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a b s t r a c t 

The model predictive control (MPC) of large-scale systems should adopt a distributed optimization ap- 

proach, where controllers for the constituent subsystems optimize their control actions and iterations are 

used to coordinate their decisions. The real-time implementation of MPC, however, usually allows very 

limited time for computation and inevitably needs to be terminated early. In this work, we propose a 

splitting algorithm for distributed optimization analogous to forward-backward splitting (FBS), where � 1 
and quadratic penalties are imposed on the violation of interconnecting relations among the subsystems. 

By designing the involved parameters based on dissipative analysis, the iterations result in the mono- 

tonic decrease of a plant-wide Lyapunov function, which we call Lyapunov envelope, thus maintaining 

closed-loop stability under distributed MPC despite early termination and yielding improving control per- 

formance as the allowed computational time or number of iterations increases. The proposed Lyapunov 

envelope algorithm is tested on an industrial-scale vinyl acetate monomer process. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The need for adopting decompositions in plantwide control has 

een identified by researchers more than 40 years ago. We quote 

rom Morari et al. (1980) : 

“Decomposition is the underlying, guiding principle, leading to the 

classification of the control objectives (regulation, optimization) 

and the partitioning of the process for the practical implementa- 

tion of the control structures. ”

“For our purposes, i.e. the systematic and organized devel- 

opment of control structures for chemical processes, we found 

the framework of the multilayer-multiechelon concept to be very 

meaningful, convenient, and having the potential for further devel- 

opment. ”

Since the 1980s, a vast volume of literature has been devoted to 

he synthesis of decentralized plantwide control structure for base- 

ayer loops, i.e., the selection and pairing of manipulated inputs 

nd controlled outputs, see e.g. Stephanopoulos (1983) , Price and 

eorgakis (1993) , Luyben et al. (1997) , Skogestad (2004) . In the 

ontemporary practice of process industries, model predictive con- 

rol (MPC) has been typically used as the advanced control tech- 
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098-1354/© 2021 Elsevier Ltd. All rights reserved. 
ology in companion with the base-layer control ( Morari and Lee, 

999; Qin and Badgwell, 2003 ). Currently, the vertical “multilayer”

ecomposition into a static problem with the objective of optimiz- 

ng economic cost and satisfying operating constraints and a dy- 

amic problem with the objective of regulating the process at the 

etpoint is commonly adopted ( Rawlings et al., 2017 ). Another type 

f hierarchical decomposition that has been proposed is based on 

he multi-time-scale behavior of plantwide dynamics in the case of 

ight integration with large material and energy recycles ( Kumar 

t al., 1998; Baldea and Daoutidis, 2007 ). The horizontal “multi- 

chelon” decomposition of processes in MPC, frequently referred to 

s distributed MPC , has also been explored in the recent literature 

 Scattolini, 2009; Christofides et al., 2013; Negenborn and Maestre, 

014 ). Based on perspectives from modern network science, com- 

unity detection methods have been proposed to generate high- 

uality decompositions for distributed MPC ( Daoutidis et al., 2018; 

019 ). 

Broadly speaking, distributed MPC may refer to any such iter- 

tive algorithms where during the iterations, the subsystem con- 

rollers mutually share some information that helps to obtain a so- 

ution better than the decentralized one (e.g., see Negenborn and 

aestre, 2014 for a comprehensive review). In a narrower sense, 

istributed MPC implies the adoption of distributed optimization al- 

orithms ( Yang et al., 2019 ), whose iterations are not simply infor- 

ative (passing information from one agent to another) but also 

oordinative (aiming at approaching solutions of the entire sys- 

https://doi.org/10.1016/j.compchemeng.2021.107532
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107532&domain=pdf
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em with optimality or stationarity guarantees). These algorithms 

re rooted in the operator splitting theory of optimization ( Lions 

nd Mercier, 1979; Eckstein and Bertsekas, 1992 ), which seeks to 

olve monolithically difficult problems through decomposition into 

asier subproblems. For example, the classical alternating direction 

ethod of multipliers (ADMM) algorithm ( Boyd et al., 2011 ), when 

sed in distributed MPC, uses an augmented Lagrangean formu- 

ation to handle the interactions among subsystems; the subsys- 

em controller decisions and Lagrange multipliers are iteratively 

pdated based on the augmented Lagrangean ( Mota et al., 2014; 

arokhi et al., 2014 ). As such, the control performance of MPC, 

hich relies on the quality of the solution found ( Mayne et al., 

0 0 0 ), is guaranteed provided that the distributed optimization it- 

rations converge to a monolithic optimum. 

Computational time is an important consideration in the practi- 

al implementation of MPC. Specifically, the allowed computational 

ime for MPC must be small enough compared to the sampling in- 

erval. For centralized MPC, extensive works have focused on de- 

eloping efficient and structure-exploiting algorithms ( Biegler and 

avala, 2009; Patterson and Rao, 2014 ) as well as modified variants 

f MPC that avoid full solution routines at all sampling times, e.g., 

y exploiting the parametric sensitivity information or by carrying 

ut truncated iterations in the centralized nonlinear programming 

olver ( Lopez-Negrete et al., 2013; Wolf and Marquardt, 2016 ). For 

istributed MPC based on distributed optimization, fully complet- 

ng the computation within the allowed time becomes even more 

hallenging, since typically tens to hundreds of iterations of sub- 

ystem optimization are needed. Some approaches to address this 

hallenge include: 

• Using accelerated distributed optimization algorithms, of which 

the momentum method and Anderson acceleration are repre- 

sentative ( Pu et al., 2014; Wang and Ong, 2018; Tang and Daou- 

tidis, 2019b; 2021b ). 
• Fine-tuning distributed optimization with metric selection 

methods to reduce the required computational effort ( Ghadimi 

et al., 2014; Giselsson and Boyd, 2016 ). 
• Using distributed versions of fast centralized MPC methods, e.g., 

by putting difficult steps such as evaluating Hessian and identi- 

fying active constraints offline and leaving only easy steps on- 

line ( Cai et al., 2014; Yu et al., 2019 ). 
• Developing algorithms that need fewer iterations, e.g., the AL- 

ADIN algorithm ( Houska et al., 2016 ) uses a semi-centralized 

scheme that collects sensitivity information from subsystems 

for coordination based on quadratic programming (QP). 
• Allowing solutions with inexactness that is small enough to 

guarantee recursive feasibility and continually tightened for 

asymptotic stability (called constraint tightening) ( Giselsson 

and Rantzer, 2013; Rubagotti et al., 2014 ). 

In this paper, we adopt the perspective of early termination , i.e., 

e consider a distributed optimization algorithm for MPC that can 

e terminated after any number of iterations before fully converg- 

ng to an optimum. The goal is to meet the computational time re- 

trictions, yet still returning control actions that guarantee closed- 

oop stability and improve over the ones otherwise obtained un- 

er any earlier termination. Early termination requires a primal in- 

tead of primal-dual algorithm to handle the inter-subsystem con- 

traints. Such an idea has been used in stochastic MPC under non- 

nticipativity constraints ( Krishnamoorthy et al., 2019 ). For dis- 

ributed optimization in MPC, we propose to use a splitting al- 

orithm , analogous to forward-backward splitting (FBS) ( Lions and 

ercier, 1979; Chen and Rockafellar, 1997; Duchi and Singer, 2009 ) 

ut with the forward gradient-descent step replaced by a proximal 

tep with � 1 and quadratic penalty terms. Specifically, the optimal 

ontrol problem in MPC is formulated as an optimization prob- 

em whose decision variables are the shared variables, i.e., the pre- 
2 
icted trajectories of the interconnecting signals between subsys- 

ems. Each iteration includes a distributed controller solution step, 

hich finds the subsystems’ proximal solution to the shared vari- 

bles, and a coordination step to update the shared variables. The 

terations in the splitting algorithm are allowed to be early termi- 

ated according to computational time restrictions. 

Key to the performance of such a splitting algorithm is the con- 

ept of Lyapunov envelope . The essential idea is that when dis- 

ributed optimization iterations have not yet converged and hence 

he inter-subsystem equality constraints are violated, an estimate 

f the effect of such inter-subsystem violations on the plant- 

ide system in terms of an upper bound of the system’s control- 

yapunov function can still be obtained. Here we derive this esti- 

ate based on the assumption that the subsystems are incremen- 

ally dissipative in their interconnecting inputs/outputs from/to 

ther subsystems, which implies a finite gain of inter-subsystem 

iolations, considered as disturbances, on the objective function 

f the plantwide MPC problem. Thus, if the control actions are 

xecuted, the resulting predicted trajectory, namely the “consol- 

dated solution” ( Ferranti and Keviczky, 2015 ) will have a corre- 

ponding change from the subsystems’ predictions with upper- 

ounded increase in the control-Lyapunov function. Therefore, by 

onstructing the splitting algorithm such that the proximal formu- 

ation (consisting of the original function and the violations to � 1 
nd quadratic penalties of interconnecting equalities) is consistent 

ith this overestimate of the plant-wide control-Lyapunov func- 

ion, which we call the Lyapunov envelope, the iterations will re- 

ult in monotonic decrease of the Lyapunov envelope and the early 

ermination will not deteriorate closed-loop stability. 

Compared to other techniques, the most distinctive feature of 

he Lyapunov envelope algorithm is its flexibility – it can be 

mplemented with different extents of restrictions on computa- 

ional time or number of iterations, thus enabling the user to 

rade-off the computational and control performance of distributed 

PC. Such a characteristic also tolerates inexactness of subsystem 

olvers, and does not have specific requirements on the subsystem 

olver. The iterations involve only minimal communication, i.e., no 

nformation exchange other than the primal variable values per- 

aining to the interactions among subsystems is needed. Thus, the 

roposed Lyapunov envelope algorithm is a promising approach to 

he practical real-time implementation of distributed MPC. 

The paper is organized as follows. Preliminaries and MPC for- 

ulations are first introduced in Section 2 , where we will review 

he basic assumptions for the closed-loop stability of distributed 

PC. Then FBS as a classical distributed optimization algorithm is 

ntroduced in Section 3 and we discuss its potential and limitations 

n addressing real-time implementation of distributed MPC. Subse- 

uently, through the analysis of the consolidated solution and the 

ystem dissipativity, the concept of Lyapunov envelope is derived 

nd the Lyapunov envelope algorithm is presented in Section 4 . A 

ase study on a vinyl acetate monomer process is considered in 

ection 5 , which, to our best knowledge, is the first investigation 

f distributed MPC on such an industrial-scale chemical plant . Finally, 

onclusions are given in Section 6 . 

Notations. We use I n to denote the set of nonnegative inte- 

ers up to n : { 0 , 1 , . . . , n } and I 
+ 
n = I n \{ 0 } . Subscripts i = 1 , . . . , n

re used for subsystems, superscripts r = 0 , 1 , . . . are used for it-

rations of optimization algorithm, and the bracketed index [ t] is 

he time stamp. A K ∞ -class function α : [0 , ∞ ) → [0 , ∞ ) refers to

 strictly increasing continuous function satisfying α(0) = 0 and 

im r→∞ α(r) = ∞ . An indicator function 1 (·) takes a value of 0 if
he proposition in the parentheses holds true and ∞ otherwise. 

e also use 1 �(s ) = 1 (s ∈ �) for any set �. Blackboard bold Latin

etters and capitalized Greek letters stand for sets. Scalars, vectors, 

nd functions are represented using lower case letters, and matri- 

es use capitalized Latin letters. We denote by v = [ v 1 ; v 2 ; . . . ; v n ]
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he vertical stacking of column vectors v 1 , v 2 , . . . , v n into a vec-
or v . A matrix M � (�)0 stands for positive (negative) semidef- 

niteness, and M � (≺)0 stands for positive (negative) definite- 

ess. When M � 0 , the quadratic form x 
 Mx is represented by 

 x ‖ 2 M 
, and specifically when M = I, ‖ x ‖ 2 M 

is simply written as ‖ x ‖ 2 
he minimum and maximum eigenvalues of M are denoted by 

min (M) and λmax (M) , respectively. Clearly, λmin (M) ‖ x ‖ 2 ≤ ‖ x ‖ 2 
M 

≤
max (M) ‖ x ‖ 2 . 

. Preliminaries and formulations 

.1. Centralized MPC 

We consider a discrete-time system P comprising of n subsys- 

ems. For subsystem i , i = 1 , 2 , . . . , n , the dynamics is written as 

 i : 

{
x i [ t + 1] = f i (x i [ t] , u i [ t] , w i [ t]) 
v i [ t] = h i (x i [ t] , u i [ t]) 

(1) 

here x i , u i , w i , and v i stands for the vector of states, inputs, in-
erconnecting inputs from other subsystems, and interconnecting 

utputs acting on other subsystems, respectively; the functions f i 
nd h i are continuous. In other words, P i maps signals w i and u i 
nto v i and x i . We assume that all the state values are available for

ontrol. Suppose that the interconnections among the subsystems 

re specified by the linear relations with matrices H i j : 

 i = H i j v j , i, j = 1 , . . . , n, i 
 = j. (2)

By vertically stacking the vectors of the subsystems, the dynam- 

cs of the entire system, comprising of the disconnected subsys- 

em dynamics P = (P 1 , . . . , P n ) that maps (w, u ) → (v , x ) and the
nterconnections H : v → w , can be denoted by P H : u → x and ex-

ressed as 

 H : 

{ 

x [ t + 1] = f (x [ t ] , u [ t ] , w [ t ]) 
v [ t] = h (x [ t ] , u [ t ]) 
w [ t] = Hv [ t] 

(3) 

r simply 

 [ t + 1] = f (x [ t ] , u [ t ] , Hh (x [ t ] , u [ t ])) =: f H (x [ t ] , u [ t ]) . (4) 

In centralized MPC, at time k , the control action u [ k ] is deter-

ined by solving monolithically the following optimization prob- 

em that minimizes the cost associated with the predicted trajec- 

ory of x and u , denoted as ˆ x and ˆ u , respectively, and executing 

 [ k ] = ˆ u [0] : 

in 
∑ N−1 

t=0 � ( ̂  x [ t ] , ˆ u [ t ]) + � f ( ̂  x [ N]) 
 . t . ˆ x [ t + 1] = f ( ̂  x [ t ] , ˆ u [ t ] , ˆ w [ t ]) , t ∈ I N−1 

ˆ v [ t] = h ( ̂  x [ t] , ˆ u [ t]) , t ∈ I N−1 

ˆ w [ t] = H ̂  v [ t] , t ∈ I N−1 

ˆ x [ t] ∈ X , ˆ u [ t] ∈ U , t ∈ I N−1 

ˆ x [0] = x [ k ] , ˆ x [ N] ∈ X f . 

(5) 

In the above formulation, X , U , X f are the state, input and ter-

inal constraints, respectively; � and � f are the stage cost and 

erminal cost functions, respectively; N is the prediction hori- 

on length. Let us recall the classical result for the closed-loop 

symptotic stability of centralized MPC (see, e.g., Section 3 of 

ayne et al. (20 0 0) ). 

heorem 1. Suppose that 

1. f (0 , 0) = 0 , h (0 , 0) = 0 , � (0 , 0) = 0 , � f (0) = 0 , X is closed, and U

and X f ⊆ X are compact, containing the origin in their interiors; 

2. there exist K ∞ -class functions α and αf such that � (x, u ) ≥
α(‖ x ‖ ) , ∀ x ∈ X , ∀ u ∈ U and � f ≤ αf (‖ x ‖ ) , ∀ x ∈ X f ; 

3. there exists a control law κf , such that ∀ x ∈ X f , κf (x ) ∈ U ,
f H (x, κf (x )) ∈ X f , and � f (x, f H (x, κf (x ))) − � f (x ) ≤ −� (x, κf (x )) . s

3 
Then by solving the centralized MPC problem (5) parameterized by 

 [ k ] and denoting the resulting control law specified by u [ k ] = ˆ u [0] as

 = κ(x ) , we have the following statements hold true: 

1. (Recursive feasibility.) If the problem (5) is feasible for x [ t] , then 

for x [ t + 1] = f H (x [ t] , κ(x [ t])) it remains feasible. 

2. (Lyapunov descent.) The optimized objective function V (x [ t]) sat- 

isfies V (x [ t + 1]) −V (x [ t]) ≤ −� (x [ t ] , κ(x [ t ])) . 

It then follows that V is a control-Lyapunov function yielding 

symptotic closed-loop stability, i.e., starting from any state x [ k ] that 

akes the problem (5) feasible, the state trajectory converges to the 

rigin. 

.2. Formulation of distributed MPC 

In the context of distributed MPC where we need to optimize 

ontrol actions on the basis of subsystems, we first make the fol- 

owing separability assumption on the subsystems for simplicity, 

hich allows the reformulation of problem (5) without involv- 

ng constraints across subsystems other than the interconnections 

 = Hv . 

ssumption 1. Suppose that the following statements hold: 

1. In (5) , � , � f , X , X f , and U can be separated into subsystems,

i.e., � (x, u ) = 

∑ n 
i =1 � i (x i , u i ) , � f (x ) = 

∑ n 
i =1 � f i (x i ) , X = X 1 × · · · ×

X n , X f = X f1 × · · · × X f n , U = U 1 × · · · × U n . 

2. For each i = 1 , . . . , n , f i (0 , 0) = 0 , h i (0 , 0) = 0 , � i (0 , 0) = 0 ,

� f i (0) = 0 , X i is closed, and U i and X f i ⊆ X i are compact, con-

taining the origin in their interiors; 

3. For each i = 1 , . . . , n , there exist K ∞ -class functions αi and

αf i such that � i (x i , u i ) ≥ αi (‖ x i ‖ ) , ∀ x i ∈ X i , ∀ u i ∈ U i and � f i ≤
αf i (‖ x i ‖ ) , ∀ x i ∈ X f i . 

Hence the MPC problem becomes 

in 
∑ n 

i =1 

(∑ N−1 
t=0 � i ( ̂  x i [ t ] , ˆ u i [ t ]) + � f i ( ̂  x i [ N]) 

)
 . t . ˆ x i [ t + 1] = f i ( ̂  x i [ t ] , ˆ u i [ t ] , ˆ w i [ t ]) , t ∈ I N−1 , i ∈ I 

+ 
n 

ˆ v i [ t] = h i ( ̂  x i [ t] , ˆ u i [ t]) , t ∈ I N−1 , i ∈ I 
+ 
n 

ˆ w [ t] = H ̂  v [ t] , t ∈ I N−1 

ˆ x i [ t] ∈ X i , ˆ u i [ t] ∈ U i , t ∈ I N−1 , i ∈ I 
+ 
n 

ˆ x i [0] = x i [ k ] , ˆ x i [ N] ∈ X f i , i ∈ I 
+ 
n . 

(6) 

n the above formulation, ˆ w [ t] = H ̂  v [ t] is not separable into

ubsystems. Hence we create shared variables s = [ s 1 ; . . . ; s n ] = 

 s w 1 ; s v 1 ; . . . ; s wn ; s v n ] , where s wi is a copy of [ ̂  w i [0] ; . . . ; ˆ w i [ N − 1]]

nd analogously s v i is a copy of [ ̂ v i [0] ; . . . ; ˆ v i [ N − 1]] . The insepara-

le constraints are hence rewritten as constraints between subsys- 

ems and shared variables ˆ w i [ t] = s wi [ t] , ˆ v i [ t] = s v i [ t] , and a con-

traint on the shared variables s wi [ t] = 

∑ n 
j=1 H i j s v i [ t] . More com-

actly, by stacking all variables in each subsystem i into a vector ξi 
nd the subsystem constraints as �i (depending on x i [ t] ), rewrit- 

ng the linear equality constraints between the subsystems and the 

hared variables as C i ξi = s i (for some properly constructed ma- 

rices C i , i = 1 , 2 , . . . , n ), expressing the constraints on s as s ∈ �

which is the kernel of some matrix), and the objective function of 

ubsystem i as φi , we arrive at the following formulation: 

in ξ ,s 

∑ n 
i =1 φi (ξi ) 

 . t . ξi ∈ �i , C i ξi = s i , i ∈ I 
+ 
n 

s = [ s 1 ; . . . ; s n ] ∈ �. 

(7) 

his formulation has a structure as illustrated by Fig. 1 , which we 

efer to as the agent-coordinator architecture . 

Specifically, the decision variables of the subsystems ξi subject 
o constraints �i (which may be complex) are handled separately 

nd in parallel by their own optimization solvers or routines. These 

ubsystem solvers are called agents , which should be capable of 
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Fig. 1. Agent-coordinator architecture. 
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c

olving quadratic programming or nonlinear programming prob- 

ems depending on linear or nonlinear system dynamics in (1) . 

he shared variables s which account for the interactions across 

ubsystems through linear equality constraints, are handled by an- 

ther solver, called coordinator . Compared to the agents, the coor- 

inator is only required to use a simple procedure to update the 

hared variables after collecting some information from the sub- 

ystem solutions. 

If we further denote the optimized objective function value of 

he subsystems’ optimization problem ( + ∞ if infeasible) 

in ξi φi (ξi ) 
 . t . ξi ∈ �i , C i ξi = s i 

(8) 

s ϕ i (s i ) for i = 1 , . . . , n , then the distributed MPC problem (7) can

e simply written as a constrained optimization problem of the 

hared variables s : 

in 
s ∈ �

n ∑ 

i =1 

ϕ i (s i ) . (9) 

ence to solve (7) , an iterative algorithm is adopted to update the 

alue of s , and in each iteration, the associated values of the deci- 

ion variables of the subsystems that solve the optimization prob- 

ems (8) are found. Before discussing the algorithm, we consider 

ow any algorithm will affect the closed-loop stability. 

.3. Stability of distributed MPC 

Key to the establishment of the Lyapunov descent property in 

heorem 1 is the observation that if at time t , the MPC pre- 

icts a control sequence ˆ u [0] , . . . , ̂  u [ N − 1] with predicted states 

ˆ  [1] , . . . , ̂  x [ N] , then at time t + 1 , the MPC can be initialized at a

easible solution by doing the following replacement: 

ˆ u [0] , ˆ u [1] , . . . , ˆ u [ N − 1] ← ˆ u [1] , . . . , ˆ u [ N − 1] , κf ( ̂  x [ N]) , 
ˆ x [1] , ̂  x [2] , . . . , ̂  x [ N] ← ˆ x [2] , . . . , ̂  x [ N ] , f H ( ̂  x [ N ] , κf ( ̂  x [ N ])) , 

(10) 

.e., by extending the predicted trajectory for one sampling time 

nder the control law κf . This initialization already achieves the 

escent property with an objective function descent of at least 

� (x [ t ] , u [ t ]) , which can only be further improved with optimiza-

ion. For distributed optimization, we still assume the existence of 

uch an a-priori basic stabilizing control law κf . 

ssumption 2. There exists a control law κf , such that ∀ x ∈ 

 f , κf (x ) ∈ U , f H (x, κf (x )) ∈ X f , and � f (x ) − � f (x, f H (x, κf (x ))) ≥
 (x, κf (x )) . 

Then by initializing the distributed optimization with the same 

xtension rule (10) , the condition under which the closed-loop sta- 

ility is not compromised is the following. 

emma 1 (Closed-loop stability under distributed optimiza- 

ion) . Suppose that Assumptions 1 and 2 hold. If for any x [ t] such that
4 
roblem (7) is feasible with any feasible initialization of ξ1 , . . . , ξn , s ,
he distributed optimization algorithm returns a feasible solution of 

7) with decreased objective function from the initialization using the 

xtension under κf , then under the distributed optimization algorithm, 

istributed MPC keeps the Lyapunov descent and asymptotic stability 

roperties. 

In the above lemma, we need the distributed optimization al- 

orithm to return a feasible solution, since the feasible solution is 

onsolidated , i.e., implementing the predicted control sequence will 

teer the system onto the predicted states, thus allowing the ex- 

ension (10) that makes V a Lyapunov function. In other words, we 

equire the distributed optimization algorithm to achieve, by solv- 

ng (9) , a descent on the following Lyapunov function, defined as 

he summation of the subsystems’ objective function values and an 

ndicator function of the interconnecting constraints: 

 (x [ t]) = 

n ∑ 

i =1 

(
φi (ξi ) + 1 �i 

(ξi ) + 1 (C i ξi = s i ) 
)

+ 1 �(s ) . (11) 

etting ψ(s ) = 1 �(s ) , (9) can be equivalently expressed as 

in 
s 

ϕ(s ) + ψ(s ) = 

n ∑ 

i =1 

ϕ i (s i ) + ψ(s ) . (12)

he formulation (12) lends itself to an agent-coordinator architec- 

ure, as the functions ϕ i are defined based on the subsystem prob- 

ems (8) and ψ = 1 � is a function associated with the intercon- 

ections among the subsystems. Next we introduce the forward- 

ackward splitting (FBS) algorithm for solving (12) . 

. Forward-backward splitting (FBS) 

.1. The original FBS algorithm 

For minimizing a composite function ϕ + ψ as in (12) , the FBS 

lgorithm iterates the s variables by 

 
r+1 / 2 = s r − γ∇ϕ(s r ) , 
 
r+1 ∈ prox γψ 

(s r+1 / 2 ) , r = 0 , 1 , . . . 
(13) 

here γ > 0 is the step size, and the proximal operator for any 

> 0 and function g is defined by 

rox γ g (s ) = arg min 
s ′ 

(
g(s ′ ) + 

1 

2 γ
‖ s ′ − s ‖ 

2 

)
. (14) 

articularly for ψ as an indicator function of �, the proximal op- 

rator is independent of γ and is a projection: 

rox γψ 
(s ) = proj �(s ) = arg min 

s ′ ∈ �
‖ s ′ − s ‖ 

2 . (15) 

n other words, each iteration contains a gradient descent step and 

 projection step. The FBS has a sufficient descent property as fol- 

ows (Bolte et al., 2014, Proposition 2) . With increasing iterations, 

his descent property implies the convergence of s r towards a sta- 

ionary point ( Themelis et al., 2018 ), which is not detailed here 

ince closed-loop stability of distributed MPC does not necessarily 

eed the solution convergence. 

emma 2 (Descent property of FBS) . For any function ϕ that is 

ontinuously differentiable with a Lipschitz continuous gradient ∇ϕ
denote the Lipschitz constant as l) and any proper, closed, lower- 

ounded function ψ , when γ < 1 /l, under the FBS iteration (13) we 

ave 

(s r+1 ) − ϕ(s r ) ≤ −1 − γ l 

2 γ
‖ s r+1 − s r ‖ 

2 . (16) 

We note that the FBS algorithm may not directly satisfy the 

ondition of the above lemma, since the functions ϕ may not be 
i 
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ifferentiable and when s i is such that (8) is infeasible, ϕ i (s i ) = ∞ .

o show this complexity, we denote by �i the region of s i such 

hat the problem for subsystem i (8) has a feasible solution, i.e., 

i = { C i ξi | ξi ∈ �i } , i ∈ I 
+ 
n , (17) 

nd 

′ = � ∩ ( �1 ∩ · · · ∩ �n ) . (18) 

hen for any s ∈ �′ , all φi (s i ) have a finite value. It suffices to iter-

te s in �′ . That is, instead of solving (12) with ψ = 1 � , we should

edefine ψ as 1 �′ and carry out FBS as 

 
r+1 ∈ proj �′ (s r − γ∇ϕ(s r )) , r = 0 , 1 , . . . . (19)

his in fact demands the following conditions for using the FBS 

lgorithm. 

ssumption 3. Suppose that 

1. the functions ∇ϕ(s i ) , namely the gradients of the optimized 

objective function values of (8) depending on s i as parameters, 

exist and can be computed for i = 1 , . . . , n , and that 

2. the projection operation onto �′ as the intersection of n + 1 

sets can be computed without an alternating projection proce- 

dure to evaluate proj �i 
, i = 1 , . . . , n iteratively. 

orollary 1 (Closed-loop stability under FBS algorithm) . Under As- 

umption 3 , the FBS iteration (19) satisfies the sufficient descent prop- 

rty (16) , which implies closed-loop stability of distributed MPC under 

ssumptions 1 and 2 on the system (1) . 

However, the conditions of Assumption 3 are difficult to satisfy. 

irst, the evaluation of ∇ϕ i needs a parametric sensitivity anal- 

sis of the subsystem problems (8) , which rely on further reg- 

larity assumptions and solvers that evaluate such sensitivities 

 Fiacco and Ishizuka, 1990 , Section 5) or an identification scheme 

f active constraints in the subsystems’ problems ( Quirynen and 

i Cairano, 2020 ). Second, the finite-time exact evaluation of 

roj �′ by the coordinator requires an off-line explicit characteriza- 
ion of �′ , which is possible only in simple situations (e.g., when 

ach subsystem is controllable, single-input-single-output, and un- 

onstrained in u i ) and usually can not be easily obtained. 

.2. Modified FBS algorithm 

The difficulties in satisfying Assumption 3 fundamentally orig- 

nate from the interconnecting constraints C i ξi = s i , i ∈ I 
+ 
n , linking

he agents and the coordinator. In the FBS algorithm introduced 

n the previous subsection, the interconnecting constraints are re- 

uired to be satisfied exactly throughout the iterations so that the 

escent of ϕ(s ) yields a Lyapunov descent. Therefore, it is desir- 

ble to relax these constraints to obtain inexact solutions. The idea 

s natural in that even when C i ξi − s i , i = 1 , . . . , n , are not exactly

ero, as long as they are sufficiently small in magnitude, the solu- 

ion is still approximately feasible and may be tolerable. 

In other words, we seek to replace the 1 (C i ξi = s i ) terms in

he Lyapunov function (11) with a “soft constraint” represented by 

 penalty term 
 (C i ξi − s i ) , where 
 is a positive definite and

ven function satisfying 
 (0) = 0 . Denote C = diag (C 1 , . . . , C n ) and

 (Cξ − s ) = 

∑ n 
i =1 
 (C i ξi − s i ) . With such a penalty 
 , we pro-

ose to substitute the gradient descent step in (13) with the fol- 

owing proximal step: 

 
r+1 / 2 ∈ prox 
 

ϕ (s 
r ) := arg min 

s 
( ϕ(s ) + 
 (s − s r ) ) . (20) 

iven any s r , the solution of (20) is hence carried out by agents

 i ∈ I 
+ 
n ) in parallel without needing to evaluate gradients of ϕ i : 

r 
i 

∈ arg min ξi φi (ξi ) + 
 (C i ξi − s r 
i 
) 

s . t . ξi ∈ �i 

 

r+1 / 2 = C i ξ
r . 

(21) 
i i 

5 
he second line in (13) is also modified with 
 : 

 
r+1 ∈ prox 
 

ψ 
(s r+1 / 2 ) = arg min 

s ∈ �

 (s − s r+1 / 2 ) . (22) 

hich can be executed by the coordinator without knowing the 

onolithic feasible set �′ (18) . 
The modified FBS algorithm, comprising of two proximal 

teps (21) and (22) in each iteration, is not an algorithm that 

uarantees convergence to the optimum with an increasing 

umber of iterations. Nevertheless, since the two steps guaran- 

ee ϕ(s r+1 / 2 ) + 
 (s r+1 / 2 − s r ) ≤ ϕ(s r−1 / 2 ) + 
 (s r−1 / 2 − s r ) and

 (s r+1 − s r+1 / 2 ) ≤ 
 (s r − s r+1 / 2 ) , respectively for all r ≥ 1 , we

ave ϕ(s r+1 / 2 ) + 
 (s r+1 − s r+1 / 2 ) ≤ ϕ(s r−1 / 2 ) + 
 (s r − s r−1 / 2 ) .

ow, to remove fractional superscripts, let us denote s r+1 by ˆ s r+1 

nd s r+1 / 2 by ˆ s r+1 ( r = 0 , 1 , . . . ) to represent the shared variables s

olved by the agents and the coordinator respectively. The modi- 

ed FBS thus guarantees that the iterations result in a monotonic 

ecrease in the value of ϕ( ̂ s ) + 
 ( ̄s − ˆ s ) . 

Yet, the question lies in: how should the penalty function 
 be 

hosen, so that the descent of φ( ̂ s ) + 
 ( ̄s − ˆ s ) is still a Lyapunov de-

cent? This is the key issue to be answered by the Lyapunov enve- 

ope approach in the subsequent section. 

. Lyapunov envelope 

.1. Analysis of consolidated solution 

Following the notations from the previous section, suppose that 

nder the modified FBS algorithm ( (21) and (22) ) within a certain 

umber of iterations, we have obtained from the agents a solution 

f (ξ1 , . . . , ξn , ̂  s ) , satisfying ξi ∈ �i and C i ξi = ˆ s i for all i ∈ I 
+ 
n , and

rom the coordinator an s = s̄ ∈ � that does not equal ˆ s exactly. 

n other words, the algorithm returns a solution (ξ , s ) that vio- 

ates the interconnection constraints Cξ − s = 0 ( ̂ s − s̄ = 0 ), i.e., is 

ot consolidated. Therefore, ϕ( ̂ s ) = 

∑ n 
i =1 φ(ξi ) is no longer the cost 

f an actual future trajectory and a control-Lyapunov function. To 

btain a control-Lyapunov function in the form of ϕ( ̂ s ) + 
 ( ̄s − ˆ s ) ,

e need to analyze the effect of nonzero Cξ − s = ˆ s − s̄ (violations 

o the interconnecting constraints) on the control-Lyapunov func- 

ion of the consolidated solution. 

Now we denote 

ˆ  i = 

[
ˆ w i [ k ] ; . . . ; ˆ w i [ k + N − 1] ; ˆ v i [ k ] ; . . . ; ˆ v i [ k + N − 1] 

]
, 

¯ i = [ ̄w i [ k ] ; . . . ; w̄ i [ k + N − 1] ; v̄ i [ k ] ; . . . ; v̄ i [ k + N − 1] ] 
(23) 

he former vector stands for the values of the interconnecting vari- 

bles solved by the subsystems’ agents, which conform with the 

ubsystem model, while the latter vector stands for the values of 

nterconnecting variables solved by the agent, which conform with 

he interconnecting relations H. Their differences are denoted by 

ectors δw and δv comprising of the following entries: 

wi [ t] = ˆ w i [ t] − w̄ i [ t] , δv i [ t] = ˆ v i [ t] − v̄ i [ t] , t ∈ I N−1 , i ∈ I 
+ 
n . (24)

he solution obtained by the optimization algorithm is hence a 

rediction of the system as shown by the inner block diagram of 

ig. 2 . When δw and δv are nonzero, the predicted trajectory is re- 

lized on a hypothetical system interconnected by � and H with 

dditional signals δw and −δv imposed before and after P to ac- 

ount for the discrepancies between the agents and the coordina- 

or. 

The consolidated solution, which is the trajectory of the actual 

ystem without the hypothetical signals, is hence the predicted so- 

ution with opposite hypothetical signals −δw and δv imposed to 

et off δw and −δv , respectively, as shown by the red area in Fig. 2 .

herefore, the consolidated solution can be regarded as a perturba- 

ion of the predicted trajectory with exogenous disturbances. It is 

ence desirable to analyze the effect of such disturbances on the 

bjective function of the solution returned from distributed opti- 

ization. 
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Fig. 2. Consolidated solution viewed as a disturbed system. 
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.2. Analysis of system dissipativity 

Dissipativity provides a natural framework for analyzing the 

tability of interconnected systems ( Brogliato et al., 2020 ). Specifi- 

ally, for the analysis of the perturbed system, we adopt the con- 

ept of incremental dissipativity ( Pavlov and Marconi, 2008 ) here. 

ssumption 4. For i ∈ I n , subsystem P i is incrementally dissipative. 

n other words, for any u i [ t] ∈ U i , and any two different w i [ t] and

 i [ t] ∈ X i , there exist matrices M i , �wi , �v i � 0 , such that the differ-

nces between the two w i [ t] , x i [ t] and the resulting two x i [ t + 1]

nd v i [ t] , denoted as δwi [ t] , δxi [ t] , δxi [ t + 1] and δv i [ t] , respectively,

atisfy 

 δxi [ t + 1] ‖ 
2 
M i 

− ‖ δxi [ t ] ‖ 
2 
M i 

≤ ‖ δwi [ t ] ‖ 
2 
�wi 

− ‖ δv i [ t ] ‖ 
2 
�v i 

. (25)

For example, suppose that P i is a linear system: 

 i : 

{
x i [ t + 1] = A i x i [ t] + B i u i [ t] + E i w i [ t] 
v i [ t] = C i x i [ t] + D i u i [ t] + F i w i [ t] . 

(26) 

hen its increment can be written as 

P i : 

{
δxi [ t + 1] = A i δxi [ t] + E i δwi [ t] 
δv i [ t] = C i δxi [ t] + F i δwi [ t] , 

(27) 

hich satisfies the incrementally dissipative inequality (25) if the 

ollowing linear matrix inequality (LMI) is satisfied for M i , �wi , 

v i � 0 : 

A 
 
i 
M i A i − M i + C 
 

i 
�v i C i A 
 

i 
M i E i + C 
 

i 
�v i F i 

E 
 
i 
M i A 


 
i 

+ F 
 
i 

�v i C i E 
 
i 
M i E i − �wi + F 
 

i 
�v i F i 

]
� 0 . (28) 

For the stage cost and terminal cost functions in the objective 

unction of the MPC problem (5) , � and � f , we assume the following

onditions. 

ssumption 5. For all i ∈ I 
+ 
n , 

1. functions � i and � f i are continuously differentiable in the x i ar- 

gument; 

2. the gradients satisfy ∂ � (0 , u i ) /∂ x i = 0 and for any u i ∈ U i ,

∂ � f i (0 , u i ) /∂ x i = 0 ; 

3. the gradients of � i and � f i are Lipschitz with constants l i and l f i ,

respectively, i.e., ∥∥ ∂� i 
∂x i 

( ̂  x i , ˆ u i ) − ∂� i 
∂x i 

( ̂  x ◦
i 
, ˆ u i ) 

∥∥ ≤ l i ‖ ̂  x ◦
i 
− ˆ x i ‖ , ∥∥ d� f i 

dx i 
( ̂  x i ) − d� f i 

dx i 
( ̂  x ◦

i 
) 
∥∥ ≤ l f i ‖ ̂  x ◦

i 
− ˆ x i ‖ , 

(29) 

for any ˆ x i , ̂  x ◦
i 
and ˆ u i ∈ U i ; 

4. the K ∞ -class function αi lower bounding � i can be found as a 

squared norm: αi (x i ) = 

g i 
2 ‖ x i ‖ 2 for some constant g i > 0 , and � f i 

g f i 2 
is also lower bounded by 2 ‖ x i ‖ for some constant g f i > 0 . 

6 
It is straightforward to verify that the above assumption is sat- 

sfied by a typical choice of quadratic cost functions � i (x i , u i ) =
 x i ‖ 2 Q i + ‖ u i ‖ 2 R i , � f i (x ) = ‖ x i ‖ 2 S i with Q i , R i � 0 , S i � 0 . 

Now let us consider the effect of disturbances (δw , δv ) on 

he states of the consolidated solution. We denote the intercon- 

ecting variables in the consolidated solution by ˆ w 
◦[ t] and ˆ v ◦[ t] , 

nd let δ◦
wi 
[ t] := ˆ w 

◦
i 
[ t] − ˆ w i [ t] , δ◦

v i [ t] := ̂  v ◦
i 
[ t] − ˆ v i [ t] be the differ-

nces between the consolidated solution and the predicted solu- 

ion, stacked into δ◦
w and δ

◦
v , respectively. We stack the matrices 

nvolved in subsystems’ incremental dissipativity properties into 

lock diagonal forms �w = diag (�w 1 , . . . , �wn ) and analogously 

v and M. Then we have the following bound. 

emma 3 (Effect of violations to the interconnecting constraints on 

he states of the consolidated solution) . Suppose that Assumption 

 holds and in addition 

v − 2 H 

 �w H � 0 . (30) 

hen for any T ∈ I N−1 , we have 

 δ◦
x [ T ] ‖ 

2 
M 

≤ 4 ‖ Cξ − s ‖ 
2 
�, (31) 

here � is the block diagonal matrix whose order equals the dimen- 

ion of s and whose diagonal blocks corresponding to the coordinates 

f each s wi [ t] and s v i [ t] , t ∈ I N−1 in s are �wi and �v i , respectively. 

roof. Since the consolidated solution satisfies the interconnecting 

elations specified by H, 

◦
w = ˆ w 

◦ − ˆ w = 

(
ˆ w 

◦ − w̄ 

)
− ( ̂  w − w̄ ) 

= H 

(
ˆ v ◦ − v̄ 

)
− δw = H 

(
ˆ v ◦ − ˆ v 

)
+ H 

(
ˆ v − v̄ 

)
− δw 

= H δ◦
v + H δv − δw . 

(32) 

f the subsystems are incrementally dissipative, by adding the in- 

quality (25) with t taking values from 0 to any T − 1 ∈ I N−1 for all

ubsystems, the deviations should satisfy 

 −1 
 

t=0 

n ∑ 

i =1 

‖ δ◦
v i [ t ] ‖ 

2 
�v i 

≤
T −1 ∑ 

t=0 

n ∑ 

i =1 

‖ δ◦
wi [ t ] ‖ 

2 
�wi 

−
n ∑ 

i =1 

‖ δ◦
xi [ N] ‖ 

2 
M i 

, (33)

here the meaning of δ◦
xi 

is analogous to that of δ◦
wi 

or δ◦
v i . Drop- 

ing the last term, we have 

 −1 
 

t=0 

‖ δ◦
v [ t ] ‖ 

2 
�v 

≤
T −1 ∑ 

t=0 

‖ δ◦
w [ t ] ‖ 

2 
�w 

, (34) 

ubstituting (32) into above, we have ∑ T −1 
t=0 ‖ δ◦

v [ t] ‖ 
2 
�v 

≤ ∑ T −1 
t=0 ‖ Hδ◦

v [ t] + (Hδv [ t] − δw [ t]) ‖ 

2 
�w 

≤ 2 
(∑ T −1 

t=0 ‖ H δ◦
v [ t] ‖ 

2 
�w 

+ 

∑ T −1 
t=0 ‖ H δv [ t] − δw [ t] ‖ 

2 
�w 

)
. 

(35) 

n the above inequality, 2 ‖ Hδ◦
v [ t] ‖ 2 �w 

= δ◦
v [ t] 


 (2 H 

 �w H) δ◦

v [ t] and

 δ◦
v [ t] ‖ 2 �v 

= δ◦
v [ t] 


 �v δ◦
v [ t] . Moving the first term on the right-hand

ide to the left gives 

 −1 
 

t=0 

‖ δ◦
v [ t ] ‖ 

2 
�v −2 H 
 �w H 

≤ 2 

T −1 ∑ 

t=0 

‖ Hδv [ t ] − δw [ t] ‖ 
2 
�w 

, (36)

here ‖ · ‖ �v −2 H 
 �w H 
is well-defined due to (30) . This implies that 

◦
v remains bounded. Then, from (32) , we obtain the bound of δ◦

w : ∑ T −1 
t=0 ‖ δ◦

w [ t ] ‖ 
2 
�w 

= 

∑ T −1 
t=0 ‖ Hδ◦

v [ t ] + Hδv [ t] − δw [ t] ‖ 
2 
�w 

≤ 2 
∑ T −1 

t=0 

(‖ δ◦
v [ t ] ‖ 

2 
H 
 �w H 

+ ‖ Hδv [ t ] − δw [ t ] ‖ 
2 
�w 

) (37) 

hich implies that 

∑ T −1 
t=0 

(‖ δ◦
w [ t ] ‖ 

2 
�w 

− ‖ δ◦
v [ t ] ‖ 

2 
�v 

)
≤ ∑ T −1 

t=0 

(
2 ‖ δ◦

v [ t ] ‖ 
2 
H 
 �w H 

+ 2 ‖ Hδv [ t ] − δw [ t ] ‖ 
2 
�w 

− ‖ δ◦
v [ t ] ‖ 

2 
�v 

)
= 

∑ T −1 
t=0 

(
−‖ δ◦

v [ t ] ‖ 
2 
�v −2 H 
 �w H 

+ 2 ‖ Hδv [ t ] − δw [ t ] ‖ 
2 
�w 

)
≤ 2 

∑ T −1 
t=0 ‖ Hδv [ t] − δw [ t] ‖ 

2 
� . 
w 
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(38) 

ence with the incremental dissipativity properties of the subsys- 

ems, the deviation of the future states in the consolidated solution 

rom the predicted solution is bounded as 

‖ δ◦
x [ T ] ‖ 

2 
M 

≤ ∑ T −1 
t=0 

(‖ δ◦
w [ t] ‖ 

2 
�w 

− ‖ δ◦
v [ t] ‖ 

2 
�v 

)
≤ 2 

∑ T −1 
t=0 ‖ Hδv [ t] − δw [ t] ‖ 

2 
�w 

≤ 4 
∑ T −1 

t=0 

(‖ δv [ t ] ‖ 
2 
H 
 �w H 

+ ‖ δw [ t ] ‖ 
2 
�w 

)
. 

(39) 

ince �v � 2 H 

 �w H � H 


 �w H, 

 δ◦
x [ T ] ‖ 

2 
M 

≤ 4 

T −1 ∑ 

t=0 

(‖ δv [ t ] ‖ 
2 
�v 

+ ‖ δw [ t ] ‖ 
2 
�w 

)
. (40) 

y further relaxing the right-hand side to a summation from 0 to 

 − 1 , we obtain (31) . �

Next we consider the effect of δ◦
x = ˆ x ◦ − ˆ x on the stability of the 

onsolidated solution. Denote the deviation of the total objective 

unction value by δ◦
V 
:= ˆ V ◦ − ˆ V , where ˆ V is the objective function 

alue of the prediction and ˆ V ◦ is that of the consolidated solution. 

emma 4 (Effect of violations to the interconnecting relations on 

he objective function value of the consolidated solution) . Suppose 

hat the subsystems are incrementally dissipative (according to As- 

umption 4 ) with (30) and that the MPC formulation satisfies Assump- 

ions 2 and 5 . When distributed optimization of the MPC problem 

ives a solution (ξ , s ) and corresponding subsystem prediction with 

bjective function value ˆ V , the consolidated solution will have an ob- 

ective function of ˆ V ◦ = ˆ V + δ◦
V 
, where 

 δ◦
V | ≤ r 1 ̂  V 

1 / 2 ‖ Cξ − s ‖ + r 2 ‖ Cξ − s ‖ 
2 (41) 

or some positive constants r 1 and r 2 . 

roof. Assumption 5 implies that the values of the terms in the 

bjective function have the following bounded deviations: 

 δ◦
�i | := | � i ( ̂  x ◦i , ˆ u i ) − � i ( ̂  x i , ˆ u i ) | ≤ l i ‖ ̂  x i ‖ · ‖ δ◦

xi ‖ + 

l i 
2 
‖ δ◦

xi ‖ 
2 (42)

here the time index t ∈ I N−1 is omitted. The deviation in the ter-

inal cost then satisfies 

 δ◦
� f i 

| ≤ l f i ‖ ̂  x i [ N] ‖ · ‖ δ◦
x i 
[ N] ‖ + 

l f i 
2 
‖ δ◦

x i 
[ N] ‖ 

2 . (43) 

dding up all the stage cost and terminal cost deviations in all the 

ubsystems, we obtain that δ◦
V 
should be bounded by 

 δ◦
V | ≤

∑ n 
i =1 

[ ∑ N−1 
t=0 

(
� i ‖ ̂  x ◦

i 
[ t] ‖ · ‖ δ◦

x i 
[ t] ‖ + 

l i 
2 
‖ δ◦

x i 
[ t] ‖ 

2 
)

+ l f i ‖ ̂  x i [ N] ‖ · ‖ δ◦
x i 
[ N] ‖ + 

l f i 
2 
‖ δ◦

x i 
[ N] ‖ 

2 . 

(44) 

sing the Cauchy-Schwarz inequality, we further relax the above 

nequality as 

 δ◦
V | ≤

[∑ n 
i =1 

(∑ N−1 
t=0 l 

2 
i 
‖ ̂  x ◦

i 
[ t] ‖ 

2 + l 2 
f i 
‖ ̂  x ◦

i 
[ N] ‖ 

2 
)]1 / 2 ‖ δ◦

x ‖ 

+ max i ∈ I + n max 
(
l i 
2 
, 
l f i 
2 

)‖ δ◦
x ‖ 

2 . 
(45) 

rom (40) , we have 

min (M) ‖ δ◦
x [ T ] ‖ 

2 ≤ 4 λmax (�) ‖ Cξ − s ‖ 
2 (46) 

or any T ∈ I N−1 . Hence 

 δ◦
x ‖ 

2 ≤ 4 N 

λmax (�) 

λmin (M) 
‖ Cξ − s ‖ 

2 . (47) 

nder Assumption 5 , choose sufficiently large positive constants r 1 
nd r 2 , e.g., according to 

 1 ≥ 2 max 
i ∈ I + n 

max 
(
l 2 
i 
/g i , l 

2 
f i 
/g f i 

)
· N 

1 / 2 λ1 / 2 
max ( �) /λ1 / 2 

min ( M ) , 

 2 ≥ 4 max 
i ∈ I + n 

max ( l i , l f i ) · Nλmax ( �) /λmin ( M ) . 
(48) 
hen the conclusion is proved. � i

7 
.3. The Lyapunov envelope algorithm 

Motivated by the conclusion of Lemma 4 , we consider the fol- 

owing modified formulation of the MPC problem: 

in ξ ,s 

∑ n 
i =1 

(
φi (ξi ) + p 1 ‖ C i ξi − s i ‖ + p 2 ‖ C i ξi − s i ‖ 

2 
)

 . t . ξi ∈ �i , i ∈ I 
+ 
n 

s = [ s 1 ; . . . ; s n ] ∈ �. 

(49) 

uppose that in an iterative algorithm to solve (49) , starting from 

n initial solution of (ξ 0 , s 0 ) satisfying C i ξ
0 
i 

= s 0 
i 
, i ∈ I 

+ 
n , the itera-

ions from (ξ r , s r ) → (ξ r+1 , s r+1 ) are such that the objective func-

ion is monotonically non-increasing. If such an algorithm can be 

erformed in a distributed manner on an agent-coordinator archi- 

ecture, i.e., by iterations of an agent update step and a coordinat- 

ng step, then regardless of whether the algorithm finds or con- 

erges to a point (ξ , s ) satisfying s = Cξ , the intermediate solu- 

ion terminated after any iteration will guarantee that the consoli- 

ated solution will have a decreased objective function without the 

enalty terms. For convenience, we introduce the following defini- 

ion. 

efinition 1 (Lyapunov envelope and Lyapunov envelope algo- 

ithm) . Under the conditions of Lemma 4 , the objective function 

f (49) is called a Lyapunov envelope. An algorithm for solving 

49) that initializes at a feasible point (ξ , s ) satisfying s = Cξ and 

eturns a feasible solution with the objective function not exceed- 

ng that of the initial point is called a Lyapunov envelope algo- 

ithm. 

Specifically, the modified FBS algorithm discussed in 

ection 3.2 , where each iteration comprises of (21) and (22) with 

he penalty chosen as 
 ( ̂ s − s̄ ) = p 1 ‖ ̂ s − s̄ ‖ + p 2 ‖ ̂ s − s̄ ‖ 2 , is a

yapunov descent algorithm of solving (49) simply in a block 

oordinate descent paradigm. In the agent update step (21) , each 

ubsystem i in parallel updates a ξi ∈ �i that reduces or minimizes 

he corresponding term in the objective function of (49) , i.e., 

r+1 
i 

∈ arg min 
ξi ∈ �i 

(
φi (ξi ) + p 1 ‖ C i ξi − s r i ‖ + p 2 ‖ C i ξi − s r i ‖ 

2 
)
. (50) 

n the coordinating step, s is updated by minimizing the objective 

erms associated with s in (49) , i.e., 

 
r+1 ∈ arg min 

s ∈ �

(
p 1 ‖ Cξ r+1 − s ‖ + p 2 ‖ Cξ r+1 − s ‖ 

2 
)
. (51) 

ormally, the algorithm is summarized in Algorithm 1 . 

1 for t = 0 , 1 , . . . do 

2 Initialize: ξ 0 and s 0 satisfying Cξ 0 = s 0 ; 

3 Set: r ← 0 ; 

4 while r ≤ r max do 

5 for i = 1 , . . . , n in parallel do 

6 Solve ξ r+1 
i 

from (50); 

7 end 

8 Solve s r+1 from (51); 

9 r ← r + 1 ; 

10 end 

11 end 

Algorithm 1: Lyapunov envelope algorithm using block coor- 

dinate descent. 

Now consider the distributed MPC at time k + 1 . If the consol- 

dated solution of the previous execution (under x [ t] ) is assigned 

s the initial solution, clearly, it satisfies the interconnecting rela- 

ions and hence is itself a consolidated solution. As the iteration 

roceeds, the intermediate solutions yield a monolithically non- 

ncreasing sequence of upper bounds on the control cost when 
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hey become consolidated (Lyapunov envelope). By the same rea- 

oning as in Section 2 , the Lyapunov envelope can be used as a

ontrol-Lyapunov function, which, under the same appropriate as- 

umptions, leads to the asymptotic closed-loop stability property. 

However, the relaxation of interconnecting relations s = Cξ as 

oft constraints may imply possible violation of state constraints X 

nd X f in the consolidated solutions and hence recursive feasibility. 

o resolve this issue, we denote by V LE (x ) the optimized objective 

unction value under the Lyapunov envelope when the states are 

ampled at x and V κf (x ) the objective function value when initial- 

zed under the baseline controller κf ( V LE (x ) ≤ V κf ). Let F be the

egion on which the centralized MPC problem is feasible (so that 

t any x ∈ F , the subproblems can always be feasibly solved), and

 
∗ > 0 be the maximum one among such values of a > 0 such that

he sublevel set S (V κf , a ) = { x | V κf (x ) ≤ a } is a subset of F . Then,

ssuming that the trajectory starts on S (V κf , a ∗) , the trajectory is
ound in S (V κf , a ∗) ⊆ F , and hence the recursive feasibility is pre-

erved. 

Therefore, we have reached our main conclusion. 

heorem 2 (Closed-loop stability guarantee of the Lyapunov enve- 

ope algorithm) . Suppose that the following propositions hold: 

1. Assumptions 1 , 2 , 4 and 5 hold for the system dynamics and MPC

formulation; 

2. In every execution of distributed MPC, the initial solution is set 

as the consolidated solution of the previous execution, extended 

under κf (according to (10) ); 

3. A Lyapunov envelope algorithm is used for distributed MPC, where 

the penalty coefficients p 1 and p 2 are such that r 1 = p 1 / (a 
∗) 1 / 2 

and r 2 = p 2 satisfy (48) . 

Then starting on S (V κf , a ∗) , the closed-loop system is asymptoti- 

ally stable under the Lyapunov envelope algorithm. 

Comparing the Lyapunov envelope algorithm to the FBS dis- 

ussed in Section 3.1 , the following advantages can be noted. 

1. The coordinator does not need the information of the feasible 

regions of interconnecting variables s i for every subsystem, and 

does not restrict itself to solutions that must make all subsys- 

tems match themselves to. 

2. The coordinator does not need to evaluate the gradient of ϕ, 

which is implicitly expressed in terms of the optimal values of 

the subsystems’ optimization problems. 

3. The iterations to coordinate the subsystems can be early ter- 

minated. Despite the violations of interconnecting relations, the 

consolidated intermediate solutions are of controlled quality in 

the sense of a well-bounded control cost. 

4. The Lyapunov envelope is monotonic with iterations, eliminat- 

ing the possibility that intermediate consolidated solutions may 

result in deteriorated performance. The user may therefore con- 

veniently find a trade-off between computational efficiency and 

solution optimality. 

.4. Remarks on the Lyapunov envelope algorithm 

In the remainder of this session, we provide some remarks to 

acilitate a better understanding and practical utilization of the 

yapunov envelope algorithm. 

emark 1 (Substituting. � 2 -norm with � 1 -norm) In the coordinat- 

ng step of each iteration, the s variable is updated under a given 

by solving the following problem: 

in s p 1 ‖ s −Cξ‖ + p 2 ‖ s −Cξ‖ 
2 

 . t . s = [ s 1 ; . . . ; s n ] ∈ �, 
(52) 

hich is a convex optimization problem. By using an auxiliary 

calar σ with constraints ‖ s −Cξ‖ ≤ σ , the above formulation is 
�

8 
ransformed into a second-order conic programming (SOCP) prob- 

em. 

In fact, due to the equivalence of � q -norms for all q ≥ 1 , one

an substitute the � 2 penalty ‖ s −Cξ‖ 2 with any other � q forms. 

specially, it is desirable to substitute it with the � 1 -norm for the 

enefit of reformulating the problem into a quadratic programming 

orm (QP): 

in s,ς p 1 e 

 ς + p 2 ‖ s −Cξ‖ 

2 

 . t . −ς ≤ s −Cξ ≤ ς , H s s = 0 , 
(53) 

here e is a vector with all components equal to 1, and H s s = 0

tands for the interconnecting constraints (arising from w = Hv ) in 
 ∈ �. The � 1 -norm substitution is desirable also for the subsys- 

ems to update ξ since with the auxiliary vector ς introduced, the 

on-smoothness of the � 1 -norm term can be resolved. 

emark 2 (Sharp Lagrangean and exact penalty in optimiza- 

ion) . The formality of the penalty terms in the Lyapunov envelope 

lgorithm has an interesting conceptual connection with the stud- 

es of augmented Lagrangean duality in optimization theory, which 

nvestigate the conditions under which the dual variables support 

xact penalty representations. Specifically, to minimize an objec- 

ive function f under constraints c(x ) = 0 and x ∈ X , if minimizing

he augmented Lagrangean 

 (x, λ, ρ) = f (x ) + λ
 c(x ) + ρ
 (c(x )) (54)

where 
 is called a penalty function) under given λ and a finite 

alue of ρ gives exactly the optimum as the original problem, then 

is said to support an exact penalty representation and hence 

he augmented Lagrangean can result in zero duality gap ( Rubinov 

t al., 1999; Huang and Yang, 2003 ). In the afore-mentioned liter- 

ture, a sharp Lagrangean, namely an augmented Lagrangean with 

 (·) = ‖ · ‖ q instead of a quadratic penalty 
 (·) = ‖ · ‖ 2 was pro-

osed. 

It was proved that in order to have λ = 0 supporting an ex- 

ct penalty representation, the � q -norm is chosen so that the order 

 > 0 correctly reflects the sensitivity of the objective function to 

he violations to the constraints c(x ) = 0 ( Huang and Yang, 2003 ,

heorem 4.6). In this sense, the penalty terms in the Lyapunov en- 

elope play the role of such exact penalty functions to account for 

he effect of disturbances (i.e., violations to the interconnecting re- 

ations among subsystems) on the objective function. The choice 

f a combination of a sharp and classical form with both � 1 and 

uadratic penalty takes into account the first-order and second- 

rder disturbance effects, which is implied by the continuity con- 

itions ( Assumption 5 ). 

Yet, different from the context of augmented Lagrangean dual- 

ty, the Lyapunov envelope algorithm does not consider a full op- 

imization of the augmented Lagrangean, which is computationally 

xpensive. Instead, we adopt a distributed approach to successively 

mprove the objective value. While it does not guarantee a conver- 

ence to the optimum, the control performance can be made sat- 

sfactory with appropriate parameters p 1 and p 2 . 

emark 3 (Parameter tuning and scalings) . The choice of param- 

ters p 1 and p 2 has a fundamental effect on the computational 

fficiency and the control performance of the resulting solution. 

n one hand, according to the previous discussions, p 1 and p 2 
hould overestimate the first-order and second-order effects of dis- 

urbances on the objective function for maintaining the closed- 

oop stability. On the other hand, if p 1 and p 2 are too large 

over-conservative), then the ill-conditioned proportion between 

he original objective and the penalty terms will slow down the 

terations to improve the solutions and largely increase the time 

or numerical computations. Hence the two parameters should be 

uned just large enough to yield closed-loop stability. 
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Within the two parameters, p 1 should be considered as more 

mportant than p 2 , since the squared � 2 -norm is dominated by the 

 1 -norm when Cξ − s is close to 0 and thus it is the � 1 penalty that

ainly determines the control performance. Therefore to tune the 

lgorithm, the value of p 1 should be decided primarily for a trade- 

ff between control and computational performances, followed by 

n appropriate choice of p 2 . In this paper we follow this empiri- 

al tuning procedure. As a future direction, it may be possible to 

hoose the parameters based on a systematic and rigorous dissipa- 

ivity analysis of system dynamics. 

It is worth noting that although formally we can reduce the 

umber of parameters down to 2, the relative scalings of the com- 

onents of Cξ − s are intangibly crucial, since well-scaled penalty 

erms reduce the conversativeness of estimating the disturbance 

ffects. Without a-priori scalings, one can determine the scaling 

actors of Cξ − s , denoted by θ , using the information of static gain 

 from disturbances to the states (or outputs) and scaling factors 

of the states (or outputs) in the objective function: 

in 
η

‖ Gθ − η‖ 
2 . (55) 

emark 4 (Satisfaction of incremental dissipativity) . For linear sys- 

ems, supposing that the interconnecting inputs and outputs w and 

 are well-scaled, one may verify the LMI (28) with simple forms 

f �wi and �v i for each subsystem, e.g., �wi = βwi I, �v i = βv i I for 

wi , βv i > 0 to confirm that the subsystems are incrementally dis- 

ipative. For uncertain and nonlinear systems, it is usually difficult 

o directly verify the incremental dissipativity assumption. Never- 

heless, it can be argued that incremental dissipativity is a prop- 

rty that holds for many real-world systems, especially chemical 

rocesses whose dynamics should obey the first and second laws 

f thermodynamics. 

To obtain the dissipativity properties from the dynamic mod- 

ls of chemical processes, conditions and procedures of thermo- 

ynamic analysis have been discussed, e.g., in Alonso and Yd- 

tie (1996) and Hangos et al. (2001) . Recently, data-driven meth- 

ds of estimating dissipativity properties using trajectory samples 

rom simulations or plant tests (e.g., Koch et al., 2020 ) have also 

een proposed, which may help to reduce the difficulty of a rigor- 

us model-based thermodynamic analysis. 

emark 5 (Enforcement of incremental dissipativity) . The condi- 

ion on the incremental dissipativity of the interconnecting sub- 

ystems �v − 2 H 

 �w H � 0 intrinsically requires that the subsys- 

ems must be sufficiently self-stabilizing, so that the effect of hy- 

othetical disturbances (δw , δv ) on the interconnected system is 

ot “snowballed”. 

If the condition �v − 2 H 

 �w H � 0 is not satisfied because of 

he insufficient dissipativity of some subsystems, it is desirable to 

esign for these subsystems an auxiliary controller κi to shape 

heir dissipativity properties prior to implementing distributed 

PC and impose distributed MPC based on such an auxiliary con- 

roller. For example, if ramp dynamics exist in some subsystems, 

roportional feedback can be first established from each ramp vari- 

ble to one of its manipulated inputs. This essentially amounts to 

 variable transformation u i = πi (x i ) + u ′ 
i 
, where πi is the auxiliary

ontroller, u i represents the original inputs, and u 
′ 
i 
is the trans- 

ormed inputs for MPC. 

For a systematic design of this auxiliary controller πi , if needed, 

ne can seek to optimize an L 2 or dissipativity characterization 

f the effect of w i as exogenous disturbances on v i regarded as 
ontrolled outputs. For linear systems or systems whose open- 

oop dissipative behavior is known, the controller synthesis prob- 

em to shape the closed-loop dissipativity has been well addressed 

 Haddad et al., 1994; Willems and Trentelman, 2002 ). In the con- 

ext of systems for which dissipativity can be learned in a data- 

riven manner, the dissipativity learning control framework inte- 
9 
rates the learning of open-loop dissipativity from data and the 

ontroller synthesis step ( Tang and Daoutidis, 2019a; 2021a ). 

emark 6 (Effect of decompositions) . The performance of dis- 

ributed MPC depends on the choice of decomposition, i.e., the 

umber of subsystems and the allocation of variables into these 

ubsystems that determine the subsystem model and the intercon- 

ecting relations. The natural idea that subsystems should have 

ignificant weaker couplings between them than the relations in- 

ide them has motivated network-theoretic methods of generat- 

ng such decompositions ( Daoutidis et al., 2018; 2019 ). The Lya- 

unov envelope algorithm proposed in the present paper imposes 

he following requirements on the decomposition: (i) all the sub- 

ystems should be incrementally dissipative so that the effect of 

nterconnecting inputs w i on the interconnecting outputs v i should 
e small, (ii) the couplings should be weak enough so that the 

nterconnected subsystems have finite response over disturbances 

n the interconnections. Thus, in addition to considering the num- 

er of connections inside and across the subsystems as in commu- 

ity detection, a truly high-quality decomposition should be such 

hat the parameters p 1 and p 2 as defined in (48) that capture the 

lantwide effect of disturbances can be made small. 

. Case study 

.1. System description 

We use the vinyl acetate monomer chemical plant of 

hen et al. (2003) to carry out a case study of the application 

f the Lyapunov envelope algorithm to plantwide distributed MPC 

f large-scale systems. A detailed description of the nonlinear 

rst-principles continuous-time dynamics and source codes can be 

ound at McAvoy’s repository ( http://terpconnect.umd.edu/mcavoy/ 

AC20Material/ ). In this work, we only use a linearized, forward- 

iscretized dynamics derived from the first-principles model and 

eglect the plant-model mismatch as well as possible disturbances 

nd noises. In practice, the plantwide MPC of process systems is 

ostly based on an identified linear dynamics (with nonlinearities 

ppended in an ad-hoc way), and the resulting deviations from the 

odel are usually accounted for by calibrating the measurements 

gainst a disturbance model, which is known as offset-free MPC 

see, e.g., Pannocchia and Rawlings, 2003 ) and is beyond the scope 

f this paper. 

The entire plant has 246 state variables ( x ), 21 inputs ( u ) and

3 outputs ( y ), and divided into 3 subsystems. Subsystem 1 (acetic 

cid storage tank, vaporizer and reactor) has 83 states, 7 inputs, 

nd 14 outputs; subsystem 2 (feed effluent heat exchange, phase 

eparator, absorption column and CO 2 removal) has 93 states, 9 

nputs and 17 outputs; subsystem 3 (distillation column) has 70 

tates, 6 inputs, and 12 outputs. The pattern of interactions among 

ubsystems can be seen in Fig. 3 , where the structure of the lin-

arized model matrix with the rows and columns permutated in 

he order of subsystems 1, 2 and 3, namely 

A B 
C D 

]
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

A 11 A 12 A 13 B 11 B 12 B 13 
A 21 A 22 A 23 B 21 B 22 B 23 
A 31 A 32 A 33 B 31 B 32 B 33 
C 11 C 12 C 13 D 11 D 12 D 13 

C 21 C 22 C 23 D 21 D 22 D 23 

C 31 C 32 C 33 D 31 D 32 D 33 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (56) 

s plotted in a color map. To account for the interactions among 

he 3 subsystems, 60 interconnection variables ( w, v ) are created, 
ith the dimensions of w being 12, 23, 25 and the dimensions of 

 being 23, 33, 4, respectively. 

The linear discrete-time dynamics of the system represented by 

he matrix A is examined. Except for 11 eigenvalues that are close 

http://terpconnect.umd.edu/mcavoy/VAC20Material/
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Fig. 3. Model structure of the vinyl acetate monomer system. Yellow (light) and red 

(dark) pixels stand for zero and nonzero entries, respectively. Solid lines separate 

blocks of A, B, C, D , and dashed lines separate subsystems. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 4. Closed-loop behavior under centralized LQR represented by the response of 

separator compositions to distillation reflux ratio changes. 
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Table 1 

Process constraints considered in the case study. 

Variables Bounds 

Oxygen composition in the gas recycle ≤ 8 mol% 

Pressure in the gas recycle ≤ 140 psia 

Peak reactor temperature ≤ 200 ◦C 
Liquid levels in all the units ≥ 10% , ≤ 90% 

Reactor feed temperature ≥ 130 ◦C 
Hot effluent temperature of the feed-effluent heat exchanger ≥ 130 ◦C 
Acetic acid composition in the decanter organic phase ≤ 0 . 06 mol% 

Vinyl acetate composition in the column bottom ≤ 0 . 01 mol% 

Table 2 

Sizes of the MPC subproblems. 

Subsystem # Variables # Constraints 

1 31,403 36,803 

2 41,673 49,233 

3 26,350 28,150 
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o 1 (due to ramp dynamics), the remaining 235 eigenvalues re- 

ide in the interior of the unit disk of the complex plane, implying 

hat the open-loop system is stable if the ramp dynamics are elim- 

nated. As suggested in Chen et al. (2003) , feedback from the liquid 

evels in the process to a corresponding number of selected inputs 

s adopted to move these poles inside the unit disk. We also spec- 

fy the scalings of the inputs and outputs as in Chen et al. (2003) . 

Under Q = 100 C 
 C, R = I, a centralized LQR controller is de-

igned and the closed-loop stability is verified through simulation. 

or example, Fig. 4 shows the response of the 6 molar fractions 

f the 3 species in the two phases of the separator to a 25% step

ncrease in the distillation column reflux ratio at 0 min and its 

estoration to the original value at 720 min. Hence, we use this 

entralized LQR controller as the base controller κf in MPC. The 

alue of the cost function under κf is thus a function of the ini- 

ial point at the sampling point. The monotonic decrease of such 

 function V κf (x ) along the closed-loop trajectories will be ex- 
10 
loited to demonstrate the convergence behaviors under different 

PC schemes. 

.2. Distributed MPC setup 

Due to the difficulty of optimization on a plantwide first- 

rinciples nonlinear model, we use linearized model prediction for 

istributed MPC, with quadratic forms as control costs for the sub- 

ystems: � i (x i , u i ) = x 
 
i 
Q i x i + u 
 

i 
R i u i . Weightings of the inputs and

tates are the same as described in the previous subsection for de- 

entralized LQR, and the constraint sets X , X f = X , U are defined as

he ranges specified in Tables 2 and 4 of Chen et al. (2003) . For the

bsent values, we supplement with a range of ±1 times their re- 

pective scaling factors. Additional process constraints are imposed 

ccording to the control objectives 1–8 in Chen et al. (2003) , sum- 

arized in Table 1 . The terminal cost is set as � f i = x 
 
i 
S i x i , where S i 

s solved from decentralized LQR. For simplicity, we assume that all 

tate variables are directly measurable, while in reality, a Kalman 

lter is usually needed for state observation. The sampling time is 

 min, and a prediction horizon of 180 min (empirically tuned to 

chieve closed-loop stability under centralized MPC) is used. For 

he illustration of the proposed method, we only consider a reg- 

lating control scenario without complexities such as exogenous 

isturbances or transitions between different operating regions. 

We first test the setup of distributed MPC with a decentral- 

zed MPC counterpart (without any coordination and assuming the 

nterconnecting inputs of all the subsystems are w = 0 ). The ini- 

ial condition is a different steady state with the reflux ratio of 

he distillation column is 25% higher than the steady state to be 

egulated at. It was found that the decentralized MPC does not 

uarantee closed-loop stability. While it is possible that in prac- 

ice, in the presence of disturbance calibration for offset-free MPC, 

he closed-loop stability can be recovered, the loss of stability un- 

er a non-calibrated decentralized MPC strategy indicates that the 

nteractions among the subsystems are non-trivial, for which it is 

esirable to consider coordination. 

We then compare decentralized MPC to a fully centralized MPC 

ith the same objective function and constraints. The centralized 

PC problem at each sampling time is a QP with 56,946 variables 

nd 61,626 constraints. Fig. 5 and Fig. 6 show the trajectories of the 

nput and output variables under centralized MPC during a simu- 

ation of 360 min. On average, it takes 9.525 seconds to solve each 

entralized MPC problem, which occupies 15 . 87% of the sampling 

nterval. Suppose that, for example, the user needs the computa- 

ional time to be no greater than 10% of the sampling time; then 

entralized MPC for this application is not well implementable in 
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Fig. 5. Trajectories of inputs under centralized MPC. 

Fig. 6. Trajectories of the outputs under centralized MPC. 
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eal time. This motivates the adoption of Lyapunov envelope algo- 

ithm. 

.3. Results 

Using distributed MPC, the number of variables and constraints 

or the MPC subproblems of the 3 subsystems are given in Table 2 .

ach subsystem has a subproblem much smaller than the central- 

zed MPC problem. However, due to the newly added interconnect- 

ng variables w and v among the subsystems, the total sizes of the 

 subproblems are larger than that of the centralized MPC formu- 

ation. We note that the subsystem models here are constructed 

igorously by splitting a linearized and discretized first-principles 
11 
odel. In a more practical setting where the model is obtained 

hrough system identification procedures, it can be reasonably ex- 

ected that the weak first-principle relations among the subsys- 

ems will not appear in the model, and hence the inflation of sub- 

roblem sizes will be much more reduced. 

For the Lyapunov envelope algorithm, we set p 1 = 10 , p 2 = 10

nd at each sampling time, the number of iterations performed be- 

ore termination is increased from 1 to 3. 

Fig. 7 illustrates the resulting control and computational perfor- 

ance in terms of the trajectory of V κf (x ) and the accumulated 

omputational time with increasing simulation time. It can be ob- 

erved that the trajectories of V κf (x ) under 1, 2 and 3 iterations per

ampling time are very close, which is also close to the trajectory 
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Fig. 7. Control and computational performance of distributed MPC with the Lya- 

punov envelope algorithm ( p 1 = 10 , p 2 = 10 ). 

Table 3 

Control performance under different parameter settings. 

p 1 \ p 2 1 3 10 30 100 

1 7.7553 7.7297 7.7313 7.7646 7.8164 

3 7.6139 7.5890 7.6162 7.6295 7.6255 

10 6.2868 6.2841 6.3212 6.2693 6.3228 

30 5.6693 5.6718 5.6682 5.6725 5.6678 

100 5.6641 5.6634 5.6633 5.6660 5.6635 
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Fig. 8. Comparison of control performance under different parameter tuning in the 

Lyapunov envelope algorithm. 

Table 4 

Computational performance under different parameter settings. 

p 1 \ p 2 1 3 10 30 100 

1 6.9143 6.4046 7.3793 6.8260 8.5807 

3 6.4241 5.1308 5.7656 5.3364 7.1228 

10 4.0851 4.0367 3.8473 3.9245 5.3450 

30 5.5038 10.1044 26.2289 4.3044 19.4970 

100 9.7516 6.9934 16.3448 34.1468 23.5383 
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nder centralized MPC. This implies that under the current param- 

ter settings, using 1 iteration per sampling time is sufficient. On 

he other hand, if more iterations are used, the average computa- 

ional time per sampling will increase. For our decomposition into 

 subsystems only, in order to maintain computational time lower 

han that of centralized MPC, at most 2 iterations should be used 

t each sampling time. By using the 1-iteration Lyapunov envelope 

lgorithm, the average computational time is reduced to 3.850 sec- 

nds per sampling time ( 6 . 42% of the sampling interval). Compared 

o centralized MPC, the computational time is accelerated by a fac- 

or of 2.47. 

The proposed algorithm is dependent on the � 1 and quadratic 

enalty parameters p 1 and p 2 . We vary each of these two parame- 

ers among 5 values (1, 3, 10, 30, 100), with 25 combinations, and 

ecord the resulting control performance in terms of the accumu- 

ated value of 
∑ 

t V 
κf (x (t)) along the simulated trajectory (lower 

alues indicate better control performance). The results are shown 

n Table 3 . 

As expected (see Remark 3 ), we observe that p 1 has a more 

ignificant effect on the control performance than p 2 does. As p 1 
ncreases, the control performance is improved and approaches 

hat of the centralized MPC, for which the corresponding index is 

.6500. Under a fixed p 2 = 10 and different values of p 1 , we com-

are the trajectories of V κf (x ) throughout the simulation in Fig. 8 .

t can be seen that the centralized MPC has the steepest descent 

f the cost function, and when p 1 is above 30, the trajectory is al-

ost overlapping with that of centralized MPC. When p takes a 
1 

12 
maller value, the relaxation of interconnecting relations gives rise 

o disturbances that slow down the descent. 

The corresponding computational performance in terms of the 

verage computational time per sampling is shown in Table 4 . 

The results exhibit a tendency that over-conservative large val- 

es of p 1 and p 2 lead to high computational expenses and should 

e avoided. Low parameter values do not always favor better com- 

utational efficiency, either, due to the over-relaxation of inter- 

onnecting relations and hence too large update steps. The op- 

imal computational performance is achieved at around p 1 = 10 

nd p 2 = 10 , at which the control performance is also satisfacto- 

ily close to that of the centralized MPC. 

. Conclusions 

In this paper we focus on the problem of real-time imple- 

entability of coordination in distributed MPC strategies, and pro- 

ose a Lyapunov envelope algorithm that allows the coordination 

cheme to be early terminated after an arbitrary number of iter- 

tions without loss of closed-loop stability and yields solution of 

mproved performance if more iterations are allowed. The algo- 

ithm is essentially a primal block coordinate descent one, where 

he interconnecting relations among the subsystems are relaxed 

nto a combination of � 1 and quadratic penalty terms. 

Central to the penalty formulation is the concept of Lyapunov 

nvelope. For the intermediate solution of the subsystems dur- 

ng iterations, for which the interconnecting relations are relaxed 

nd hence violated, the Lyapunov envelope accounts for the effect 

f such violations on the control objective of the resulting con- 

olidated solution, hence establishing itself as a control-Lyapunov 

unction, assuming that the subsystems are sufficiently incremen- 

ally dissipative. Therefore, we conclude in simple words that when 

he subsystems are sufficiently self-stabilizing and well decoupled, 

arly termination can be allowed in the presence of � 1 and quadratic 

enalties, and therefore coordination can be easily implemented in 

eal-time on a plantwide scale. 
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