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ABSTRACT

The model predictive control (MPC) of large-scale systems should adopt a distributed optimization ap-
proach, where controllers for the constituent subsystems optimize their control actions and iterations are
used to coordinate their decisions. The real-time implementation of MPC, however, usually allows very
limited time for computation and inevitably needs to be terminated early. In this work, we propose a
splitting algorithm for distributed optimization analogous to forward-backward splitting (FBS), where ¢;
and quadratic penalties are imposed on the violation of interconnecting relations among the subsystems.
By designing the involved parameters based on dissipative analysis, the iterations result in the mono-
tonic decrease of a plant-wide Lyapunov function, which we call Lyapunov envelope, thus maintaining
closed-loop stability under distributed MPC despite early termination and yielding improving control per-
formance as the allowed computational time or number of iterations increases. The proposed Lyapunov

envelope algorithm is tested on an industrial-scale vinyl acetate monomer process.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The need for adopting decompositions in plantwide control has
been identified by researchers more than 40 years ago. We quote
from Morari et al. (1980):

“Decomposition is the underlying, guiding principle, leading to the
classification of the control objectives (regulation, optimization)
and the partitioning of the process for the practical implementa-
tion of the control structures.”

“For our purposes, i.e. the systematic and organized devel-
opment of control structures for chemical processes, we found
the framework of the multilayer-multiechelon concept to be very
meaningful, convenient, and having the potential for further devel-
opment.”

Since the 1980s, a vast volume of literature has been devoted to
the synthesis of decentralized plantwide control structure for base-
layer loops, i.e., the selection and pairing of manipulated inputs
and controlled outputs, see e.g. Stephanopoulos (1983), Price and
Georgakis (1993), Luyben et al. (1997), Skogestad (2004). In the
contemporary practice of process industries, model predictive con-
trol (MPC) has been typically used as the advanced control tech-
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nology in companion with the base-layer control (Morari and Lee,
1999; Qin and Badgwell, 2003). Currently, the vertical “multilayer”
decomposition into a static problem with the objective of optimiz-
ing economic cost and satisfying operating constraints and a dy-
namic problem with the objective of regulating the process at the
setpoint is commonly adopted (Rawlings et al., 2017). Another type
of hierarchical decomposition that has been proposed is based on
the multi-time-scale behavior of plantwide dynamics in the case of
tight integration with large material and energy recycles (Kumar
et al,, 1998; Baldea and Daoutidis, 2007). The horizontal “multi-
echelon” decomposition of processes in MPC, frequently referred to
as distributed MPC, has also been explored in the recent literature
(Scattolini, 2009; Christofides et al., 2013; Negenborn and Maestre,
2014). Based on perspectives from modern network science, com-
munity detection methods have been proposed to generate high-
quality decompositions for distributed MPC (Daoutidis et al., 2018;
2019).

Broadly speaking, distributed MPC may refer to any such iter-
ative algorithms where during the iterations, the subsystem con-
trollers mutually share some information that helps to obtain a so-
lution better than the decentralized one (e.g., see Negenborn and
Maestre, 2014 for a comprehensive review). In a narrower sense,
distributed MPC implies the adoption of distributed optimization al-
gorithms (Yang et al., 2019), whose iterations are not simply infor-
mative (passing information from one agent to another) but also
coordinative (aiming at approaching solutions of the entire sys-
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tem with optimality or stationarity guarantees). These algorithms
are rooted in the operator splitting theory of optimization (Lions
and Mercier, 1979; Eckstein and Bertsekas, 1992), which seeks to
solve monolithically difficult problems through decomposition into
easier subproblems. For example, the classical alternating direction
method of multipliers (ADMM) algorithm (Boyd et al., 2011), when
used in distributed MPC, uses an augmented Lagrangean formu-
lation to handle the interactions among subsystems; the subsys-
tem controller decisions and Lagrange multipliers are iteratively
updated based on the augmented Lagrangean (Mota et al., 2014;
Farokhi et al., 2014). As such, the control performance of MPC,
which relies on the quality of the solution found (Mayne et al.,
2000), is guaranteed provided that the distributed optimization it-
erations converge to a monolithic optimum.

Computational time is an important consideration in the practi-
cal implementation of MPC. Specifically, the allowed computational
time for MPC must be small enough compared to the sampling in-
terval. For centralized MPC, extensive works have focused on de-
veloping efficient and structure-exploiting algorithms (Biegler and
Zavala, 2009; Patterson and Rao, 2014) as well as modified variants
of MPC that avoid full solution routines at all sampling times, e.g.,
by exploiting the parametric sensitivity information or by carrying
out truncated iterations in the centralized nonlinear programming
solver (Lopez-Negrete et al., 2013; Wolf and Marquardt, 2016). For
distributed MPC based on distributed optimization, fully complet-
ing the computation within the allowed time becomes even more
challenging, since typically tens to hundreds of iterations of sub-
system optimization are needed. Some approaches to address this
challenge include:

o Using accelerated distributed optimization algorithms, of which
the momentum method and Anderson acceleration are repre-
sentative (Pu et al., 2014; Wang and Ong, 2018; Tang and Daou-
tidis, 2019b; 2021b).

Fine-tuning distributed optimization with metric selection
methods to reduce the required computational effort (Ghadimi
et al., 2014; Giselsson and Boyd, 2016).

Using distributed versions of fast centralized MPC methods, e.g.,
by putting difficult steps such as evaluating Hessian and identi-
fying active constraints offline and leaving only easy steps on-
line (Cai et al,, 2014; Yu et al., 2019).

Developing algorithms that need fewer iterations, e.g., the AL-
ADIN algorithm (Houska et al., 2016) uses a semi-centralized
scheme that collects sensitivity information from subsystems
for coordination based on quadratic programming (QP).
Allowing solutions with inexactness that is small enough to
guarantee recursive feasibility and continually tightened for
asymptotic stability (called constraint tightening) (Giselsson
and Rantzer, 2013; Rubagotti et al., 2014).

In this paper, we adopt the perspective of early termination, i.e.,
we consider a distributed optimization algorithm for MPC that can
be terminated after any number of iterations before fully converg-
ing to an optimum. The goal is to meet the computational time re-
strictions, yet still returning control actions that guarantee closed-
loop stability and improve over the ones otherwise obtained un-
der any earlier termination. Early termination requires a primal in-
stead of primal-dual algorithm to handle the inter-subsystem con-
straints. Such an idea has been used in stochastic MPC under non-
anticipativity constraints (Krishnamoorthy et al., 2019). For dis-
tributed optimization in MPC, we propose to use a splitting al-
gorithm, analogous to forward-backward splitting (FBS) (Lions and
Mercier, 1979; Chen and Rockafellar, 1997; Duchi and Singer, 2009)
but with the forward gradient-descent step replaced by a proximal
step with ¢; and quadratic penalty terms. Specifically, the optimal
control problem in MPC is formulated as an optimization prob-
lem whose decision variables are the shared variables, i.e., the pre-
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dicted trajectories of the interconnecting signals between subsys-
tems. Each iteration includes a distributed controller solution step,
which finds the subsystems’ proximal solution to the shared vari-
ables, and a coordination step to update the shared variables. The
iterations in the splitting algorithm are allowed to be early termi-
nated according to computational time restrictions.

Key to the performance of such a splitting algorithm is the con-
cept of Lyapunov envelope. The essential idea is that when dis-
tributed optimization iterations have not yet converged and hence
the inter-subsystem equality constraints are violated, an estimate
of the effect of such inter-subsystem violations on the plant-
wide system in terms of an upper bound of the system’s control-
Lyapunov function can still be obtained. Here we derive this esti-
mate based on the assumption that the subsystems are incremen-
tally dissipative in their interconnecting inputs/outputs from/to
other subsystems, which implies a finite gain of inter-subsystem
violations, considered as disturbances, on the objective function
of the plantwide MPC problem. Thus, if the control actions are
executed, the resulting predicted trajectory, namely the “consol-
idated solution” (Ferranti and Keviczky, 2015) will have a corre-
sponding change from the subsystems’ predictions with upper-
bounded increase in the control-Lyapunov function. Therefore, by
constructing the splitting algorithm such that the proximal formu-
lation (consisting of the original function and the violations to ¢;
and quadratic penalties of interconnecting equalities) is consistent
with this overestimate of the plant-wide control-Lyapunov func-
tion, which we call the Lyapunov envelope, the iterations will re-
sult in monotonic decrease of the Lyapunov envelope and the early
termination will not deteriorate closed-loop stability.

Compared to other techniques, the most distinctive feature of
the Lyapunov envelope algorithm is its flexibility - it can be
implemented with different extents of restrictions on computa-
tional time or number of iterations, thus enabling the user to
trade-off the computational and control performance of distributed
MPC. Such a characteristic also tolerates inexactness of subsystem
solvers, and does not have specific requirements on the subsystem
solver. The iterations involve only minimal communication, i.e., no
information exchange other than the primal variable values per-
taining to the interactions among subsystems is needed. Thus, the
proposed Lyapunov envelope algorithm is a promising approach to
the practical real-time implementation of distributed MPC.

The paper is organized as follows. Preliminaries and MPC for-
mulations are first introduced in Section 2, where we will review
the basic assumptions for the closed-loop stability of distributed
MPC. Then FBS as a classical distributed optimization algorithm is
introduced in Section 3 and we discuss its potential and limitations
in addressing real-time implementation of distributed MPC. Subse-
quently, through the analysis of the consolidated solution and the
system dissipativity, the concept of Lyapunov envelope is derived
and the Lyapunov envelope algorithm is presented in Section 4. A
case study on a vinyl acetate monomer process is considered in
Section 5, which, to our best knowledge, is the first investigation
of distributed MPC on such an industrial-scale chemical plant. Finally,
conclusions are given in Section 6.

Notations. We use I, to denote the set of nonnegative inte-
gers up to n: {0,1,...,n} and I} = I,\{0}. Subscripts i=1,...,n
are used for subsystems, superscripts r =0, 1,... are used for it-
erations of optimization algorithm, and the bracketed index [t] is
the time stamp. A Ky -class function « : [0, 00) — [0, o0) refers to
a strictly increasing continuous function satisfying «(0) =0 and
lim;_ o @ (r) = co. An indicator function 1(-) takes a value of 0 if
the proposition in the parentheses holds true and oo otherwise.
We also use 1x(s) = 1(s € X) for any set X. Blackboard bold Latin
letters and capitalized Greek letters stand for sets. Scalars, vectors,
and functions are represented using lower case letters, and matri-
ces use capitalized Latin letters. We denote by v = [v; V5;...; V]
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the vertical stacking of column vectors vy, V5, ..., Vv, into a vec-
tor v. A matrix M > (x)0 stands for positive (negative) semidef-
initeness, and M > (<)0 stands for positive (negative) definite-
ness. When M > 0, the quadratic form x"Mx is represented by
lIx|I2,, and specifically when M =1, ||x||2, is simply written as [|x||?
The minimum and maximum eigenvalues of M are denoted by
Amin (M) and Amax (M), respectively. Clearly, Amin (M) |1x]1% < ||x]I2, <
Amax (M) [|x[|2.

2. Preliminaries and formulations
2.1. Centralized MPC

We consider a discrete-time system P comprising of n subsys-

tems. For subsystem i, i =1, 2,...,n, the dynamics is written as
p . [XlE+11 = fxlel el wile) 1)
L wilt] = hi(x:[¢], uie])

where x;, u;, w;, and v; stands for the vector of states, inputs, in-
terconnecting inputs from other subsystems, and interconnecting
outputs acting on other subsystems, respectively; the functions f;
and h; are continuous. In other words, P maps signals w; and u;
into v; and x;. We assume that all the state values are available for
control. Suppose that the interconnections among the subsystems
are specified by the linear relations with matrices H;;:

W,‘=Hij1/j, i,j:l,...,n,i;éj. (2)

By vertically stacking the vectors of the subsystems, the dynam-
ics of the entire system, comprising of the disconnected subsys-
tem dynamics P= (P;,...,P;) that maps (w,u) — (v,x) and the
interconnections H : v — w, can be denoted by Py : u — x and ex-
pressed as

X[t +1] = f(x[t], ult], wt])

Py : qvit] = h(x[t], u[t]) 3)
w[t] = Hu[t]

or simply

X[t + 1] = f(x[t]. ult], HR(x[t]. u[t])) =2 fu(x[t], ult]. (4)

In centralized MPC, at time k, the control action u[k] is deter-
mined by solving monolithically the following optimization prob-
lem that minimizes the cost associated with the predicted trajec-
tory of x and u, denoted as X and ii, respectively, and executing
ulk] = 4[0]:

min Y00 ¢(®[t], alt]) + ¢ (R[N])
st R[t+ 1] = f[t], a[t], W[t]), t € Iy_
[t] = h(&[t], Alt]), t eIy, (5)
W[t] = H[t], t e Iy_q
RtleX, d[t] e U, t eIy_q
%[0] = x[k], R[N] € Xt.

In the above formulation, X, U, X; are the state, input and ter-
minal constraints, respectively; ¢ and ¢; are the stage cost and
terminal cost functions, respectively; N is the prediction hori-
zon length. Let us recall the classical result for the closed-loop
asymptotic stability of centralized MPC (see, e.g., Section 3 of
Mayne et al. (2000)).

Theorem 1. Suppose that

1. f(0,0) =0, h(0,0) =0, £(0,0) =0, ¢/(0) =0, X is closed, and U
and Xy € X are compact, containing the origin in their interiors;

2. there exist Koo-class functions o and oy such that ¢(x,u) >
a(]|x|), Vx € X,Yu € U and ¢ < o (]|X]]), VX € X¢;

3. there exists a control law «ky, such that Vx e X; k¢(x) €U,
Fir (. k() € Xg, and £(x. fir (X, kp(X))) — £(X) < —E(x, K£(X)).
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Then by solving the centralized MPC problem (5) parameterized by
x[k] and denoting the resulting control law specified by u[k] = {i[0] as
u = k (x), we have the following statements hold true:

1. (Recursive feasibility.) If the problem (5) is feasible for x[t], then
for x[t + 1] = fy(x[t], k (x[t])) it remains feasible.

2. (Lyapunov descent.) The optimized objective function V (x[t]) sat-
isfies V(x[t + 1]) — V(x[t]) < —e(x[t], k (x[t])).

It then follows that V is a control-Lyapunov function yielding
asymptotic closed-loop stability, i.e., starting from any state x[k| that
makes the problem (5) feasible, the state trajectory converges to the
origin.

2.2. Formulation of distributed MPC

In the context of distributed MPC where we need to optimize
control actions on the basis of subsystems, we first make the fol-
lowing separability assumption on the subsystems for simplicity,
which allows the reformulation of problem (5) without involv-
ing constraints across subsystems other than the interconnections
w = Huv.

Assumption 1. Suppose that the following statements hold:

1. In (5), ¢, ¢4, X, Xf, and U can be separated into subsystems,
e, e(x,u) =0 G(x,u), 6(x) =YL (%), X=X x -+ x
Xn, XfZXfl X oee Xan, UZUl X e XUn.

2. For each i=1,...,n, f;(0,0)=0, h;(0,0)=0, ¢;(0,0)=0,
£;(0) =0, X; is closed, and U; and Xy € X; are compact, con-
taining the origin in their interiors;

3. For each i=1,..., n, there exist Ko-class functions ¢; and
ag such that ¢;(x;, u;) > o;(||x;]]), VX € X;, Vu; e U; and ¢ <
o ([1%:1]), ¥x; € X

Hence the MPC problem becomes

min Y7 (X5 G&le] at]) + s (RIND)
s.t. Rilt +1] = fi(Rit], q;[t], wilt]), t eIy_q,i€e It
vilt] = hi (R[], w[t]), t eIy, ie Ty (6)
W[t] = H'D[t], t el
gi[t] € Xj, ﬁ,‘[t] eUj, tely_q, ie ]I;[
)?,[O] = X,'[k], )?,[N] e X, ie H;

In the above formulation, W[t] = HD[t] is not separable into

subsystems. Hence we create shared variables s=[s{;...;Sn] =
[Swi:Su1i---: Swn; Sun], where s,,; is a copy of [W;[0];...; Wi[N —1]]
and analogously s,; is a copy of [#;[0];...; ?;[N — 1]]. The insepara-

ble constraints are hence rewritten as constraints between subsys-
tems and shared variables W;[t] = s,;[t], ?;[t] = s,[t], and a con-
straint on the shared variables s,,;[t] = Z]'?ﬂ H;jsyilt]. More com-
pactly, by stacking all variables in each subsystem i into a vector &;
and the subsystem constraints as &; (depending on x;[t]), rewrit-
ing the linear equality constraints between the subsystems and the
shared variables as G&; =s; (for some properly constructed ma-
trices G, i=1,2,...,n), expressing the constraints on s as se€ X
(which is the kernel of some matrix), and the objective function of
subsystem i as ¢;, we arrive at the following formulation:

ming s ik ¢i(6)
s.t. §cBi.Gé=s;, iely (7)
S:[S];...;Sn] €.

This formulation has a structure as illustrated by Fig. 1, which we
refer to as the agent-coordinator architecture.

Specifically, the decision variables of the subsystems &; subject
to constraints E; (which may be complex) are handled separately
and in parallel by their own optimization solvers or routines. These
subsystem solvers are called agents, which should be capable of
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Fig. 1. Agent-coordinator architecture.

solving quadratic programming or nonlinear programming prob-
lems depending on linear or nonlinear system dynamics in (1).
The shared variables s which account for the interactions across
subsystems through linear equality constraints, are handled by an-
other solver, called coordinator. Compared to the agents, the coor-
dinator is only required to use a simple procedure to update the
shared variables after collecting some information from the sub-
system solutions.

If we further denote the optimized objective function value of
the subsystems’ optimization problem (+oc if infeasible)

mll‘l& ¢l(€l) (8)
s.t. &l GEi=si
as @;(s;) fori=1,..., n, then the distributed MPC problem (7) can

be simply written as a constrained optimization problem of the
shared variables s:

fsgizn ;‘Pi(si)- (9)

Hence to solve (7), an iterative algorithm is adopted to update the
value of s, and in each iteration, the associated values of the deci-
sion variables of the subsystems that solve the optimization prob-
lems (8) are found. Before discussing the algorithm, we consider
how any algorithm will affect the closed-loop stability.

2.3. Stability of distributed MPC

Key to the establishment of the Lyapunov descent property in
Theorem 1 is the observation that if at time t, the MPC pre-
dicts a control sequence [0],..., 4[N — 1] with predicted states
X[1],...,X[N], then at time t 4 1, the MPC can be initialized at a
feasible solution by doing the following replacement:

[0, d[1], ..., 4[N — 1] < 4[1], ..., 4[N — 1], &:(RIN]),
X[1],%[2], ..., &[N] <= X[2], ..., &[N], fu (R[N, &¢(X[N])),

i.e., by extending the predicted trajectory for one sampling time
under the control law «y. This initialization already achieves the
descent property with an objective function descent of at least
—£(x[t], u[t]), which can only be further improved with optimiza-
tion. For distributed optimization, we still assume the existence of
such an a-priori basic stabilizing control law «;.

(10)

Assumption 2. There exists a control law ky;, such that Vx e
Xp, ke(x) €U, fulx, ke(x)) eXp, and €p(x) — Le(x, fu(x, k5(x))) =
2(x, ke(x)).

Then by initializing the distributed optimization with the same
extension rule (10), the condition under which the closed-loop sta-
bility is not compromised is the following.

Lemma 1 (Closed-loop stability under distributed optimiza-
tion). Suppose that Assumptions 1 and 2 hold. If for any x[t] such that
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problem (7) is feasible with any feasible initialization of &, ...,&n,s,
the distributed optimization algorithm returns a feasible solution of
(7) with decreased objective function from the initialization using the
extension under kg, then under the distributed optimization algorithm,
distributed MPC keeps the Lyapunov descent and asymptotic stability
properties.

In the above lemma, we need the distributed optimization al-
gorithm to return a feasible solution, since the feasible solution is
consolidated, i.e., implementing the predicted control sequence will
steer the system onto the predicted states, thus allowing the ex-
tension (10) that makes V a Lyapunov function. In other words, we
require the distributed optimization algorithm to achieve, by solv-
ing (9), a descent on the following Lyapunov function, defined as
the summation of the subsystems’ objective function values and an
indicator function of the interconnecting constraints:

n
VLD =) (0i(&) +15,(&) + 1(GE = 51)) + 15(5). (11)
i=1

Letting ¥ (s) = 15 (s), (9) can be equivalently expressed as
min ¢(s) + ¥ (s) = Y 0i(s) + Y (s). (12)
i=1

The formulation (12) lends itself to an agent-coordinator architec-
ture, as the functions ¢; are defined based on the subsystem prob-
lems (8) and ¥ =1y is a function associated with the intercon-
nections among the subsystems. Next we introduce the forward-
backward splitting (FBS) algorithm for solving (12).

3. Forward-backward splitting (FBS)
3.1. The original FBS algorithm

For minimizing a composite function ¢ + ¥ as in (12), the FBS
algorithm iterates the s variables by

=s"—yVo(), (13)
sl € Prox,, (s"12), r=0.1,...

Sr+1/2

where y > 0 is the step size, and the proximal operator for any
y > 0 and function g is defined by

H / 1 J
ProX,(s) = argmin (g(s )+ 3 lIs" — 5||2>. (14)

Particularly for ¥ as an indicator function of X, the proximal op-
erator is independent of y and is a projection:

. . 2
ProX, ., (s) = projy (s) = argmin lIs"—sl. (15)

In other words, each iteration contains a gradient descent step and
a projection step. The FBS has a sufficient descent property as fol-
lows (Bolte et al., 2014, Proposition 2). With increasing iterations,
this descent property implies the convergence of s towards a sta-
tionary point (Themelis et al., 2018), which is not detailed here
since closed-loop stability of distributed MPC does not necessarily
need the solution convergence.

Lemma 2 (Descent property of FBS). For any function ¢ that is
continuously differentiable with a Lipschitz continuous gradient Vg
(denote the Lipschitz constant as 1) and any proper, closed, lower-
bounded function v, when y < 1/1, under the FBS iteration (13) we
have
1—
) —p(s) = s g2, (16)
2y
We note that the FBS algorithm may not directly satisfy the
condition of the above lemma, since the functions ¢; may not be
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differentiable and when s; is such that (8) is infeasible, ¢;(s;) = oco.
To show this complexity, we denote by X; the region of s; such
that the problem for subsystem i (8) has a feasible solution, i.e.,

T ={G&ilsi e i}, i ey, (17)
and
Y =Zn(Z1N---NZy). (18)

Then for any s € X/, all ¢;(s;) have a finite value. It suffices to iter-
ate s in X’. That is, instead of solving (12) with ¥ = 15, we should
redefine ¥ as 1y, and carry out FBS as

s e projg, (s" —yVe(s)), r=0,1,.... (19)

This in fact demands the following conditions for using the FBS
algorithm.

Assumption 3. Suppose that

1. the functions V¢(s;), namely the gradients of the optimized
objective function values of (8) depending on s; as parameters,
exist and can be computed for i=1,...,n, and that

2. the projection operation onto X’ as the intersection of n+ 1
sets can be computed without an alternating projection proce-
dure to evaluate projs,i=1,....n iteratively.

Corollary 1 (Closed-loop stability under FBS algorithm). Under As-
sumption 3, the FBS iteration (19) satisfies the sufficient descent prop-
erty (16), which implies closed-loop stability of distributed MPC under
Assumptions 1 and 2 on the system (1).

However, the conditions of Assumption 3 are difficult to satisfy.
First, the evaluation of V¢; needs a parametric sensitivity anal-
ysis of the subsystem problems (8), which rely on further reg-
ularity assumptions and solvers that evaluate such sensitivities
(Fiacco and Ishizuka, 1990, Section 5) or an identification scheme
of active constraints in the subsystems’ problems (Quirynen and
Di Cairano, 2020). Second, the finite-time exact evaluation of
projs. by the coordinator requires an off-line explicit characteriza-
tion of X/, which is possible only in simple situations (e.g., when
each subsystem is controllable, single-input-single-output, and un-
constrained in u;) and usually can not be easily obtained.

3.2. Modified FBS algorithm

The difficulties in satisfying Assumption 3 fundamentally orig-
inate from the interconnecting constraints Gé&; =s;, i € I;}, linking
the agents and the coordinator. In the FBS algorithm introduced
in the previous subsection, the interconnecting constraints are re-
quired to be satisfied exactly throughout the iterations so that the
descent of ¢(s) yields a Lyapunov descent. Therefore, it is desir-
able to relax these constraints to obtain inexact solutions. The idea
is natural in that even when G&; —s;, i=1,...,n, are not exactly
zero, as long as they are sufficiently small in magnitude, the solu-
tion is still approximately feasible and may be tolerable.

In other words, we seek to replace the 1(C&; =s;) terms in
the Lyapunov function (11) with a “soft constraint” represented by
a penalty term @ (G&; —s;), where @ is a positive definite and
even function satisfying @ (0) = 0. Denote C = diag(C;,...,C,;) and
@ (C§ —s) = Y1, @ (G& —s;). With such a penalty @, we pro-
pose to substitute the gradient descent step in (13) with the fol-
lowing proximal step:

s"1/% € prox3 (s") := arg min (¢(s) + @ (s - s)). (20)

Given any s, the solution of (20) is hence carried out by agents
(i e I;) in parallel without needing to evaluate gradients of ¢;:

& e argming, ¢;(&;) + @ (G& —s))
s.t. Ei € &; (21)
S;+1/2 — Cié{'
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The second line in (13) is also modified with @ :
s e prox (s"'/?) = arg mizn w (s —s+1/2). (22)
Se

which can be executed by the coordinator without knowing the
monolithic feasible set X’ (18).

The modified FBS algorithm, comprising of two proximal
steps (21) and (22) in each iteration, is not an algorithm that
guarantees convergence to the optimum with an increasing
number of iterations. Nevertheless, since the two steps guaran-
tee (p(sr+1/2) + w—(sr+l/2 _ sr) < (p(sr—l/Z) + w(sm/z _ Sr) and
w (s —s"1/2) < @ (s" — s™1/2), respectively for all r>1, we
have (p(SrH/Z) + ZD‘(SHl _ Sr+1/2) < (p(sr—l/Z) + G)'(Sr _ Sr—]/Z).
Now, to remove fractional superscripts, let us denote s™t1 by §+1
and s™+1/2 by §+1 (r=0,1,...) to represent the shared variables s
solved by the agents and the coordinator respectively. The modi-
fied FBS thus guarantees that the iterations result in a monotonic
decrease in the value of ¢ (5) + @ (5 - $).

Yet, the question lies in: how should the penalty function @ be
chosen, so that the descent of ¢ (5) + @ (5 —$) is still a Lyapunov de-
scent? This is the key issue to be answered by the Lyapunov enve-
lope approach in the subsequent section.

4. Lyapunov envelope
4.1. Analysis of consolidated solution

Following the notations from the previous section, suppose that
under the modified FBS algorithm ((21) and (22)) within a certain
number of iterations, we have obtained from the agents a solution
of (&1,...,&n,9), satisfying & € E; and C§; =3; for all i eI}, and
from the coordinator an s =3$e X that does not equal § exactly.
In other words, the algorithm returns a solution (£,s) that vio-
lates the interconnection constraints C§ —s=0 (§—5=0), i.e, is
not consolidated. Therefore, ¢ (5) = 1 ; ¢(&;) is no longer the cost
of an actual future trajectory and a control-Lyapunov function. To
obtain a control-Lyapunov function in the form of ¢(5) + @ (§ - 9),
we need to analyze the effect of nonzero C§ —s = §—§ (violations
to the interconnecting constraints) on the control-Lyapunov func-
tion of the consolidated solution.

Now we denote
§ = [Wilkl: ..ok + N = 1] 9i[k]: ... Difk + N = 1]],
S = [wilk];...;wi[k+ N —1); [k]; ...; vk + N = 1]]
The former vector stands for the values of the interconnecting vari-
ables solved by the subsystems’ agents, which conform with the
subsystem model, while the latter vector stands for the values of
interconnecting variables solved by the agent, which conform with
the interconnecting relations H. Their differences are denoted by
vectors &y and &, comprising of the following entries:

Swilt] = wilt] — wilt], S,lt] = Di[t] - vilt], t eIy, ie L. (24)

The solution obtained by the optimization algorithm is hence a
prediction of the system as shown by the inner block diagram of
Fig. 2. When §,, and §, are nonzero, the predicted trajectory is re-
alized on a hypothetical system interconnected by ¥ and H with
additional signals §,, and —§, imposed before and after P to ac-
count for the discrepancies between the agents and the coordina-
tor.

The consolidated solution, which is the trajectory of the actual
system without the hypothetical signals, is hence the predicted so-
lution with opposite hypothetical signals —4&,, and §, imposed to
set off 6,y and —4,, respectively, as shown by the red area in Fig. 2.
Therefore, the consolidated solution can be regarded as a perturba-
tion of the predicted trajectory with exogenous disturbances. It is
hence desirable to analyze the effect of such disturbances on the
objective function of the solution returned from distributed opti-
mization.

(23)
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Fig. 2. Consolidated solution viewed as a disturbed system.

4.2. Analysis of system dissipativity

Dissipativity provides a natural framework for analyzing the
stability of interconnected systems (Brogliato et al., 2020). Specifi-
cally, for the analysis of the perturbed system, we adopt the con-
cept of incremental dissipativity (Pavlov and Marconi, 2008) here.

Assumption 4. For i € I;, subsystem P, is incrementally dissipative.
In other words, for any u;[t] € U;, and any two different w;[t] and
x;[t] € X;, there exist matrices M;, 2,,;, 2,; > 0, such that the differ-
ences between the two w;[t], x;[t] and the resulting two x;[t + 1]
and v;[t], denoted as §,,[t], Sxlt], Sylt + 1] and §,;[¢t], respectively,
satisfy

[18ilt + 11113, — 18.lt 1113 < 18wilt1NIB,, — 18l (25)
For example, suppose that P, is a linear system:
p - Jxlt +1] = Ax[t] + Bui[t] + Ewi[t] (26)
" wilt] = Gxi[t] + Dyuy[t] + Fwilt].
Then its increment can be written as
Suilt + 1] = Aibxlt] + Eibwilt]
81) X1 1Y X1 ~wi 27
' {amm — Colt] + Eult] @7)

which satisfies the incrementally dissipative inequality (25) if the
following linear matrix inequality (LMI) is satisfied for M;, €,
Qi = 0:

|:AITM,-A; — M; +CT QG

AITMIE, + CITQWE
EITMIAIT + Fl‘TQw‘Cj

=< 0. 28
ETME; — Qi + F,»TQwFJ =0 (28)

For the stage cost and terminal cost functions in the objective
function of the MPC problem (5), ¢ and ¢;, we assume the following
conditions.

Assumption 5. For all i e I},

1. functions ¢; and {5 are continuously differentiable in the x; ar-
gument;

2. the gradients satisfy 0¢(0,u;)/0x; =0 and for any u; € U,
0¢4(0, u;)/9x; = 0;

3. the gradients of ¢; and ¢;; are Lipschitz with constants I; and Iy,
respectively, i.e.,

3 (5. 3 (g0 5o o
?(Xi, Ui)d— S )| <Ll —&ll,
i (o i (& s s
|52 ) — GE @) | =< lll%; = %],
for any %;, % and 4; € Uj;
4. the K-class function ¢; lower bounding ¢; can be found as a
squared norm: o;(x;) = % [|x;]|% for some constant g; > 0, and £

is also lower bounded by % ||x;]|? for some constant gz > 0.

(29)
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It is straightforward to verify that the above assumption is sat-
isfied by a typical choice of quadratic cost functions ¢;(x;, u;) =
”Xi”a. + ||Ui||ﬁ,.v L(x) = ”Xi”i. with Q;, R; > 0, 5; = 0.

Now let us consider the effect of disturbances (8y,d,) on
the states of the consolidated solution. We denote the intercon-
necting variables in the consolidated solution by Ww°[t] and 7°[t],
and let 8¢.[t] :=we[t] — wilt], &;[t] :=D9[t] — D;[t] be the differ-
ences between the consolidated solution and the predicted solu-
tion, stacked into §;, and &, respectively. We stack the matrices
involved in subsystems’ incremental dissipativity properties into
block diagonal forms 2, = diag(Qy1,..., Qwn) and analogously
2y and M. Then we have the following bound.

Lemma 3 (Effect of violations to the interconnecting constraints on
the states of the consolidated solution). Suppose that Assumption
4 holds and in addition

Q, —2H QuH > 0. (30)
Then for any T € Iy_4, we have
I82[T1II% < 41IC& — 512, (31)

where 2 is the block diagonal matrix whose order equals the dimen-
sion of s and whose diagonal blocks corresponding to the coordinates
of each s,,;[t] and s,[t], t € Iy_q in s are Q,,; and 2, respectively.

Proof. Since the consolidated solution satisfies the interconnecting
relations specified by H,

8 =W -w=(W-W)- (W-W)
=H(r —7) — 8w =H(0* - ) + H(0 — D) — 8 (32)
= Hé; + Héy — dw.

If the subsystems are incrementally dissipative, by adding the in-

equality (25) with t taking values from O to any T — 1 € Iy_; for all
subsystems, the deviations should satisfy

T-1 n T-1 n n
oD USulellg, = 3 D I8l — Y I8uINIIG, (33)
t=0 i=1 t=0 i=1 i=1

where the meaning of §;; is analogous to that of §;, or &;,. Drop-
ping the last term, we have

T-1 T-1
I CAGI D AU (34)
t=0 t=0

Substituting (32) into above, we have
Siso 18518113, < X020 IIH8;[t] + (H,[t] - 8ultD 15,
< 2(Xi50 IHS;IE11Z, + Xico 1HSu[E] — SwltllIZ,, )-

In the above inequality, 2||H8{j[t]||§ZW =85[t]T QHTQwH)$83[t] and

||85[t]||§2” = 83[t]T€2,83[t]. Moving the first term on the right-hand
side to the left gives

(35)

T-1 T-1
D NSNS, —asra,m < 2D 1HSW[E] = Sult]ll%,,. (36)
=0 =0

where | - ||, _anTq,n is well-defined due to (30). This implies that
d; remains bounded. Then, from (32), we obtain the bound of §;,:

Yoo 1831e11%, = S0 IH85[t] + HB,[t] — Sult]ll3,
<200 (I8 [E112 g, + IHSW[E] — Sule]1Z,)

which implies that

o (185161112, — 1811112,
< 00 IS g, 5 + 2H8 (L) - SulellZ, — 1851E112,)
=100 (185112, oprquu + 21 H8[t] = 8ult]l3,)
<2305 |1HS,[t] - 8ult]l%, -

(37)
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(38)

Hence with the incremental dissipativity properties of the subsys-
tems, the deviation of the future states in the consolidated solution
from the predicted solution is bounded as

81T, < Siz0 (1851e113, — 1851113,
<230 [IHS,[t] - 8ult]lI,, (39)
<40 (180e112 g + 18wlEllIE,)-

Since Qy > 2H"QwH = HTQuH,

T-1

ISITIIZ <43 (I8.0e1113, + I18u1E112, ). (40)
t=0

By further relaxing the right-hand side to a summation from 0 to
N — 1, we obtain (31). O

Next we consider the effect of §; = 2> — X on the stability of the
consolidated solution. Denote the deviation of the total objective
function value by & :=V° — ¥, where V is the objective function
value of the prediction and V° is that of the consolidated solution.
Lemma 4 (Effect of violations to the interconnecting relations on
the objective function value of the consolidated solution). Suppose
that the subsystems are incrementally dissipative (according to As-
sumption 4) with (30) and that the MPC formulation satisfies Assump-
tions 2 and 5. When distributed optimization of the MPC problem
gives a solution (£,s) and corresponding subsystem prediction with
objective function value V, the consolidated solution will have an ob-
jective function of V° =V + 82, where
1871 < VY2[C& = 5| + r2lICE — 5|2 (41)
for some positive constants ry and r5.

Proof. Assumption 5 implies that the values of the terms in the
objective function have the following bounded deviations:

oo 11 T 13 ] 1 o
185:] := 16X, 0y) — €:(Xi, A | < LRl - 1851l + §’||5,<,-I|2 (42)
where the time index t € Iy_; is omitted. The deviation in the ter-
minal cost then satisfies
1851 =< Ll &INTI - (185 INTI + % 1185 INTII2. (43)

Adding up all the stage cost and terminal cost deviations in all the

subsystems, we obtain that d;; should be bounded by

51 < Y0, [ o (GIZ TN 185 [l + S 1185 [£111%)
Hi &IN85 INTI+ % 1185, [NTII2.

Using the Cauchy-Schwarz inequality, we further relax the above
inequality as

_ A . 12
[0 (205 BIS IR + BIGINID)] sl g
+max;.;; max (4, §) 118512

(44)

16y ] <

From (40), we have

)‘mm(M)HS;[T]”z = 4)\max(Q)”C§: _5”2 (46)
for any T e Iy_;. Hence

Amax (£2)
82|17 < ANTEEC2C | ICE — s |2 47
185117 < 4N EnSICE s (47)

Under Assumption 5, choose sufficiently large positive constants r;
and ry, e.g., according to

rnoo= ZTIDI%X max (12/gi. I2/gg) NV2AL () /A (M),
“n 48
D) > 4max max (I;, lg) - NAmax (€2)/Amin (M). (48)

ielly

Then the conclusion is proved. O
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4.3. The Lyapunov envelope algorithm

Motivated by the conclusion of Lemma 4, we consider the fol-
lowing modified formulation of the MPC problem:

ming s YL, (¢i(5) + p1llGE — sill + p21IG& — sill?)
s.t. é;'i c E,‘, ie ]In+ (49)
S=[s1;...;5n] € 2.

Suppose that in an iterative algorithm to solve (49), starting from
an initial solution of (£°,s%) satisfying G£? =s?, i e I, the itera-
tions from (£7,s") — (£7t1,s+1) are such that the objective func-
tion is monotonically non-increasing. If such an algorithm can be
performed in a distributed manner on an agent-coordinator archi-
tecture, i.e., by iterations of an agent update step and a coordinat-
ing step, then regardless of whether the algorithm finds or con-
verges to a point (&,s) satisfying s = CE, the intermediate solu-
tion terminated after any iteration will guarantee that the consoli-
dated solution will have a decreased objective function without the
penalty terms. For convenience, we introduce the following defini-
tion.

Definition 1 (Lyapunov envelope and Lyapunov envelope algo-
rithm). Under the conditions of Lemma 4, the objective function
of (49) is called a Lyapunov envelope. An algorithm for solving
(49) that initializes at a feasible point (£, s) satisfying s = C§ and
returns a feasible solution with the objective function not exceed-
ing that of the initial point is called a Lyapunov envelope algo-
rithm.

Specifically, the modified FBS algorithm discussed in
Section 3.2, where each iteration comprises of (21) and (22) with
the penalty chosen as @w(§—3) =pilIS—5|| + p2lI5=3$|%, is a
Lyapunov descent algorithm of solving (49) simply in a block
coordinate descent paradigm. In the agent update step (21), each
subsystem i in parallel updates a &; € E; that reduces or minimizes
the corresponding term in the objective function of (49), i.e.,

gt e arggneiqr} (9:(E) + p1lIG& — s]I| + p2lIG& — s{11?). (50)

In the coordinating step, s is updated by minimizing the objective
terms associated with s in (49), i.e.,

s e argmin (py [ICE"™! — sl + pallCE™" —s1?). (51)

Formally, the algorithm is summarized in Algorithm 1 .

fort=0,1,... do

Initialize: £° and sO satisfying C£0 = s0;

Set: r < 0;

while r < rmpax do
fori=1,...,nin parallel do

| Solve £/*! from (50);

end
Solve s™! from (51);
r<r+1;

end

1 end

© 00N SR W N -

-
=]

Algorithm 1: Lyapunov envelope algorithm using block coor-
dinate descent.

Now consider the distributed MPC at time k + 1. If the consol-
idated solution of the previous execution (under x[t]) is assigned
as the initial solution, clearly, it satisfies the interconnecting rela-
tions and hence is itself a consolidated solution. As the iteration
proceeds, the intermediate solutions yield a monolithically non-
increasing sequence of upper bounds on the control cost when
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they become consolidated (Lyapunov envelope). By the same rea-
soning as in Section 2, the Lyapunov envelope can be used as a
control-Lyapunov function, which, under the same appropriate as-
sumptions, leads to the asymptotic closed-loop stability property.

However, the relaxation of interconnecting relations s = C§ as
soft constraints may imply possible violation of state constraints X
and X; in the consolidated solutions and hence recursive feasibility.
To resolve this issue, we denote by Vit (x) the optimized objective
function value under the Lyapunov envelope when the states are
sampled at x and V*f(x) the objective function value when initial-
ized under the baseline controller «; (Vig(x) < V¥f). Let F be the
region on which the centralized MPC problem is feasible (so that
at any x € F, the subproblems can always be feasibly solved), and
a* > 0 be the maximum one among such values of a > 0 such that
the sublevel set S(V¥t,a) = {x|V¥f(x) < a} is a subset of F. Then,
assuming that the trajectory starts on S(Vf, a*), the trajectory is
bound in S(V¥f,a*) C F, and hence the recursive feasibility is pre-
served.

Therefore, we have reached our main conclusion.

Theorem 2 (Closed-loop stability guarantee of the Lyapunov enve-
lope algorithm). Suppose that the following propositions hold:

1. Assumptions 1, 2, 4 and 5 hold for the system dynamics and MPC
formulation;

2. In every execution of distributed MPC, the initial solution is set
as the consolidated solution of the previous execution, extended
under k¢ (according to (10));

3. A Lyapunov envelope algorithm is used for distributed MPC, where
the penalty coefficients p; and p, are such that ry = p;/(a*)'/?
and r, = p, satisfy (48).

Then starting on S(V*t,a*), the closed-loop system is asymptoti-
cally stable under the Lyapunov envelope algorithm.

Comparing the Lyapunov envelope algorithm to the FBS dis-
cussed in Section 3.1, the following advantages can be noted.

1. The coordinator does not need the information of the feasible
regions of interconnecting variables s; for every subsystem, and
does not restrict itself to solutions that must make all subsys-
tems match themselves to.

2. The coordinator does not need to evaluate the gradient of ¢,
which is implicitly expressed in terms of the optimal values of
the subsystems’ optimization problems.

3. The iterations to coordinate the subsystems can be early ter-
minated. Despite the violations of interconnecting relations, the
consolidated intermediate solutions are of controlled quality in
the sense of a well-bounded control cost.

4, The Lyapunov envelope is monotonic with iterations, eliminat-
ing the possibility that intermediate consolidated solutions may
result in deteriorated performance. The user may therefore con-
veniently find a trade-off between computational efficiency and
solution optimality.

4.4. Remarks on the Lyapunov envelope algorithm

In the remainder of this session, we provide some remarks to
facilitate a better understanding and practical utilization of the
Lyapunov envelope algorithm.

Remark 1 (Substituting. ¢,-norm with ¢;-norm) In the coordinat-
ing step of each iteration, the s variable is updated under a given
& by solving the following problem:

ming p1lls — C&|| +p2||S—Cé;'||2 (52)
s.t. S=1[S1:...;:5] € X,

which is a convex optimization problem. By using an auxiliary
scalar o with constraints ||s — C£||q < o, the above formulation is

Computers and Chemical Engineering 155 (2021) 107532

transformed into a second-order conic programming (SOCP) prob-
lem.

In fact, due to the equivalence of ¢¢-norms for all g > 1, one
can substitute the ¢, penalty ||s —C&||, with any other ¢4 forms.
Especially, it is desirable to substitute it with the ¢;-norm for the
benefit of reformulating the problem into a quadratic programming
form (QP):

mins,g p1eT§+p2||s—C$||2 (53)
s.t. -¢<s-C&<g¢, Hs=0,

where e is a vector with all components equal to 1, and Hss =0
stands for the interconnecting constraints (arising from w = Hv) in
s e X. The ¢1-norm substitution is desirable also for the subsys-
tems to update & since with the auxiliary vector ¢ introduced, the
non-smoothness of the ¢;-norm term can be resolved.

Remark 2 (Sharp Lagrangean and exact penalty in optimiza-
tion). The formality of the penalty terms in the Lyapunov envelope
algorithm has an interesting conceptual connection with the stud-
ies of augmented Lagrangean duality in optimization theory, which
investigate the conditions under which the dual variables support
exact penalty representations. Specifically, to minimize an objec-
tive function f under constraints c(x) = 0 and x € X, if minimizing
the augmented Lagrangean

L(x. A, p) = f(x) + ATc(x) + pww (c(x)) (54)

(where @ is called a penalty function) under given A and a finite
value of p gives exactly the optimum as the original problem, then
A is said to support an exact penalty representation and hence
the augmented Lagrangean can result in zero duality gap (Rubinov
et al., 1999; Huang and Yang, 2003). In the afore-mentioned liter-
ature, a sharp Lagrangean, namely an augmented Lagrangean with
@ (-) = | - |lq instead of a quadratic penalty @ (-) = || - ||> was pro-
posed.

It was proved that in order to have A =0 supporting an ex-
act penalty representation, the ¢g-norm is chosen so that the order
q > 0 correctly reflects the sensitivity of the objective function to
the violations to the constraints c(x) = 0 (Huang and Yang, 2003,
Theorem 4.6). In this sense, the penalty terms in the Lyapunov en-
velope play the role of such exact penalty functions to account for
the effect of disturbances (i.e., violations to the interconnecting re-
lations among subsystems) on the objective function. The choice
of a combination of a sharp and classical form with both ¢; and
quadratic penalty takes into account the first-order and second-
order disturbance effects, which is implied by the continuity con-
ditions (Assumption 5).

Yet, different from the context of augmented Lagrangean dual-
ity, the Lyapunov envelope algorithm does not consider a full op-
timization of the augmented Lagrangean, which is computationally
expensive. Instead, we adopt a distributed approach to successively
improve the objective value. While it does not guarantee a conver-
gence to the optimum, the control performance can be made sat-
isfactory with appropriate parameters p; and p;.

Remark 3 (Parameter tuning and scalings). The choice of param-
eters p; and p, has a fundamental effect on the computational
efficiency and the control performance of the resulting solution.
On one hand, according to the previous discussions, p; and p;
should overestimate the first-order and second-order effects of dis-
turbances on the objective function for maintaining the closed-
loop stability. On the other hand, if p; and p, are too large
(over-conservative), then the ill-conditioned proportion between
the original objective and the penalty terms will slow down the
iterations to improve the solutions and largely increase the time
for numerical computations. Hence the two parameters should be
tuned just large enough to yield closed-loop stability.
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Within the two parameters, p; should be considered as more
important than p,, since the squared ¢,-norm is dominated by the
¢;-norm when C£ — s is close to 0 and thus it is the ¢; penalty that
mainly determines the control performance. Therefore to tune the
algorithm, the value of p; should be decided primarily for a trade-
off between control and computational performances, followed by
an appropriate choice of p,. In this paper we follow this empiri-
cal tuning procedure. As a future direction, it may be possible to
choose the parameters based on a systematic and rigorous dissipa-
tivity analysis of system dynamics.

It is worth noting that although formally we can reduce the
number of parameters down to 2, the relative scalings of the com-
ponents of C& —s are intangibly crucial, since well-scaled penalty
terms reduce the conversativeness of estimating the disturbance
effects. Without a-priori scalings, one can determine the scaling
factors of C& — s, denoted by 6, using the information of static gain
G from disturbances to the states (or outputs) and scaling factors
n of the states (or outputs) in the objective function:

min [|G — nl?. (55)

Remark 4 (Satisfaction of incremental dissipativity). For linear sys-
tems, supposing that the interconnecting inputs and outputs w and
v are well-scaled, one may verify the LMI (28) with simple forms
of Q,; and 2,; for each subsystem, e.g., Q; = Buil, Qi = Byl for
Buwi» Byi > 0 to confirm that the subsystems are incrementally dis-
sipative. For uncertain and nonlinear systems, it is usually difficult
to directly verify the incremental dissipativity assumption. Never-
theless, it can be argued that incremental dissipativity is a prop-
erty that holds for many real-world systems, especially chemical
processes whose dynamics should obey the first and second laws
of thermodynamics.

To obtain the dissipativity properties from the dynamic mod-
els of chemical processes, conditions and procedures of thermo-
dynamic analysis have been discussed, e.g., in Alonso and Yd-
stie (1996) and Hangos et al. (2001). Recently, data-driven meth-
ods of estimating dissipativity properties using trajectory samples
from simulations or plant tests (e.g., Koch et al., 2020) have also
been proposed, which may help to reduce the difficulty of a rigor-
ous model-based thermodynamic analysis.

Remark 5 (Enforcement of incremental dissipativity). The condi-
tion on the incremental dissipativity of the interconnecting sub-
systems €2, — 2HT Q,,H > 0 intrinsically requires that the subsys-
tems must be sufficiently self-stabilizing, so that the effect of hy-
pothetical disturbances (Sw,dy) on the interconnected system is
not “snowballed”.

If the condition ©, —2H"Q,H > 0 is not satisfied because of
the insufficient dissipativity of some subsystems, it is desirable to
design for these subsystems an auxiliary controller x; to shape
their dissipativity properties prior to implementing distributed
MPC and impose distributed MPC based on such an auxiliary con-
troller. For example, if ramp dynamics exist in some subsystems,
proportional feedback can be first established from each ramp vari-
able to one of its manipulated inputs. This essentially amounts to
a variable transformation u; = 77;(x;) + uf, where 7; is the auxiliary
controller, u; represents the original inputs, and u} is the trans-
formed inputs for MPC.

For a systematic design of this auxiliary controller 7;, if needed,
one can seek to optimize an L, or dissipativity characterization
of the effect of w; as exogenous disturbances on v; regarded as
controlled outputs. For linear systems or systems whose open-
loop dissipative behavior is known, the controller synthesis prob-
lem to shape the closed-loop dissipativity has been well addressed
(Haddad et al., 1994; Willems and Trentelman, 2002). In the con-
text of systems for which dissipativity can be learned in a data-
driven manner, the dissipativity learning control framework inte-
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grates the learning of open-loop dissipativity from data and the
controller synthesis step (Tang and Daoutidis, 2019a; 2021a).

Remark 6 (Effect of decompositions). The performance of dis-
tributed MPC depends on the choice of decomposition, i.e., the
number of subsystems and the allocation of variables into these
subsystems that determine the subsystem model and the intercon-
necting relations. The natural idea that subsystems should have
significant weaker couplings between them than the relations in-
side them has motivated network-theoretic methods of generat-
ing such decompositions (Daoutidis et al., 2018; 2019). The Lya-
punov envelope algorithm proposed in the present paper imposes
the following requirements on the decomposition: (i) all the sub-
systems should be incrementally dissipative so that the effect of
interconnecting inputs w; on the interconnecting outputs v; should
be small, (ii) the couplings should be weak enough so that the
interconnected subsystems have finite response over disturbances
on the interconnections. Thus, in addition to considering the num-
ber of connections inside and across the subsystems as in commu-
nity detection, a truly high-quality decomposition should be such
that the parameters p; and p, as defined in (48) that capture the
plantwide effect of disturbances can be made small.

5. Case study
5.1. System description

We use the vinyl acetate monomer chemical plant of
Chen et al. (2003) to carry out a case study of the application
of the Lyapunov envelope algorithm to plantwide distributed MPC
of large-scale systems. A detailed description of the nonlinear
first-principles continuous-time dynamics and source codes can be
found at McAvoy's repository (http://terpconnect.umd.edu/mcavoy/
VAC20Material/). In this work, we only use a linearized, forward-
discretized dynamics derived from the first-principles model and
neglect the plant-model mismatch as well as possible disturbances
and noises. In practice, the plantwide MPC of process systems is
mostly based on an identified linear dynamics (with nonlinearities
appended in an ad-hoc way), and the resulting deviations from the
model are usually accounted for by calibrating the measurements
against a disturbance model, which is known as offset-free MPC
(see, e.g., Pannocchia and Rawlings, 2003) and is beyond the scope
of this paper.

The entire plant has 246 state variables (x), 21 inputs (u) and
43 outputs (y), and divided into 3 subsystems. Subsystem 1 (acetic
acid storage tank, vaporizer and reactor) has 83 states, 7 inputs,
and 14 outputs; subsystem 2 (feed effluent heat exchange, phase
separator, absorption column and CO, removal) has 93 states, 9
inputs and 17 outputs; subsystem 3 (distillation column) has 70
states, 6 inputs, and 12 outputs. The pattern of interactions among
subsystems can be seen in Fig. 3, where the structure of the lin-
earized model matrix with the rows and columns permutated in
the order of subsystems 1, 2 and 3, namely

An A Az By Bz Bp
Ay Ax Az By By B
_|Ast Ax Az By By Bss (56)
Ci G2 Gz Dy Dip D3 |
Ci1 Gz Gs Dy Dy Dy
G Gy Gz D3y D3 Dss

O w

e
o>

is plotted in a color map. To account for the interactions among
the 3 subsystems, 60 interconnection variables (w, v) are created,
with the dimensions of w being 12, 23, 25 and the dimensions of
v being 23, 33, 4, respectively.

The linear discrete-time dynamics of the system represented by
the matrix A is examined. Except for 11 eigenvalues that are close
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Fig. 4. Closed-loop behavior under centralized LQR represented by the response of
separator compositions to distillation reflux ratio changes.

to 1 (due to ramp dynamics), the remaining 235 eigenvalues re-
side in the interior of the unit disk of the complex plane, implying
that the open-loop system is stable if the ramp dynamics are elim-
inated. As suggested in Chen et al. (2003), feedback from the liquid
levels in the process to a corresponding number of selected inputs
is adopted to move these poles inside the unit disk. We also spec-
ify the scalings of the inputs and outputs as in Chen et al. (2003).

Under Q =100C"C, R=1, a centralized LQR controller is de-
signed and the closed-loop stability is verified through simulation.
For example, Fig. 4 shows the response of the 6 molar fractions
of the 3 species in the two phases of the separator to a 25% step
increase in the distillation column reflux ratio at 0 min and its
restoration to the original value at 720 min. Hence, we use this
centralized LQR controller as the base controller «; in MPC. The
value of the cost function under «; is thus a function of the ini-
tial point at the sampling point. The monotonic decrease of such
a function V¥i(x) along the closed-loop trajectories will be ex-
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Table 1

Process constraints considered in the case study.
Variables Bounds
Oxygen composition in the gas recycle < 8 mol%
Pressure in the gas recycle < 140 psia
Peak reactor temperature < 200°C
Liquid levels in all the units > 10%, < 90%
Reactor feed temperature >130°C
Hot effluent temperature of the feed-effluent heat exchanger > 130°C
Acetic acid composition in the decanter organic phase < 0.06 mol%
Vinyl acetate composition in the column bottom < 0.01 mol%

Table 2
Sizes of the MPC subproblems.

Subsystem  # Variables  # Constraints

1 31,403 36,803
41,673 49,233

3 26,350 28,150

ploited to demonstrate the convergence behaviors under different
MPC schemes.

5.2. Distributed MPC setup

Due to the difficulty of optimization on a plantwide first-
principles nonlinear model, we use linearized model prediction for
distributed MPC, with quadratic forms as control costs for the sub-
systems: €;(x;, u;) = X[ Q;x; + u] Rju;. Weightings of the inputs and
states are the same as described in the previous subsection for de-
centralized LQR, and the constraint sets X, X¢ =X, U are defined as
the ranges specified in Tables 2 and 4 of Chen et al. (2003). For the
absent values, we supplement with a range of £1 times their re-
spective scaling factors. Additional process constraints are imposed
according to the control objectives 1-8 in Chen et al. (2003), sum-
marized in Table 1. The terminal cost is set as ¢ = X S;x;, where §;
is solved from decentralized LQR. For simplicity, we assume that all
state variables are directly measurable, while in reality, a Kalman
filter is usually needed for state observation. The sampling time is
1 min, and a prediction horizon of 180 min (empirically tuned to
achieve closed-loop stability under centralized MPC) is used. For
the illustration of the proposed method, we only consider a reg-
ulating control scenario without complexities such as exogenous
disturbances or transitions between different operating regions.

We first test the setup of distributed MPC with a decentral-
ized MPC counterpart (without any coordination and assuming the
interconnecting inputs of all the subsystems are w = 0). The ini-
tial condition is a different steady state with the reflux ratio of
the distillation column is 25% higher than the steady state to be
regulated at. It was found that the decentralized MPC does not
guarantee closed-loop stability. While it is possible that in prac-
tice, in the presence of disturbance calibration for offset-free MPC,
the closed-loop stability can be recovered, the loss of stability un-
der a non-calibrated decentralized MPC strategy indicates that the
interactions among the subsystems are non-trivial, for which it is
desirable to consider coordination.

We then compare decentralized MPC to a fully centralized MPC
with the same objective function and constraints. The centralized
MPC problem at each sampling time is a QP with 56,946 variables
and 61,626 constraints. Fig. 5 and Fig. 6 show the trajectories of the
input and output variables under centralized MPC during a simu-
lation of 360 min. On average, it takes 9.525 seconds to solve each
centralized MPC problem, which occupies 15.87% of the sampling
interval. Suppose that, for example, the user needs the computa-
tional time to be no greater than 10% of the sampling time; then
centralized MPC for this application is not well implementable in
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Fig. 6. Trajectories of the outputs under centralized MPC.

real time. This motivates the adoption of Lyapunov envelope algo-
rithm.

5.3. Results

Using distributed MPC, the number of variables and constraints
for the MPC subproblems of the 3 subsystems are given in Table 2.
Each subsystem has a subproblem much smaller than the central-
ized MPC problem. However, due to the newly added interconnect-
ing variables w and v among the subsystems, the total sizes of the
3 subproblems are larger than that of the centralized MPC formu-
lation. We note that the subsystem models here are constructed
rigorously by splitting a linearized and discretized first-principles

1

model. In a more practical setting where the model is obtained
through system identification procedures, it can be reasonably ex-
pected that the weak first-principle relations among the subsys-
tems will not appear in the model, and hence the inflation of sub-
problem sizes will be much more reduced.

For the Lyapunov envelope algorithm, we set p; =10, p, =10
and at each sampling time, the number of iterations performed be-
fore termination is increased from 1 to 3.

Fig. 7 illustrates the resulting control and computational perfor-
mance in terms of the trajectory of V*r(x) and the accumulated
computational time with increasing simulation time. It can be ob-
served that the trajectories of V*f(x) under 1, 2 and 3 iterations per
sampling time are very close, which is also close to the trajectory
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punov envelope algorithm (p; = 10, p, = 10).

Table 3

Control performance under different parameter settings.
pi\p2 1 3 10 30 100
1 7.7553  7.7297  7.7313  7.7646  7.8164
3 7.6139  7.5890 7.6162  7.6295  7.6255
10 6.2868 62841 6.3212 6.2693  6.3228
30 56693 5.6718 5.6682  5.6725  5.6678
100 5.6641  5.6634  5.6633  5.6660  5.6635

under centralized MPC. This implies that under the current param-
eter settings, using 1 iteration per sampling time is sufficient. On
the other hand, if more iterations are used, the average computa-
tional time per sampling will increase. For our decomposition into
3 subsystems only, in order to maintain computational time lower
than that of centralized MPC, at most 2 iterations should be used
at each sampling time. By using the 1-iteration Lyapunov envelope
algorithm, the average computational time is reduced to 3.850 sec-
onds per sampling time (6.42% of the sampling interval). Compared
to centralized MPC, the computational time is accelerated by a fac-
tor of 2.47.

The proposed algorithm is dependent on the ¢; and quadratic
penalty parameters p; and p,. We vary each of these two parame-
ters among 5 values (1, 3, 10, 30, 100), with 25 combinations, and
record the resulting control performance in terms of the accumu-
lated value of ), V¥f(x(t)) along the simulated trajectory (lower
values indicate better control performance). The results are shown
in Table 3.

As expected (see Remark 3), we observe that p; has a more
significant effect on the control performance than p, does. As p;
increases, the control performance is improved and approaches
that of the centralized MPC, for which the corresponding index is
5.6500. Under a fixed p, = 10 and different values of p;, we com-
pare the trajectories of V¥f(x) throughout the simulation in Fig. 8.
It can be seen that the centralized MPC has the steepest descent
of the cost function, and when p; is above 30, the trajectory is al-
most overlapping with that of centralized MPC. When p; takes a
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Fig. 8. Comparison of control performance under different parameter tuning in the
Lyapunov envelope algorithm.

Table 4

Computational performance under different parameter settings.
p\p2 1 3 10 30 100
1 6.9143 6.4046 7.3793 6.8260 8.5807
3 6.4241 5.1308 5.7656 5.3364 7.1228
10 4.0851  4.0367 3.8473 3.9245 5.3450
30 5.5038 10.1044 26.2289 4.3044 19.4970
100 9.7516 6.9934 16.3448 34.1468 23.5383

smaller value, the relaxation of interconnecting relations gives rise
to disturbances that slow down the descent.

The corresponding computational performance in terms of the
average computational time per sampling is shown in Table 4.

The results exhibit a tendency that over-conservative large val-
ues of p; and p, lead to high computational expenses and should
be avoided. Low parameter values do not always favor better com-
putational efficiency, either, due to the over-relaxation of inter-
connecting relations and hence too large update steps. The op-
timal computational performance is achieved at around p; =10
and p, = 10, at which the control performance is also satisfacto-
rily close to that of the centralized MPC.

6. Conclusions

In this paper we focus on the problem of real-time imple-
mentability of coordination in distributed MPC strategies, and pro-
pose a Lyapunov envelope algorithm that allows the coordination
scheme to be early terminated after an arbitrary number of iter-
ations without loss of closed-loop stability and yields solution of
improved performance if more iterations are allowed. The algo-
rithm is essentially a primal block coordinate descent one, where
the interconnecting relations among the subsystems are relaxed
into a combination of ¢; and quadratic penalty terms.

Central to the penalty formulation is the concept of Lyapunov
envelope. For the intermediate solution of the subsystems dur-
ing iterations, for which the interconnecting relations are relaxed
and hence violated, the Lyapunov envelope accounts for the effect
of such violations on the control objective of the resulting con-
solidated solution, hence establishing itself as a control-Lyapunov
function, assuming that the subsystems are sufficiently incremen-
tally dissipative. Therefore, we conclude in simple words that when
the subsystems are sufficiently self-stabilizing and well decoupled,
early termination can be allowed in the presence of ¢; and quadratic
penalties, and therefore coordination can be easily implemented in
real-time on a plantwide scale.
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