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Abstract

We address a problem that extends a fundamental classical result of continuum
mechanics from the time of its inception, as well as answers a fundamental question
in the recent, modern nonlinear elastic theory of dislocations. Interestingly, the
implication of our result in the latter case is qualitatively different from its well-
established analog in the linear elastic theory of dislocations. It is a classical result
that if u ∈ C2(Rn;Rn) and ∇u ∈ SO(n), it follows that u is rigid. In this article
this result is generalized to matrix fields with non-vanishing curl. It is shown that
every matrix field R ∈ C2(Ω; SO(3)) such that curl R = constant is necessarily
constant. Moreover, it is proved in arbitrary dimensions that a measurable rotation
field is as regular as its distributional curl allows. In particular, a measurable matrix
field R : Ω → SO(n), whose curl in the sense of distributions is smooth, is also
smooth.

1. Introduction

It is a classical result of continuum mechanics, known from the time of the
brothers Cosserat (1896) (according to Shield [22]), that if a C2 deformation of
a connected domain Ω ⊂ R3 given by y : Ω → R3 with deformation gradient
∇ y =: F has a constant Right Cauchy-Green tensor field, i.e., FT F = constant,
then y is a homogeneous deformation, i.e., F = constant. Shield [22] gave an
elegant proof (with references to other proofs by Forsyth, and Thomas) whose
hypothesis was marginally weakened in[3]. An elementary proof using ideas from
classical Riemannian Geometry arises from considering parametrizations ofΩ and
y(Ω) in a Rectangular Cartesian coordinate system. Then the condition FT F =
constant allows associating spatially constant metric tensor component fields on the
two patches; a use of Christoffel’s transformation rule for the Christoffel symbols
then yields ∇2y = 0. This result implies that if the deformation gradient field of a
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deformation is known to be ‘pointwise rigid,’ i.e., ∇ y(x) = F(x) ∈ SO(3)∀x ∈
Ω , then F = constant ∈ SO(3), and the deformation y is globally rigid. First
generalizations of this result go back to Reshetnyak who proved in [21] that if yk ⇀

y inW 1,2(Ω;Rn) and dist(∇ yk, SO(n)) → 0 in measure then ∇ y is necessarily a
constant rotation. A proof of this result using Young measures can be found in [12].
John proved in [13] that if y ∈ C1 and dist(∇ y, SO(n)) ≤ δ for a sufficiently small
δ > 0 then [∇ y]BMO ≤ C(n)δ. Without the assumption that∇ y is uniformly close
to SO(n), Kohn proved optimal bounds forminR∈SO(n),b∈Rn ‖y−(Rx+b)‖L p (but
not for ‖∇ y− R‖L p ) in [14]. Optimal bounds on ∇ y− R in L2 were derived in the
celebrated work of Friesecke, James, and Müller, [9]. The authors prove that for an
open, connected domain with Lipschitz boundary Ω ⊆ Rn there exists C(Ω) > 0
such that for every y ∈ W 1,2(Ω; Rn) there exists a rotation R ∈ SO(n) satisfying

ˆ
Ω
|∇ y − R|2 dx ≤ C(Ω)

ˆ
Ω
dist(∇ y, SO(n))2 dx . (1)

As pointed out in [6], L p-versions of the above estimate also hold for 1 < p < ∞.
Generalizations to interpolation spaces were established in [4].

Regardless of the smoothness hypotheses involved, all of the above results
crucially rely on the fact that the field F is the gradient of some deformation y.
Going beyond the realm of deformations, it seems natural to interpret the global
rigidity question in the following way: Let R ∈ C1(Ω; SO(3)) be specified with
curl R = 0 in Ω; then R = constant. Posed in this manner, it seems natural to
ask whether the hypothesis curl R = 0 is optimal or whether it can be further
weakened. It is this question that is dealt with in this paper with an affirmative
answer. Specifically, we show that global rigidity is obtained even for curl R =
constant on Ω . This result, for Ω ⊆ R2 and R ∈ C2(Ω; SO(2)), was obtained in
[1]. Here, we prove it for R : R3 ⊇ Ω → SO(3) merely measurable. This three-
dimensional result is based on significantly different ideas from [1], and generates
also a different proof for the 2-d case.

Rigidity estimates similar to (1) for non-gradient fields were first established
in the linear theory and dimension 2 in [10]. The nonlinear analogue was first
proved in [17]; for a version with mixed growth see [11]. Generalizations to higher
dimensions n ≥ 3 were then established in [15] in the Lorentz spaces L

n
n−1 ,∞. In

[5] the stronger estimate in L
n

n−1 was shown for n ≥ 3. Precisely: For Ω ⊆ Rn

open and connected with Lipschitz boundary there exists C(Ω) > 0 such that for
every F ∈ L

n
n−1 (Ω;Rn×n) such that curl F is a bounded measure there exists

R ∈ SO(n) satisfying

ˆ
Ω
|F − R| n

n−1 dx ≤ C(Ω)

(ˆ
Ω
dist(F, SO(n))

n
n−1 dx + | curl F |(Ω)

n
n−1

)
.

(2)

Clearly, a rigidity estimate like (2) does not directly imply that rotation fields with
a constant but non-zero curl are constant as the estimate (2) applied to a field with
a constant curl does not provide more information than the same estimate applied



Rotations with Constant curl are Constant 763

to a field with a bounded but non-constant curl. However, there are obviously non-
constant rotation fields with a bounded curl. Therefore, the proof of our result
will be based on a different approach (see Sect. 2 for the idea of the proof and its
connection to the gradient setting). Instead, the rigidity estimate (2) can be used to
prove higher regularity for rotation fields, see Sect. 4, whereas our rigidity result is
based on a PDE approach, see Sects. 2 and 3.

It turns out that the question raised above is of relevance in the theory of dislo-
cations, as explained in detail in [1], with connections to the linear elastic theory of
dislocations. Briefly, considering a nonlinear elastic material with a ‘single-well’
elastic energy density, our result shows that a traction-free body with a constant
(non-vanishing) dislocation density cannot be stress-free (such a field is computed
in [2, Sec. 5.3]). This is in stark contrast to the linear theory of dislocations in
which the same body under identical hypotheses would necessarily be stress-free.
An interesting question in this interpretation of our work is the characterization
of the resulting stress field in a material with a ‘multiple-well’ energy density, in
particular, whether a stress-free state can arise for a constant dislocation density.

Additionally, we remark that recently similar questions have been studied in
the context of liquid crystals. In [20,23,24] (see also [19] for the two–dimensional
setting) the authors study the compatibility conditions for unit vector fields n :
R3 ⊇ Ω → S2, so–called director fields. In this context it is natural to distinguish
four independent measures of distortion: the splay div n, the twist n ·curl n, the bend
n×curl n and themore involved biaxial splay. It can then be shown that in Euclidean
space director fields that induce a uniform (space-independent) distortion (bend,
twist, splay, biaxial splay) take a very specific form, see [24]. Generalizations to
curved spaces can be found in [20,23]. However, although the rows of a matrix field
R : Ω → SO(3) are unit vector fields, the fact that the curl of the different rows
is constant does not translate immediately to information on the different modes
of distortion above. In particular, in our setting the relations between the different
rows need to be exploited to prove that R is constant, see Theorem 3.

This article is organized as follows: first, we introduce the needed notation. Then
we prove that a regular rotation field with a constant curl is constant in dimension
2 (Sect. 2) and 3 (Sect. 3). In Sect. 4 we prove regularity of rotation fields in terms
of the regularity of its curl. This shows that the results proved in Sects. 2 and 3
apply more generally to measurable rotation fields with a constant curl in the sense
of distributions.

Notation Throughout the whole article we use the Einstein summation convention,
i.e., we sum over indices that appear twice.

Moreover, we denote by I d the identity matrix in any dimension. For a matrix
A we write Ai for its i-th row. For the set of rotations in Rn we write SO(n) =
{R ∈ Rn×n : AT A = I d, det(A) = 1}. The trace of a matrix A ∈ Rn×n is given
by tr(A) = ∑n

k=1 Akk , the scalar product between two matrices A, B ∈ Rn×n is
given by A : B = tr(AT B). For a matrix A ∈ Rn×n we write Asym = 1

2 (A + AT )

and Askew = 1
2 (A − AT ). The spaces of symmetric or skew-symmetric matrices

are denoted by Sym(n) = {A ∈ Rn×n : AT = A} and Skew(n) = {A ∈ Rn×n :
AT = −A}, respectively. For a matrix A ∈ Rn×n we denote by cof A its cofactor
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matrix, i.e., the n × n matrix whose (i, j) entry is given by (−1)i+ j det(Ai j ),
where Ai j is the (n − 1)× (n − 1)-matrix that evolves from A by deleting the i-th
row and j-th column. Cramer’s rule says that for invertible A ∈ Rn×n we have

1
det(A) cof A = (A−1)T . For two vectors a, b ∈ R3 the cross product a × b ∈ R3 is
defined as usual as (a × b)i = εi jka j bk . Here, εi jk is the sign of the permutation
(i jk).

LetΩ ⊆ Rn and connected. Throughout the whole paper we use standard nota-
tion for then-dimensionalLebesguemeasureLn , the k-dimensionalHausdorffmea-
sureHk , the space of k-times differentiable functions from Ω to Rm , Ck(Ω;Rm),
the space of p-integrable functions (more precisely, equivalence classes of these
functions) on Ω with values in Rm , L p(Ω;Rm), Sobolev spaces, Wk,p(Ω;Rm),
and the space of vector-valued Radon-measures, M(Ω;Rm). For a vector-valued
Radon measure µ we denote by |µ| its total variation measure. The space of func-
tions of bounded variation BV (Ω;Rm) consists of function f ∈ L1(Ω;Rm)whose
weak derivative is a vector-valued Radon measure with finite total variation i.e.,
there existsµ ∈ M(Ω;Rn×m)with |µ|(Ω) < ∞ such that for allϕ ∈ C∞

c (Ω;Rm)

and i ∈ {1, . . . , n} it holds that
ˆ

Ω
u · ∂iϕ dx = −

ˆ
Ω

ϕ · dµi .

In this case we write Du = µ.
In addition we recall quickly standard notation for classical differential oper-

ators. The divergence operator for a vector field f = ( f1, . . . , fn) on a subset of
Rn is given by div( f ) = ∑n

k=1 ∂k fk . For a vector field on a subset of R2 we write
curl( f ) = ∂1 f2 − ∂2 f1, for a vector field f on a subset of R3 the i-th component
of the vector field curl( f ) is given by curl( f )i = εi jk∂ j fk . For arbitrary n ∈ N
we generalize this notation to Curl( f ) =

(
∂ j fk − ∂k f j

)n
j,k=1. In dimension 2 and

3 the notions curl and Curl can easily be identified. For matrix fields Curl, div and
curl will always be applied rowwise.

We recall that for a function f ∈ L1
loc(Ω;Rn) we say that Curl( f ) = µ ∈

M(Ω;Rn×n) in the sense of distributions if we have for all ϕ ∈ C∞
c (Ω;R)

ˆ
Ω

fk∂ jϕ − f j∂kϕk dx = −
ˆ

Ω
ϕ dµ jk .

Note that a function α ∈ L1
loc(Ω;Rm) can always be associated to a vector-valued

Radon measure µ ∈ M(Ω;Rm) through µα(A) =
´
A α(x) dx . For f,α ∈ L1

loc
we also write Curl f = α instead of Curl f = µα .

2. Rigidity for Rotation Fields in Dimension 2

We start by reconsidering the case n = 2. In [1] it was shown that a function
R ∈ C2(Ω; SO(2)) such that curl R is constant is necessarily constant. In this
section we give an alternative proof to this statement which uses the idea of the
proof for gradients. A similar strategy will be used in the three-dimensional setting.
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Let us quickly recall the argument for gradients in dimension n. Let R =
∇u ∈ C1(Ω; SO(n)) for some u ∈ C2(Ω;Rn). We note that cof ∇u = ∇u,
div cof(∇u) = 0 and |∇u|2 = n. Thus, ∆u = 0 and 0 = ∆|∇u|2. Then one
computes 0 = ∆|∇u|2 = 2∇(∆u) : ∇u + |∇2u|2 = |∇2u|2. Consequently,
∇u = R is constant.

Theorem 1. Let Ω ⊆ R2 be open and connected. Let R ∈ C2(Ω; SO(2)) and
α ∈ R2 such that curl R = α. Then R is constant.

Proof. As R(x) ∈ SO(2) for all x ∈ Ω , there exists a C2-vector field e : Ω → R2

such that

e1(x)2 + e2(x)2 = 1 and R(x) =
(

e1(x) e2(x)
−e2(x) e1(x)

)
for all x ∈ Ω.

As curl R = α, we find that

∂1e2 − ∂2e1 = α1,

∂1e1 + ∂2e2 = α2,

from which we derive

∂1∂1e2 − ∂1∂2e1 = 0,

∂2∂1e2 − ∂2∂2e1 = 0,

∂1∂1e1 + ∂1∂2e2 = 0,

∂2∂1e1 + ∂2∂2e2 = 0.

Adding the fourth to the first equation and subtracting the second from the third
equation we find that

∆e1 = ∆e2 = 0.

Using that e1(x)2 + e2(x) = 1 for all x ∈ Ω , we obtain

0 = ∆(e21 + e22) = 2e1∆e1 + 2|∇e1|2 + 2e2∆e2 + 2|∇e2|2 = |∇e1|2 + |∇e2|2.

As Ω is connected this implies that e (and consequently R) is constant. ./

Remark 1. In the language of the literature on director fields in liquid crystals, it is
shown in the proof above that e : Ω → S1 has constant bend and splay. Then it is
well-known that this implies in spaces without a negative Gauss curvature that e is
constant, see for example [19].

In view of Theorem 1 we see that the generalized rigidity estimate (2) does not
provide the optimal estimate for rotation fields with a constant curl. The naïve ex-
tension of the generalized rigidity estimate (2) incorporating the result of Theorem
1 would allow the subtraction of a constant from the curl on the right hand side:
For every open, bounded and connected setΩ ⊆ R2 with Lipschitz boundary there
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exists C(Ω) > 0 such that for every F ∈ L2(Ω;R2×2) with curl F ∈ M(Ω;R2)

and α ∈ R2 there exists R ∈ SO(2) satisfying

ˆ
Ω
|F − R|2 dx ≤ C(Ω)

(ˆ
Ω
dist(F, SO(2))2 dx + | curl(F) − µ|(Ω)2

)
,

where µ = αL2.
However, the following example shows that a statement of this type cannot be

true as it does not hold true in the linearized setting, c.f. the discussion in [1].

Example 1. Let Ω = B1(0). For ε > 0 we define Fε : Ω → R2×2 by

Fε(x) = I d + ε

(
0 x1

−x1 0

)
.

First we notice that curl Fε = ε

(
1
0

)
. Next, we observe that

ffl
Ω Fε dx = I d and

therefore
´
Ω |Fε − I d|2 dx ≤

´
Ω |Fε − R|2 dx for all R ∈ SO(2). Now, we

compute
´
Ω |Fε − I d|2 dx =

´
Ω 2ε2x21 dx = π

2 ε2. On the other hand, a second
order Taylor expansion at I d shows that

dist(Fε(x), SO(2))2 ≤ |(Fε(x) − I d)sym |2 + C |Fε − I d|3 ≤ Cε3.

Consequently,
´
Ω dist(Fε(x), SO(2))2 dx ≤ Cε3. In particular we see that there

cannot exist a constantC(Ω) > 0 such that for every ε > 0 there exists Rε ∈ SO(2)
satisfying

ˆ
Ω
|Fε − Rε|2 dx ≤ C(Ω)




ˆ
Ω
dist(Fε, SO(2))2 dx +

(∣∣∣∣∣curl(F) − ε

(
1
0

)∣∣∣∣∣ (Ω)

)2


 .

3. Rigidity for Rotation Fields in Dimension 3

This section is devoted to prove that in three dimensions a rotation field whose
curl is constant has to be locally constant.

3.1. A simple argument for = R3

Westart with a simple argument forΩ = R3 which is based on Stokes’ theorem.

Theorem 2. Let R ∈ C1(R3; SO(3)) such that curl R = α for some α ∈ R3×3.
Then α = 0 and R is constant.

Proof. If α = 0 then the result follows by the classical rigidity result for gradients.
So we assume that α 0= 0. Hence, there exists v ∈ R3 such that αv 0= 0. Up to
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a rotation we may assume that v =




0
0
1



. Now, we define for ρ > 0 the two-

dimensional disk and circle with radius ρ as

D(2)
ρ =

{
(x1, x2, x3) ∈ R3 : x21 + x22 < ρ2, x3 = 0

}
(3)

and S(2)ρ =
{
(x1, x2, x3) ∈ R3 : x21 + x22 = ρ2, x3 = 0

}
. (4)

We choose v to be the normal to D(2)
ρ and denote by τ ∈ S2 the corresponding

positively oriented tangent to S(2)ρ . Using Stokes’ theorem we compute

πρ2 ‖αv‖ =
∥∥∥∥∥

ˆ
D(2)

ρ

curl R · ν H2

∥∥∥∥∥ =
∥∥∥∥∥

ˆ
S(2)ρ

Rτ dH1

∥∥∥∥∥ ≤ 2πρ . (5)

For the last inequality we used that ‖Rτ‖ = 1 since R ∈ SO(3). This yields a
contradiction for every ρ > 2

‖αv‖ . ./

Remark 2. The proof shows that there cannot be R ∈ C1(Ω; SO(3))with curl R =
α and B2‖α‖op+δ(x) ⊆ Ω for some x ∈ Ω , δ > 0 and ‖α‖op = sup{αv : ‖v‖ = 1}.

3.2. The general result

In this section we prove our main result, namely that on any open and connected
set Ω ⊆ R3 every sufficiently regular function R : Ω → SO(n) with a constant
curl is constant.

Our approach is quite similar to the proof of Theorem 1, namely we first show
that a field of rotations R : Ω → R3 satisfies a linear elliptic PDE. Together with
the assumption that curl R is constant this will yield an equality for |∇R|2 in terms
of R and curl R.

Before we prove the main result we collect a few results that will be needed
later.

Proposition 1. Let Ω ⊆ R3 be open and R ∈ C2(Ω; SO(3)) with curl R = α for
some constant matrix α ∈ R3×3. Then the following hold:

(i) div Ri = εi jk α j · Rk for i ∈ {1, 2, 3}.
(ii) ∆Ri = εi jk∇(α j · Rk).
(iii) |∇R|2 = −tr(RTαRTα).
(iv) tr(RTαRTα) = |(RTα)sym |2 − |(RTα)skew|2.
(v) If R(x0) = I d then | div(R)(x0)|2 = 2|αskew|2.
(vi)

∑3
i=1 |(∇Ri )sym |2 ≥ 1

3 | div(R)|2.
(v)

∑3
i=1 |(∇Ri )skew|2 = 1

2 |α|2.

Proof. As R takes values in SO(3)we note that the rows of R form an orthonormal
frame. Hence, for i ∈ {1, 2, 3} we have

2Ri = εi jk R j × Rk .
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Consequently, we can compute div Ri as follows that

2 div(Ri ) = εi jk div
(
R j × Rk

)
= εi jk

(
curl(R j ) · Rk − R j · curl(Rk)

)
(6)

= εi jk (α j · Rk − R j · αk) (7)

= 2εi jk α j · Rk . (8)

This shows (i). Now we recall the well-known identity curl curl = −∆+∇ div. As
curl R is constant, this yields

0 = −∆Ri + ∇ div Ri , (9)

which shows in combination with (i) claim (ii). For (iii) we first observe for i ∈
{1, 2, 3} that

0 = ∆(|Ri |2) = 2∆(Ri ) · Ri + 2|∇Ri |2.

In combination with (ii) this implies

−|∇R|2 = εi jk∇(α j · Rk) · Ri = εi jk α jl (∂m Rkl) Rim . (10)

Next, we use (23), i.e., we have for m, k, l ∈ {1, 2, 3} that

2 (∂m R)kl = εrmlαkr + εrsl Rks

(
RTα

)

mr
+ εrsm Rks

(
RTα

)

lr
.

Plugging this identity into (10) yields

2εi jk α jl (∂m Rkl) Rim =εi jk α jl Rim εrmlαkr

+ εi jk α jl Rim εrsl Rks

(
R(x)Tα

)

mr

+ εi jk α jl Rimεrsm Rsr

(
RTα

)

lr

=:(I )+ (I I )+ (I I I ).

No we compute

(I ) = εi jk α jl Rim εrmqαkr = εi jk α jl (αk × Ri )l = εi jk (αk × Ri ) · α j ,

(I I ) = εi jk α jl εrsl Rks αir

= εi jk (Rk × α j )rαir = εi jk (Rk × α j ) ·αi = −εi jk(α j × Rk) · αi = −(I ),

(I I I ) = εi jk α jl Rimεrsm Rks

(
RTα

)

lr

= εi jk α jl (Rk × Ri )r

(
RTα

)

lr

= εi jk(Rk × Ri )r (αRTα) jr

= 2R jr (αRTα) jr = 2(RTαRTα)rr = 2tr(RTαRTα).

Combining (10), (I), (II) and (III) yields (iii).
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For (iv) we simply compute

tr(RTαRTα) =(RTα)T : (RTα)

=
(
(RTα)sym − (RTα)skew

)
:
(
(RTα)sym + (RTα)skew

)

=
∣∣∣(RTα)sym

∣∣∣
2
−

∣∣∣(RTα)skew

∣∣∣
2
.

Next, we assume that R(x0) = I d. By (i) we have that div(Ri )(x0) = εi jk α j ·
Rk(x0) = εi jkα jk . Consequently,

αskew = 1
2




0 div(R3)(x0) − div(R2)(x0)

− div(R3)(x0) 0 div(R1)(x0)
div(R2)(x0) − div(R1)(x0) 0





and therefore |αskew|2 = 1
2 |div (R)(x0)|2, which is (v).

For (vi), we estimate

3∑

i=1

|(∇Ri )sym |2 ≥
3∑

i=1

(
(∇Ri )

2
11 + (∇Ri )

2
22 + (∇Ri )

2
33

)

≥
3∑

i=1

1
3
(tr(∇Ri ))

2

= 1
3

3∑

i=1

(div(Ri ))
2 = 1

3
| div(R)|2.

Eventually, we prove (vii). We observe for i ∈ {1, 2, 3} that

(∇Ri )skew = 1
2




0 ∂2Ri1 − ∂1Ri2 ∂3Ri1 − ∂1Ri3

∂1Ri2 − ∂2Ri1 0 ∂3Ri2 − ∂2Ri3
∂1Ri3 − ∂3Ri1 ∂2Ri3 − ∂3Ri2 0





= 1
2




0 −αi3 αi2

αi3 0 −αi1
−αi2 αi1 0



 .

Therefore,

3∑

i=1

|(∇Ri )skew|2 =
3∑

i=1

1
2
|αi |2 =

1
2
|α|2. (11)

./

Armed with the results from Proposition 1 we can now show that every field of
rotations with a constant curl has to be locally constant.

Theorem 3. Let Ω ⊆ R3 open and connected, and R ∈ C2(Ω; SO(3)) such that
curl R = α for some α ∈ R3×3. Then R is constant.
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Proof. We assume first thatΩ is simply-connected. For α = 0 the result is the well-
known result for gradients. Hence, it suffices to prove that α = 0. Now, let x0 ∈ Ω .
We may assume that R(x0) = I d. Otherwise consider R̃(x) = R(x0)T R(x) and
α̃ = R(x0)Tα. By Proposition 1 (iii) and (iv) we have

|∇R|2 = |(RTα)skew|2 − |(RTα)sym |2. (12)

On the other hand, combining Proposition 1 (vi) and (vii) yields

|∇R|2 =
3∑

i=1

|(∇Ri )sym |2 + |(∇Ri )skew|2 ≥ 1
3
| div(R)|2 + 1

2
|α|2. (13)

Using Proposition 1 (v) we find from combining (12) and (13) at the point x0

|αskew|2 − |αsym |2 ≥ 2
3
|αskew|2 +

1
2
|α|2 = 7

6
|αskew|2 +

1
2
|αsym |2. (14)

This implies that αskew = αsym = 0 i.e, α = 0. This completes the proof if Ω is
simply-connected.

Eventually we notice that around every point there exists a simply-connected
neighborhood which is included in Ω . Then we proved that R is constant in this
neighborhood i.e., R is locally constant. As Ω is connected this implies that R is
constant. ./

In combination with Corollary 1 in Sect. 4, Theorem 3 shows our main result.

Theorem 4. Let Ω ⊆ R3 be open and bounded. Then every measurable R : Ω →
SO(3) with a constant curl in the sense of distributions is constant.

4. Regularity of Rotation Fields is Dominated by Regularity of Their Curl

In this section Ω ⊆ Rn denotes an open set. We will show that the regularity
of a measurable field R : Ω → SO(n) is determined by the regularity of its Curl.
Precisely, we will show that if Curl(R) ∈ Ck(Ω;Rn×n×n) for some k ∈ N then
R ∈ Ck+1(Ω;Rn×n). In particular, if Curl(R) is constant then R is smooth.

As a first stepwe recall a statement from [15,16]. It states that a field of rotations
R whose Curl is a finite vector-valued Radon measure is already a function of
bounded variation. For the convencience of the reader we present a slight variation
of the argument from [15,16] which can be simplified using the recently obtained
generalized rigidity estimates in L

n
n−1 from [5] replacing the rigidity estimates in

the weak spaces L
n

n−1 ,∞ from [16]. The argument implies local estimates which
we will use to derive that DR is absolutely continuous with respect to the measure
Curl(R).

Proposition 2. Let n ≥ 2 and Ω ⊆ Rn open and bounded. Then there exists a
constant C > 0 such that for every measurable function R : Ω → SO(n) such
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that Curl(R) ∈ M(Ω;Rn×n×n) and |Curl R|(Ω) < ∞ it holds for every Borel
set A ⊆ Ω that

|DR|(A) ≤ C |Curl R|(A). (15)

In particular, R ∈ BV (Ω;Rn×n).

Proof. First, let A ⊆ Ω be open. For this let Ω ′ ⊆ A be open such that Ω ′ ⊂⊂ Ω .
For δ > 0 we define

Iδ =
{
i ∈ δZn | i + (−δ, δ)n ⊆ A

}

and for i ∈ Iδ

qδ
i = i + (−δ/2, δ/2)n and Qδ

i = i + (−δ, δ)n .

Then it holds for δ > 0 small enough that Ω ′ ⊆ ⋃
i∈Iδ q

δ
i ∪ N ⊆ A, where N ⊆ Ω

is a set of Lebesgue measure 0, see Fig. 1.
Now, fix i ∈ Iδ . By the generalized rigidity estimate from [5] (if n ≥ 3) or from

[17] (if n = 2) there exists Ri ∈ SO(n) such that
ˆ
Qδ
i

|R − Ri |
n

n−1 dx ≤ C |Curl R|(Qδ
i )

n
n−1 . (16)

Note that by a scaling argument it can be shown that for all δ > 0 and i ∈ Iδ
for C > 0 one can use the constant for the domain (0, 1)n . In particular, C in the
inequality above does not depend on δ nor i .

We define a function Rδ : Ω ′ → SO(n) by Rδ(x) = Ri if x ∈ qδ
i where i ∈ Iδ

(note that while each Ri is defined on Qδ
i which overlap for neighboring indices, the

smaller cubes qδ
i are mutually disjoint). It follows that Rδ ∈ BV (Ω ′; SO(n)) and

the distributional derivative of Rδ is concentrated on the boundaries of neighboring
cubes qi , namely

|DRδ|(Ω ′) =
∑

i, j∈Iδ,|i− j |=δ

|Ri − R j |Hn−1(∂qδ
i ∩ ∂qδ

j ∩ Ω ′). (17)

Next, we fix two neighboring indices i, j ∈ Iδ , i.e., |i − j | = δ. Then we use (16)
to find

2n−1 · δn|Ri − R j |
n

n−1 =
ˆ
Qδ
i ∩Qδ

j

|Ri − R j |
n

n−1 dx

≤
ˆ
Qδ
i

|R − Ri |
n

n−1 dx +
ˆ
Qδ

j

|R − R j |
n

n−1 dx

≤ C
(
|Curl R|(Qδ

i )
n

n−1 + |Curl R|(Qδ
j )

n
n−1

)
.

In particular, we obtain

|Ri − R j | ≤ C ′δ−(n−1)
(
|Curl R|(Qδ

i )+ |Curl R|(Qδ
j )

)
.
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By the finite overlap of the cubes Qδ
i we derive from (17) that

|DRδ|(Ω ′) ≤ C ′ ∑

i, j∈Iδ,|i− j |=δ

δ−(n−1)δn−1(|Curl R|(Qi )+ |Curl R|(Q j ))

≤ C ′′|Curl R|




⋃

i∈Iδ
Qi



 ≤ C ′′ |Curl R|(A). (18)

Additionally, Hölder’s inequality then yields
ˆ

Ω ′
|Rδ − R| dx =

∑

i∈Iδ

ˆ
Ω ′∩qδ

i

|Ri − R| dx

≤
∑

i∈Iδ

ˆ
Qδ
i

|Ri − R| dx

≤
∑

i∈Iδ
2δ‖Ri − R‖

L
n

n−1 (Qδ
i )

≤ 2Cδ
∑

i∈Iδ
|Curl R|(Qδ

i )

≤ C ′δ|Curl R|(A).

For the last inequality we used again the finite overlap of the cubes Qδ
i . It follows

that Rδ → R in L1(Ω ′;Rn×n) as δ → 0. By the lower-semicontinuity of the total
variation we find from (18) that R ∈ BV (Ω ′;Rn×n) and

|DR|(Ω ′)| ≤ lim inf
δ→0

|DRδ|(Ω ′) ≤ C ′′|Curl R|(A). (19)

Note that the constant C ′′ can be chosen independently from Ω ′.
Now we exhaust A by compactly contained open sets. Precisely, we find a

sequence of open sets Ω ′
k ⊂⊂ A such that Ω ′

k ⊆ Ω ′
k+1 and

⋃
k∈N Ω ′

k = A. Then
DR is a vector-valued Radon measure on A and (19) yields

|DR|(A) = lim
k→∞

|DR|(Ω ′
k) ≤ C ′′|Curl R|(A).

For A = Ω it follows immediately that R ∈ BV (Ω;Rn×n).
For an arbitraryBorel set A ⊆ Ω , we canfind for ε > 0 an open set A ⊆ O ⊆ Ω

such that |Curl R|(O) ≤ |Curl R|(A)+ ε. It follows

|DR|(A) ≤ |DR|(O) ≤ C ′′|Curl R|(O) ≤ C ′′ (|Curl R|(A)+ ε) .

Sending ε → 0 yields (15). ./

Remark 3. We note that (15) shows that the vector-valued Radon measure DR is
absolutely continuous with respect to the Radon measure |Curl R|. In particular,
if Curl R ∈ L1(Ω;Rn×n×n) then DR is absolutely continuous with respect to the
Lebesgue measure. In this case by the Radon-Nikodym Theorem (see [7, Section
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1.6]) we may write DR = gLn for some g ∈ L1(Ω;Rn×n×n) and obtain for
almost every x ∈ Ω

|g(x)| = lim
r→0

 
Br (x)

|g(y)| dy ≤ C lim
r→0

 
Br (x)

|Curl R(y)| dy = C |Curl R(x)|.

In particular, it follows that ‖g‖L1 ≤ C‖Curl R‖L1 which implies that R ∈
W 1,1(Ω;Rn). In addition, if Curl R ∈ L∞ then R ∈ W 1,∞ and (c.f. [18])

‖DR‖L∞ ≤ C‖Curl R‖L∞ .

In this case, by the Sobolev embedding theorem (see, for example, [25, Theorem
2.4.4]) R can be identified with a function which is locally Lipschitz continuous.

In light of Remark 3 we recall here Rademacher’s theorem (see [8, Theorem
3.1.6]) which states that every Lipschitz function is differentiable at almost every
point. Next, we show that for a differentiable function R : Ω ⊆ Rn → SO(n) the
derivative DR can be expressed in terms of the functions R and Curl R.

Proposition 3. Let n ∈ N,Ω ⊆ Rn. Assume that R : Ω → SO(n) is differentiable
at a point x ∈ Ω . Then we have for i, k, l, p ∈ {1, . . . , n}

2
(
R(x)T (∂i R)(x)

)

kl
=R(x)mk (Curl R(x))mil + R(x)mi (Curl R(x))mkl (20)

+ R(x)ml (Curl R(x))mki

and

2 ((∂i R)(x))pl = (Curl R(x))pil + R(x)pk R(x)mi (Curl R(x))mkl (21)

+ R(x)pk R(x)ml (Curl R(x))mki .

In particular, we have for n = 3

2
(
R(x)T (∂i R)(x)

)

kl
= εnil

(
R(x)T (curl R)(x)

)

kn
+ εnkl

(
R(x)T (curl R)(x)

)

in

+ εnki

(
R(x)T (curl R)(x)

)

ln
. (22)

and

2 ((∂i R)(x))pl =εnil ((curl R)(x))pn + εnkl R(x)pk
(
R(x)T (curl R)(x)

)

in
(23)

+ εnki R(x)pk
(
R(x)T (curl R)(x)

)

ln
.
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Proof. Since R(x) ∈ SO(n) for all x ∈ Ω it follows for all i ∈ {1, . . . , n} that
R(x)T (∂i R)(x) is skew-symmetric. Consequently we find that

2
(
R(x)T (∂i R)(x)

)

kl
=

(
R(x)T (∂i R)(x)

)

kl
−

(
R(x)T (∂i R)(x)

)

lk

=
[(

R(x)T (∂i R)(x)
)

kl
−

(
R(x)T (∂i R)(x)

)

lk

]

+
[(

R(x)T (∂k R)(x)
)

il
+

(
R(x)T (∂k R)(x)

)

li

]

−
[(

R(x)T (∂l R)(x)
)

ki
+

(
R(x)T (∂l R)(x)

)

ik

]

=
[(

R(x)T (∂i R)(x)
)

kl
−

(
R(x)T (∂l R)(x)

)

ki

]

+
[(

R(x)T (∂k R)(x)
)

il
−

(
R(x)T (∂l R)(x)

)

ik

]

+
[(

R(x)T (∂k R)(x)
)

li
−

(
R(x)T (∂i R)(x)

)

lk

]

=R(x)mk (Curl R(x))mil + R(x)mi (Curl R(x))mkl

+ R(x)ml (Curl R(x))mki .

This shows (20). Then (21) follows immediately by multiplication from the left
with R. Now, we notice that for n = 3, it holds (Curl R)qrs = εnrs(curl R)qn .
Plugging this identity into (20) and (21) yields immediately (22) and (23). ./

Combining Proposition 2, Remark 3 and Proposition 3 allows us to prove reg-
ularity of rotation fields with a regular curl.

Theorem 5. Let n, k ∈ N, Ω ⊆ Rn open and R : Ω → SO(n) measurable.
Assume that Curl R = f in the sense of distributions for f ∈ Ck(Ω;Rn×n×n).
Then R ∈ Ck+1(Ω;Rn×n).

Proof. First, let k = 0. As differentiability is a local property we may assume
that Ω is bounded and Curl R is bounded. By Remark 3 it follows that R ∈
W 1,∞(Ω;Rn×n). By the Sobolev-embedding theorem it can hence be identified
with a function which is locally Lipschitz-continuous. Then Rademacher’s theo-
erem (see, for example, [8, Theorem 3.1.6]) yields that R is differentiable almost
everywhere and that at almost every point the classical and the weak derivative
coincide. Then Proposition 3 implies that the weak derivative DR is for almost
every point the sum of terms which are products of components of R and curl R.
Thus DR can be represented through a continuous function. This implies that
R ∈ C1(Ω; SO(n)) which is the statement for k = 0. If k > 0 we can bootstrap
this argument. We see now that DR is the sum of products of terms which are
C1 (components of R) or Ck (components of curl R). Hence, by the product rule
R ∈ C2 and second derivatives are sums of products of R, DR, curl R, or D curl R.
This is the statement for k = 1. All appearing terms of DR are again C1 if k ≥ 2.
Inductively, one can show that derivatives of order k + 1 exist and are given by
sums of products which consist of components of the first k derivatives of R and
curl R. ./
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An immediate consequence of this is that rotation fields with a constant Curl in
the sense of distributions are necessarily smooth.

Corollary 1. Let n ∈ N, Ω ⊆ Rn open and R : Ω → SO(n) be measurable.
Assume that the distributionalCurl R is locally constant. Then R ∈ C∞(Ω;Rn×n).
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