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a b s t r a c t 
Micropillar compression experiments probing size effects in confined plasticity of metal thin films, includ- 
ing the indirect imposition of ‘canonical’ simple shearing boundary conditions, show dramatically differ- 
ent responses in compression and shear of the film. The Mesoscale Field Dislocation Mechanics (MFDM) 
model is confronted with this set of experimental observations and shown to be capable of modeling 
such behavior, without any ad-hoc modification to the basic structure of the theory (including boundary 
conditions), or the use of extra fitting parameters. This is a required theoretical advance in the current 
state-of-the art of strain gradient plasticity models. It is also shown that significantly different inhomoge- 
neous fields can display qualitatively similar size effect trends in overall agreement with the experimental 
results. The (plastic) Swift and (elastic) Poynting finite deformation effects are also demonstrated. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 
Size-effects in confined plasticity of metal thin films sand- 

wiched in ceramic micropillars have been demonstrated in the 
work of Meng and co-workers [18–20] . Shear failure testing 
of the interfacial regions of CrN/Cu/Si and CrN/Ti/Si ceramic- 
coating/metal-adhesion layer/substrate systems through instru- 
mented compression of cylindrical micropillars was reported in 
[25] . The last thirty years have seen intense world-wide activity in 
modeling size effects in metal plasticity at the microscale, initiated 
by the Strain Gradient Plasticity (SGP) work of Fleck, Hutchinson 
and co-workers [11] ; the study of length-scale effects in plasticity 
was initiated earlier by Aifantis [3] and co-workers. The confined 
plasticity results in [20] , however, have not been successfully mod- 
eled by SGP as pointed out in [20] , without rather drastic modifi- 
cations to the structure of the theory and introducing extra fitting 
parameters [15–17] . The aim of our work is to report on the rea- 
sonably successful modeling of the experiments in [20] with the 
Mesoscale Field Dislocation Mechanics theory [2,5–7] , and to pro- 
vide a mechanistic understanding of the observed effects within 
the idealization of the model. We also analyze the mechanics of 
local fields and other interesting results bearing on historically im- 
portant observed effects in the large deformation of elastic-plastic 
materials. 
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com (R. Arora), acharyaamit@cmu.edu (A. Acharya) . 

Conventional plasticity models do not have a material length 
scale and produce size-independent response (for homogeneous 
materials). In SGP theory, the material response is assumed to de- 
pend on both the plastic strain and its spatial gradient [10,12,13] , 
and the work conjugate of the plastic strain gradient is interpreted 
to be a ‘microscopic stress,’ of unspecified physical origin. SGP the- 
ories predict a much stronger dependence on the film thickness 
under nominal simple shearing conditions compared to experi- 
mental observations [18,20] . This prompted Kuroda and Needleman 
[16] to introduce an ad-hoc modification to the constrained bound- 
ary condition specification of SGP theory where it is assumed that 
a threshold exists on the magnitude of the plastic strain gradient at 
boundaries. Above this threshold, the constrained boundary condi- 
tion is released and plastic straining is allowed at the boundaries - 
as is clear, this threshold is not a material parameter, and it is not 
clear what its validity is, and how it is to be determined, in gen- 
eral modes of loading. Kuroda et al. [17] use this boundary condi- 
tion in a finite deformation setting along with extensive fitting of 
their model parameters to the data of [20] (including the classical 
work-hardening modulus and the initial yield stress) to produce 
results in accord with the experimental observations on compres- 
sion of ceramic-metal thin film sandwich micropillars. Another ef- 
fort to address this shortcoming of SGP theory is that of Dahlberg 
and Ortiz [9] who introduce a fractional derivative of the effec- 
tive plastic strain in the material response (a fractional SGP the- 
ory), whose fractional exponent is intended as a fitting parameter 
to recover the experimentally observed scaling of shear stress with 
layer thickness. Arora and Acharya [6] used the finite deforma- 
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Fig. 1. Micropillar experimental specimen and size effect results in both 90 ◦ and 45 ◦ orientations (Figures reprinted from Mu et al. [20] with permission from Springer 
Nature ). 
tion implementation [7] of MFDM theory, without any special fit- 
ting beyond the use of generic material parameters used in MFDM 
simulations of polycrystalline metals, to model constrained shear- 
ing of a thin film. They recovered the observed size-effect trend in 
[20] corresponding to the 45 ◦-oriented thin film in the micropillar 
experiments. 

Moving beyond the simple thin film-only geometry, in this 
work we use the MFDM framework to study the compression ex- 
periments of [20] , involving metal thin films sandwiched in ce- 
ramic micropillars, within a plane-strain idealization. As in the ex- 
periments, both 45 ◦ and 90 ◦ oriented thin films are considered. 
The experimental specimen and the corresponding size effect re- 
sults are shown in Fig. 1 , and we compare the size effect results 
from our simulations to results for the as-deposited samples. The 
metal layer is sandwiched between two ceramic blocks above and 
below it, and the whole composite is put under compression. The 
schematic of pillars with the thin film in the 90 ◦ and 45 ◦ orien- 
tations is shown in Fig. 2 . As explained in detail in [20] , compres- 
sion of the micropillar with the film in the 45 ◦ orientation results 
in a nominal simple shearing boundary condition imposed on it; 
compression with the film in the 90 ◦ orientation results in com- 
pression boundary conditions on the film, with restrained lateral 
movement at its top and bottom boundaries. The two configura- 
tions result in dramatically different observations of size effects, 
which we recover. 

This paper is organised as follows: the following paragraph con- 
tains some notational details. Section 2 recalls the MFDM govern- 
ing equations, boundary, and initial conditions. For details on the 
physical basis of the model and the computational framework, the 
interested reader is referred to [4,5,7] . Section 3 shows the scaling 
obtained for applied nominal stress with thin film thickness, for 
both 90 ◦ and 45 ◦ orientations of the film, and provides a mech- 
anistic explanation for the observations. It is also shown that a 
free-standing film under simple shear produces normal stress, as 
observed in metal bars under torsion [8] , and the Poynting effect 
in non-linear elastic solids [21] . Section 4 contains some conclud- 
ing remarks. 

Vectors and tensors are represented by bold face lower and 
upper-case letters. The action of a second order tensor A on a vec- 
tor b is denoted by Ab. The inner product of two vectors is denoted 
by a · b, while the inner product of two second order tensors is 

Fig. 2. Schematic of idealized plane strain model of micropillar compression exper- 
iments. 
denoted by A : B . A rectangular Cartesian coordinate system is in- 
voked for ambient space and all (vector) tensor components are 
expressed with respect to the basis of this coordinate system. (·) ,i 
denotes the partial derivative of the quantity (·) w.r.t. the x i coordi- 
nate of this coordinate system. e i denotes the unit vector in the x i 
direction. The time derivative of a quantity is denoted by ˙ (·) . Ein- 
stein’s summation convection is always implied, unless mentioned 
otherwise. The symbols grad , div , and curl denote the gradient, di- 
vergence, and curl on the current configuration. For a second order 
tensor A , vectors v , a , and c, a spatially constant vector field b, the 
operations of div , curl , and cross-product of a tensor (×) with a 
vector are defined as follows: 
( div A ) · b = div (A T b ), ∀ b 
b · ( curl A ) c = [curl (A T b )] · c, ∀ b, c 
c · ( A × v ) a = [(A T c ) × v ] · a , ∀ a , c. 
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In rectangular Cartesian coordinates, these are denoted by 

( div A ) i = A i j, j , 
( curl A ) ri = ε i jk A rk, j , 
( A × v ) ri = ε i jk A r j v k , 
where ε i jk are the components of the third order alternating tensor 
X . 
2. Theory 

The governing equations for MFDM [7] are as follows: 
α̊ ≡ ( div ( v )) α + ˙ α − αL T = − curl (α × V + L p ) (3a) 
W = χ + grad f , F e = W −1 

curl χ = −α
div χ = 0 

}
(3b) 

div (grad ˙ f ) = div ( α × V + L p − ˙ χ − χL ) (3c) 
div [ T (W ) ] = { 

0 quasistatic 
ρ ˙ v dynamic . (3d) 

Here, F e is the elastic distortion tensor and W is its inverse, 
χ is the incompatible part of W , f is the plastic position vector, 
and grad f is the compatible part of W . α is the dislocation den- 
sity tensor, v is the material velocity, L = grad v is the velocity gra- 
dient, T is the (symmetric) Cauchy stress tensor, while L p is the 
additional mesoscale field which represents the averaged rate of 
plastic straining due to all dislocations that cannot be represented 
by α × V , where both fields in the product represent space-time 
running averages. The fields in the MFDM framework are the run- 
ning space-time averages of corresponding fields of FDM theory. 

To close the above set of equations, constitutive statements for 
V , L p , T are used consistent with the mechanical dissipation being 
non-negative [5] . 

In the present work, plastic straining in accordance with J 2 
plasticity theory is augmented with the regularizing effects of an 
idealization of microscopic dislocation core energy todefine L p . 

Initial conditions for α, f and boundary conditions for α, f , χ
and v are specified for well-set evolution. 
2.1. Boundary conditions 
• The α evolution equation has a convective boundary condition 

of the form (α × V + L p ) × n = #, where # is a second order 
tensor valued function of time and position on the boundary 
characterising the flux of dislocations at the surface satisfying 
the constraint #n = 0 . Here, n is the outward unit normal field 
on the boundary. 
There are two ways in which the boundary condition is speci- 
fied: (a) Constrained : #(x , t) = 0 at a point x on the boundary 
for all times, which ensures that there is no outflow of dislo- 
cations at that point of the boundary, and only parallel mo- 
tion along the boundary is allowed. (b) Unconstrained : A less 
restrictive boundary condition where ˆ L p × n is simply evalu- 
ated at the boundary (akin to an outflow condition), along with 
the specification of dislocation flux α(V · n ) on the inflow part 
of the boundary. Additionally, for all calculations presented in 
this paper ( curl α × n ) = 0 is imposed, a particular specification 
of a boundary condition that arises from simple mathematical 
modeling of the manifestation of dislocation core energy at the 
mesoscale. 

Table 1 
Constitutive relations for Cauchy stress and core energy density. 

Saint-Venant-Kirchhoff Material φ(W ) = 1 
2 ρ∗ E e : C : E e , T = F e [ C : E e ] F e T 

Core energy density Y(α) = 1 
2 ρ∗ εα : α

Table 2 
Constitutive relations for plastic strain rate L p . 

J 2 plasticity ˆ L p = ˆ γW T ′ 
| T ′ | ; ˆ γ = ˆ γ0 ( | T ′ | √ 

2 g ) 1 m 
L p = ̂  L p + l 2 ̂  γ curl α

Table 3 
Constitutive relations for dislocation velocity V . 

T ′ i j = T i j − T mm 
3 δi j ; a i = 1 

3 T mm ε i jk F e jp αpk ; c l = ε i jk T ′ jr F e rp αpk 
d = c − (c − a 

| a | ) a 
| a | ; V = ζ d 

| d| ; ζ = ( µ
g ) 2 η2 b ̂ γ

Table 4 
Constitutive relations for material strength g. 

˙ g = h (α, g)(| F e α × V | + ̂  γ ) ; h (α, g) = µ2 η2 b 
2(g − g 0 ) k 0 | α| + *0 ( g s − g 

g s − g 0 ) 
• For the incompatibility equation, χn = 0 is applied on the outer 

boundary of the domain, which along with the system (3b) en- 
sures that χ vanishes when α is zero in the entire domain. 

• The f evolution equation requires a Neumann boundary con- 
dition i.e., ( grad ˙ f ) n = (α × V + L p − ˙ χ − χL) n on the outer 
boundary of the domain. 

• The material velocity boundary conditions are applied based on 
the loading type, which is discussed later in Section 3 . 

2.2. Initial conditions 
• The initial condition α(x , 0) = 0 is assumed for all sample sizes. 
• In general, the initial condition for f is obtained by solving for 

χ from the incompatibility equation and solving for f from the 
equilibrium equation, for prescribed α on the given initial con- 
figuration. We refer to this scheme as the elastic theory of con- 
tinuously distributed dislocations (ECDD). For the initial con- 
ditions on α considered above, this step is trivial, with f = X , 
where X is the position field on the initial configuration. 

• The model admits an arbitrary specification of ˙ f at a point to 
uniquely evolve f using (3c) in time, and this rate is prescribed 
to vanish. 

2.3. Constitutive relations 
Constitutive relations in MFDM are required for the stress T , the 

plastic distortion rate L p , and the dislocation velocity V . The details 
of the thermodynamically consistent constitutive formulations can 
be found in Section 3.1 of [5] . Table 1 presents the constitutive re- 
lation for Cauchy stress and mesoscopic core energy density for the 
material. Tables 2 and 3 show the constitutive relations for plastic 
distortion rate and dislocation velocity, respectively. Table 4 shows 
the evolution equation for material strength. 

The physical meanings of the material parameters in our model 
are: µ is the shear modulus, ˆ γ0 is the reference strain rate, m is the 
material rate sensitivity, η is a non-dimensional material constant 
in the empirical Taylor relationship for macroscopic strength vs 
dislocation density, b is the Burgers vector magnitude of a full dis- 
location in the crystalline material, g 0 is the initial strength (initial 
yield stress in shear), g s is the saturation strength, *0 is the Stage 
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II hardening rate, k 0 (non-dimensional) characterizes the hardening 
rate due to geometrically necessary dislocations (GNDs), and l is a 
material length related to the gross modeling of mesoscale effects 
of dislocation core energy, and is defined as l 2 = ε/g 0 . 

All parameters in our model, except k 0 and l, are part of the 
constitutive structure of well-accepted models of classical plasticity 
theory. The parameter k 0 was introduced in [1] . The length scale 
l simply controls the refinement of the GND microstructure and 
does not play a physically significant role in our results. 
3. Results and discussion 

With reference to Fig. 2 , all micropillar compression simulations 
are performed on initial domain sizes of 5 µm × 10 µm, containing 
polycrystalline Cu thin films in 45 ◦ and 90 ◦ orientations. Four (ini- 
tial) thin film thicknesses of 0.5 µm, 0.8 µm, 1.0 µm, and 1.2 µm 
are considered in both orientations. Simulations of thin films with 
the same thicknesses and of 5 µm width in free-standing configu- 
rations are also performed, under compression and shear loading. 
The nominal compression loading rate is | ̂ e | = 0 . 001 s −1 for both 
micropillar and free-standing film configurations, and the simple 
shear loading rate is ˆ + = 0 . 001 s −1 , for the free-standing films. At 
any time t , the nominal compressive strain is | e | = | ̂ e | t , while the 
nominal shear strain is + = ˆ +t . 

For the micropillar simulations, the interfaces between the thin 
film and the ceramic blocks are assumed to be plastically uncon- 
strained. For the free-standing films, the top/bottom boundaries 
are plastically constrained, while the left/right boundaries are plas- 
tically unconstrained. 

The boundary conditions for material velocity for the micropil- 
lar simulations are as follows: 
• v 1 = v 2 = 0 at the bottom boundary of the domain. 
• v 2 = −| ̂ e | L at the top boundary of the domain, where L is the 

height of the pillar in the (undeformed) initial configuration at 
t = 0 . 

• The applied traction in the horizontal direction is zero on the 
top boundary of the domain. 
For the free-standing thin films under compression loading, the 

boundary conditions are as follows: 
• v 1 = v 2 = 0 at the bottom boundary of the domain. 
• v 1 = 0 and v 2 = −| ̂ e | L at the top boundary of the domain. The 

lateral constraint v 1 = 0 on the top and bottom boundaries is 
imposed to model the effects of resistance to material flow 
along the width of the film due to the ceramic blocks. 
For the free-standing thin films under simple shear loading, the 

boundary conditions are [6] : 
• v 1 = v 2 = 0 at the bottom boundary of the domain. 
• v 1 = ˆ +L and v 2 = 0 at the top boundary of the domain. 
• v 1 = ˆ +y and v 2 = 0 at the left and right boundaries of the do- 

main, where y is the difference between the x 2 coordinate of 
any point on the boundary with respect to the bottom bound- 
ary. 
We also define the yield strength in compression (σ0 ) in 

terms of the yield strength in shear (g 0 ) for different cases: σ0 = 
1 . 14 √ 

3 g 0 for the free standing film under compression and for the 
micropillar sandwich with 90 ◦ orientation, while σ0 = 2 g 0 for the 
micropillar sandwich with 45 ◦ orientation. 

We then define τ as the nominal reaction shear stress in the e 1 
direction on the top boundary of the free-standing film, while σ as 
the nominal reaction stress in the e 2 direction on the top boundary 
of the micropillar sandwich with 90 ◦ film orientation. For the mi- 
cropillar sandwich with 45 ◦ film orientation, τ = 0 . 5 σ is the corre- 
sponding applied nominal shear stress, calculated based on stress 
tensor transformation in a ‘global’ sense. 

The parameter values used for all the simulations here are given 
in Table 5 (identical to [6] for the metal) and Table 6 for the ce- 
ramic. These are the typical material constants for copper and sili- 
cate ceramics. Here, E and ν are the Young’s modulus and the Pois- 
son’s ratio of the materials. 
3.1. Size effects 

We begin with the size effect results for the free-standing thin 
films under simple shear and compression loadings. These simula- 
tions are an idealization of the compression experiments on sand- 
wiched thin films in the 45 ◦ and 90 ◦ orientations within micropil- 
lars. These simplified cases already provide the basic explanation 
for the different behavior of the micropillars with thin films in 
the two orientations. As mentioned earlier, the constrained bound- 
ary conditions reflect the constraints of the ceramic blocks on the 
films. Without these constraints the deformation is essentially ho- 
mogeneous and no size effect is observed. In the case of compres- 
sion of free-standing films, a weak size effect is observed when 
no lateral constraint on material velocity is applied at the top and 
bottom boundaries but with the no plastic flow condition in ef- 
fect, and this is similar to the size effect in case of simple shearing 
( Fig. 3 ) of free-standing films. The shear results were also obtained 
in [ 6 , Sec. 4.1], in accord with the experimental trends for the film 
in the 45 ◦ orientation. With the lateral b.c. constraint on material 
velocity in compression, a strong size effect in compression, shown 
in Fig. 4 , is observed. As already observed in [20] , this is essentially 
due to the inhomogeneous lateral material deformation, from the 
top and bottom boundaries to the center of the film, induced by 
the material velocity boundary conditions on the film; such inho- 
mogeneity is absent in simple shear loading with the no-plastic 
flow constraint. In both cases, we observe that the metal film with 
the smallest thickness hardens the most, due to higher gradients 
in L p for smaller domain sizes (by scaling arguments). 

An important point about the no-plastic flow b.c., related to 
the geometric understanding of plastic strain rate produced by the 
motion of dislocation lines, is that it does not restrict a simple 
shearing plastic flow mode in any way [2,14] . MFDM is faithful to 
this requirement in its b.c. implementation (whereas SGP theories 
known to us are not). Thus, as explained in [6] , the GND boundary 
layer arises at a boundary, with normal say in the 2 direction and 
under 12 simple shearing, due to the activation of 21 components 
of plastic straining in J 2 plasticity under a T 12 shear stress. Hence, 
save for this feature, it would not be possible to produce inhomo- 
geneous flow, and hence size effects, under simple shearing con- 
ditions even with the no-plastic-flow b.c. in place. Regardless, the 
inhomogeneity is much stronger in the case of compression with 
lateral b.c constraint on material velocity, and hence the size ef- 
fects in simple shear are much weaker than that in compression 
with lateral constraint. 

In fact, in the more complex micropillar deformations to be 
subsequently discussed, essentially the same argument holds. In 
pillar compression with film in the 45 ◦ orientation, simple shear- 
ing deformation conditions are realized on the film on average 
even with a no-plastic-flow condition imposed due to the presence 
of ceramic layers, and a much weaker size effect is observed, in 
comparison to pillar compression with film in the 90 ◦ orientation 
where the lateral constraint on material deformation is imposed 
due to the presence of the ceramic blocks. 

With this basic understanding of the gross behavior, we then 
model the compression of the various micropillar configurations. 
Interestingly, we again recover the size-effect trends observed in 
experiment, but we demonstrate significant differences in local 
mechanical fields, in comparison to the free-standing films, that we 
describe in Section 3.2 . 
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Fig. 3. (a) Stress-strain curve in simple shear of the free-standing film for different film thickness (H) . (b) Power law fitted for the stress vs film thickness ( (τ − g 0 ) /g 0 = 
a H m ) at 10%–40% strain. The first and second term in the legend denote the strain and magnitude of power law exponent (| m | ) , respectively. 

Fig. 4. (a) Stress-strain curve in compression of the free-standing film for different film thickness (H) . (b) Power law fitted for the stress vs film thickness ( (σ − σ0 ) /σ0 = 
a H m ) at 5%–15% strain. The first and second term in the legend denote the strain and magnitude of power law exponent (| m | ) , respectively. 

Fig. 5. (a) Stress-strain curve in compression of the micropillar sandwich with 90 ◦ film orientation and for different film thickness (H) . (b) Power law fitted for the stress 
vs film thickness ( (σ − σ0 ) /σ0 = a H m ) at 1%–6% strain. The first and second term in the legend denote the strain and magnitude of power law exponent (| m | ) , respectively. 
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Table 5 
Material parameters for metal. 

Parameter ˆ γ0 ( s −1 ) m η b( ̊A) g 0 (MPa) g s (MPa) *0 (MPa) k 0 l( µm ) E(GPa) ν

Value 0.001 0.03 1 
3 4.05 17.3 161 392.5 20 √ 

3 × 0 . 1 62.78 0.3647 

Fig. 6. Norm of Logarithmic strain tensor (| ln (V ) | ) at 6% compression strain (| e | ) for the micropillar sandwich with 90 ◦ film orientation for different film thickness (H) , and 
comparison of the deformed shape with the experimental results [25] . (Figure in (b) reprinted from Zhang et al. [25] with permission from Elsevier ). 

Table 6 
Material parameters for ceramic. 

Parameter E (GPa) ν

Value 110.0 0.20 
Fig. 5 shows the stress-strain curves and the fitted power 

law relationship between the stress and film thickness i.e., (σ −
σ0 ) /σ0 = a H m . Here, | m | approaches 1.0 at 6% overall strain, and 
the same value for the exponent is reported in the experimental 
work of Meng and co-workers [20] on Cu-CrN as-deposited mi- 
cropillars, shown in Fig. 1 (a). As shown in Fig. 6 , for the micropil- 
lar sandwich with the thin film in the 90 ◦ orientation, the film 
keeps bulging out with increase in the applied compressive strain, 
as similarly observed in the post test scanning electron microscope 
images of Cu interlayers in [25] . Fig. 6 also shows the norm of the 
Logarithmic strain tensor, | ln (V ) | at 6% overall compression strain 
for different film thickness, where V is the left stretch tensor of 
the Polar Decomposition of the deformation gradient F from the 
initial configuration at t = 0 . 

Fig. 7 (a) shows the stress-strain response for micropillars with 
the metal thin film in the 45 ◦ orientation, and Fig. 7 (b) shows the 
fitted power-law relationship between the applied nominal shear 
stress (τ = 0 . 5 σ ) and film thickness i.e., (τ − g 0 ) /g 0 = a H m . The 
magnitude of the power-law exponent (| m | ) decreases from 0.728 
to 0.347 as | e | increases from 1 . 0% to 3 . 0% . The | m | obtained at 
3 . 5% strain is 0.395, however, if only samples with H > = 0 . 8 µm 
are considered, then | m | obtained will be close to zero. The simu- 
lations were stopped as the metal film region was close to pen- 
etration into the elastic blocks as shown in Fig. 8 . The mag- 
nitude of the power-law exponent reported in [20] for the 45 ◦
orientation pillar with as-deposited samples is 0.2, as shown in 

Fig. 1 (b). Upon further straining, if possible without penetration, 
the value of power-law exponent ( m ) will reduce. This can be jus- 
tified based on the reducing trend in the value of m observed 
for the simple shearing of free-standing films. The value of m re- 
duces to 0.0907 at 40% strain ( Fig. 3 of this paper). Similar trends 
for the value of m were also obtained with increase in strain in 
[ 6 , Fig. 3]. 

Our model for the plastic straining due to statistical dislocations 
(i.e. L p ) is phenomenological and it is expected that as the overall 
length scale over which plastic flow occurs decreases, the contribu- 
tion of L p in the total plastic strain rate for the model should de- 
crease (physically, there are fewer and fewer sources, but the phe- 
nomenological J 2 plasticity model assumes that there is an abun- 
dant supply of sources, and all that is required is stress to mobilize 
them). This is not accounted for in the current model and at small 
scales, e.g. H = 0 . 5 µm , there is excessive hardening due to higher 
gradients in L p . 

An eventual reduction in the hardening modulus in the shear 
stress-strain response in Fig. 7 (a) is observed, approaching a ‘flat’ 
response on average, but not the shear stress plateau as experi- 
mentally observed by Mu et al. [20] . Our model does not have 
a failure model for the interfacial regions which would be capa- 
ble of demonstrating such response under the intense local shear- 
ing observed in the experiments and in the simulations. Kuroda 
et al. [17] are able to demonstrate the observed plateau for the film 
in the 45 ◦ orientation in the micropillar; a small value of the hard- 
ening modulus is employed in their calculations, a material de- 
scription that would be hard-pressed to reproduce the stress-strain 
behaviour of polycrystalline copper for macroscopic pillar and film 
sizes. 

For brevity, the comparisons of the size effects obtained from 
our simulations with those obtained in the experimental work of 
[20] are shown in Table 7 . 
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Fig. 7. (a) Stress-strain response in compression of the micropillar sandwich with 45 ◦ orientation and for different film thickness (H) . (b) Power law fitted for the stress vs 
film thickness ( (τ − g 0 ) /g 0 = a H m ) at 1%–3.5% strain. The first and second term in the legend denote the strain and magnitude of power law exponent (| m | ) , respectively. 

Table 7 
Magnitude of power law exponent in size effect results from our simulations (before self-contact 
of metal films into elastic blocks, particularly, for micropillar with 45 ◦ orientation) and experi- 
ments [20] . 

Magnitude ofpower law exponent Our simulation(before self-contact) Experiment [20] 
Micropillar 45 ◦ orientation 0.395 0.2 
Free-standing film (shearing) 0.0907 
Micropillar 90 ◦ orientation 1.0 1.0 
Free-standing film (compression) 0.5519 

3.2. Local fields in the free-standing film vs. the micropillar sandwich 
In this section, we show the significant differences in the local 

mechanical response of the free-standing films and the micropillar- 
film sandwich (which, nevertheless, produce the same qualitative 
size effects, as already shown). 

When comparing the local fields for the micropillar sandwich with 
the film in the 45 ◦ orientation and the free-standing film, the film for 
the micropillar case is rotated by 45 ◦ in an anti-clockwise sense, for 
the ease of visualization . 

In the following, we define | e m | (the subscript m stands for 
metal) as the nominal compressive strain in the metal film corre- 
sponding to a given nominal compressive strain ( | e | ) for the entire 
domain - for the free-standing film, | e m | = | e | . As discussed earlier, 
for the micropillar sandwich, | e | is the magnitude of the engineer- 
ing compressive strain calculated from the applied boundary con- 
dition on the top of the pillar and the initial length of the pillar. 

We also define +m as the nominal shear strain in the metal film 
for the micropillar sandwich as well as the free-standing film. 
3.2.1. Micropillar with thin film in the 90 ◦ orientation 

Fig. 8 compares the ρg := | α| /b (GND) field plots at | e m | = 15% 
compressive strain in the metal film for the free-standing film and 
the micropillar sandwich. Excess dislocation boundary layers are 
absent in the micropillar film configuration. They arise in the free- 
standing films due to no-flow boundary conditions. The ρg patterns 
observed in the micropillar film are driven by the deformation in- 
homogeneity induced by the the resistance to horizontal material 
flow at the boundaries of the film with the ceramic blocks. 

Fig. 9 shows the von Mises stress and Fig. 10 the hydrostatic 
stress fields (both normalised with yield stress) at | e m | = 15% in 
the metal film for the free-standing film and the micropillar sand- 

Fig. 8. The deformed mesh for the micropillar with 45 ◦ orientation for H = 0 . 5 µm 
at | e | = 3 . 8% , when the film material is close to penetrating into ceramic blocks. 
wich. The magnitude of σv for the free-standing film in Fig. 9 is 
higher at the top/bottom boundary of the thin film. The hydrostatic 
stress is higher in the case of the free-standing film as compared 
to the micropillar case. The constraint to lateral motion at the top 
and bottom boundaries of the film is softer for the film in the mi- 
cropillar sandwich, which results in the generation of less hydro- 
static stress. 
3.2.2. Micropillar with thin film in the 45 ◦ orientation 

Fig. 11 shows the deformed mesh and the nominal shear strain 
( +m ) in the metal film at | e | = 3 . 5% compressive strain, for differ- 
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Fig. 9. ρg = | α| /b (m −2 ) at | e m | = 15% in the metal film for the free-standing film and the micropillar sandwich with 90 ◦ orientation. The corresponding | e | for the micropillar 
is 1 . 56% . 

Fig. 10. von Mises stress at | e m | = 15% in the metal film for the free-standing film and the micropillar sandwich with 90 ◦ orientation. The corresponding | e | for the micropillar 
is 1 . 56% . 

Fig. 11. Hydrostatic stress at | e m | = 15% in the metal film for the free-standing film and the micropillar sandwich with 90 ◦ orientation. The corresponding | e | for the 
micropillar is 1 . 56% . 
ent film thickness. Under increased compression, the film mate- 
rial near the lateral boundaries of the micropillar rotate excessively 
due to the shearing and (damage-free) constraint of the ceramic 
blocks. The calculations are stopped when the film material is close 
to penetrating the ceramic blocks, as shown in Fig. 12 . Although 
the magnitude of | e | is not that high, +m in the metal film is very 

large. For instance, at | e | = 3 . 5% , +m in the metal film is 102% for 
H = 0 . 5 µm , while it is 39% for H = 1 . 2 µm . 

Fig. 13 shows field plots of the norm of the Logarithmic strain 
tensor ( | ln (V ) | ) in the film within the micropillar, at | e | = 3 . 5% 
nominal compressive strain. As expected, for the smaller thickness, 
the magnitude of | ln (V ) | is higher as the nominal shear strain in 
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Fig. 12. Nominal shear strain ( +m ) in the film at | e | = 3 . 5% for micropillar with 45 ◦ orientation, for different film thickness (H) . The green solid line denotes an undeformed 
line, while the cyan solid line denotes the corresponding deformed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 13. Norm of Logarithmic strain tensor (| ln (V ) | ) at 3.5% compression strain in the micropillar sandwich with 45 ◦ orientation, for different film thickness (H) . The solid 
red line shows the boundary of the undeformed metal thin film. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
the metal film is higher for smaller thickness (for equal lateral dis- 
placement). 

Fig. 14 shows the ρg field plots at +m = 30% for the free- 
standing film and the micropillar sandwich with 45 ◦ orientation. 
As for the 90 ◦ orientation case, there are no boundary layers in 
the film within the micropillar here, while they are present for the 
free-standing film. 

Fig. 15 and 16 respectively show the von Mises stress (σv ) and 
the hydrostatic stress (σh ) field plots for the free-standing and mi- 
cropillar sandwich configurations. 
3.3. Hydrostatic and normal stress in shear 

In small deformation elasticity or metal plasticity, shearing in- 
duced normal stresses are rarely observed. However, such cou- 
plings are observed in finite elastic [21] and plastic [8] deforma- 
tions. We explore such possibilities in our simulations of sim- 
ple shearing of free-standing films and compression of micropil- 
lar sandwich with 45 ◦ film orientation. To do so, we define the 
‘driving’ stress ( σ ap 

2 ) in both configurations as the average reaction 
stress in the vertical direction on the top boundary of the domain. 
The averages of the various components of the Cauchy stress ten- 
sor over the metal film are also defined as ( σ a v g 

1 , σ a v g 
2 , σ a v g 

3 , τ a v g ), 
denoting the averages of the ( T 11 , T 22 , T 33 , T 12 ) components, respec- 

tively. The averaged generated hydrostatic stress in the film is de- 
noted by σ a v g 

h . 
The values of the driving stress and the averages of gener- 

ated stress components for the micropillar sandwich and the free- 
standing film at +m = 30% are reported in Table 8 . The state of 
loading is multi-axial for both the micropillar sandwich and the 
free-standing film. However, the ‘average stress state’ in the case 
of the micropillar sandwich is more hydrostatic (confined) in na- 
ture, while it is predominantly shear driven for the free-standing 
film, as also shown in Fig. 16 . The magnitude of hydrostatic stress 
in the free-standing film is much smaller than in the film in the 
micropillar, primarily due to the applied compressive loading on 
the pillar; nevertheless, the free-standing film generates compres- 
sive normal reactions at the boundary, for solely applied shear ve- 
locity boundary conditions (along with a constraint to motion of 
the boundary in the normal direction, of course). 

Despite this significant difference, the averaged hydrostatic 
stress normalized by the driving normal stress is of the same order 
of magnitude for both cases: 
σ a v g 

h /σ ap 
2 = 0 . 474 , (Micropillar Sandwich) (4a) 

σ a v g 
h /σ ap 

2 = 0 . 497 (Free-Standing Film) (4b) 
9
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Fig. 14. ρg = | α| /b (m −2 ) at +m = 30% in the metal film for the micropillar sandwich with 45 ◦ orientation and for the free-standing film. The corresponding | e | for the 
micropillar is 1 . 15% , and the solid red line in (a) shows the boundary of the undeformed metal thin film. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 15. von Mises stress at +m = 30% in the metal film for the micropillar sandwich with 45 ◦ orientation and for the free-standing film. The corresponding | e | for the 
micropillar is 1 . 15% , and the solid red line in (a) shows the boundary of the undeformed metal thin film. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 16. Hydrostatic stress at +m = 30% in the metal film for the micropillar sandwich with 45 ◦ orientation and for the free-standing film. The corresponding | e | for the 
micropillar is 1 . 15% , and the solid red line in (a) shows the boundary of the undeformed metal thin film. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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Table 8 
Driving stress and averaged stress components in the micropillar sandwich and the free- 
standing film at +m = 30% . 

Specimen σ ap 
2 /σ0 σ avg 

1 /σ0 σ avg 
2 /σ0 σ avg 

3 /σ0 τ avg /σ0 σ avg 
h /σ0 

Micropillar sandwich -6.086 -0.122 -6.241 -2.283 0.109 -2.882 
Free-standing film -0.048 -0.01 -0.035 -0.026 2.912 -0.024 

Fig. 17. Normal and transverse reaction stress on the top boundary of the free- 
standing film subjected to simple shearing, for H = 0 . 5 µm. 

(considering a normalization by applied stress component nor- 
mal to the film in the micropillar increases the result by a factor 
of 2). This suggests a unifying ‘collapse’ of data for understanding 
normal stress effects in nominal simple shearing, produced by sig- 
nificantly different applied loading conditions. 

The normal stress observed here arises as a combination of the 
Swift effect [8] and the Poynting effect [21] . One way to think 
about how these normal stresses are generated in the free-standing 
film is as follows: the T 22 component of the Cauchy stress tensor 
is non-zero, a nonlinear elastic Poynting effect to begin with. This 
further generates T ′ 22 and T ′ 11 components of the deviatoric stress 
tensor, and these components of stress generate plastic straining 
in the L p 11 and L p 22 components. However, due to the deformation 
constraints imposed by the simple shear boundary conditions in 
the x 1 -direction on the lateral sides of the specimen, and the x 2 - 

Fig. 18. Stress-strain curve for the micropillar sandwich with 45 ◦ orientation for 
H = 0 . 8 µm case and with C and UC metal-ceramic interface. 
direction on the top and bottom of the domain, further T 11 and T 22 
components of stress are generated. All of this combined generates 
a non-zero hydrostatic stress field and the idealized Swift effect 
shown in Fig. 17 , in simple shearing of the free-standing films. 
3.4. Effect of b.c.s on plastic flow in the micropillar sandwich 

Fig. 18 shows the stress-strain curve and Fig. 19 shows the (ρg ) 
field plots at | e | = 3 . 5% , for H = 0 . 8 µm , and for both the plastically 
constrained (C) and unconstrained (UC) metal-ceramic interfaces. 
The stress-strain response for the constrained case is marginally 
harder as compared to the unconstrained case. For the constrained 
case, there is a thin boundary layer in ρg field at the metal-ceramic 

Fig. 19. ρg = | α| /b (m −2 ) at | e | = 3 . 5% for H = 0 . 8 µm with C and UC metal-ceramic interface. The solid red line shows the boundary of the undeformed metal thin film. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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interface. The effect of the interface condition is not prominent 
here due to strong heterogeneity in plastic flow across the in- 
terface, and hence, having an elastic-plastic interface with plastic 
flow unconstrained has more or less the same effect as a plas- 
tically constrained interface. This is borne out also in the sim- 
ple shear loading of free-standing films, where the effect of con- 
strained/unconstrained boundary condition is much more promi- 
nent in stress-strain response, as shown by Arora and Acharya 
[6] (refer to Fig. 6(b) in their paper), due to the absence of con- 
straining elastic material. 

Similar effects were observed in the study of mechanical re- 
sponse of multi-crystalline thin films in [22] . It was observed there 
that the effect of constrained/unconstrained grain boundary con- 
ditions on the stress-strain response decreased on increasing the 
misorientation between adjacent grains, as the plastic flow through 
a grain boundary decreases with increase in the misorientation. 
4. Conclusion 

We have reported the first successful mechanistic understand- 
ing, through computational modeling, of experimentally observed 
effects of orientation in size effects of micropillar confined metal 
thin films undergoing large plastic deformations. The results re- 
ported in the work of Mu et al. [20] form the motivation and ex- 
perimental basis of our work. 

Our contributions to the modeling and mechanistic understand- 
ing of such size effects in micropillar confined metal thin films are 
as follows: 
• The experimentally observed size effects obtained for the mi- 

cropillar sandwich with thin films in two different orientations 
are dramatically different. Our simulations reproduce such size 
effects, and we provide a simple mechanistic explanation of 
why this must be the case. The size effect in the micropillar 
with a 90 ◦ oriented film (compression) is stronger, as com- 
pared to the one with a 45 ◦ oriented film (shearing), due to 
the stronger lateral constraint to material deformation imposed 
by the metal-ceramic interface for the compression case, which 
in turn causes more inhomogeneous deformation in the entire 
bulk of the film. This produces gradients in continued plastic 
straining which leads to more GND density and more harden- 
ing. In contrast, for the nominally simple-sheared film, whether 
in the micropillar configuration or free-standing, neither is a 
strong lateral constraint on material deformation available (just 
by geometrically intuitive reasons), nor is a constraint from the 
imposition of no plastic flow boundary conditions, as explained 
in Section 3.1 . Hence, very modest size effects are observed in 
simple shear. Moreover, any theory that does not incorporate 
this geometric fact in the imposition of plastic flow b.c.s can- 
not differentiate between the differing constraints under direct 
compression and simple shearing, such plastic flow b.c. con- 
straints being one of the sources for the differing observed size 
effects in overall pillar compression with films in 45 ◦ and 90 ◦
orientations (to loading axis). 
The above lends valuable insight and understanding, of both 
scientific and technological value, into the mechanisms of size- 
dependent, large deformation plasticity at small scales and 
at engineering time-scales, not obtained by any other effort s 
known to us. 
In the current state-of-the-art of SGP theories, in one approach 
a threshold switch is introduced depending on the magnitude 
of plastic strain gradient at boundaries, based on which plas- 
tic straining is disallowed/allowed at the boundaries. Such a 
threshold is then fitted to experimental data for this set of ex- 
periments, but it is not clear what the microstructural justifica- 
tion of such a device might be, how to employ such a threshold 

under universal circumstances, and whether it breaks agree- 
ment of the theory with other experimental size-effect results 
in mesoscale plasticity. In another approach, a fractional SGP 
deformation theory of plasticity is proposed where the burden 
of prediction is left to the fitting of a new parameter of the 
theory whose microstructural origins is left unspecified. 
In contrast, no modification is made to the structure of the 
theory in our work, while being in good agreement with ex- 
periment and providing simple mechanistic understanding of a 
complex phenomena. 

• We demonstrate the Swift and Poynting effects in our simula- 
tions and provide a mechanistic understanding of it. 

• We make predictions of failure modes from our simulations for 
the micropillar sandwich in both orientations, and these are 
similar to those observed in the experimental works of [20] and 
[25] . 
The results obtained in this paper further strengthens the case, 

beyond [5–7,22–24] , for MFDM as an appropriate model for dislo- 
cation mediated mesoscale plasticity. A shortcoming that needs to 
be addressed is to improve our model for plastic straining due to 
statistical dislocations, L p , so that its effect diminishes at smaller 
length scales. 
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