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Micropillar compression experiments probing size effects in confined plasticity of metal thin films, includ-
ing the indirect imposition of ‘canonical’ simple shearing boundary conditions, show dramatically differ-
ent responses in compression and shear of the film. The Mesoscale Field Dislocation Mechanics (MFDM)
model is confronted with this set of experimental observations and shown to be capable of modeling
such behavior, without any ad-hoc modification to the basic structure of the theory (including boundary

Keywords: conditions), or the use of extra fitting parameters. This is a required theoretical advance in the current
Mesoscale dislocation mechanics state-of-the art of strain gradient plasticity models. It is also shown that significantly different inhomoge-
Plasticity neous fields can display qualitatively similar size effect trends in overall agreement with the experimental

Size effects

results. The (plastic) Swift and (elastic) Poynting finite deformation effects are also demonstrated.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Size-effects in confined plasticity of metal thin films sand-
wiched in ceramic micropillars have been demonstrated in the
work of Meng and co-workers [18-20]. Shear failure testing
of the interfacial regions of CrN/Cu/Si and CrN/Ti/Si ceramic-
coating/metal-adhesion layer/substrate systems through instru-
mented compression of cylindrical micropillars was reported in
[25]. The last thirty years have seen intense world-wide activity in
modeling size effects in metal plasticity at the microscale, initiated
by the Strain Gradient Plasticity (SGP) work of Fleck, Hutchinson
and co-workers [11]; the study of length-scale effects in plasticity
was initiated earlier by Aifantis [3] and co-workers. The confined
plasticity results in [20], however, have not been successfully mod-
eled by SGP as pointed out in [20], without rather drastic modifi-
cations to the structure of the theory and introducing extra fitting
parameters [15-17]. The aim of our work is to report on the rea-
sonably successful modeling of the experiments in [20] with the
Mesoscale Field Dislocation Mechanics theory [2,5-7], and to pro-
vide a mechanistic understanding of the observed effects within
the idealization of the model. We also analyze the mechanics of
local fields and other interesting results bearing on historically im-
portant observed effects in the large deformation of elastic-plastic
materials.
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Conventional plasticity models do not have a material length
scale and produce size-independent response (for homogeneous
materials). In SGP theory, the material response is assumed to de-
pend on both the plastic strain and its spatial gradient [10,12,13],
and the work conjugate of the plastic strain gradient is interpreted
to be a ‘microscopic stress,’” of unspecified physical origin. SGP the-
ories predict a much stronger dependence on the film thickness
under nominal simple shearing conditions compared to experi-
mental observations [18,20]. This prompted Kuroda and Needleman
[16] to introduce an ad-hoc modification to the constrained bound-
ary condition specification of SGP theory where it is assumed that
a threshold exists on the magnitude of the plastic strain gradient at
boundaries. Above this threshold, the constrained boundary condi-
tion is released and plastic straining is allowed at the boundaries -
as is clear, this threshold is not a material parameter, and it is not
clear what its validity is, and how it is to be determined, in gen-
eral modes of loading. Kuroda et al. [17] use this boundary condi-
tion in a finite deformation setting along with extensive fitting of
their model parameters to the data of [20] (including the classical
work-hardening modulus and the initial yield stress) to produce
results in accord with the experimental observations on compres-
sion of ceramic-metal thin film sandwich micropillars. Another ef-
fort to address this shortcoming of SGP theory is that of Dahlberg
and Ortiz [9] who introduce a fractional derivative of the effec-
tive plastic strain in the material response (a fractional SGP the-
ory), whose fractional exponent is intended as a fitting parameter
to recover the experimentally observed scaling of shear stress with
layer thickness. Arora and Acharya [6] used the finite deforma-
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Fig. 1. Micropillar experimental specimen and size effect results in both 90° and 45

Nature).

tion implementation [7] of MFDM theory, without any special fit-
ting beyond the use of generic material parameters used in MFDM
simulations of polycrystalline metals, to model constrained shear-
ing of a thin film. They recovered the observed size-effect trend in
[20] corresponding to the 45°-oriented thin film in the micropillar
experiments.

Moving beyond the simple thin film-only geometry, in this
work we use the MFDM framework to study the compression ex-
periments of [20], involving metal thin films sandwiched in ce-
ramic micropillars, within a plane-strain idealization. As in the ex-
periments, both 45° and 90° oriented thin films are considered.
The experimental specimen and the corresponding size effect re-
sults are shown in Fig. 1, and we compare the size effect results
from our simulations to results for the as-deposited samples. The
metal layer is sandwiched between two ceramic blocks above and
below it, and the whole composite is put under compression. The
schematic of pillars with the thin film in the 90° and 45° orien-
tations is shown in Fig. 2. As explained in detail in [20], compres-
sion of the micropillar with the film in the 45° orientation results
in a nominal simple shearing boundary condition imposed on it;
compression with the film in the 90° orientation results in com-
pression boundary conditions on the film, with restrained lateral
movement at its top and bottom boundaries. The two configura-
tions result in dramatically different observations of size effects,
which we recover.

This paper is organised as follows: the following paragraph con-
tains some notational details. Section 2 recalls the MFDM govern-
ing equations, boundary, and initial conditions. For details on the
physical basis of the model and the computational framework, the
interested reader is referred to [4,5,7]. Section 3 shows the scaling
obtained for applied nominal stress with thin film thickness, for
both 90° and 45° orientations of the film, and provides a mech-
anistic explanation for the observations. It is also shown that a
free-standing film under simple shear produces normal stress, as
observed in metal bars under torsion [8], and the Poynting effect
in non-linear elastic solids [21]. Section 4 contains some conclud-
ing remarks.

Vectors and tensors are represented by bold face lower and
upper-case letters. The action of a second order tensor A on a vec-
tor b is denoted by Ab. The inner product of two vectors is denoted
by a-b, while the inner product of two second order tensors is

o
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Fig. 2. Schematic of idealized plane strain model of micropillar compression exper-
iments.

denoted by A : B. A rectangular Cartesian coordinate system is in-
voked for ambient space and all (vector) tensor components are
expressed with respect to the basis of this coordinate system. (-) ;
denotes the partial derivative of the quantity (-) w.r.t. the x; coordi-
nate of this coordinate system. e; denotes the unit vector in the x;
direction. The time derivative of a quantity is denoted by (). Ein-
stein’s summation convection is always implied, unless mentioned
otherwise. The symbols grad, div, and curl denote the gradient, di-
vergence, and curl on the current configuration. For a second order
tensor A, vectors v, a, and ¢, a spatially constant vector field b, the
operations of div, curl, and cross-product of a tensor (x) with a
vector are defined as follows:

(divA) - b = div(ATb), Vb
b- (curld)c = [curl ATb) .c, Vbc
c-(Axva=|[(ATc)xv|-a, Vac



A. Arora, R. Arora and A. Acharya

In rectangular Cartesian coordinates, these are denoted by
(leA)I = Aij,js
(curlA),; = &ipAn. j»
(A x V) = &jiArjy,

where ¢;;, are the components of the third order alternating tensor

2. Theory

The governing equations for MFDM [7] are as follows:

& = (div(v))a + & — LT = — curl(at x V + LP) (3a)

W = x +grad f, Fe=W‘]}

curl y = —a (3b)
divy=0
div (grad f) = div (@ x V +LP — x — xL) (3¢c)
. _ [0 quasistatic
div[TW)] = {,oi} dynamic. (3d)

Here, F¢ is the elastic distortion tensor and W is its inverse,
X is the incompatible part of W, f is the plastic position vector,
and grad f is the compatible part of W. « is the dislocation den-
sity tensor, v is the material velocity, L = grad v is the velocity gra-
dient, T is the (symmetric) Cauchy stress tensor, while LP is the
additional mesoscale field which represents the averaged rate of
plastic straining due to all dislocations that cannot be represented
by a x V, where both fields in the product represent space-time
running averages. The fields in the MFDM framework are the run-
ning space-time averages of corresponding fields of FDM theory.

To close the above set of equations, constitutive statements for
V,LP, T are used consistent with the mechanical dissipation being
non-negative [5].

In the present work, plastic straining in accordance with J,
plasticity theory is augmented with the regularizing effects of an
idealization of microscopic dislocation core energy todefine LP.

Initial conditions for &, f and boundary conditions for «, f, x
and v are specified for well-set evolution.

2.1. Boundary conditions

» The « evolution equation has a convective boundary condition

of the form (& xV +LP) x n = ®, where ® is a second order
tensor valued function of time and position on the boundary
characterising the flux of dislocations at the surface satisfying
the constraint ®n = 0. Here, n is the outward unit normal field
on the boundary.
There are two ways in which the boundary condition is speci-
fied: (a) Constrained: ®(x,t) = 0 at a point ¥ on the boundary
for all times, which ensures that there is no outflow of dislo-
cations at that point of the boundary, and only parallel mo-
tion along the boundary is allowed. (b) Unconstrained: A less
restrictive boundary condition where LP x n is simply evalu-
ated at the boundary (akin to an outflow condition), along with
the specification of dislocation flux e¢(V - n) on the inflow part
of the boundary. Additionally, for all calculations presented in
this paper (curle x n) = 0 is imposed, a particular specification
of a boundary condition that arises from simple mathematical
modeling of the manifestation of dislocation core energy at the
mesoscale.
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Table 1

Constitutive relations for Cauchy stress and core energy density.
1

2p*

Saint-Venant-Kirchhoff Material — ¢(W) = E¢:C:E°, T=F°[C:E°]F’

Core energy density Y(a) = 2]76(1 ‘o

Table 2
Constitutive relations for plastic strain rate LP.

& o T LT "
P=pW——: P ==
Wi 710G

LP =P + Ppcurla

J> plasticity

Table 3
Constitutive relations for dislocation velocity V.

, T, 1 ,
T;=T;j- %&j: a; = 5 Tom&ijF,op: 0 = &ipT; oo

i 3 Jrirp
a_a d W2 5
d=c—(c— =) V=0 =(>) n*b
jalfa S c=Cgmby
Table 4
Constitutive relations for material strength g.
E=h@(FaxV|+7):  h@g = T2 k| +0y(E=E)
2(g—8) & — &

- For the incompatibility equation, yn = 0 is applied on the outer
boundary of the domain, which along with the system (3b) en-
sures that y vanishes when « is zero in the entire domain.

» The f evolution equation requires a Neumann boundary con-
dition ie., (gradf)n= (e xV +LP— x— xL)n on the outer
boundary of the domain.

« The material velocity boundary conditions are applied based on
the loading type, which is discussed later in Section 3.

2.2. Initial conditions

« The initial condition a(x,0) = 0 is assumed for all sample sizes.

- In general, the initial condition for f is obtained by solving for
x from the incompatibility equation and solving for f from the
equilibrium equation, for prescribed o on the given initial con-
figuration. We refer to this scheme as the elastic theory of con-
tinuously distributed dislocations (ECDD). For the initial con-
ditions on a considered above, this step is trivial, with f = X,
where X is the position field on the initial configuration.

- The model admits an arbitrary specification of f at a point to
uniquely evolve f using (3c) in time, and this rate is prescribed
to vanish.

2.3. Constitutive relations

Constitutive relations in MFDM are required for the stress T, the
plastic distortion rate LP, and the dislocation velocity V. The details
of the thermodynamically consistent constitutive formulations can
be found in Section 3.1 of [5]. Table 1 presents the constitutive re-
lation for Cauchy stress and mesoscopic core energy density for the
material. Tables 2 and 3 show the constitutive relations for plastic
distortion rate and dislocation velocity, respectively. Table 4 shows
the evolution equation for material strength.

The physical meanings of the material parameters in our model
are: | is the shear modulus, §; is the reference strain rate, m is the
material rate sensitivity, 7 is a non-dimensional material constant
in the empirical Taylor relationship for macroscopic strength vs
dislocation density, b is the Burgers vector magnitude of a full dis-
location in the crystalline material, g is the initial strength (initial
yield stress in shear), gs is the saturation strength, ®g is the Stage
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Il hardening rate, kg (non-dimensional) characterizes the hardening
rate due to geometrically necessary dislocations (GNDs), and [ is a
material length related to the gross modeling of mesoscale effects
of dislocation core energy, and is defined as I? = €/g.

All parameters in our model, except kg and [, are part of the
constitutive structure of well-accepted models of classical plasticity
theory. The parameter kg was introduced in [1]. The length scale
I simply controls the refinement of the GND microstructure and
does not play a physically significant role in our results.

3. Results and discussion

With reference to Fig. 2, all micropillar compression simulations
are performed on initial domain sizes of 5 pm x 10 pm, containing
polycrystalline Cu thin films in 45° and 90° orientations. Four (ini-
tial) thin film thicknesses of 0.5 ym, 0.8 pm, 1.0 pm, and 1.2 pym
are considered in both orientations. Simulations of thin films with
the same thicknesses and of 5 pm width in free-standing configu-
rations are also performed, under compression and shear loading.
The nominal compression loading rate is |é] = 0.001s~! for both
micropillar and free-standing film configurations, and the simple
shear loading rate is ' = 0.001s~!, for the free-standing films. At
any time t, the nominal compressive strain is |e| = |é|t, while the
nominal shear strain is I" = ’t.

For the micropillar simulations, the interfaces between the thin
film and the ceramic blocks are assumed to be plastically uncon-
strained. For the free-standing films, the top/bottom boundaries
are plastically constrained, while the left/right boundaries are plas-
tically unconstrained.

The boundary conditions for material velocity for the micropil-
lar simulations are as follows:

* 1 = 1, =0 at the bottom boundary of the domain.

» v = —|é|L at the top boundary of the domain, where L is the
height of the pillar in the (undeformed) initial configuration at
t=0.

The applied traction in the horizontal direction is zero on the
top boundary of the domain.

For the free-standing thin films under compression loading, the
boundary conditions are as follows:

* V1 = 1, =0 at the bottom boundary of the domain.

+ v; =0 and v, = —|é|L at the top boundary of the domain. The
lateral constraint v; =0 on the top and bottom boundaries is
imposed to model the effects of resistance to material flow
along the width of the film due to the ceramic blocks.

For the free-standing thin films under simple shear loading, the
boundary conditions are [6]:

* V1 =1, = 0 at the bottom boundary of the domain.

« v; =I'L and v, = 0 at the top boundary of the domain.

« v; =y and v, = 0 at the left and right boundaries of the do-
main, where y is the difference between the x, coordinate of
any point on the boundary with respect to the bottom bound-
ary.

We also define the yield strength in compression (og) in
terms of the yield strength in shear (gy) for different cases: oy =
1.14+/3g, for the free standing film under compression and for the
micropillar sandwich with 90° orientation, while oq = 2gg for the
micropillar sandwich with 45° orientation.

We then define t as the nominal reaction shear stress in the e;
direction on the top boundary of the free-standing film, while o as
the nominal reaction stress in the e, direction on the top boundary
of the micropillar sandwich with 90° film orientation. For the mi-
cropillar sandwich with 45° film orientation, T = 0.5¢ is the corre-
sponding applied nominal shear stress, calculated based on stress
tensor transformation in a ‘global’ sense.
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The parameter values used for all the simulations here are given
in Table 5 (identical to [6] for the metal) and Table 6 for the ce-
ramic. These are the typical material constants for copper and sili-
cate ceramics. Here, E and v are the Young’'s modulus and the Pois-
son’s ratio of the materials.

3.1. Size effects

We begin with the size effect results for the free-standing thin
films under simple shear and compression loadings. These simula-
tions are an idealization of the compression experiments on sand-
wiched thin films in the 45° and 90° orientations within micropil-
lars. These simplified cases already provide the basic explanation
for the different behavior of the micropillars with thin films in
the two orientations. As mentioned earlier, the constrained bound-
ary conditions reflect the constraints of the ceramic blocks on the
films. Without these constraints the deformation is essentially ho-
mogeneous and no size effect is observed. In the case of compres-
sion of free-standing films, a weak size effect is observed when
no lateral constraint on material velocity is applied at the top and
bottom boundaries but with the no plastic flow condition in ef-
fect, and this is similar to the size effect in case of simple shearing
(Fig. 3) of free-standing films. The shear results were also obtained
in [6, Sec. 4.1], in accord with the experimental trends for the film
in the 45° orientation. With the lateral b.c. constraint on material
velocity in compression, a strong size effect in compression, shown
in Fig. 4, is observed. As already observed in [20], this is essentially
due to the inhomogeneous lateral material deformation, from the
top and bottom boundaries to the center of the film, induced by
the material velocity boundary conditions on the film; such inho-
mogeneity is absent in simple shear loading with the no-plastic
flow constraint. In both cases, we observe that the metal film with
the smallest thickness hardens the most, due to higher gradients
in LP for smaller domain sizes (by scaling arguments).

An important point about the no-plastic flow b.c., related to
the geometric understanding of plastic strain rate produced by the
motion of dislocation lines, is that it does not restrict a simple
shearing plastic flow mode in any way [2,14]. MFDM is faithful to
this requirement in its b.c. implementation (whereas SGP theories
known to us are not). Thus, as explained in [6], the GND boundary
layer arises at a boundary, with normal say in the 2 direction and
under 12 simple shearing, due to the activation of 21 components
of plastic straining in J, plasticity under a T;, shear stress. Hence,
save for this feature, it would not be possible to produce inhomo-
geneous flow, and hence size effects, under simple shearing con-
ditions even with the no-plastic-flow b.c. in place. Regardless, the
inhomogeneity is much stronger in the case of compression with
lateral b.c constraint on material velocity, and hence the size ef-
fects in simple shear are much weaker than that in compression
with lateral constraint.

In fact, in the more complex micropillar deformations to be
subsequently discussed, essentially the same argument holds. In
pillar compression with film in the 45° orientation, simple shear-
ing deformation conditions are realized on the film on average
even with a no-plastic-flow condition imposed due to the presence
of ceramic layers, and a much weaker size effect is observed, in
comparison to pillar compression with film in the 90° orientation
where the lateral constraint on material deformation is imposed
due to the presence of the ceramic blocks.

With this basic understanding of the gross behavior, we then
model the compression of the various micropillar configurations.
Interestingly, we again recover the size-effect trends observed in
experiment, but we demonstrate significant differences in local
mechanical fields, in comparison to the free-standing films, that we
describe in Section 3.2.
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Table 5
Material parameters for metal.
Parameter  Po(s1!) m n b(A)  go(MPa)  g(MPa) ©¢(MPa) ko I(pm) E(GPa) v
Value 0.001 0.03 1 405 17.3 161 3925 20 V3x01 62.78 0.3647
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Fig. 6. Norm of Logarithmic strain tensor (|in(V)|) at 6% compression strain (|e|) for the micropillar sandwich with 90° film orientation for different film thickness (H), and
comparison of the deformed shape with the experimental results [25]. (Figure in (b) reprinted from Zhang et al. [25] with permission from Elsevier).

Table 6
Material parameters for ceramic.
Parameter  E (GPa) v
Value 110.0 0.20

Fig. 5 shows the stress-strain curves and the fitted power
law relationship between the stress and film thickness i.e., (o0 —
09)/0g = a H™. Here, |m| approaches 1.0 at 6% overall strain, and
the same value for the exponent is reported in the experimental
work of Meng and co-workers [20] on Cu-CrN as-deposited mi-
cropillars, shown in Fig. 1(a). As shown in Fig. 6, for the micropil-
lar sandwich with the thin film in the 90° orientation, the film
keeps bulging out with increase in the applied compressive strain,
as similarly observed in the post test scanning electron microscope
images of Cu interlayers in [25]. Fig. 6 also shows the norm of the
Logarithmic strain tensor, |In (V)| at 6% overall compression strain
for different film thickness, where V is the left stretch tensor of
the Polar Decomposition of the deformation gradient F from the
initial configuration at t = 0.

Fig. 7(a) shows the stress-strain response for micropillars with
the metal thin film in the 45° orientation, and Fig. 7(b) shows the
fitted power-law relationship between the applied nominal shear
stress (t = 0.50) and film thickness i.e., (T —gp)/go = aH™. The
magnitude of the power-law exponent (|m|) decreases from 0.728
to 0.347 as |e| increases from 1.0% to 3.0%. The |m| obtained at
3.5% strain is 0.395, however, if only samples with H >= 0.8 pm
are considered, then |m| obtained will be close to zero. The simu-
lations were stopped as the metal film region was close to pen-
etration into the elastic blocks as shown in Fig. 8. The mag-
nitude of the power-law exponent reported in [20] for the 45°
orientation pillar with as-deposited samples is 0.2, as shown in

Fig. 1(b). Upon further straining, if possible without penetration,
the value of power-law exponent (m) will reduce. This can be jus-
tified based on the reducing trend in the value of m observed
for the simple shearing of free-standing films. The value of m re-
duces to 0.0907 at 40% strain (Fig. 3 of this paper). Similar trends
for the value of m were also obtained with increase in strain in
[6, Fig. 3].

Our model for the plastic straining due to statistical dislocations
(i.e. LP) is phenomenological and it is expected that as the overall
length scale over which plastic flow occurs decreases, the contribu-
tion of LP in the total plastic strain rate for the model should de-
crease (physically, there are fewer and fewer sources, but the phe-
nomenological J, plasticity model assumes that there is an abun-
dant supply of sources, and all that is required is stress to mobilize
them). This is not accounted for in the current model and at small
scales, e.g. H = 0.5 wm, there is excessive hardening due to higher
gradients in LP.

An eventual reduction in the hardening modulus in the shear
stress-strain response in Fig. 7(a) is observed, approaching a ‘flat’
response on average, but not the shear stress plateau as experi-
mentally observed by Mu et al. [20]. Our model does not have
a failure model for the interfacial regions which would be capa-
ble of demonstrating such response under the intense local shear-
ing observed in the experiments and in the simulations. Kuroda
et al. [17] are able to demonstrate the observed plateau for the film
in the 45° orientation in the micropillar; a small value of the hard-
ening modulus is employed in their calculations, a material de-
scription that would be hard-pressed to reproduce the stress-strain
behaviour of polycrystalline copper for macroscopic pillar and film
sizes.

For brevity, the comparisons of the size effects obtained from
our simulations with those obtained in the experimental work of
[20] are shown in Table 7.
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Fig. 7. (a) Stress-strain response in compression of the micropillar sandwich with 45° orientation and for different film thickness (H). (b) Power law fitted for the stress vs
film thickness ((t — go)/go = a H™) at 1%-3.5% strain. The first and second term in the legend denote the strain and magnitude of power law exponent (|m|), respectively.

Table 7

Magnitude of power law exponent in size effect results from our simulations (before self-contact
of metal films into elastic blocks, particularly, for micropillar with 45° orientation) and experi-

ments [20].

Magnitude ofpower law exponent

Our simulation(before self-contact)

Experiment [20]

Micropillar 45° orientation 0.395 0.2
Free-standing film (shearing) 0.0907
Micropillar 90° orientation 1.0 1.0
Free-standing film (compression) 0.5519

0.47

3.2. Local fields in the free-standing film vs. the micropillar sandwich

In this section, we show the significant differences in the local
mechanical response of the free-standing films and the micropillar-
film sandwich (which, nevertheless, produce the same qualitative
size effects, as already shown).

When comparing the local fields for the micropillar sandwich with
the film in the 45° orientation and the free-standing film, the film for
the micropillar case is rotated by 45° in an anti-clockwise sense, for
the ease of visualization.

In the following, we define |en| (the subscript m stands for
metal) as the nominal compressive strain in the metal film corre-
sponding to a given nominal compressive strain (|e|) for the entire
domain - for the free-standing film, |en| = |e|. As discussed earlier,
for the micropillar sandwich, |e| is the magnitude of the engineer-
ing compressive strain calculated from the applied boundary con-
dition on the top of the pillar and the initial length of the pillar.

We also define I';,; as the nominal shear strain in the metal film
for the micropillar sandwich as well as the free-standing film.

3.2.1. Micropillar with thin film in the 90° orientation

Fig. 8 compares the pg := |a|/b (GND) field plots at |en| = 15%
compressive strain in the metal film for the free-standing film and
the micropillar sandwich. Excess dislocation boundary layers are
absent in the micropillar film configuration. They arise in the free-
standing films due to no-flow boundary conditions. The pg patterns
observed in the micropillar film are driven by the deformation in-
homogeneity induced by the the resistance to horizontal material
flow at the boundaries of the film with the ceramic blocks.

Fig. 9 shows the von Mises stress and Fig. 10 the hydrostatic
stress fields (both normalised with yield stress) at |e;| = 15% in
the metal film for the free-standing film and the micropillar sand-

-0.51 T T T
-0.52 -0.24 0.04 0.32 0.6
X1
w

Fig. 8. The deformed mesh for the micropillar with 45° orientation for H = 0.5 pm
at |e| = 3.8%, when the film material is close to penetrating into ceramic blocks.

wich. The magnitude of o, for the free-standing film in Fig. 9 is
higher at the top/bottom boundary of the thin film. The hydrostatic
stress is higher in the case of the free-standing film as compared
to the micropillar case. The constraint to lateral motion at the top
and bottom boundaries of the film is softer for the film in the mi-
cropillar sandwich, which results in the generation of less hydro-
static stress.

3.2.2. Micropillar with thin film in the 45° orientation
Fig. 11 shows the deformed mesh and the nominal shear strain
(I'm) in the metal film at |e| = 3.5% compressive strain, for differ-
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Fig. 9. pg = |ee|/b (m~2) at |ep| = 15% in the metal film for the free-standing film and the micropillar sandwich with 90° orientation. The corresponding |e| for the micropillar
is 1.56%.
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Fig. 10. von Mises stress at |e,| = 15% in the metal film for the free-standing film and the micropillar sandwich with 90° orientation. The corresponding |e| for the micropillar

is 1.56%.
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Fig. 11. Hydrostatic stress at |e;,| = 15% in the metal film for the free-standing film and the micropillar sandwich with 90° orientation. The corresponding |e| for the

micropillar is 1.56%.

ent film thickness. Under increased compression, the film mate-
rial near the lateral boundaries of the micropillar rotate excessively
due to the shearing and (damage-free) constraint of the ceramic
blocks. The calculations are stopped when the film material is close
to penetrating the ceramic blocks, as shown in Fig. 12. Although
the magnitude of |e| is not that high, I';; in the metal film is very

large. For instance, at |e| = 3.5%, ', in the metal film is 102% for
H = 0.5 wm, while it is 39% for H=1.2 um.

Fig. 13 shows field plots of the norm of the Logarithmic strain
tensor (|In(V)|) in the film within the micropillar, at |e| = 3.5%
nominal compressive strain. As expected, for the smaller thickness,
the magnitude of |In(V)]| is higher as the nominal shear strain in
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Fig. 12. Nominal shear strain (I';;) in the film at |e| = 3.5% for micropillar with 45° orientation, for different film thickness (H). The green solid line denotes an undeformed
line, while the cyan solid line denotes the corresponding deformed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

0.76 0.58

0.38- L 0.29-
:_2 0.04 Y ; :_2—0.01-

-0.38 : 1 -0.34

-0.76 T T T -0.59 T T T

-0.78 -0.39 0.01 0.4 0.79 -0.85 -0.42 0.0 0.42 0.85
(a) H=10.5um (b) H=1.2pum
InV|
. , i
8.99e-2 1.92e-1 4.10e-1 8.76e-1 1.87e+0

Fig. 13. Norm of Logarithmic strain tensor (|in(V)|) at 3.5% compression strain in the micropillar sandwich with 45° orientation, for different film thickness (H). The solid
red line shows the boundary of the undeformed metal thin film. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

the metal film is higher for smaller thickness (for equal lateral dis-
placement).

Fig. 14 shows the pg field plots at I'y, =30% for the free-
standing film and the micropillar sandwich with 45° orientation.
As for the 90° orientation case, there are no boundary layers in
the film within the micropillar here, while they are present for the
free-standing film.

Fig. 15 and 16 respectively show the von Mises stress (o) and
the hydrostatic stress (o},) field plots for the free-standing and mi-
cropillar sandwich configurations.

3.3. Hydrostatic and normal stress in shear

In small deformation elasticity or metal plasticity, shearing in-
duced normal stresses are rarely observed. However, such cou-
plings are observed in finite elastic [21] and plastic [8] deforma-
tions. We explore such possibilities in our simulations of sim-
ple shearing of free-standing films and compression of micropil-
lar sandwich with 45° film orientation. To do so, we define the
‘driving’ stress (ozap ) in both configurations as the average reaction
stress in the vertical direction on the top boundary of the domain.
The averages of the various components of the Cauchy stress ten-
sor over the metal film are also defined as (0;"%, 0,"%, 04"¢, T98),

2
denoting the averages of the (Ty1, Tp, T33, Ti2) components, respec-

tively. The averaged generated hydrostatic stress in the film is de-
noted by o,"%.

The values of the driving stress and the averages of gener-
ated stress components for the micropillar sandwich and the free-
standing film at T'y; = 30% are reported in Table 8. The state of
loading is multi-axial for both the micropillar sandwich and the
free-standing film. However, the ‘average stress state’ in the case
of the micropillar sandwich is more hydrostatic (confined) in na-
ture, while it is predominantly shear driven for the free-standing
film, as also shown in Fig. 16. The magnitude of hydrostatic stress
in the free-standing film is much smaller than in the film in the
micropillar, primarily due to the applied compressive loading on
the pillar; nevertheless, the free-standing film generates compres-
sive normal reactions at the boundary, for solely applied shear ve-
locity boundary conditions (along with a constraint to motion of
the boundary in the normal direction, of course).

Despite this significant difference, the averaged hydrostatic
stress normalized by the driving normal stress is of the same order
of magnitude for both cases:

0,"¢/o," = 0.474, (Micropillar Sandwich) (4a)

0,"8/0,? = 0.497 (Free-Standing Film) (4b)
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Fig. 14. p; = |a|/b (m~2) at I', = 30% in the metal film for the micropillar sandwich with 45° orientation and for the free-standing film. The corresponding |e| for the

micropillar is 1.15%, and the solid red line in (a) shows the boundary of the undeformed metal thin film. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 15. von Mises stress at I';; = 30% in the metal film for the micropillar sandwich with 45° orientation and for the free-standing film. The corresponding |e| for the

micropillar is 1.15%, and the solid red line in (a) shows the boundary of the undeformed metal thin film. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 16. Hydrostatic stress at I', = 30% in the metal film for the micropillar sandwich with 45° orientation and for the free-standing film. The corresponding |e| for the

micropillar is 1.15%, and the solid red line in (a) shows the boundary of the undeformed metal thin film. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Table 8
Driving stress and averaged stress components
standing film at I';; = 30%.
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in the micropillar sandwich and the free-

Specimen 0’ /o0  0¥/og  0)%jog  0¥/o0  T™jog 0% /og
Micropillar sandwich -6.086 -0.122 -6.241 -2.283 0.109 -2.882
Free-standing film -0.048 -0.01 -0.035 -0.026 2912 -0.024
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Fig. 17. Normal and transverse reaction stress on the top boundary of the free- | |

standing film subjected to simple shearing, for H = 0.5 pm.

(considering a normalization by applied stress component nor-
mal to the film in the micropillar increases the result by a factor
of 2). This suggests a unifying ‘collapse’ of data for understanding
normal stress effects in nominal simple shearing, produced by sig-
nificantly different applied loading conditions.

The normal stress observed here arises as a combination of the
Swift effect [8] and the Poynting effect [21]. One way to think
about how these normal stresses are generated in the free-standing
film is as follows: the T,, component of the Cauchy stress tensor
is non-zero, a nonlinear elastic Poynting effect to begin with. This
further generates Tz/2 and T{1 components of the deviatoric stress
tensor, and these components of stress generate plastic straining
in the L% and L‘zj2 components. However, due to the deformation
constraints imposed by the simple shear boundary conditions in
the x;-direction on the lateral sides of the specimen, and the x,-
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Fig. 18. Stress-strain curve for the micropillar sandwich with 45° orientation for
H = 0.8 wm case and with C and UC metal-ceramic interface.

direction on the top and bottom of the domain, further T;; and T,
components of stress are generated. All of this combined generates
a non-zero hydrostatic stress field and the idealized Swift effect
shown in Fig. 17, in simple shearing of the free-standing films.

3.4. Effect of b.c.s on plastic flow in the micropillar sandwich

Fig. 18 shows the stress-strain curve and Fig. 19 shows the (og)
field plots at |e| = 3.5%, for H = 0.8 jum, and for both the plastically
constrained (C) and unconstrained (UC) metal-ceramic interfaces.
The stress-strain response for the constrained case is marginally
harder as compared to the unconstrained case. For the constrained
case, there is a thin boundary layer in pg field at the metal-ceramic
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Fig. 19. pg = |a|/b (m~?) at |e| = 3.5% for H = 0.8pum with C and UC metal-ceramic interface. The solid red line shows the boundary of the undeformed metal thin film. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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interface. The effect of the interface condition is not prominent
here due to strong heterogeneity in plastic flow across the in-
terface, and hence, having an elastic-plastic interface with plastic
flow unconstrained has more or less the same effect as a plas-
tically constrained interface. This is borne out also in the sim-
ple shear loading of free-standing films, where the effect of con-
strained/unconstrained boundary condition is much more promi-
nent in stress-strain response, as shown by Arora and Acharya
[6] (refer to Fig. 6(b) in their paper), due to the absence of con-
straining elastic material.

Similar effects were observed in the study of mechanical re-
sponse of multi-crystalline thin films in [22]. It was observed there
that the effect of constrained/unconstrained grain boundary con-
ditions on the stress-strain response decreased on increasing the
misorientation between adjacent grains, as the plastic flow through
a grain boundary decreases with increase in the misorientation.

4. Conclusion

We have reported the first successful mechanistic understand-
ing, through computational modeling, of experimentally observed
effects of orientation in size effects of micropillar confined metal
thin films undergoing large plastic deformations. The results re-
ported in the work of Mu et al. [20] form the motivation and ex-
perimental basis of our work.

Our contributions to the modeling and mechanistic understand-
ing of such size effects in micropillar confined metal thin films are
as follows:

» The experimentally observed size effects obtained for the mi-
cropillar sandwich with thin films in two different orientations
are dramatically different. Our simulations reproduce such size
effects, and we provide a simple mechanistic explanation of
why this must be the case. The size effect in the micropillar
with a 90° oriented film (compression) is stronger, as com-
pared to the one with a 45° oriented film (shearing), due to
the stronger lateral constraint to material deformation imposed
by the metal-ceramic interface for the compression case, which
in turn causes more inhomogeneous deformation in the entire
bulk of the film. This produces gradients in continued plastic
straining which leads to more GND density and more harden-
ing. In contrast, for the nominally simple-sheared film, whether
in the micropillar configuration or free-standing, neither is a
strong lateral constraint on material deformation available (just
by geometrically intuitive reasons), nor is a constraint from the
imposition of no plastic flow boundary conditions, as explained
in Section 3.1. Hence, very modest size effects are observed in
simple shear. Moreover, any theory that does not incorporate
this geometric fact in the imposition of plastic flow b.c.s can-
not differentiate between the differing constraints under direct
compression and simple shearing, such plastic flow b.c. con-
straints being one of the sources for the differing observed size
effects in overall pillar compression with films in 45° and 90°
orientations (to loading axis).

The above lends valuable insight and understanding, of both
scientific and technological value, into the mechanisms of size-
dependent, large deformation plasticity at small scales and
at engineering time-scales, not obtained by any other efforts
known to us.

In the current state-of-the-art of SGP theories, in one approach
a threshold switch is introduced depending on the magnitude
of plastic strain gradient at boundaries, based on which plas-
tic straining is disallowed/allowed at the boundaries. Such a
threshold is then fitted to experimental data for this set of ex-
periments, but it is not clear what the microstructural justifica-
tion of such a device might be, how to employ such a threshold
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under universal circumstances, and whether it breaks agree-
ment of the theory with other experimental size-effect results
in mesoscale plasticity. In another approach, a fractional SGP
deformation theory of plasticity is proposed where the burden
of prediction is left to the fitting of a new parameter of the
theory whose microstructural origins is left unspecified.

In contrast, no modification is made to the structure of the
theory in our work, while being in good agreement with ex-
periment and providing simple mechanistic understanding of a
complex phenomena.

We demonstrate the Swift and Poynting effects in our simula-
tions and provide a mechanistic understanding of it.

We make predictions of failure modes from our simulations for
the micropillar sandwich in both orientations, and these are
similar to those observed in the experimental works of [20] and
[25].

The results obtained in this paper further strengthens the case,
beyond [5-7,22-24], for MFDM as an appropriate model for dislo-
cation mediated mesoscale plasticity. A shortcoming that needs to
be addressed is to improve our model for plastic straining due to
statistical dislocations, LP, so that its effect diminishes at smaller
length scales.
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