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Abstract. A formal methodology for developing variational principles corresponding
to a given nonlinear PDE system is discussed. The scheme is demonstrated in the context
of the incompressible Navier-Stokes equations, systems of first-order conservation laws,
and systems of Hamilton-Jacobi equations.

1. Introduction. This work answers a question raised in [1], namely, identifying the
basic ingredients necessary for developing a variational principle all, or some, of whose
Euler-Lagrange (E-L) equations are a given system of PDE; the functional to be devel-
oped is required to have space-time derivatives of its fundamental fields in ‘more-than-
linear’ combinations. Such a question arose from the purely practical issue of developing
a basis for application of Effective Field Theory techniques in Physics (cf. [4, 5, 12]) to
the system of nonlinear dislocation dynamics [1] in continuum mechanics and materials
science. Despite the success in formulating an appropriate action functional, that effort
also exposed a certain flexibility in the adopted scheme whose details remained to be
understood. Here, we are able to understand those details and abstract out the essence
of the technique. The idea is then demonstrated on a wider setting of important classes
of physical systems of nonlinear PDE. We note here that the question of finding a varia-
tional principle(s) (some of) whose E-L equations are a given system of PDE is different
from the one adopted in the ‘Least-Squares Method,’ (cf. [2, Ch. 10]), as explained in
[17, Sec. 1] and [18]; the E-L equations of the Least-Squares functional are not neces-
sarily the PDE system from which the Least-Squares functional is developed. With the
null minimizer requirement, minimizers of the Least-Squares functional are solutions of
the PDE system involved.1 In the approach adopted herein, a family of functionals is
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1As a related example, it is also instructive to consider the following: for F : R2 → R let F (u, ∂xu) = 0
be a PDE for u : (0, 1) → R. Let H : R → R be a function with an absolute minimum attained at 0, and
consider the functional S[u] :=

∫
(0,1) dx H(F (u, ∂xu)). Clearly any solution of the PDE is a minimizer of
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2 AMIT ACHARYA

developed which satisfy the stated requirement. Mathematically rigorous considerations
of the Least-Squares approach rely strongly on convex duality—the present approach
relies on elements of convex duality even at a formal level.

This paper is organized as follows: in the following paragraph of this section we
motivate the main idea of this work through an easy computation. In Secs. 2–5 we
still use the ‘ad-hoc’ procedure adopted in [1] to demonstrate our ideas in the context
of the incompressible Navier-Stokes (N-S) equations for a homogeneous fluid. Related
work can be found in [11, 13] which review earlier work in the physics and mechanics
literature, including that of mathematicians C. Doering and P. Constantin; a sampling of
the mathematical literature on the matter can be found in [8,15] and references provided
therein (an important disclaimer here is that I am in no way an expert in the theory or
practice of the N-S equations). In Sec. 6, the scheme is generalized to understand the
fundamental restrictions, at least at a formal level, required to make it work, exploiting
its full level of flexibility; this is demonstrated in the context of a first-order system of
conservation laws in divergence form and a system of Hamilton-Jacobi equations. Some
closing observations are recorded in Sec. 7. A word on notation: the Einstein summation
convention for repeated indices is always invoked; Ω will represent a fixed domain in
ambient, 3-d Euclidean space, and [0, T ] an interval of time.

Before moving on to the physical models we wish to discuss, we discuss the ‘toy’ model
of the heat equation in one space dimension and time to give the pattern of the typical
computations that are involved in each case that follows, only nonlinear and in more
space dimensions. Consider the heat equation

∂tθ = ∂x (k∂xθ)

and the functional

Ŝ[θ,λ] :=

∫

I×[0,T ]
dtdx λ(∂tθ − ∂x(k∂xθ)) + H(θ)

=

∫

I×[0,T ]
dtdx θ(−∂tλ− ∂x(k∂xλ)) + H(θ),

for any convex function H so that p = H ′(θ) is uniquely solvable for θ(p), and assuming
that λ vanishes on the boundary of the interval I ⊂ R (representing the spatial domain).
The goal is to propose an ‘action’ functional whose E-L equation is the original (system
of) PDE in question, here the heat equation. Here, we have imposed the PDE (system)
with a Lagrange multiplier field (to generate a scalar), exposed linear terms in the basic
primal field(s) (here θ) and added a convex term in the basic field, the latter two actions in
anticipation of performing a Legendre transform. We note that the Lagrange multiplier
field necessarily enters in a ‘linear’ manner in the functional, even when the PDE is
nonlinear (when the PDE contains nonlinear terms—as in the models considered later—
all such nonlinear terms are combined additively with the function H to define a function

S. However, the Euler-Lagrange equation of S is ∂F H ∂uF − ∂x(∂F H ∂(∂xu)F ) = 0, which is of course

not the same as the original PDE in any sense. I thank Gautam Iyer for a discussion of this case.
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VARIATIONAL PRINCIPLES FOR NONLINEAR PDE SYSTEMS VIA DUALITY 3

M). Motivated by the structure of Ŝ, now define

M∗(p) := p θ(p) − H(θ(p))

p := −(−∂tλ− ∂x(k∂xλ)).

With the above definitions, define the functional on a reduced state space

S[λ] =

∫

I×[0,T ]
dtdx − M∗(p)

whose first variation is given by

δS =

∫

I×[0,T ]
dtdx − ∂pM

∗(p)δp.

Noting that ∂pM∗(p) = θ(p),

δS =

∫

I×[0,T ]
dtdx θ(p) (−∂tδλ− ∂x (k∂xδλ))

yielding the E-L equation

∂t(θ(p))− ∂x (k∂x(θ(p))) = 0.

With H(θ) = 1
2θ

2, M∗(p) = 1
2p2 and θ(p) = p, and the functional S[λ] is bounded

above. The Euler-Lagrange equation in terms of the function λ is ∂2
t λ − k2∂4

xλ = 0
which has the wrong sign when viewed as an initial value problem in time t with dis-
persion relationship ω2 = −k2m4 and eigenmode with wave number m associated with
growth factors e±|k|m2t. However, the functional can be maximized or its critical points
approached by a gradient ascent in a ‘fake time’ variable, say s, given by ∂sλ = δS

δλ , and
it can be expected that the decaying solution (in t) is automatically picked up by such
methods. For k > 0, it can be checked that initial and boundary conditions on θ can be
translated, non-uniquely, to constraints on the field λ at the domain space-time bound-
aries. One also would seem to have the formal guarantee that any solution in the dual
variable λ that respects the boundary and initial constraints obtained from the primal
problem must generate the unique solution to the primal problem through the mapping
θ(x, t) = p(x, t) = ∂tλ(x, t) + k ∂2

xλ(x, t) (the mapping varies, of course, depending on
the choice of the convex function H, but this conclusion remains unaltered).

We note that it is not our intent with the remarks above to suggest that the heat
equation be solved in this manner, but only to motivate how the variational principles
we develop henceforth may be ‘solved’ or approximated.

After completing this work, we became aware of the work of Brenier [6]. There are
strong connections of the ideas presented in this paper with those in [6]–for instance,
the functional (1) with ν̂ = 0, c = 1, and G(x) = 1

2dx2, d → 0+ so that G∗(ξ) = 1
2dξ

2

formally recovers Brenier’s variational principle for the Euler equation (up to accounting
for the initial condition). Brenier does rigorous analysis to show existence of generalized
solutions to his maximization principle which may be considered as encouraging for the
ideas presented herein (the mathematical analysis in [6] is beyond the scope of this paper).
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4 AMIT ACHARYA

2. A ‘dual’ action for the incompressible Navier-Stokes equation. For the
fields

γ : Ω× [0, T ] → R
λ : Ω× [0, T ] → R3

consider the functional

Sd[γ,λ] =

∫

Ω×[0,T ]
dtd3x − 1

2
piKijpj − G∗(ξ), (1)

where

pk := −[ν̂(∂j∂jλk + ∂k∂iλi) − ∂kγ + ∂tλk]

ξ := −∂iλi

Lij(∇λ) := c δij + ∂jλi + ∂iλj ; Kij(∇λ) := (L(∇λ))−1
ij ; Kij = Kji

ω(ξ) := G′−1(ξ)

G∗(ξ) := ω(ξ)ξ − G(ω(ξ))
(2)

for c > 0 an arbitrary, non-dimensional constant, G : R → R an arbitrary convex
(smooth) function, and G′ : R → R refers to the derivative of the function G whose
inverse function exists. We make the assumption here that L is an invertible matrix for
all possible values of its argument (presumably this can be arranged by taking a suf-
ficiently large value of the constant c). For ν > 0 the shear viscosity and ρ0 > 0 the
constant density of the homogeneous, incompressible fluid, ν̂ := ν

ρ0
.

In what follows, we will not always explicitly write the arguments of L, K,ω, and G∗.
The first variation of Sd, assuming all variations vanish on the boundary of Ω× [0, T ]2

is given by

δSd =

∫

Ω×[0,T ]
dtd3x − piKik[−(ν̂(∂j∂jδλk + ∂k∂iδλi) − ∂kδγ + ∂tδλk)]

− G∗′[−∂iδλi]

− pipk δKik,

(3)

and noting that

δKik = −KijδLjmKmk = −KijKmk[∂jδλm + ∂mδλj ]

along with the definition

vk(p,∇λ) := Kik(∇λ)pi (4)

2Here, we are interested in interior field equations; natural ‘boundary’ conditions can be inferred
by not assuming the variations to vanish on the boundary of the space-time domain and appropriately
utilizing applied initial and spatial boundary conditions of the primal problem.
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VARIATIONAL PRINCIPLES FOR NONLINEAR PDE SYSTEMS VIA DUALITY 5

we have

δSd =

∫

Ω×[0,T ]
dtd3x ν̂(δλk∂j∂jvk + δλi∂i∂jvj)

+ (∂kvk)δγ − (∂tvk)δλk

− 1

2
[∂j(vjvk) + ∂m(vkvm)]δλk

− ∂i(G
∗′)δλi.

Noting that

G∗(ξ) = ω(ξ)ξ − G(ω(ξ)) and G′(ω(ξ)) = ξ =⇒ G∗′(ξ) = ω(ξ)

and defining

P := ρ0 ω (5)

the following Euler-Lagrange equations are obtained:

δλk : − ∂tvk − ∂j(vkvj) + ∂j

(
ν̂(∂jvk + ∂kvj) −

P
ρ0

δkj

)
= 0

δγ : ∂kvk = 0.
(6)

These are the Navier-Stokes system for an incompressible, homogeneous fluid if the fields
v, P (that are defined in terms of the fields λ and γ) are interpreted as the velocity and
the pressure fields, respectively.

3. The primal action for (1) and its reduced state space. We motivate how the
functional (1) was arrived at. With all definitions and notation of the previous section
enforced and in terms of the fields

v : Ω× [0, T ] → R3

γ : Ω× [0, T ] → R
λ : Ω× [0, T ] → R3

ω : Ω× [0, T ] → R

consider the functional

Ŝd[v, γ,λ,ω] =

∫

Ω×[0,T ]
dtd3x c

1

2
vivi + G(ω)

+ γ(∂ivi)

+ λi(∂j(−ωδij + ν̂(∂jvi + ∂ivj)) − ∂tvi − ∂j(vivj)),

where the incompressible Navier-Stokes equations have been enforced via Lagrange mul-
tipliers.

Each term in the action density has physical dimensions of Length2

Time2 ; multiplying
through by ρ0 gives units of energy per unit volume.

The main idea is to invoke a Legendre transform based change of variables and then
consider the variational principle in a reduced state space. Assuming for the moment that
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6 AMIT ACHARYA

the Lagrange multiplier fields vanish on the boundary, we have

Ŝd[v, γ,λ,ω] =

∫

Ω×[0,T ]
dtd3x c

1

2
vivi + vivj∂jλi + G(ω)

+ (ν̂(∂j∂jλi + ∂i∂kλk) − ∂iγ + ∂tλi)vi

+ ω∂iλi.

Working with the definitions (2) and (4), we affect a reduction in the state space of Ŝ to
define

Sd[γ,λ] =

∫

Ω×[0,T ]
dtd3x

1

2
vi(p,∇λ)Lij(∇λ)vj(p,∇λ) − pivi(p,∇λ) + G(ω(ξ))− ω(ξ)ξ.

(7)
Using the definitions (2) and (4) once again and noting that

vipi −
1

2
viLijvj =

1

2
piKikpk, (8)

we note that (7) is the functional (1).

4. A ‘mixed’ action for the incompressible Navier-Stokes equation. For the
fields

A : Ω× [0, T ] → R3×3
sym

γ : Ω× [0, T ] → R
λ : Ω× [0, T ] → R3

ω : Ω× [0, T ] → R

consider the functional

Sm[A, γ,λ,ω] =

∫

Ω×[0,T ]
dtd3x − 1

2
piKijpj ∓ R∗(τ ) + ω∂iλi, (9)

where

pk := −[−∂jAkj − ∂kγ + ∂tλk]

τkl := ∓[−Akl − ν̂(∂lλk + ∂kλl)]

Lij(∇λ) := c δij + ∂jλi + ∂iλj ; Kij(∇λ) := (L(∇λ))−1
ij ; Kij = Kji

Dij(τ ) :=
(
R′−1

)
ij

(τ )

R∗(τ ) := Dij(τ )τij − R(D(τ ))
(10)

for R : R3×3
sym → R an arbitrary convex function on the space of symmetric tensors, and

R′
ij : R3×3

sym → R3×3
sym refers to the function ∂Dij R and R′−1

ij to its inverse function.
The matrix field L and the constant ν̂ are defined exactly as in Sec. 2.
The first variation of Sm, assuming all variations vanish on the boundary of Ω× [0, T ]

(with the same understanding for what needs to be done to include natural boundary
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and initial conditions) is given by

δSm =

∫

Ω×[0,T ]
dtd3x − piKik(∇λ)[−(−∂jδAkj − ∂kδγ + ∂tδλk)]

∓ R∗′
kl[∓(−δAkl − 2ν̂∂lδλk)]

+ δω∂iλi − (∂iω)δλi −
1

2
pipkδKik,

(11)

and noting that

δKik = −KijδLjmKmk

we have

δSm =

∫

Ω×[0,T ]
dtd3x ∂j(piKik(∇λ))δAkj + ∂k(piKik(∇λ))δγ − ∂t(piKik(∇λ))δλk

− R∗
klδAkl + ∂l(2ν̂R∗′

kl)δλk + (∂iλi)δω

− 1

2
[δλm∂j(Kij(∇λ)piKmk(∇λ)pk) + δλj∂m(Kij(∇λ)piKmk(∇λ)pk)],

leading to the Euler-Lagrange equations

δAik :
1

2
[∂j(piKik(∇λ)) + ∂k(piKij(∇λ))] − R∗′

kj(τ ) = 0

δγ : ∂k(piKik(∇λ)) = 0

δλk : − ∂t(piKik(∇λ)) + ∂l(2ν̂R∗′
kl(τ )) − ∂kω

− 1

2
[∂j(Kij(∇λ)piKkm(∇λ)pm) + ∂m(Kik(∇λ)piKmr(∇λ)pr)] = 0

δω : ∂iλi = 0.

(12)

Defining a velocity and a pressure field as

vk := Kikpi; P := ρ0 ω (13)

we note that the first three equations of (12) imply the equations

∂kvk = 0

−∂tvk − ∂j(vkvj) + ∂j

[
ν

ρ0
(∂jvk + ∂kvj) −

P
ρ0

δkj

]
= 0,

(14)

which is the Navier-Stokes system for a homogeneous, incompressible fluid.

5. The primal action for (9) and its reduced state space. We motivate how
the functional (9) was arrived at. With all definitions and notation of previous sections
enforced and in terms of the fields

v : Ω× [0, T ] → R3

D : Ω× [0, T ] → R3×3
sym
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8 AMIT ACHARYA

consider the functional

Ŝm[v, D,ω, A, γ,λ] =

∫

Ω×[0,T ]
dtd3x c

1

2
vivi ± R(D)

+ Aij(∂jvi − Dij)

+ γ(∂ivi)

+ λi(∂j(−ωδij + 2ν̂Dij) − ∂tvi − ∂j(vivj)),

where the incompressible Navier-Stokes equations have been enforced via Lagrange mul-
tipliers.

As before, we invoke a Legendre transform based change of variables and then consider
the variational principle in a reduced state space. Assuming for the moment that the
Lagrange multiplier fields vanish on the boundary, we have

Ŝm[v, D,ω, A, γ,λ] =

∫

Ω×[0,T ]
dtd3x c

1

2
vivi ± R(D)

+ (−∂jAij − ∂iγ + ∂tλi)vi

+ (−Akl − ν̂(∂lλk + ∂kλl))Dkl

+ ω∂iλi + vivj∂jλi.

Working with the definitions (10) and (13), we affect a reduction in the state space of
Ŝm to define

Sm[A, γ,λ,ω] =

∫

Ω×[0,T ]
dtd3x

1

2
vi(p,∇λ)Lij(∇λ)vj(p,∇λ) − pivi(p,∇λ)

± R(D(τ )) ∓ τklDkl(τ ) + ω∂iλi.

(15)

Using the definitions (10) and (13) once again and noting (8), we note that (15) is the
functional (9).

6. Generalizations. In the previous sections and in [1] the kinetic energy was chosen
as the added potential associated with the velocity field in the primal actions. It is
however clear that apart from a solvability condition, this potential should be amenable
to a (more or less) arbitrary choice. In this section we demonstrate this feature of the
proposed scheme through a discussion of important classes of PDE.

In the following subsections, we will repeatedly make use of an assumption and its
consequence, which we write out in detail before proceeding. It is essentially related to a
Legendre transform in the presence of a parameter. For M : Rn×Rm → R, H : Rn → R,
L ∈ Rm, and F : Rn → Rm satisfying

M(U, L) = H(U) − L · F (U), (16)

we assume that for given P and L, there exists a unique function U(P, L) which satisfies
the relation

P = ∂UM(U(P, L), L), (17)

for all likely values of L and P to be encountered, i.e., the algebraic system of equations
P = ∂UM(U, L) is uniquely solvable for U in terms of P, L. If M were to be convex in
U for all L, then such a condition would certainly hold. In the following, the function F
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VARIATIONAL PRINCIPLES FOR NONLINEAR PDE SYSTEMS VIA DUALITY 9

will be specified from the physical PDE system to be solved and the function H will be
free to choose, so this condition is essentially a constraint on the choice of the class of
functions to which H belongs.

Assuming the above, consider

M∗(P, L) := U(P, L) · P − M(U(P, L), L)

=⇒ ∂LM∗(P, L) = ∂LUi(P, L)Pi − ∂UiM(U(P, L), L)∂LUi(P, L) − ∂LM(U(P, L), L)

= −∂LM(U(P, L), L),
(18)

due to (17). Given the form of (16), we have

∂LM∗(P, L) = F (U(P, L)). (19)

We also have that

∂P M∗(P, L) = ∂P Ui(P, L)Pi + U(P, L) − ∂UiM(U(P, L), L)∂P Ui(P, L) = U(P, L) (20)

by (17).
6.1. Dual variational principles for first-order systems of conservation laws in diver-

gence form. The PDE system of interest is of the form

∂tuI + ∂ifIi(u) = 0, (21)

where I = 1, . . . , n, and i = 1, . . . , d, d being the number of space dimensions.
In terms of the field

λ : Ω× [0, T ] → Rn

consider the functional

Scl[p,λ] =

∫

Ω×[0,T ]
dtd3x − M∗(p,∇λ), (22)

where (∇λ)Ij = ∂jλI , along with the identifications u = U , p = P , ∇λ = L, m = nd,
F = f in (16)–(17) and the definitions

pI := ∂tλI

M(u(p,∇λ),∇λ) := H(u(p,∇λ)) −∇λ · f(u(p,∇λ))

M∗(p,∇λ) := u(p,∇λ) · p − M(u(p,∇λ),∇λ)

(23)

for any choice of the function H that allows (17) to hold. Then the first variation is
given by

δScl =

∫

Ω×[0,T ]
dtd3x − (∂pM

∗ · ∂tδλ + ∂∇λM∗ · ∇δλ)

which leads to the E-L equations

∂tuI(p,∇λ) + ∂ifIi(u(p,∇λ)) = 0

by (19)–(20). Thus, every solution of the E-L equations of (22) defines a solution of (21)
through the definition of the function U(P, L) related to (17).

We also note that for given f , each member of the entire class of functions M∗, defined
through a choice of an admissible state function H, satisfies the conservation law (21) in
the sense

∂t (∂pM
∗)I + ∂i (∂∇λM∗)Ii = 0. (24)
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10 AMIT ACHARYA

6.2. Dual variational principle for a second order system of Hamilton-Jacobi equations.
Consider the system of Hamilton-Jacobi equations

∂tuI = fI (u, B, C)

∂iuI = BIi

∂i∂juI = CIji

(25)

where fI is a smooth function of its arguments.
In terms of the fields

λ : Ω× [0, T ] → Rn

γ : Ω× [0, T ] → Rn×d

ρ : Ω× [0, T ] → Rn×d×d

and the definitions
P :=

(
∂tλ + ∇ · γ −∇2 : ρ, γ, ρ

)

L := λ

F := f,

(26)

where (∇ · γ)I = ∂iγIi and (∇2 : ρ)I = ∂j∂iρIij , we consider functions H : Rn × Rn×d ×
Rn×d×d → R such that, for the generic element in its domain referred to as

U := (u, B, C),

the function M in (16) is defined with the solvability property (17), and in terms of it,
the function M∗ in (18).

Consider the functional

SHJ [λ, γ, ρ] =

∫

Ω×[0,T ]
dtd3x − M∗(P, L), (27)

whose E-L equations are (assuming (λ, γ, ρ) have compact support on Ω)

−∂tuI(P, L) + fI(U(P, L)) = 0

−∂iuI(P, L) + BIi(P, L) = 0

−∂i∂juI(P, L) + CIji(P, L) = 0.

We note that the static system ∂ifIi(B) = 0, BIi = ∂iuI can be dealt with as an
Hamilton-Jacobi system as well as by taking account of its conservation structure by the
proposed technique, with L = ∇λ in the latter case.

7. Concluding remarks. The proposed scheme for generating variational principles
for nonlinear PDE systems may be abstracted as follows: We first pose the given system of
PDE as a first-order system (introducing extra fields representing (higher-order) space
and time derivatives of the fields of the given system); as before let us denote this
collection of primal fields by U . ‘Multiplying’ the primal equations by dual Lagrange
multiplier fields, the collection denoted by D, adding a function H(U), solely in the
variables U (the purpose of which, and associated requirements, will be clear shortly),
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and integrating by parts over the space-time domain, we form a ‘mixed’ functional in the
primal and dual fields given by

ŜH [U, D] =

∫

[0,T ]×Ω
dtd3x LH(D, U)

where D is a collection of local objects in D and at most its first order derivatives. We
then require that the family of functions H be such that it allows the definition of a
function UH(D) such that

∂LH

∂U
(D, UH(D)) = 0

so that the dual functional, defined solely on the space of the dual fields D, given by

SH [D] =

∫

[0,T ]×Ω
dtd3x LH(D, UH(D))

has the first variation

δSH =

∫

[0,T ]×Ω
dtd3x

∂LH

∂D δD.

By the process of formation of the functional ŜH , it can then be seen that the (formal)
E-L equations arising from δSH have to be the original first-order primal system, with
U substituted by UH(D), regardless of the H employed.

Thus, the proposed scheme may be summarized as follows: we wish to pursue the
following (local-global) critical point problem

extremize
D

∫

[0,T ]×Ω
dtd3x extremize

U LH(D(t, x), U),

where the pointwise extremization of LH over U , for fixed D, is made possible by the
choice of H.

Furthermore, assume the Lagrangian LH can be expressed in the form

LH(D, U) := −P (D) · U + f(U, D) + H(U)

for some function P defined by the structure of the primal first-order system ((linear
terms in) first derivatives of U after multiplication by the dual fields and integration by
parts always produce such terms), and for some function f which, when non-zero, does
not contain any linear dependence in U . Our scheme requires the existence of a function
UH defined from ‘solving ∂L

∂U (D, U) = 0 for U ,’ i.e. ∃ UH(P (D), D) s.t. the equation

−P (D) +
∂f

∂U
(UH(P (D), D), D) +

∂H

∂U
(UH(P (D), D)) = 0

is satisfied. This requirement may be understood as follows: define

f(U, D) + H(U) =: M(U, D)

and assume that it is possible, through the choice of H, to make the function ∂M
∂U (U, D)

monotone in U so that a function UH(P, D) can be defined that satisfies

∂M

∂U
(UH(P, D), D) = P, ∀P.

Then the Lagrangian is

L(D, UH(P (D), D)) = −P (D) · UH(P (D), D) + M(UH(P (D), D), D) =: −M∗(P (D), D)
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where M∗(P, D) is the Legendre transform of the function M w.r.t U , with D considered
as a parameter.

Thus, our scheme may also be interpreted as designing a concrete realization of ab-
stract saddle point problems in optimization theory [16], where we exploit the fact that,
in the context of ‘solving’ PDE viewed as constraints implemented by Lagrange multipli-
ers to generate an unconstrained problem, there is a good deal of freedom in choosing an
objective function(al) to be minimized. We exploit this freedom in choosing the function
H to develop dual variational principles corresponding to general systems of PDE.

We conclude with a few observations and directions for future work:
(1) A detailed study of how boundary and initial conditions of the primal problem

can be transferred to the same for the dual problem is warranted, most im-
portantly for practical purposes of generating numerical approximations to the
proposed formal mathematical scheme.

As a first example, consider the dual formulation of the heat equation discussed
in Sec. 1. It is already clear that such a problem in space-time cannot be viewed
as an initial value problem because of the lack of continuous dependence w.r.t
initial data, as discussed. Thus, one has to consider the dual problem as a
boundary-value problem in space-time. An important question to resolve then
is whether doing so allows enough freedom for predicting the correct evolving,
primal temperature profile. For this, it seems reasonable that the dual E-L
equation (∂2

t λ− k2∂4
xλ = 0) admits two side conditions in the time (t) direction,

and four conditions in the space (x) direction. For a unique evolution on the
primal side, one has to apply the boundary conditions of the primal problem,
say pure Dirichlet on temperature θ, and an initial condition on θ as well, which
translate to constraints on the fields of the dual problem through the mapping,
θ(x, t) = ∂tλ(x, t) + k ∂2

xλ(x, t). Thus, for a solution of the dual problem in the
space-time domain (xl, xr) × [0, T ], specifying λ(x, T ) (arbitrarily) and θ(x, 0)
along with λ(xl, t),λ(xr, t) (arbitrarily), and θ(xl, t), θ(xr, t) would seem to be a
possibility, which should still allow enough freedom in the development of θ(x, T )
through the mapping θ(x, T ) = ∂tλ(x, T ) + k ∂2

xλ(x, T ). Such questions are the
focus of ongoing work.

(2) Setting ν̂ = 0 in the functionals (1) and (9) yields stationary principles for the
incompressible Euler equations.

(3) The mixed variational principle for the incompressible N-S equations in Secs. 4-5
affords the addition of added viscosity through the function R in the solution
of the dual problem — it is an interesting question whether this feature of the
problem can help in the analysis and solution of problems of turbulence.

(4) The pointwise invertibility of the matrix field L in Secs. 2–5 appears to be a key
issue in the formalism. It would be interesting to understand the effect of the
condition det(L) = 0 on the proposed scheme and whether there can be a relation
between the Reynolds number and the value of c for optimal performance of the
scheme.

In the general setting, this condition translates to the validity of the assump-
tion (17).
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(5) Constrained by appropriate boundary and initial conditions, when the PDE sys-
tem has unique solutions, it is clear that any choice of the function H within
the admissible class, coupled with the mapping from the dual fields to the pri-
mal fields, must lead to the unique solution. In the absence of uniqueness, it
is an interesting question whether specific choices of H (along with the dual-to-
primal mapping) act as a selection mechanism for picking up particular solutions.
For instance, an appropriate quadratic choice of H for the ‘simple’ equation
∂xf(B) = 0, B = ∂xu where f is nonconvex results in an essentially semilinear
second-order dual problem that is definitely simpler than the quasilinear primal
problem. The structure of the dual problem in this case does not make the
expectation of a smooth solution an absurd one. If this is indeed borne out
in reality, then the solution to the primal problem that is defined through the
dual-to-primal mapping may also be expected to be smooth.

(6) In the context of first-order systems of conservation laws, what connection, if
any, might exist between the large class of functions M∗ and entropies [7] of
conservation laws is an important question to resolve.

(7) There does not exist well-established computational approximation schemes (and
for that matter, theory [10]) for systems of H-J equations. This work provides a
variational structure for such systems which naturally lends itself to, say a finite
element, discretization. Whether such an idea has any practical merit would be
interesting to explore. If so, this can be very useful for certain systems related
to the mechanics of fracture and plastic deformation of solids, see [3, 14, 20].

(8) For static conservation laws of the form ∂ifIi(∇u) = 0, (∇u)Ij := ∂juI , the
scheme produces variational principles even when there does not exist a potential
ψ(∇u) such that fIi = ∂(∇u)Ii

ψ.
(9) The considerations herein show that even a given variational principle can be

associated with a vastly different dual variational principle through the choice
of the function H, by associating the former’s E-L equations with the latter
following the proposed scheme. This seems to open up fascinating points of
convergence between apparently different classes of physical models described in
terms of PDE and/or variational principles. A particularly intriguing question is
whether the present considerations have any connection to the correspondences
like AdS-CFT or AdS-CMT [9, 19] in the string theory-high energy-condensed
matter-gravitational physics nexus.

(10) The proposed duality scheme seems to suggest that for a given PDE system,
elements of the class of admissible potentials H form symmetry operations for the
system. The algebraic structure of this class of potentials, starting from whether
they form a group, is of independent interest, as well as whether knowledge of
such structure can help in the understanding of solutions to the PDE system.
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