
Faster Stochastic Block Partition Using Aggressive
Initial Merging, Compressed Representation, and

Parallelism Control

Ahsen J. Uppal1, Jaeseok Choi1, Thomas B. Rolinger2, and H. Howie Huang1

1 The George Washington University 2The University of Maryland, College Park

Abstract—The community detection problem continues to be
challenging, particularly for large graph data. Although optimal
graph partitioning is NP-hard, stochastic methods, such as in
the IEEE HPEC GraphChallenge, can provide good approximate
solutions in reasonable time. But the scalability with increasing
graph size of such solutions remains a challenge. In this work,
we describe three new techniques to speed up the stochastic
block partition algorithm. The first technique relies on reducing
the initial number of communities via aggressive agglomerative
merging (a portion of the algorithm with high parallel scalability)
to quickly reduce the amount of data that must be processed,
resulting in an independent speedup of 1.85x for a 200k node
graph. Our second technique uses a novel compressed data
structure to store the main bookkeeping information of the
algorithm. Our compressed representation allows the processing
of large graphs that would otherwise be impossible due to memory
constraints, and has a speedup of up to 1.19x over our uncom-
pressed baseline representation. The third technique carefully
manages the amount of parallelism during different phases of the
algorithm. Compared to our best baseline configuration using a
fixed number of threads, this technique yields an independent
speedup of 2.26x for a 200k node graph. Combined together, our
techniques result in speedups of 3.78x for a 50k node graph, 4.71x
for a 100k node graph, and 5.13x for a 200k node graph over
our previous best parallel algorithm.

Index Terms–community detection, GraphChallenge, stochas-
tic block partitioning.

I. INTRODUCTION

Graph data has come to play a critical role in a diverse
array of applications, particularly when looking for hidden or
complex relationship structures and activities. But performance
and scalability remain challenging issues because the compu-
tational complexity of many traditional algorithms, including
graph partitioning (also known as community detection) is NP-
hard. For graph partitioning, the development of approximation
algorithms [1], [2] has been critical in finding feasible solutions
for real-world datasets. Unfortunately, there are major scal-
ability challenges even for approximation algorithms. These
challenges are made even more difficult for graph partitioning
when the number of communities is not known a priori and
there are no a priori cues about the membership of some of
the nodes.

Previous IEEE HPEC GraphChallenge1 works have used
a shared memory Louvain implementation [3] and spectral
clustering methods [4] to achieve substantial speedups in

1https://graphchallenge.mit.edu/

partitioning performance over the baseline stochastic block
partition algorithm. In this work, we focus on improving the
algorithmic performance of stochastic block partition – not
the absolute best performance of community detection. To this
end, we describe three techniques to address different portions
of the algorithm that yield individual speedups of up to 1.85x,
1.19x, and 2.26x, respectively, and a combined speedup up to
5.13x over our previous best parallel implementation [5].

The contributions of our work are as follows:

• The design and implementation of three optimization
techniques for stochastic block partitioning in Python
that (1) reduce the initial number of communities via
aggressive agglomerative merging, (2) utilize a novel
compressed data structure that maintains the book-
keeping of the algorithm, and (3) carefully manage
the amount of parallelism during different phases of
the algorithm.

• A performance study that evaluates the performance
of the three optimization techniques against a par-
allel baseline implementation. Our results show that
speedups as large as 1.85x, 1.19x, and 2.26x are
possible for each optimization independently. When
all optimizations are combined together, we achieve a
total speedup of 5.13x for a 200k node graph.

The rest of the paper is outlined as follows. Section II pro-
vides an overview of the stochastic block partition algorithm.
Details of our three optimization techniques are provided in
Section III. Section IV presents a performance evaluation of
the optimization techniques. Finally, concluding remarks and
future work are provided in Section V.

II. BACKGROUND

The stochastic block partition algorithm, which forms the
GraphChallenge baseline, uses a generative statistical model
based on work by Peixoto [6], [7], [8] and builds on the
work from Karrer and Newman [9]. The algorithm has two
challenges: the optimal number of blocks is not known a
priori, and neither is the assignment of each node to a block.
To overcome these challenges, the static algorithm uses an
entropy measurement function which measures the quality of
a partition for a given number of blocks. Once it finds the
optimal partitioning at a particular number of target blocks
and the associated entropy, it can compare that entropy against
future partitions at a different number of target blocks.

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 H
ig

h
Pe

rf
or

m
an

ce
 E

xt
re

m
e

C
om

pu
tin

g
C

on
fe

re
nc

e
(H

PE
C

) |
 9

78
-1

-6
65

4-
23

69
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PE

C
49

65
4.

20
21

.9
62

28
36

Authorized licensed use limited to: The George Washington University. Downloaded on October 31,2022 at 16:39:04 UTC from IEEE Xplore. Restrictions apply.

In particular, the block phases of the algorithm work as
follows, where N refers to the number of nodes in the graph.
It first finds optimal partitions and entropies for partition sizes
N
2 , N

4 , N
8 , ..., until a valley is found where further reductions

in block size no longer produce decreases in entropy. When
this minimum entropy is bracketed between two partition
sizes, the algorithm switches to a Golden section search [10]
to find the final partition and entropy. To find the optimal
partition for a given number of blocks, the algorithm goes
from a larger partition size to a smaller one. It does this using
two distinct program operations – agglomerative merging and
nodal movements.

During an agglomerative merge, two existing candidate
blocks are found by greedily picking the merge with the
lowest resulting entropy. Each agglomerative merge takes two
communities and puts them together as one, resulting in one
fewer number of blocks. Once the algorithm reaches the target
number of blocks, it switches to performing nodal moves that
can reassign a vertex from one block to another. These nodal
moves are accepted or rejected with a probability proportional
to the resulting change in entropy. Movements that result
in large decreases in entropy are likely to be accepted, and
movements that do not are unlikely to be accepted. The
overall algorithm proceeds in this manner, alternating between
agglomerative merges and nodal movements at each block
phase. When the overall change in entropy stabilizes for a
particular number of blocks, the algorithm stops movements
for that partition size and goes to the next target block number.
This technique is based on a Markov Chain Monte Carlo
(MCMC) method that uses the Metropolis-Hastings algorithm
[11], [12]. The overall complexity of the baseline algorithm is
O(E log2 E) [13].

One advantage of stochastic approaches is that more com-
plex rules that govern the goodness of communities in different
application domains can be easily adapted to a stochastic
method. Other recent work shows the advantage of using
sampling compared to modularity minimization [14]. Our work
is complementary to this approach since the core data structure
and algorithmic operations remain the same.

III. OPTIMIZATIONS

In our previous work, we focused on initial efforts on paral-
lelization, scalability, and efficient streaming of the stochastic
block partition algorithm [15], [5]. In this work, we extend our
previous approach to adapt it for efficiently processing much
larger graph data. We do this via aggressive initial merging, use
of a novel compressed data structure, and careful parallelism
control. In the following sections, we describe each of these
optimization techniques in detail. We implement each of these
optimizations in Python, which is the language of the baseline
GraphChallenge implementation.

We will refer to graphs as described in Table I when pre-
senting results that motivate our optimizations. These graphs
are the baseline datasets from the GraphChallenge, supple-
mented by larger graphs we synthesized using the generator
in the GraphChallenge repository. Any performance results
mentioned in the following sections are from executions on
a single-node workstation with an Intel Xeon Gold 6126 CPU
at 2.60 GHz with 24 cores, 48 threads, and 1480 GB of RAM.

TABLE I. GRAPH DATASETS

|V | |E| Density Blocks Baseline Runtime(s)
500 9,384 3.8e�2 8 2.42
1k 20,135 2e�2 11 4.94
5k 101,973 4.1e�3 19 38.79

20k 408,778 1e�3 32 565.4
50k 1,018,039 4.1e�4 44 3,575
100k 2,037,415 2e�4 56 15,498
200k 4,064,602 1e�4 71 70,970

A. Aggressive Initial Merging

The agglomerative merge portion of the referenced stochas-
tic algorithm decomposes cleanly into a parallel implemen-
tation. Each worker picks a subset of blocks and finds the
best merge candidate for every block in that subset. The main
thread then picks the top-k merge candidates and carries out
those merges. In our previous work [15], we found that the
vast majority of the algorithm runtime is spent performing
nodal updates. Because of the low proportion of time spent in
merging, we reasoned that the gains from parallelization are
limited by Amdahl’s law. We therefore previously focused our
efforts on optimizing nodal updates in parallel, with low la-
tency, and at a large scale. But that development was done with
relatively small graph sizes and did not consider the interplay
between merging and nodal movements. Optimizations to the
merge phases of the algorithm are not independent and affect
the performance of the subsequent nodal movement phase.

49

23

11
6 3 6

1 0.2
0

10

20

30

40

50

60

50000 25000 12500 6250 3125 1563 782 391

Pe
rc

en
ta

ge

Block size

Fig. 1. Percentage of the entire program’s runtime spent in each block phase
as the program advances and block size decreases. Input is a 50k node graph.
Early phases dominate the runtime of the program.

75
91 96 97 98 99 94

86 83 78
88

81 81 80

49

0

20

40

60

80

100

Pe
rc

en
ta

ge

Block size

Fig. 2. Percentage of time spent in nodal movement during each block phase
as the program advances and block size decreases. Input is a 50k node graph.
Nodal movement dominates the runtime compared to agglomerative merge.

While nodal movements take the largest fraction of time
in our parallel implementation, merging can help because
merging communities greatly reduces the amount of work that
has to be done during subsequent nodal movement phases.
In our previous work on parallelization, we found that using
12 worker threads for parallel nodal movements and parallel
agglomerative merges yielded the best speedups over the serial

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: The George Washington University. Downloaded on October 31,2022 at 16:39:04 UTC from IEEE Xplore. Restrictions apply.

case on our test machine.

We profiled our baseline implementation using this 12 fixed
thread configuration on a 50k node graph, and found that
the time spent during the very first round – an agglomerative
merge block reduction from 50k blocks to 25k blocks, followed
by nodal movements – constitutes 49% of the total program
runtime. In a similar vein, the percentage of time spent during
the next rounds is 23% at 25k blocks, and 11% at 12.5k blocks.
As shown in Figure 1, these early block phases dominate the
runtime of the program.

We also found that the time spent in nodal movements
dominates compared to agglomerative merges. The percentage
of time spent in nodal movements compared to agglomerative
merges during each block phase is shown in Figure 2. This
percentage is high, and stays high throughout the lifetime
of the program, with a maximum of 99%. When added up
over all block phases, nodal movements constitute 84.3%
of the program runtime. Finally, nodal movements are more
expensive during the early block phases, taking 3.4x longer
at 50k blocks compared to 12.5k blocks. Combining these
observations, we reasoned that the cumulative time spent in
nodal movements can be reduced by using more aggressive
merging operations that reduce the initial size of the problem
set.

Using the merge phase of the program to produce a deeper
block reduction than the default halving behavior is fairly
straightforward. We modified the merge loop stopping behavior
to increase the number of blocks to be merged during the
first merging operation. Every subsequent merge after the first
continues to use the default 0.5x reduction behavior. There
is a limit to how aggressively merging can be done without
affecting the accuracy of the final partition. In our evaluation in
Section IV, we measure both the total partition time, as well as
the accuracy of the final partition, using different initial block
reduction amounts. We experiment with initial block reduction
rates of 0.75x and 0.90x.

B. Compressed Representation

From profiling our previous implementation of stochastic
block partitioning, we observe an N

2 increase in memory
consumption as the number of vertices in the input graph
increases. This is due to the central data structure of the
stochastic block partition algorithm – the interblock edge count

matrix. This matrix keeps track of the count of in- and out-
edges from every community to every other community. Every
vertex is in its own community in its initial state, and its
density is extremely low. For example, the initial density for
the 50k and 100k node graphs in Table I is 4.1e�4 and 2e�4,
respectively. Existing compressed representations for sparse
arrays such as compressed sparse row (CSR), compressed
sparse column (CSC), and dictionary of keys (DOK), are not
well-suited for the stochastic block partition algorithm because
the algorithm needs to extract and make temporary modified
copies of row and column slices. The CSR and CSC formats
compress along only one dimension, and thus make extraction
along the other axis slow.

We devised an alternative representation that uses an array
of hashtables across both rows and columns. The use of hashta-
bles permits fast updates of arbitrary individual entries, quick

extraction of non-zero entries, and reasonably fast updates of
rows and columns. The cost compared to other compressed
representations is duplicate entries, as each logical entry has
two actual entries to allow for both row and column indexing.
More critically, our implementation saves memory resources
so more of the data can be served from CPU cache, rather
than DRAM. One other consideration is that the entropy
computations do not require any particular computation order
for the entries in the requested row or column. We can support
this fast retrieval of rows and columns, as long as order is not
important, by returning just the non-zero entries in arbitrary
order based on traversing the hashtable for the specified index
and axis.

def i n i t (dim) :
I n i t i a l i z e row and column a r r a y s

o f h a s h t a b l e s .

nr , nc = dim [0] , dim [1]
rows =[n o n z e r o d i c t () f o r i in range (n r)]
c o l s =[n o n z e r o d i c t () f o r i in range (nc)]

def g e t i t e m (i x) :
i , j = i x
re turn rows [i] [j]

def s e t i t e m (ix , v a l) :
i , j = i x
rows [i] [j] = v a l
c o l s [j] [i] = v a l

def s e t a x i s (ix , a x i s , d i c t n e w) :
Updates a long one a x i s r e q u i r e

d e l e t i o n s a long t h e o t h e r .

Find t h e s e d e l e t i o n l o c a t i o n s u s i n g

s e t d i f f e r e n c e s .

i f a x i s == 0 :
f o r k in (rows [i x] . keys − d new . keys) :

d e l c o l s [k] [i x]
f o r k , v in d new . i t e m s () :

c o l s [k] [i x] = v
rows [i x] = d new

e l s e :
f o r k in (c o l s [i x] . keys − d new . keys) :

d e l rows [k] [i x]
f o r k , v in d new . i t e m s () :

rows [k] [i x] = v
c o l s [i x] = d new

def t a k e (ix , a x i s) :
Take and r e t u r n nonzero key −v a l u e

e n t r i e s a long t h e s p e c i f i e d a x i s .

i f a x i s == 0 :
re turn (rows [i x] . keys , rows [i x] . v a l s)

e l i f a x i s == 1 :
re turn (c o l s [i x] . keys , c o l s [i x] . v a l s)

Listing 1. Compressed Matrix Operations

Putting these ideas together, the pseudo-code for our com-
pressed matrix operations are shown in Listing 1 in Python-
like code. The hashtable implementation used is called a
nonzerodict and is built around a Python dict object, with the
additional feature that missing entries default to zero. Besides
changes to the data representation of the interblock edge count
matrix, small additional changes were needed to find move
proposals and compute entropy changes. These changes are
straight-forward since only non-zero entries in the interblock

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: The George Washington University. Downloaded on October 31,2022 at 16:39:04 UTC from IEEE Xplore. Restrictions apply.

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 12 16 20

Sp
ee

du
p

of move threads

5K 20K 50K

Fig. 3. Overall program speedup for different graph sizes, with a constant
number of 12 merge threads, and a varying number of nodal move threads.
Speedup is relative to 12 move threads. No one number of move threads
is optimal for different graph sizes. The horizontal dotted line represents no
speedup.

edge count matrix need to be iterated over.

During our testing, we found that performing nodal updates
on the compressed array is 2x–3x slower than nodal updates
on the uncompressed matrix. We believe this is due to slow
iteration operations in Python when writing to a row or column
in the compressed matrix. Nodal movements tend to write more
often than agglomerative merges, since merges typically move
many vertices as an entire block, instead of one at a time.
As a temporary workaround, we uncompress the matrix into
a shared-memory buffer to pass to the workers during parallel
nodal updates. We intend to explore optimizing this in future
work.

C. Parallelism Control

Unlike agglomerative merges, nodal movements affect one
node at a time rather than entire communities. Such behavior
makes them write-intensive and difficult to parallelize. Fur-
thermore, the quality of nodal updates for one worker depends
on the timely incorporation of updates from other workers.
Our baseline implementation avoids expensive global updates
to the shared interblock edge count matrix by having each
worker thread maintain its own copy of the data structure. We
previously designed our implementation to carefully manage
the granularity of messages, both from the workers to the
main aggregator and back to each worker, to minimize the
amount of data transferred. This parallel nodal movement
design uses a pool of worker processes, each responsible for
a group of vertices, which finds nodal movement proposals
for that group, computes the associated acceptance probability,
and ultimately accepts or rejects the proposals. Each worker
reports the changes in the state back to the main aggregator
for efficient distribution to the other workers.

We designed our baseline to minimize the amount of
copying each worker must do by tagging updates and avoiding
heavy-weight synchronization mechanisms. But despite our
efforts to make nodal updates efficient, we found that the
vast majority of the time is still spent on nodal updates. This
leads us to theorize that the write-intensive nature of nodal
updates limits the amount of useful parallelism. We further
theorized that the scalability of nodal updates is also affected
by the number of blocks at each block phase (i.e., the optimal
number of nodal movement threads varies during the life of
the program).

0

0.5

1

1.5

2

2.5

3

4 8 12 16 20 24 28 32 36 40 44 48

Sp
ee
du

p

of merge threads

5K 20K 50K

Fig. 4. Overall program speedup for different graph sizes, with a constant
number of 12 nodal move threads, and a varying number of agglomerative
merge threads. Speedup is relative to 12 merge threads. A larger number of
merge threads is optimal, and yields less variation, compared to results for
varying move threads. The horizontal dotted line represents no speedup.

1

10

100

1000

50000 12500 6250 3125 1563 782 391 196 98

Ti
m

e
sp

en
t (

se
co

nd
s)

Block size

0 threads 4 threads
8 threads 12 threads
16 threads

Fig. 5. Total time spent in nodal movements per block phase for a varying
number of move threads, merge threads held constant at 12. Input is a 50k
node graph. The optimal number of move threads varies by program phase.

0.1

1

10

100

1000

50000 25000 12500 6250 3125 1563 782 391 196

Ti
m

e
sp

en
t (

se
co

nd
s)

Block size

4 threads
12 threads
24 threads
44 threads

Fig. 6. Total time spent in merge movements per block phase for a varying
number of move threads, move threads held constant at 12. Input is a 50k
node graph. The optimal number of merge threads does not vary significantly
by program phase.

We modified our program to allow for a configurable
number of move threads and merge threads and varied one
while holding the other constant at 12 threads. Using 12
threads was the best-performing configuration for our parallel
baseline when the number of threads for each type of operation
was the same. The results of these tests are shown in Figures
3 and 4. We found that no one number of nodal movement
threads is optimal for different input graph sizes. We also found
that the scalability of agglomerative merging is much better
compared to nodal movements. A larger number of merge
threads leads to faster runtimes, almost up to the limit of cores
on the system. However, no one number of move threads is

Authorized licensed use limited to: The George Washington University. Downloaded on October 31,2022 at 16:39:04 UTC from IEEE Xplore. Restrictions apply.

optimal for different graph sizes.

We also observed a consistent pattern in the optimal
number of move threads across the phases of a single program
run. This is shown in Figure 5. For the 50k node input from
Table I, we found that more move threads is better when
there are fewer communities. This is similar to the behavior
seen with different graph sizes. In contrast, we found that the
optimal number of merge threads does not vary significantly by
program phase, as seen in Figure 6. Based on our observations
from varying the number of nodal movement threads while
holding the number of merge threads constant, we established
a heuristic to set the number of move threads based on the
current block size. This mapping uses either 2, 3, 7, or 12
threads conditionally based on the number of blocks at > 20k,
> 5k, > 2.5k, and < 5k, respectively.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

For the evaluation of the techniques described in Section
III, we start with our fast parallel stochastic block parti-
tion implementation written in Python. This implementation
is based on the GraphChallenge stochastic block partition
algorithm, with heavy modifications to support higher per-
formance. Our implementation relies heavily on NumPy[16]
for low-level array operations, and on Python multiprocessing
parallel operation. We used Python 3.9.2 and NumPy 1.21.0
with an OpenBLAS backend on a CentOS Stream system.
Our partitioning experiments use the baseline datasets from
GraphChallenge, as described in Table I. Our single-node test
machine is an Intel Xeon Gold 6126 CPU at 2.60 GHz with 24
cores, 48 threads, and 1480 GB of RAM. We ran experiments
on static graphs with the number of vertices varying from 500
to 200k.

One straightforward measure of algorithm performance
is the amount of time used to perform partitioning. We
instrumented our code to measure just the time spent during
computation, ignoring overheads such as graph load time from
disk. We also measured the move time and merge time taken
during each block phase of the program. For each optimization,
we first measured the independent incremental speedup on
merge time, move time, and overall partition time compared
to our default baseline implementation. We then measure the
overall speedup when using all of the optimizations together.

B. Results

1) Aggressive Initial Merging: The independent impact of
a more aggressive initial block reduction rate of 0.75 is shown
in Table II. We chose 0.75 as a reasonable rate that did not
introduce too many additional errors in the final partitioning,
even though we have observed reasonable precision and recall
scores with a block reduction rate of 0.90. The performance
impact is significant, and improves both the overall merge time
and nodal move time throughout the lifetime of the program.
We also measured the correctness of our aggressive initial
block reduction approach using pairwise precision and recall
metrics [17]. The mean precision and recall scores due to
different amounts of initial merging over 5 runs are shown in
Table III and Table IV, respectively. In our combined testing,
we again chose the reduction rate of 0.75 (see Section IV-B4)

TABLE II. SPEEDUPS DUE TO AGGRESSIVE INITIAL MERGING (0.75
REDUCTION)

|V | Merging Moving Overall
500 1.20 1.09 1.12
1k 1.20 1.10 1.12
5k 1.19 1.45 1.40

20k 1.14 1.59 1.49
50k 1.19 1.79 1.66

100k 1.18 2.01 1.82
200k 1.19 2.04 1.85

to balance performance and accuracy. In the future, we plan
to measure the performance and accuracy tradeoffs involved
with this technique more precisely.

TABLE III. ACCURACY – MEAN PRECISION DUE TO AGGRESSIVE
INITIAL MERGING (AVERAGE OF 5 RUNS)

|V | Default Initial 0.75 Initial 0.90 Initial
Reduction 0.5 Reduction Reduction

500 1 1 0.5324
1k 1 1 1
5k 1 1 1

20k 1 1 1
50k 0.9937 1 1

100k 0.8708 0.9205 0.8569
200k 0.4763 0.5509 0.6114

TABLE IV. ACCURACY – MEAN RECALL DUE TO AGGRESSIVE
INITIAL MERGING (AVERAGE OF 5 RUNS)

|V | Default Initial 0.75 Initial 0.90 Initial
Reduction 0.5 Reduction Reduction

500 1 1 0.9528
1k 1 1 1
5k 0.9743 0.9738 1

20k 1 1 0.9543
50k 1 1 0.9169

100k 0.9816 0.9129 0.6849
200k 0.9317 0.9054 0.8284

TABLE V. SPEEDUPS DUE TO DATA COMPRESSION

|V | Merging Moving Overall
500 0.99 1.03 1.00
1k 0.99 0.95 0.95
5k 1.23 1.07 1.09

20k 3.16 1.02 1.15
50k 4.00 1.03 1.16

100k 4.20 1.06 1.19
200k 4.65 1.02 1.14

2) Compressed Representation: The independent impact of
using the compressed representation for the interblock edge
count matrix is shown in Table V. As expected, the compressed
representation has a major impact on agglomerative merging
operations, and no significant impact on nodal moves due
to implementation details described in Section III-B. This
optimization by itself has limited impact, yielding a 1.19x
overall improvement in the best case. But when combined with
the aggressive initial merging feature, the improvement is more
substantial. We discuss this in more detail in Section IV-B4.

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: The George Washington University. Downloaded on October 31,2022 at 16:39:04 UTC from IEEE Xplore. Restrictions apply.

TABLE VI. SPEEDUPS DUE TO PARALLELISM CONTROL

|V | Merging Moving Overall
500 1.02 1.07 1.06
1k 1.04 1.02 1.03
5k 1.01 1.11 1.10

20k 1.01 1.63 1.48
50k 1.01 2.03 1.75

100k 1.89 2.27 2.19
200k 2.02 2.34 2.26

3) Parallelism Control: The results for the parallelism
control optimization are shown in Table VI. As can be seen, the
speedups achieved increase as the size of the graph increases.
By using the heuristic described in Section III-C, which uses a
different number of threads depending on the current number
of blocks, the maximum overall speedup is 2.26x, with an
average of 1.55x across all graph sizes.

4) Combined Techniques: In the results thus far, we have
demonstrated the individual impact of each optimization. The
results in Table VII show the speedups when all three opti-
mizations are applied together. We kept the number of merge
threads at 44 and used the heuristic from III-C for varying the
number of move threads. We used 0.75 for the initial block
reduction rate, which was the largest one where we did not
see a major increase in the error rate. The combination of
optimizations shows benefits starting at the 1k node graph and
increases as the input graph size grows. We achieve a 5.13x
speedup over the baseline at 200k nodes.

Finally, we conducted one test with a large 500k node
graph (with 10.2M edges) as a proof-of-concept. Our baseline
algorithm exhausts memory and fails to handle a graph of
this size. But with all three of our optimizations enabled,
we processed this graph in a total runtime of 99,811 seconds
(compared to an average of 13,834 seconds for a 200k node
graph), with the precision score of 0.3035 and the recall score
of 0.9834. We will further explore processing larger graph sizes
in future work.

TABLE VII. COMBINED SPEEDUPS – ALL THREE TECHNIQUES

|V | Merging Moving Overall
500 0.62 1.04 0.88
1k 0.79 1.09 1.01
5k 1.67 1.51 1.53

20k 5.75 2.11 2.34
50k 10.73 3.38 3.78

100k 15.41 4.23 4.71
200k 21.26 4.56 5.13

V. CONCLUSIONS AND FUTURE WORK

We have described three new techniques to speed up
stochastic block partition: aggressive initial merging, com-
pressed data structures, and parallelism control. We have devel-
oped a prototype that shows excellent performance gains over
our parallel baseline. These speedups over the baseline increase
with increasing graph size, achieving speedups as large as
1.85x for aggressive initial merging, 1.19x for compressed data
structures and 2.26x for parallelism control. Furthermore, when
all three techniques are used together, the overall speedups are
as high as 5.13x.

In the future, we would like to further develop and enhance
our algorithm, particularly to further improve computational
performance on even larger graphs. We believe that our current
compressed representation of the interblock edge count matrix
can be implemented in a faster language, such as C/C++, to
achieve even greater speedups. Since the code that implements
the uncompressed data structures at the heart of NumPy is
compiled to native code, a compiled version of our compressed
implementation prototype would make a better comparison.
In the same vein, the entire codebase can be migrated to
a compiled version to obtain better performance. Since our
initial block reduction values are conservative, we plan to
measure tradeoff between aggressive merging and accuracy
more precisely. This aggressive merging can even be applied
to later program phases for more improvements. Furthermore,
the parallelization of nodal movements can be improved fur-
ther and the current shared-memory communication between
threads can also be optimized with low-level code. Finally, the
compressed data structure and optimized algorithm allow us
to perform community detection on much larger-sized graphs
that did not previously fit into our system’s memory. We plan
to explore additional algorithmic optimizations, handle more
difficult partitioning problems that exhibit high block overlap
and varying block sizes, apply our techniques to streaming
graphs, and tackle even larger graph sizes.

VI. ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their
constructive suggestions. This work was supported in part by
Laboratory for Physical Sciences, and the National Science
Foundation grants 1618706 and 1717774.

REFERENCES

[1] Y. Jin and J. F. Jaja, “A high performance implementation of spectral
clustering on cpu-gpu platforms,” in Parallel and Distributed Processing

Symposium Workshops, 2016 IEEE International. IEEE, 2016, pp.
825–834.

[2] H. Kanezashi and T. Suzumura, “An incremental local-first community
detection method for dynamic graphs,” in Big Data (Big Data), 2016

IEEE International Conference on. IEEE, 2016, pp. 3318–3325.
[3] M. Halappanavar, H. Lu, A. Kalyanaraman, and A. Tumeo, “Scalable

static and dynamic community detection using grappolo,” in High

Performance Extreme Computing Conference (HPEC), 2017 IEEE.
IEEE, 2017, pp. 1–6.

[4] D. Zhuzhunashvili and A. Knyazev, “Preconditioned spectral clustering
for stochastic block partition streaming graph challenge (preliminary
version at arxiv.),” in High Performance Extreme Computing Conference

(HPEC), 2017 IEEE. IEEE, 2017, pp. 1–6.
[5] A. J. Uppal and H. H. Huang, “Fast stochastic block partition for

streaming graphs,” in 2018 IEEE High Performance extreme Computing

Conference (HPEC). IEEE, 2018, pp. 1–6.
[6] T. P. Peixoto, “Entropy of stochastic blockmodel ensembles,” Physical

Review E, vol. 85, no. 5, p. 056122, 2012.
[7] ——, “Parsimonious module inference in large networks,” Physical

review letters, vol. 110, no. 14, p. 148701, 2013.
[8] ——, “Efficient monte carlo and greedy heuristic for the inference of

stochastic block models,” Physical Review E, vol. 89, no. 1, p. 012804,
2014.

[9] B. Karrer and M. E. Newman, “Stochastic blockmodels and community
structure in networks,” Physical review E, vol. 83, no. 1, p. 016107,
2011.

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: The George Washington University. Downloaded on October 31,2022 at 16:39:04 UTC from IEEE Xplore. Restrictions apply.

[10] J. Kiefer, “Sequential minimax search for a maximum,” Proceedings of

the American mathematical society, vol. 4, no. 3, pp. 502–506, 1953.
[11] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller, “Equation of state calculations by fast computing machines,”
The journal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[12] W. K. Hastings, “Monte carlo sampling methods using markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[13] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra,
P. Monticciolo, A. Reuther, S. Samsi, W. Song, and et al.,
“Streaming graph challenge: Stochastic block partition,” 2017 IEEE

High Performance Extreme Computing Conference (HPEC), Sep 2017.
[Online]. Available: http://dx.doi.org/10.1109/HPEC.2017.8091040

[14] F. Wanye, V. Gleyzer, and W.-c. Feng, “Fast stochastic block partition-
ing via sampling,” in 2019 IEEE High Performance Extreme Computing

Conference (HPEC). IEEE, 2019, pp. 1–7.
[15] A. J. Uppal, G. Swope, and H. H. Huang, “Scalable stochastic block par-

tition,” in High Performance Extreme Computing Conference (HPEC),

2017 IEEE. IEEE, 2017, pp. 1–5.
[16] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: a

structure for efficient numerical computation,” Computing in Science &

Engineering, vol. 13, no. 2, pp. 22–30, 2011.
[17] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J. Mooney,

“Model-based overlapping clustering,” in Proceedings of the eleventh

ACM SIGKDD international conference on Knowledge discovery in

data mining. ACM, 2005, pp. 532–537.

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: The George Washington University. Downloaded on October 31,2022 at 16:39:04 UTC from IEEE Xplore. Restrictions apply.

