autoencoder” is a type
of neural network that consists of an encoder function and a decoder function.
The encoder maps an input vector to a lower-dimensional latent representation
using successive convolution layers combined with some form of dimensionality
reduction, such as pooling layers or strided convolutions. The decoder then maps
this representation to a reconstructed vector using transpose convolutions or
some other form of upsampling. Autoencoders can be thought of as a function

f, parameterized by 6, which maps each input vector X; from a given dataset to a
reconstructed vector f,(X,). Classical autoencoders try to learn an approximation
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to the identity function using the input vector as the training target’'. That is, for
dataset X the model tries to minimize the loss between each input vector and the
reconstructed output. Mean squared error is commonly used as the loss function:

0* = argmin,, |:% i (fo (Xi) — Xi)2:|
i=1

Denoising autoencoders are a specific type of autoencoder that attempts to
learn a mapping from noisy input vectors to clean, ground truth targets’’. Contrary
to classical autoencoders, these denoising models attempt to minimize the loss
between target vector X; and the reconstructed output:

0" = argmin, |:% z": (fo (%) — 5(1)2]

This target vector has some desirable properties, such as being noise free and
having higher resolution than the input vector. Building a denoising autoencoder
usually involves starting from clean ground truth data as the target vectors and
corrupting them to generate the input vectors. If the goal of the model is to be
robust to noise, we could corrupt ground truth data by adding random noise;
however, in the case of Hi-C contact matrices, the data already contain noise and
thus training a convolutional autoencoder to denoise Hi-C data requires a more
desirable training target. We obtain cleaner training targets by statistically filtering
out insignificant signals from high-depth data using biological replicates.

Training set. For model training, we picked a published HindIII-based Hi-C dataset
in human fetal cerebral cortex*. The data were generated for three donors, each of
which has one library from CP and one from GZ. All six libraries have roughly the
same sequencing depth, and the pooled data of all six libraries have ~470 million
mid-range cis contacts (Supplementary Table 2). We disregarded the difference
between CP and GZ and split the Hi-C data into three biological replicates, each
replicate having ~140-150 million mid-range cis contacts combining CP and GZ
libraries from the same donor. We applied HiCorr to each of the three replicates
and extracted ~18,000 submatrices at ~5-10-kb resolution (within the 2-Mb range)
from every replicate as training sets

Training target. The training target for LoopDenoise should contain significant and
reproducible signals with as little noise as possible. To generate these targets, we
pooled all libraries and applied HiCorr; the heatmaps from pooled data will thus
be less noisy due to higher sequencing depth (Fig. 1c). HiCorr provides Pvalues
for every pixel in the heatmaps from individual replicates and the pooled data.

We then removed pixels from the pooled heatmaps with P>0.05 due to lack

of signal enrichment. We then required the remaining pixels to be significant
(P<0.05, negative binomial test) in at least one of the biological replicates. The
resulting pixels were used as the ground truth training target in our convolutional
autoencoder. All remaining pixels were assigned a zero value, indicating no
interaction. Even though these training targets were not completely noise free,
results show that our model is able to learn a meaningful latent representation for
the true loop signals and also to output Hi-C submatrices that are even cleaner
than the training target used. This is probably because the model is forced to learn
an average of noise-free matrices that could explain the noisy observation, rather
than learning the perfect mapping to our training target, which is not noise-free.

Model structure. The encoder of LoopDenoise (Fig. 1a and Extended Data Fig. 1a)
consists of two instances of a convolution layer followed by a rectified linear unit
(ReLU) activation function and a maximum pooling layer. The decoder half of
LoopDenoise consists of two transpose convolutions followed by a final convolution
layer and ReLU activation. Each convolution layer has eight filters except for the
final layer, which has only one, to return the correct number of output channels.
The convolution layers in both the encoder and final convolution layer use a filter
size of 13 X 13 while the transpose convolutions in the decoder use a filter size of
2% 2. Because the maximum pooling layers act on a 2 X 2-region, after each pooling
layer in the encoder the size of the input is halved. For each transpose convolution
layer the size of the input is doubled, giving us the same size output as the input.
We applied zero-padding to the edges of each input submatrix to ensure that the
output size of each convolution or transpose convolution remained unchanged.
The output of each convolution layer with ReLU activation was computed as
follows:

hi (x) = max (0, w; * x + b;)

where we define the discrete convolution operation * as the weighted sum of
neighboring pixels using weights w; as the convolution kernel, b, as the bias and x
as the input matrix—either a Hi-C submatrix for the first layer or the output of a
previous layer for subsequent layers. This operation was performed at every pixel
of the input matrix using a stride value of 1 to move the convolution window across
the input space one pixel at a time. In the transpose convolutions we performed the
same mathematical operation but we transformed the input by inserting padding
between the input values to simulate a fractional stride value, which therefore maps
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each pixel to multiple different values, increasing the size of the input matrix to
perform the upsampling necessary in the decoder.

Model training. The model was trained by minimization of the mean squared error
(MSE) of the reconstructed outputs and the combined targets using the Adam”
optimizer, with a learning rate of 0.001 and default hyperparameters. We used a
submatrix size of 128 X 128 and a batch size of four training for 50 epochs. Three
normalized CP-GZ merged replicates were used for training, and chromosomes X
and Y were ignored during training. When training this autoencoder architecture,
MSE did not reach zero; this would indicate that our model is overfitting to our
training targets and has memorized only mapping from inputs to targets without
learning a useful latent representation that generalizes to novel examples. To avoid
this, we used GM 12878 replicates as a validation dataset and monitored both

loss and reproducibility on this validation set to ensure that the model would
successfully generalize.

Hyperparameter exploration. To find the optimal model for denoising we trained
multiple models with different hyperparameters on human fetal brain datasets and
validated the model using GM12878 replicates. We tested different filter sizes to
determine whether the inclusion of more information from neighboring regions
would lead to improved performance. We evaluated reproducibility among the
training and validation replicates and determined the optimal filter size as 13 X 13.
We also tested performance when using a stride value of 2 in the convolution layers
of the encoder rather than in the pooling layers. This would perform the same
amount of dimensionality reduction, but each convolution would potentially give
us less information than when using pooling layers. We found that maximization
of pooling layers slightly improved reproducibility on our training and validation
datasets. This makes sense, because using a stride value of 2 means that some pixels
are never convolved with their neighbors before the dimensionality reduction

step and thus the model loses information about certain regions. Compared with

a convolution of stride value of 1 followed by maximized pooling, we captured

the full relationship between each pixel and its surrounding region then selected
the maximum value among a small group of these pixels. The latter method is
more specific in regard to the information that is forgotten when performing
dimensionality reduction whereas the former, using a stride value of 2 without
pooling, randomly loses information based on the location of each pixel.

LoopEnhance. Model structure. The U-Net architecture (Fig. 2a) is a fully
convolutional network similar to, but much larger than, the convolutional
autoencoder used in the denoise model. It contains an encoder and a decoder,
with the main addition being skip connections that concatenate feature maps from
each stage of the encoder to each corresponding stage of the decoder. The goal

of these skip connections is to maintain the localization and different scales of
features when upsampling during the decoder path. Since the receptive field of the
convolutions at the final layer of the encoder is very large compared with the size
of our input submatrices, we found that deep convolutional autoencoders without
these skip connections produce very cloudy/blurry signals, whereas concatenating
feature maps across the different depths of the model yield more precise signals

in the output. The encoder of LoopEnhance contains ten convolution layers with
four pooling layers. Our model has a depth of four because it has four ‘blocks’

of convolutions followed by dimensionality reduction steps. The input is a Hi-C
submatrix of size 128 X 128. We successively applied two convolution layers with
ReLU activation followed by a pooling layer to produce final feature maps with
dimensionality 64 X 8 X 8 =4,096. Since we use U-Net architecture, we also retain
the feature maps at each depth of the network. The convolution layers in the

first block of the model use four filters, and this number of filters is doubled at
each depth, eventually reaching the 2°=64 filters found in the final convolution
layer. The decoder of LoopEnhance consists of 13 convolution layers with four
upsampling layers. The upsampling layers are instances of an upconvolution
function that simply turns each pixel into a 2 X 2-region of identical values, then
applies a convolution layer with ReLU activation. In practice, this is very similar to
a transpose convolution. However, in deep networks transpose convolutions can
propagate padding artifacts to the output of the model. Following each upsampling
layer, we applied two convolutions with ReLU activation. The number of filters is
now halved after each upsampling layer, starting at 64 filters following the latent
encoding and eventually reaching four filters. After the final upsampling layer and
its following two convolutions, we applied one final convolution layer with one
filter and ReLU activation to obtain an output with a single channel.

Model training. The input to the model is a low-depth-normalized Hi-C submatrix,
and the training target is the corresponding denoised high-depth-normalized
submatrix obtained using the denoise model. This is the main distinction between
our model and previous works such as HiCPlus* and HICNN”'. Zhang et al.”’ note
that training a neural network to map low- to high-depth Hi-C data assumes that
the high-depth target used is the ground truth. Although many deep learning
models are able to distinguish between noise and true signals, natural variation
among Hi-C replicates introduces multiple valid explanations for each low-depth
input. The increased replicate reproducibility achieved by LoopDenoise facilitates
training of LoopEnhance using a ground truth target with less noise and variation.

Our model minimizes MSE between the enhanced output and denoised high-depth
targets. We also used a larger submatrix size of 128 X 128 compared with HiCPlus
and HiCNN, which use 40 X 40. This larger submatrix size allows our model to map
each input submatrix to a richer scale of features while still using minimal padding
in the convolution layers. Because our model is a fully convolutional network, once
trained it can enhance submatrices of any size, although we recommend using

the same size used for training because padding artifacts are possible with small
submatrix sizes.

Hyperparameter exploration. To determine the optimal model for enhancement
of low-depth contact matrices, we trained multiple models with different
hyperparameters on the 10% downsampled CP-GZ merged replicates and
validated the model using downsampled GM 12878 replicates. We tested different
filter sizes to determine whether the inclusion of more information from
neighboring regions would lead to improved performance. Like HiCPlus™, we
found that larger filters do improve performance to an extent: filters larger than
9% 9 showed no substantial improvements, so we decided on a final filter size

of 9%9.

Hi-C data visualization. Heatmaps were used to visualize Hi-C contact profiles. The
color scales for heatmaps (raw, expected, ratio) were selected based on the contact
matrix. Because the brightness of pixels in raw, ratio and DeepLoop heatmaps
represents different things, we use different strategies to determine color scales:

(1) Raw heatmaps represents read counts; the brightest red color indicates the
98th percentile of the contact matrix. Color is proportionally scaled down to
one read (white).

(2) HiCorr heatmaps represents ratios; the brightest red color indicates at least
twofold enrichment. Color is proportionally scaled down to onefold (no
enrichment).

(3) DeepLoop heatmaps output ‘transformed fold change’ that represents only
relative levels of signal enrichment (that is, a value of onefold may no longer
be the real cutoff for no enrichment). We therefore set the brightest red color
as the lower limit of the top 300,000 pixels genome wide. Color is proportion-
ally scaled down to half of that lower limit or onefold, whichever is higher.

Loop curves in the figures were sourced from the UCSC Genome Browser by
uploading the top 300,000loops in the format ‘biginteract’ Triangle heatmaps were
sourced from the UCSC Genome Browser” by uploading the ‘hic’ file generated by
Juicebox.

Statistics. All statistical methods and tests used in this paper are described in the
main text, figure legends, Methods and Supplementary Information as appropriate.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Accession numbers for third-party data used in this study can be found in
Supplementary Table 1. The raw data of H9 Hi-C and 4C-seq generated in this
study, and reanalyzed published data, can be found at accession no. GSE167200.
The 40 Hi-C datasets analyzed by DeepLoop can be found at https://hiview.case.
edu/public/DeepLoop/.

Code availability
The code is available is available at Zenodo (https://doi.org/10.5281/
zeno0do.6495831) and github (https://github.com/JinLabBioinfo/DeepLoop).
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Extended Data Fig. 1| LoopDenoise training procedure, performance and visualization. a, Detailed LoopDenoise convolutional autoencoder model
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The convolution operation is denoted by *. b, Venn diagram showing the reproducible loop pixels between three human fetal brain replicates. The table
showing the number of overlapped pixels between significant pixels in the pooled data and each part of pixels shown in the Venn diagram. The pixels that
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | LoopDenoise generalization across cell types and species. a, Eight heatmap examples in GM12878, the highlight row is the output
from LoopDenoise. b, The distance distribution of top 300K pixels in HIChESC), GM12878, IMR90 and mESC. Upper and lower limits of boxes indicate
interquartile ranges, center lines indicate median values, whiskers indicate values with a maximum of 1.5 times the interquartile range and outliers
indicate values beyond 1.5 times the interquartile range. ¢, The number of loops pixels with at least one anchor overlapped with ChIP-seq peaks out of
top 300K pixels. d, Density plots show the distribution of distances between loop anchors (top 100K loop pixels used) and their nearest ChlP-seq peaks

in GM12878, IMR90, H1(hESC) and mESC. e, The heatmap examples of six loci with known long-range gene regulation. The height of browser tracks
indicating the raw counts of ChIP-seq.
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Extended Data Fig. 3 | LoopDenoise enables the quantitation of dynamic chromatin interactions. a, Scatterplots showing the pixel-level correlation
between CP and GZ sample in human fetal cortex before and after LoopDenoise. The R-square values were also shown in the plots. b, GO analyses of genes
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Extended Data Fig. 4 | Compare the performance of different pipelines on 6-cutter and 4-cutter Hi-C data in GM12878 cells. For 4-cutter Hi-C datasets,
we chose a 94M down-sampled dataset (1/16 of the original depth) used in HiCPlus, HICNN2 and SRHiC studies, and the 1.35 billion full-depth as reference.
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side showed the contact heatmaps from 6-cutter (HindlIl) GM12878 Hi-C processed by different pipelines (colored in background). The right side showed
the 4-cutter (Mbol) GM12878 Hi-C. The height of browser tracks indicating the raw counts of ChIP-seq.

NATURE GENETICS | www.nature.com/naturegenetics


http://www.nature.com/naturegenetics

NATURE GENETICS ARTICLES

a hESC(H1)
Hindlll Dpnll Micro-C Hindlll Dpnll Micro-C
~225M ~50M ~399M ~50M ~975M ~225M ~50M ~399M ~50M ~975M
Raw Raw
KR KR
KR_ratio KR_ratio
HiCorr HiCorr
e . o - - -
) i e
DeepLoop "Y' | +,+ &7 “" DeepLoop td LA & _z & ® e j ! ;‘.3 _;
! ! == | l= |:-igr o f:'r_x 4. =" N
1938 ... | 1938 .. | 1734 | 2142 1938 '-| (1938 1.7 3.4 2142
chr1:7.6Mb-8.8Mb chr1:202.8-203.9Mb
Hindlll Dpnll Micro-C Hindlll Dpnll Micro-C
~225M ~50M ~399M ~50M ~975M ~225M ~50M ~399M ~50M ~975M
e : . & : : & %
B ke
Raw Raw
KR KR
KR_ratio | KR_ratio
HiCorr HiCorr
e T v, r - A? . Rad ' faad
DeeplLoop| :-' . DeeplLoop|. 4 I3 ; &
Cm 4 | |Cm - . ¢ | (O 4 . J . " T
1938 1938 1734 2142 T - 1938 1938 1734 2142
chr11:85.4Mb-87.3Mb chr14:61.7Mb-62.5Mb
b Table: Recovery of Micro-C HICCUPs loops with DeepLoop enhanced Hi-C data
Loop size <50kb 50~100kb >100kb
Total Micro-C HiICCUPs loops 3,489 3,424 10,587
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Extended Data Fig. 5 | Compare the consistency of Hi-C and Micro-C in H1. a, Similar to Fig. 3a, b, more heatmap examples at 4 loci. b, Size breakdown of
recovered micro-C HICCUPS loops by 50M deep Hindlll- or Dpnll- Hi-C after enhancement.
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Extended Data Fig. 6 | DeepLoop reveals tissue-specific loop interactions for low-depth Hi-C data. Applying LoopEnhance to low depth Hi-C data from 14
human tissues. Contact heatmaps of three tissue-specifically expressed genes in all the tissues were shown. a, ALB, highly expressed in liver. b, MY0Z2,
highly expressed in heart tissues. ¢, ADD2, highly expressed in brain tissues.
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Extended Data Fig. 7 | DeepLoop reveals cell type specific loop interactions from sn-m3C-seq data. Same as Fig. 4e,f, single cells from the same cell type
are pooled and enhanced by DeepLoop. The tSNE plots show the identities of each cell population (left) and the methylation level at the locus of interest

(right).
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CCZ1in two alleles. The height of browser tracks indicating the raw counts of ChIP-seq.
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Extended Data Fig. 9 | The contact heatmaps and browser snapshots of 24 loci containing 27 SNPs associated with both allelic CTCF binding and allelic
DNA looping. For each SNP, the paternal (blue) and maternal (red) genotypes are included. The allelic loops are circled in the heatmaps. The CTCF motif
orientation are indicated with triangles. The height of browser tracks indicating the raw counts of ChIP-seq.

NATURE GENETICS | www.nature.com/naturegenetics


http://www.nature.com/naturegenetics

ARTICLES NATURE GENETICS
a 1 ]
o l145242377(G|A) o =dCasg + vector =dCas9 + gRNA
| rs
80 —JDCLRE1C | rs141295679(A|G) —9ACBD7 2.01 ,s DCLRE1C
[
© K27ac400 . C e o PR | R L. >151 7%
g || |
&| cTCF P i S A —
% 150 dCas9 target i
9 CTCF Lo e
Q > < < Total & ?
T w
S
= 150
glecter | Lo A
<
o odCas9-KRAB+vector =dCas9-KRAB+gRNA
3C dCas9 - dCas9 + vector — .1 " ACBD7 — 507 408, DCLRE1C
signal — dCas9 + gRNA g 3 e 20 e
o ) =" —  ns
g $1.0 e
3c | dCas9-KRAB — dCas9-KRAB+vector €1 ) Zos
signal & — dCas9-KRAB+gRNA 0 0.0
o Total d Q Total & Q
chr10:14.98-15.20Mb
200kb} {hg19 =dCas9 + vector =dCas9 + gRNA
80 £~ GPNMB rs7799435(CIT) | FAM221A 2=
ol K%l ol bl ol e L 5 3] v CPNMB 315 FAM221A
| CTCF A A Lo A L 32 — £10 s
= dCas9 target | <
5 80[ i g g, & 05
&) Q CTCF | ," - . ‘Li' P . J ‘L».. > s .l , e sl 1S 0 £ 0'0
£ S ¢ S\ Total & Q Total & 9
Bocree™ L]
RS o . > o ., . ecaeki © e ‘n B i . Laa L
odCas9-KRAB+vector =dCas9-KRAB+gRNA
o
N
3C - dCas9 + vector _ & GPNMB _ FAM221A
signal < ‘_&_ dCas9 + gRNA » dCas9 o g iy : .
° <5 v 210 S, ns,
=] ] r — Zos5
ac © - dCas9-KRAB+vector dCas9-KRAB = €
. I - dCas9-KRAB+gRNA 0 0.0
signal Total & 9

chr7:23.2-23.7Mb

Total g Q

Extended Data Fig. 10 | Allele-specific chromatin loops regulate gene expression. a, 3C assays showing the loss of chromatin loop between the SNP
(highlight in yellow) and ACBD?7 locus after displacing CTCF binding with either dCas9-KRAB or dCas9 protein. b,¢, Bar plots showing the changes of allelic
gene expression upon blocking CTCF loops with dCas9 or dCas9-KRAB. d-f, CTCF blocking experiments at GPNMB locus. n = 2 biologically independent
experiments. All data are presented as means + SEM from 4 replicated experiments. **P < 0.01, ***P < 0.001. NS, no significant difference. Two-sided
Wilcoxon test. The height of browser tracks indicating the raw counts of ChIP-seq.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis We used Python 3.6.8, Perl v5.16.3, R 3.6.0, Bowtie 1.1.2, pipe4C 1.1.4, samtools 1.3.1, SNPsplit-0.3.4, bedtools v2.25.0, hisat2 2.1.0, juicer
1.18.08, HOCOMOCO v11, DAVID 6.8, corrplot 0.92, Primer3 0.4.0, CCTop, Tensorflow 2.3.1, Keras 2.2.4, Scipy 1.7.3, Numpy 1.20.3,
Matplotlib 3.5.1, Pandas 1.1.5, macs2 2.2.7.1, featureCounts 1.6.1, bowtie2 2.2.6, fimo 4.11.2, pipe4C 1.1.3. The code is available in GitHub is
available on GitHub DOI: 10.5281/zenodo.6495831 at https://github.com/JinLabBioinfo/DeeplLoop.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The raw data generated in this study and processed data from published studies are provided in GEO accession number GSE167200, the heatmap visualization can
be accessed through https://hiview.case.edu/public/DeeplLoop/. The details of published data we reanalyzed can be found in Supplementary Table 1.
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Data exclusions  No data was excluded in the analyses.
Replication The DeeplLoop models were trained with 3 replicates and many batches of data to avoid over fitting in this study
Randomization  We randomly down-sampled deep Hi-C data when training LoopEnhance models and some performance comparison.

Blinding No blinding was performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) H9 hESC: WiCell, #WA09; GM12878 (catalog ID:GM12878)
Authentication No further authentication was performed.
Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines  No commercially misidentified cell lines were used
(See ICLAC register)
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