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ABSTRACT: Enterprise-wide optimization seeks to improve the economic performance of process
systems by considering simultaneously decisions at different time scales, resulting in large-scale
optimization problems. In this paper, we propose the application of nested stochastic blockmodeling
(nSBM) for the decomposition of such optimization problems. This approach allows the identification
of the block structure of the problem at different hierarchical levels and the hierarchy itself. We consider
problems of integration of scheduling and dynamic optimization and integration of planning,
scheduling, and dynamic optimization for illustration. Application of nSBM reveals the multiscale nature
of these optimization problems, and the exploitation of the structure of the problem at different
hierarchical levels enables efficient solutions.

■ INTRODUCTION

The integration of process operations is considered as a
promising avenue to improve the economic performance of
process systems.1,2 This approach considers simultaneously
different decision-making problems, resulting in large-scale
optimization problems whose solution is a challenging task.
The difficulty arises from the inherently nonlinear behavior of
most process systems and the different time scales that are
involved. For example, supply chain/planning decisions span
a time horizon of months, scheduling decisions are made
weekly, and control decisions are made in the time scale of
seconds or minutes. The integration of these decision layers
leads to multiscale optimization problems, which are generally
nonscalable and whose monolithic solution can be intractable.
Different approaches have been proposed to reduce the

complexity of such problems and improve the computational
time. In one approach, the problem is decomposed into
distinct steps, where the different problems are solved
hierarchically, and the solution of the upper level problem
is an input to the lower level problems.3 In this approach,
although the computational time is reduced, the solution can
be suboptimal. A second approach to improve the tractability
of a problem is to approximate the computationally complex
part with a simpler surrogate model.4 Typically, this approach
is used to handle long time horizons and approximate the
behavior of nonlinear systems.3,5−10

A different approach is to exploit the structure of the full
problem and apply decomposition-based solution methods.
Typical examples are the application of Lagrangean and
augmented Lagrangean relaxation/decomposition,11−14 Bend-
ers and Generalized Benders decomposition,15−18 and bilevel

decomposition.19,20 Although this approach can reduce the
computational time, a decomposition of the problem itself is
necessary. The decomposition chosen is typically problem-
specific or is based on intuition. In general, we can argue that
decomposition-based solution algorithms exploit some block
structure in the problem.21,22 For example, in Benders
decomposition, the problem is decomposed into a master
problem and a subproblem, where the latter provides
information about the effect of the master problem on the
solution of the subproblem. This can be considered as a
hierarchical structure, since the solution of the subproblem
depends on the solution of the master problem. On the
contrary, in Lagrangean relaxation/decomposition, the
problem is decomposed into subproblems which are coupled
through a number of constraints, called complicating
constraints. This partition implies a weakly coupled block
structure in the problem, where the value of the coupling
constraints affects the solution of the subproblems. Despite
this direct relation between the block structure and
decomposition-based solution algorithms, the block structure
of an optimization problem is not always apparent. Therefore,
the detection of the underlying structure of a problem is an
important first step toward the selection of the most
appropriate decomposition-based solution algorithm.
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In recent research, we have proposed the application of
network science concepts and tools to systematically
decompose optimization problems.23,24 In this approach, the
structural coupling among the variables and constraints of an
optimization problem is captured through the variable and
constraint graphs. In the variable graph, the nodes are the
variables of an optimization problem; the edges are the
constraints that couple two variables and a weight, which is
equal to the number of such constraints, can be assigned to
each edge. Similarly, in the constraint graph, the nodes are
the constraints of the problem, and the edges are the
variables that are present in the constraints. This graph
representation of an optimization problem allows the
systematic analysis of its structure using tools from network
science. The first tool that was employed was community
detection.25 This approach can provide high-quality decom-
positions, whereby groups (blocks) of variables or constraints
are identified with weak interactions (in a statistical
sense).23,26 Centrality analysis can be used in conjunction
to reveal the hierarchical relation among the communities.27

Although this approach can provide decompositions that can
reduce the computational time, the main assumption is that
the graph and hence the optimization problem has a
community structure. In Mitrai et al.,24 we have proposed
the application of stochastic blockmodeling (SBM) and
statistical inference as a framework to learn the underlying
structure of optimization problems without any a priori
assumptions on the structure of the problem. Stochastic
blockmodels are random graph generative models that allow
the generation of random graphs with arbitrary block
structures.28 Statistical inference allows learning the SBM
that generated a given problem and therefore detecting its
underlying block structure. The estimated structure can then
be used as the basis for the application of decomposition-
based solution algorithms, which can reduce the necessary
time to obtain a solution or an estimate of its lower and
upper bound. However, neither of these approaches
(community detection or SBM) can detect the possible
hierarchical or multiscale structure of a problem.
In this paper, we propose the application of nested

stochastic blockmodeling (nSBM) for learning the hierarch-
ical block structure of optimization problems. nSBM
describes a nested hierarchy of stochastic blockmodels,
where the connections among the nodes depend solely on
their block affiliation.29−31 The parameters of the model,
which are estimated through statistical inference,29,32 reveal
the block structure of the problem at different hierarchical
levels and the hierarchy itself. We apply this approach to
optimization problems that arise in the integration of process
operations, and we show that it can indeed learn the
hierarchical multiscale structure of these problems and guide
the application of decomposition-based solution algorithms.
In the rest of the manuscript, we begin by presenting the

nSBM model, the inference problem, and solution ap-
proaches. In the next two sections, we apply this approach
to the integration of scheduling and dynamic optimization
and the integration of planning, scheduling, and dynamic
optimization. For both cases, we analyze the structure of the
problem and compare the decompositions that are obtained
at different hierarchical levels.

■ NESTED STOCHASTIC BLOCKMODELING AND
BAYESIAN INFERENCE

In this section, the stochastic model and inference approaches
will be presented for the simple nested stochastic blockmodel
to keep the notation simple. At the end of the section, we
will discuss extensions and variants of this basic model.

Stochastic Blockmodel. Consider an undirected graph
G(V, E) with N nodes, M edges (|V| = N, |E| = M), and
adjacency matrix ∈ ×A N N , where Aij = Aji is equal to the
number of edges between node i and j. We will assume that
the nodes are assigned into B blocks and will define a
partition vector ∈b N , where bi ∈ {1, ..., B} denotes the
group membership of node i. We also define the matrix
ω ∈ ×B B , where ωrs is equal to the number of edges
between the nodes that belong in block r and the nodes that
belong in block s, and ωrr is equal to twice the number of
edges between the nodes in block r. The entries of the ω
matrix are equal to

∑ ∑ω δ δ= ∀ = =
= =

A r B s B1, ..., , 1, ...rs
i

N

j

N

ij b r b s
1 1

i j
(1)

where δ is the Kronecker delta. Finally, we define ∈n B ,
where nr is equal to the number of nodes in block r and is
equal to

∑ δ= ∀ =
=

n r B1 ,..,r
i

N

b r
1

i
(2)

We note that for a given graph with adjacency matrix A, both
ω and n depend on the partition of the nodes b.
For a simple graph (Aij ∈ {0, 1}), given a number of nodes

N and a partition b into B blocks, different graphs with the
same ω matrix can be generated, and all of the graphs are
equally probable. This leads to an ensemble of graphs, where
the total number of different graphs is equal to33

∏ωΩ = Ω
= = ≥

b( , )
s r r s

B

rs
1, 1, (3)

where

ω ω
Ω = Ω =

n n
n

, 2

2

rs
r s

rs
rr

r

rr

i
k
jjjj

y
{
zzzz

i

k

jjjjjjjjjjjjjjj

i
k
jjj

y
{
zzz
y

{

zzzzzzzzzzzzzzz (4)

The first expression above is equal to all of the possible ways
to select ωrs edges from nrns (nrns is equal to all of the
possible edges between all of the nodes in block r and all of
the nodes in block s). Similarly, the second expression is
equal to the number of ways to assign ωrr/2 edges between
the nodes in block r. Since all of these graphs are equally
probable, the probability to observe a graph G given a
partition b is equal to

ω
| =

Ω
P G b

b
( )

1
( , ) (5)

and the entropy of the ensemble is equal to

ω ω= ΩS b b( , ) ln ( , )g (6)
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For a multigraph, defined as a graph with multiple edges
between two nodes ∈ +A( )ij  , the different ways to create a
graph with N nodes and a partition b into B blocks are equal
to33

∏ωΩ = Ω
= = ≥

b( , )m
r s r s

B

rs
m

1, 1, (7)

where

ω
ω

ω

ωΩ =
+ −

Ω =
+ −n n

n n
1

,
2 2

1

2

rs
m r s rs

rs
rr
m

r r rr

rr

i
k
jjjjj

y
{
zzzzz

i

k

jjjjjjjjjjjjj

y

{

zzzzzzzzzzzzz (8)

The first expression is equal to the number of ωrs
combinations with repetition from a set with size nrns.
Similarly, as in the case of a simple graph, all multigraphs are
equally probable, the probability to observe a multigraph is
1/Ωm(ω, b), and the entropy is

ω ω= ΩS b b( , ) ln ( , )m m (9)

Nested Stochastic Blockmodel. The nSBM is based on
the idea that for a given graph G(V, E) (simple or
multigraph), a partition b into B blocks leads to an ω
matrix, whose entries are positive integer values (ω ∈ +rs  ).
Therefore, this ω matrix can be considered as the adjacency
matrix of a new multigraph G′ with B nodes and E edges, i.e.,
ω = A′, where A′ is the adjacency matrix of multigraph G′.
Similarly, the nodes in this new multigraph can be partitioned
into B′ blocks, leading in turn to a new ω′ matrix, which can
be considered as the adjacency matrix of a new multigraph
G″ with B′ nodes. This procedure can be continued until one
block is left, leading to a nested sequence of stochastic
blockmodels, where the first level simple graph is the
observed network, and the multigraphs in the other levels
form the nested model.29 An example of a nested stochastic
blockmodel with three levels is presented in Figure 1. The
colors used to denote the blocks in a specific level do not
have any association with the colors in the other levels.
Let us assume that l = L levels exist and l = 0 corresponds

to the observed network. The number of nodes in level l
multigraph is Bl (Bl ≤Bl−1), and the number of edges is E.
Based on the definition of the nSBM, the last level l = L has
one block (BL = 1). We define ω ∈ ×l B Bl l , where ωrs

l is
equal to the number of edges between the nodes in block r
and s in level l. We also define ∈nl Bl , where nr

l is the
number of nodes in block r in level l, and ∈bl Bl is the
partition of the nodes in level l into Bl blocks. Given these
definitions, the following equations hold:

∑ ∑ ∑ ω= =−
= = =

B n E, /2l
r

B

r
l

r

B

s

B

rs
l

1
1 1 1

l l l

(10)

∑ ∑ω δ δ= ∀ = =
= =

− −

− −

A r B s B1, ..., , 1, ...rs
l

i

B

j

B

ij
l

b r b s l l
1 1

1 1

l l

i
l

j
l

1 1

(11)

Based on these equations, the total number of edges is the
same in all of the levels, and the number of nodes decreases.
The entropy of the nested SBM is equal to

∑ω ω= +
=

S S b S b( , ) ( , )n g
l

L

m
l l0 0

1 (12)

where Sg and Sm are given by eqs 6 and 9. The first term is
the entropy of the observed simple graph, and the second
term accounts for the entropies of the multigraphs in each
level l. Since all graphs at all levels are equally probable, the
probability to observe a nested SBM is equal to

ω ω
=

Ω ∏ Ω=

P
b b

1
( , ) ( , )l

L
m
l l l0 0

1 (13)

Inference Approach. Given a graph G(V, E), the goal is
to infer the block partition and ω matrix for all of the levels
that best fit the data (the observed graph). Two approaches
can be followed to solve the problem, maximum likelihood
estimation (MLE) and Bayesian inference. In this work, we
will focus on the second approach, which involves the
estimation of the posterior probability of the observed
network. If we assume that one level exists (L = 1), then
from Bayes’ rule

| = |
P b A

P A b P b
P A

( )
( ) ( )

( ) (14)

where

Figure 1. Example of a nested SBM (reproduced/adapted with
permission from Peixoto.30 Copyright 2020 Wiley). The observed
graph has N = 1273 nodes, E = 8309 edges, and the nodes of the
observed network are partitioned into B0 = 12 blocks. The hollow
circles denote self-edges.
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∑ω ω| = | | = |P A b P A b P b P A P A b P b( ) ( , ) ( ) , ( ) ( ) ( )
b

(15)

In Bayesian inference, the goal is to find the probability
distribution P(b|A). Based on this distribution, different
partitions can be sampled, and the partition that maximizes
the probability can be found. The numerator in the above
expression can be written as

ω ω ω ω| = | | = |P A b P b P A b P b P b P A b P b( ) ( ) ( , ) ( ) ( ) ( , ) ( , )
(16)

Therefore, the original task of maximizing P(A|b) is
equivalent to maximizing P(b|A) or minimizing −P(b|A),
which is equal to

ω ω− | −ω P A b P bminimize log ( , ) log ( , )b, 2 2 (17)

This objective function has an information theoretical
interpretation. The first term is the amount of bits necessary
to encode the observed data, and the second term is the
amount of bits necessary to encode the parameters of the
model. Hence, the Bayesian inference approach lends itself
naturally to the usage of the description length Σ = −log2
P(A|ω, b) − log2 P(ω, b) as the objective function and avoids
overfitting. An increase in the number of blocks leads to a
reduction in the first term, but the model is more complex,
leading to an increase in the second term.
For the nested SBM case, the goal is to estimate or

maximize P({bl}l=1
L |A), which is equal to32

{ } | =
|{ } { }

=
= =P b A

P A b P b
P A

( )
( ) ( )

( )
l
l
L

l
l
L l

l
L

1
1 1

(18)

Similar to the case of a single level, the numerator can be
written as

ω ω|{ } { } { } { }= = = =P A b P b( , ) ( , )l
l
L l

l
L l

l
L l

l
L

1 1 1 1 (19)

and the inference problem is

ω

ω

− |{ } { }

− { } { }

ω{ } { } = =

= =

= =
P A b

P b

minimize ( log ( , )

log ( , ))

b
l
l
L l

l
L

l
l
L l

l
L

, 2 1 1

2 1 1

l
l
L l

l
L

1 1

(20)

In this paper, we will use the microcanonical ensemble
approach to define the prior distribution.32 The prior for the

partition in all levels, P({bl}l=1
Bl

), is equal to

∏{ } ==
=

P b P b( ) ( )l
l
L

l

L
l

1
1 (21)

We can assume that the size of the different blocks depends
on the number of blocks. Therefore, given the sizes of the
different blocks, nl, the probability to observe bl is equal to

| =
∏ !

!
=

−
P b n

n

B
( )l l r

B
r
l

l

1

1

l

(22)

Additionally, the different ways to assign the nodes in level l

into Bl nonempty blocks is
−

−
−B

B
1

1
l
l

1i
k
jjj

y
{
zzz. Hence, the probability

to obtain nl given Bl is

| =
−

−
−

−

P n B
B

B
( )

1

1
l

l
l

l

1
1i

k
jjjjj

y

{
zzzzz

(23)

Finally, we can assume that the probability of having Bl

blocks is P(Bl) = 1/Bl−1, where Bl−1 is the maximum number
of blocks in level l, i.e., every node is assigned into one block.
Overall, the prior probability of the block assignments in level
l is

= | |

=
∏ !

!

−

−
=

−

−
−

−
−

P b P b n P n B P B

n

B

B

B
B

( ) ( ) ( ) ( )

1

1

l l l l
l l

r
B

r
l

l

l

l
l

1

1

1
1

1
1

l i

k
jjjjj

y

{
zzzzz

(24)

The prior for P({ωl}l=1
L |{bl}l=1

L ) is equal to

∏

∏

ω

ω ω

ω

{ } |{ }

= |

= |

= =

=

+

=

+ +

P b

P b

P A b

( )

( , )

( , )

l
l
L l

l
L

l

L
l l l

l

L
l l l

1 1

1

1

1

1 1

(25)

where

∏

∏

ω ω
ω

ω

ω

ω

| =
+ −

×
+ + −

+

<

+

+

−

+

+

−

P b
n n

n n

( , )
1

( 1)/2 /2 1

/2

l l l

r s

r
l
s
l

rs
l

rs
l

r

r
l

r
l

rs
l

rs
l

1
1

1

1

1

1

1

i

k

jjjjjjj
y

{

zzzzzzz

i

k

jjjjjjj
y

{

zzzzzzz
(26)

Based on the above equation, the probability P(ωl|ωl+1, bl) to
observe a multigraph in level l+1 with adjacency matrix Al+1 =
ωl, depends on bl, ωl+1. bl dictates the number of nodes in
level l+1, and ωl+1 dictates the connection pattern among the
nodes. Note that the expression for P(ωl|ωl+1, bl) is equal to
1/Ωm

l . Given the above prior distributions, the posterior is
estimated using a Markov chain Monte Carlo approach as
described in Peixoto.30,32 In this method, at each level, node
move proposals are made based on the block affiliation of the
neighbor nodes using a Metropolis−Hastings criterion, which
guarantees ergodicity, i.e., all possible partitions are possible.
The above formulation and inference approach for the

basic nSBM model can be extended to account for more
general models. Specifically, we first mention the degree-
corrected nSBM.30,32 In the simple nSBM, nodes with high
degree tend to be assigned to the same block. This issue is
resolved using the degree-corrected version (DC-nSBM),
where the prior of the degree distribution depends on some
hyperparameters, which are estimated from the data, i.e.,
observed network.
The second variant of the nSBM, called weighted nSBM,34

accounts for edge weights, which denote the strength of
coupling among the nodes. We define the observed weights
as x, where xij is the weight of an edge between node i and j,
and the probability distribution of the weights depends solely
on the group membership of nodes i and j. If we assume for
simplicity that only one level exists, then given a number of
nodes n, a partition b and γ, and a parameter that governs the
sampling of the weights, a graph with adjacency matrix A and
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weights x can be generated, and the probability to observe it
is equal to

θ γ γ θ| = | |P A x b P x A b P A b( , , , ) ( , , ) ( , ) (27)

where θ are the parameters of the model. The partition that
maximizes the probability to observe a partition b, given a
graph A and weights x, is

| = |
P b A x

P A x b P b
P A x

( , )
( , ) ( )

( , ) (28)

The posterior distribution can be estimated following a
Bayesian inference approach. Based on the data, different
models can be used for the weights. We refer the reader to
Peixoto34 for a detailed explanation of the weighted nSBM
model and the inference approach. We must note that
although the number of blocks in the observed network B0
can be inferred from the data, it can also be used as a tunable
hyperparameter.
In the subsequent sections, we illustrate the application of

this modeling and inference framework to two different
classes of enterprise-wide optimization problems.

■ INTEGRATION OF SCHEDULING AND DYNAMIC
OPTIMIZATION

Optimization Model. First, we will consider the
integration of scheduling and dynamic optimization for
continuous parallel lines. The problem formulation is based
on Flores-Tlacuahuac and Grossmann.35 We assume that

= { }N N( 1, ..., )p p p product s must be produced ,

= { }N N( 1, ..., )l l l production lines are available, and the
time horizon in each line, Hl , is divided into

= { }N N( 1, ..., )s s s slots.
Scheduling Model. First, we define the variable Yikl ∈ {0,

1}, which is one, if product i is produced at slot k in line l
and zero, otherwise. In each slot and line, only one product
can be produced, and each product is produced at least once.
These constraints are modeled through the following
equations

∑

∑ ∑

= ∀ ∈ ∈

≥ ∀ ∈

=

= =

Y k l

Y i

1 ,

1

i

N

ikl s l

l

N

k

N

ikl p

1

1 1

p

l s

(29)

Additionally, the variable zijkl ∈ [0, 1] is introduced to denote
a transition from product i to product j at slot k and line l,
which depends on the value of the Yikl variable as follows

∑

∑

= ∀ ∈ ∈ ∈

= ∀ ∈ ∈ ≠ ∈

=

=
−

z Y j k l

z Y i k k l

, ,

, , 1,

i

N

ijkl jkl p s l

j

N

ijkl ik l p s l

1

1
1

p

p

(30)

Each line is composed from Ns slots, and the total production
time of product i in slot k and line l is tikl

prod. This time is the
sum of the production time and the transition time θkl

t . The
timing constraints are the following

∑ ∑

≤ ∀ ∈ ∈ ∈

= ∀ ∈
= =

t t Y i k l

H t l

, ,ikl
prod

max ikl p s l

l
i

N

k

N

ikl
prod

l
1 1

p s

(31)

The amount of product i produced in slot k at line l is given
by Wikl, and the production rate is ril. The amount of product
i that is produced must satisfy the demand (di). The
constraints are the following
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The objective of the scheduling model is to minimize the
cost, which consists of the production, transition, and storage
cost and is given by the following equation
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where cil
p is the production cost of product i at line l, cij

trans is
the transition cost between product i and j, and cil

stor is the
inventory cost of product i in line l. These parameters are
calculated using the following equations

= = = −c c r c c r c d r c, 0.9 , 0.5(1 / )il
p

i
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il ijl
trans

i
prod

il il
stor

i il i
inv

(34)

where ci
prod is the production cost of product i, and ci

inv is the
inventory holding cost.

Dynamic Model. We will assume that the dynamic
behavior of the system for each line l can be modeled by a
general system of differential equations

̇ = ∀ ∈x F x u l( , )l
n

l l
n

l
n

l (35)

where xl
n is the value of state n at line l. The dynamic model

is discretized using collocation on finite elements and the
discretized equations are (Nfe, Ncp is the number of finite
elements and collocation points respectively, and

= { } = { }N N1, ..., , 1, ...,f fe c cp )
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θ
= ∀ ∈ ∈h

N
k l,kl

fe kl
t

fe
s l

(37)
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Finally, we define tfckl
d , which is equal to the time at finite

element f, collocation point c at slot k in line l, and the
following equation holds

γ= − + ∀ ∈ ∈ ∈ ∈t h f f c k l( 1 ) , , ,fckl
d

kl
fe

c f c s l

(38)

where γc is the root of the Lagrange orthogonal polynomial at
collocation point c. The dynamic model is used to find the
optimal transition profiles for the states and the manipulated
variables of the problem. The objective function for a
transition from (x0, u0) to (xf, uf) is given by
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u u dt
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t u u( )
1

( )
t

f
fe f

N

c

N

fckl
d

c N fc f
0

2

1 1
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(39)

where γc is the Radau root at collocation point c, and Λ is the
collocation matrix.
Integrated Problem. The steady-state values of state n and

manipulated variable m for product i are xni
ss and umi

ss ,
respectively. Next, we define xnkl

in , xnkl
end, umkl

in , and umkl
end, which are

the values of state n and manipulated variable m at the
beginning and end of slot k at line l. These variables are
related to the scheduling variables through the following
constraints
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The objective of the integrated problem is to minimize the
cost, and the optimization problem is the following (au is a
weight coefficient)
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Application of Nested Stochastic Blockmodeling. In
this case study, we will assume that four products must be
produced in two identical isothermal continuous stirred
reactors (2 lines) with two slots. The dynamic behavior of
the reactors is modeled by the following equation

= − +dc
dt

Q
V

c c t kc t( ( )) ( )feed
3

(43)

Table 1. Steady-State Conditions, Production and Inventory Cost for All of the Products, au = 0.01

product
css

(mol/L)
Qss

(L/h)
production cost

($/kg)
inventory cost

($/kgh)
production rate
(kg/h) line 1

production rate
(kg/hr) line 2

demand rate (kg/
h)

1 0.24 200 120 5 40 70 18
2 0.2 100 150 5.5 80 65 14
3 0.3032 400 130 7.8 278.8 300 17
4 0.393 1000 125 9 607 500 16

Figure 2. Partition of the variable graph using nested stochastic
blockmodeling with a maximum number of blocks equal to 6. The
nodes with purple color are Yikl, zijkl, xkl

in, xkl
end, ukl

in, and ukl
end; the nodes

with pink color are θkl
t , Wikl, Hl, tikl

prod; and the nodes with the other
colors correspond to the variables for a slot and line xnfckl, umfckl, tfckl

d ,
hkl
fe.
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where c is the concentration of the reactant, Q is the inlet
flow rate (manipulated variable), and V = 5000 L, cfeed = 1
mol/L, k = 2 L2/(h mol2) are the volume, inlet
concentration, and reaction constant parameter. The
economic data of the problem are presented in Table 1.
First, we analyze the structure of the variable graph, solving
the inference problem using Bayesian inference in graph-
tool.36 We present the results for B0 = 6 blocks because this
resulted in a decomposition, which is suitable for the
application of a decomposition-based solution algorithm
and makes intuitive sense. As discussed earlier, in the
variable graph, the nodes are the variables of the problem,
and an edge corresponds to the constraints that couple two
variables. Each edge has a weight which is equal to the
number of coupling constraints. Since these weights are
positive integer values, we assume that the weights in the
nSBM model follow a discrete geometric distribution (see
Remark 3 for additional discussion on this assumption). The
observed network (variable graph) is decomposed into 6
blocks (Figure 2), and the ω matrix for the partition of the
observed graph (ω0) is

where the colors in the entries correspond to the graph
shown in Figure 2.
Based on the structure of this matrix, the observed graph

has a hybrid multicore community structure. The two blocks
in the center of the graph form the two cores and correspond
to the scheduling variables. The purple block contains
variables Yikl, zijkl, xkl

in, xkl
end, ukl

in, and ukl
end, and the pink block

contains the other scheduling variables. The variables that are
related to the dynamic behavior of the system (xfckl, ufckl, tfckl

d ,
hkl
fe) for each slot and line are assigned in the other blocks.
These blocks can be considered as communities, since the
variables (nodes) in a block are highly coupled with the other
variables in the block and loosely coupled with the variables
in the two blocks in the core. This structure leads to the
nested or double L shape of the ω0 matrix.
Based on the inference results, three levels are identified

(Figure 3) in the nSBM model. The graph in the first level is
partitioned into three blocks. This partition reveals a core−
periphery structure, where the two blocks in the middle
correspond to the scheduling variables, and the other nodes
correspond to the variables for the dynamic optimization
problem in each slot and line. This structure is evident in the
L shape of the ω1 matrix

ω =
561 10 10
10 1512 0
10 0 1512

1

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Although the nodes for the four dynamic optimization
problems are partitioned into two blocks (blue and green
nodes), the variables are decoupled since the nodes are not
connected directly, i.e., there does not exist an edge between
these nodes. This partition is a “coarser” partition of that of
the observed graph. The multigraph in the second level is
partitioned into two blocks. The yellow square node contains
the scheduling variables, and each blue node contains the
variables associated with the dynamic optimization for each
line. Finally, in the third level, the nodes are assigned in the
same block. One node contains the scheduling and the other
node, the dynamic optimization variables. Based on these
results, we can argue that the estimated nSBM model indeed
reveals the multiscale nature of the problem. The partition in
the third level shows that two sets of variables exist,
scheduling and dynamic optimization ones. In the second
level, the dynamic optimization variables are decomposed
further into lines, and in the first level, into slots and lines.
Finally, the partition of the variables graph (Level 0) reveals
the complex interaction among the different variables.
We note that application of community detection and

centrality analysis as in Mitrai and Daoutidis27 to this
problem decomposes the variable graph into five commun-
ities, and a hierarchy among the communities is identified.
The scheduling variables are assigned into one community,
and the variables for the dynamic optimization problems for
each slot and line are assigned into the other communities. In
this partition, all of the variables in the scheduling problem
are assigned in the same block, i.e., community. Therefore,
community detection and centrality analysis cannot identify
the hybrid multicore community structure of the variable
graph. This highlights the ability of nSBM to identify the true
structure of the problem.
Based on the structure of the ω0, ω1 matrices, different

decomposition-based solution approaches can be proposed.
The core−periphery structure in the first or second level can
be used as the basis for the application of Generalized
Benders decomposition (GBD),16 where the variables in the
core (nodes with yellow color in the multigraph of the first or
second level as shown in Figure 3) are assigned in the master
problem and the variables in the periphery, in the
subproblem. The hybrid multicore community structure of
the observed graph can be used as the basis for the
application of nested GBD. The original problem is first
decomposed into a master and subproblem. The variables in
the two blocks in the core are assigned in the master
problem, and the other variables are assigned in the
subproblem. The master problem is decomposed further
based on the two-block partition of the scheduling variables.

Application of Generalized Benders Decomposition
Based on the Structure of the Level 1 Variable Graph.
Based on the structure of the ω1 matrix, we apply
Generalized Benders decomposition (GBD). The detailed
explanation of the application of GBD based on this partition
of the variable graph can be found in Mitrai et al.24 The
scheduling variables (yellow nodes in the first level
multigraph, Figure 3) are assigned in the master problem,
and the variables associated with the dynamic optimization
problem are assigned in the subproblem. The edges that
couple nodes that belong to different blocks correspond to
constraints that couple variables that belong in the master
and subproblem. These constraints are assigned in the
subproblem, and the master variables present are the
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complicating variables. For this case study, these variables are
xkl
in, xkl

end, ukl
in, ukl

end, and θkl
t . Given this decomposition, the

variables are decomposed into three sets. The first set
contains the scheduling variables that do not affect directly
the subproblem (s1 = {Yikl, zijkl, tikl

prod, Hl}), the second set
contains the variables for the dynamic optimization problem
from each slot and line (s2 = {xfckl, ufckl, tfckl

d , hkl
fe}), and the last

set contains the complicating variables (s3 = {xkl
in, xkl

end, ukl
in, ukl

end,
θkl
t }). The subproblem is solved by fixing the shared variables
and is equal to
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(44)

where the bar denotes that the corresponding variable is
fixed, and λ is the Lagrangean multiplier. This problem

corresponds to the dynamic optimization problems for every
slot and line. Hence, different problems can be solved
independently, and their solutions depend on the values of
the complicating variables (xkl

in, xkl
end, ukl

in, ukl
end, θkl

t ). Therefore,
the value function of the dynamic optimization problem, η,
can be approximated by the following Benders cuts
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where p is the iteration number. The detailed derivation of
the Benders cut can be found in the Supporting Information.
The master problem is

∑ ∑ ∑θ η+ + +c
W
H

c
Z

H
c Wminimize

subject to Equations 29, 30, 31, 32, 40, 45

ikl
il
p ikl

l ijkl
ij
trans

kl
t ijkl

l ikl
il
stor

ikl

(46)

Figure 3. Inferred nSBM model of the variable graph for the integrated scheduling and dynamic optimization problem. The hollow cycles
indicate self-edges.
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To guarantee that the dynamic optimization problems are
feasible, we add the following constraints in the master
problem

∑ ∑θ θ≥ ∀
= =

z k l,kl
t

i

N

j

N

ij
min

ijkl
1 1

P P

(47)

where θij
min is the minimum transition time between products

i and j. We also add the following symmetry-breaking
constraint, which reduces the computational time without
affecting the solution37
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Finally, we can add operational constraints to the
subproblem. In this work, we add the following constraints,
which constrain the change of the manipulated variables

− ≤ − ∀ ≥

− ≤ − ∀ ≥

− ≥ − ∀ ≥

− ≥ − ∀ ≥

− −

− −

− −

− −

u u U t t m f c k l

u u U t t m f c k l

u u U t t m f c k l

u u U t t m f c k l

( ) , 1, , ,

( ) , , 1, ,

( ) , 1, , ,

( ) , , 1, ,

mfckl mf ckl m
max

fckl
d

f ckl
d

mfckl mfc kl m
max

fckl
d

fc kl
d

mfckl mf ckl m
min

fckl
d

f ckl
d

mfckl mfc kl m
min

fckl
d

fc kl
d

1, 1,

1, 1,

1, 1,

1, 1,

(49)

where Um
maxand Um

min are the maximum and minimum rate of
change of manipulated variable m. The master problem is a
mixed integer nonlinear problem (MINLP), which is solved
with BARON,38 and the subproblems are nonlinear problems
(NLPs), which are solved with IPOPT39 in Pyomo.40 The
optimality gap tolerance is set equal to 0.1%. Finally, we note
that this approach cannot guarantee global optimality, since
the subproblem is nonconvex.41

Application of Nested Generalized Benders Decom-
position Based on the Structure of the Variable
Graph. Based on the structure of the ω0 matrix, nested
Generalized Benders decomposition can be applied. The
original problem is first decomposed into a master and
subproblem, as described in the previous section. Then, the
structure of the core is used to solve the master problem
using GBD. The master problem is decomposed into two
subproblems that we will define as MM and MS, where MM
stands for Master_Master and MS for Master_Subproblem.
In this approach, the MM problem contains variables s4 =
{Yikl, zijkl, xkl

end, xkl
in, ukl

end, ukl
in} (complicating variables), and the

other scheduling variables and associated constraints are

assigned in the MS problem. Therefore, problem MS is
solved for fixed values of the complicating variables s4 and is
equal to
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where μ are the Lagrangean multipliers. The solution of this
problem depends on the values of the complicating variables,
and the value function of this problem, η2, can be
approximated by the following Benders cut
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where q is the inner iteration number. The exact derivation of
this equation can be found in the Supporting Information.
The MM problem is equal to

ηminimize

subject to eqs 29, 30, 40, 48, 51
2

(52)

Problem MM is a mixed integer linear problem (MILP)
solved with Gurobi,42 and problem MS is a NLP solved with

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c01570
Ind. Eng. Chem. Res. 2021, 60, 14476−14494

14484

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.1c01570/suppl_file/ie1c01570_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.1c01570?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


IPOPT.39 The overall nested GBD algorithm is presented in
Algorithm 1. In this nested GBD approach, the number of
constraints in problem MS at every iteration increases due to
the addition of the Benders cuts that approximate the value
function of the dynamic optimization problem. Also, once the
master problem is solved, the Benders cuts (eq 51) are
removed, since they may not be valid for the problem in the
next iteration. The optimality gap tolerance for both the
inner and outer loops is set equal to 0.1%. Similar to the case
of a single GBD, the nested GBD cannot guarantee global
optimality.41

Results. First, we solve the problem using GBD, and the
results are presented in Figure 4. The algorithm converges
after 209 CPU seconds (19 iterations), and the value of the
objective function is 43.36 103 $/h. Briefly, 99% of the CPU
time is used for the solution of the master problem. The
production results are presented in Table 2, and the
concentration and flow rate profiles are presented in Figures
5 and 6. The cycle time in the first line is 26.89 h and that in
the second line is 44.47 h. The transition times in the first
line are smaller compared to the second line. Furthermore, in
both lines, the majority of the production time is dedicated
to the production of one product (product 1 in line 1 and
product 2 in line 2). This is due to the lower production rate
of these products.
The nested algorithm converges after 54 CPU seconds.

The value of the objective function is 43.36 103 $/h, and the
evolution of the upper and lower bounds is presented in
Figure 7. The production results are the same as the ones
obtained with the single GBD algorithm (Table 2). Finally,
we compare the evolution of the upper and lower bounds
with CPU time for the GBD and nested GBD approaches.
From Figure 8, we see that the exploitation of the hybrid
multicore community structure of the problem reduces the
computational time by 74%. Finally, we note that solving the
monolithic problem with BARON after 3000 CPU seconds,
the gap is 88%, and the value of the objective function is 74.4
103 $/h. These results highlight the importance of detecting
and exploiting the true underlying structure of an
optimization problem.

■ INTEGRATION OF PLANNING, SCHEDULING,
AND DYNAMIC OPTIMIZATION

Problem Formulation. We now consider the problem of
integration of planning, scheduling, and dynamic optimiza-
tion. The detailed explanation of the model can be found in
Gutie  rrez-Limo  n et al.43 We assume that the number of
products is Np (i = {1,..,Np}), the number of planning periods
is Npr (p = {1,..,Npr}), and the number of slots is Ns (k =
{1,..,Ns}). First, we define the binary variable Wikp, which is
equal to 1 if product i is produced at slot k in period p and
zero, otherwise. We also define the binary variable Zijkp, which
is equal to 1 if a product i is followed by product j in slot k
in period p and the binary variable Zpijp, which is equal to
one if transition occurs between product i and j between time
periods. At each time slot, only one product can be
produced, which is enforced with the following constraints

∑ = ∀W k p1 ,
i

ikp
(53)

The transitions between the products are modeled through
the following equations

≥ + − ∀ ∈ ≠ ≠

≥ + − ∀ ∈ ≠ ≠
+

+

Z W W i j N i j k N p

Zp W W i j N i j p N

1 , , , ,

1 , , ,

ijkp ikp j k p p s

ijkp iNp j p p per

, 1,

,1, 1s

(54)

The production time of product i in slot k in period p is θikp,
and the production time of product i in period p is θ̂ip. The
starting, ending, and transition times in slot k in period p are
Tkp
s , Tk,p

e , and θkp
t , respectively. The timing constraints are the

following

Figure 4. Evolution of the upper and lower bound for the single GBD algorithm.

Table 2. Production Results

slot product
production amount

(kg)
production time

(h)
transition time

(h)

Line 1, Cycle Time 26.89 h
1 1 912 24.3 1.50
2 3 457 2.58 0.93

Line 2, Cycle Time 44.47 h
1 4 711 3.57 2.15
2 2 2341 40.90 4.87
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where Hp is the duration of the planning horizon. The
production rate of product i is ri, the amount of product i
produced in slot k at period p is q̂ikp, and the amount of
product i produced in period p is qip. The production and
inventory constraints are

Figure 5. Concentration and inlet flow rate profile in line 1.

Figure 6. Concentration and inlet flow rate profile in line 2.

Figure 7. Evolution of the upper and lower bound for the nested
GBD.
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where Iip is the inventory of product i in period p, Aip is the
linear overestimation of the integral of inventory, and Sip is
the amount of product i sold in period p. The following
symmetry-breaking constraints are also included
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The dynamic behavior of the system is modeled as in the
previous case study, the differential equations are discretized
using collocation on finite elements, and the constraints are
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The dynamic model is integrated with the planning/
scheduling problem through the following constraints
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The objective is to maximize the profit, which is equal to
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Figure 8. Evolution of the upper and lower bound for the single and nested decomposition algorithm.
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where Pip is the price of product i in period p, Cip
oper is the

operating cost of product i in period p, Cinv is the inventory
cost, Cij

trans is the transition cost from product i to j, and au is
a weight coefficient. The goal of the optimization problem is
to maximize eq 62 subject to constraints 53−61.
Application of Nested Stochastic Blockmodeling.

The structure of the variable graph will be analyzed using
degree-corrected nSBM and Bayesian inference in graph-
tool.36 We will assume that four products (4 slots) must be
produced in three planning periods, and the system is the
same as in the previous case study (one isothermal
continuous stirred reactor). Application of nSBM identifies
four levels (Figure 9). The observed network is partitioned
into 14 blocks (Figure 10).
The multigraph in the first level is partitioned into seven

blocks, and in the second level, into four blocks. The number
of edges between the blocks in the observed and the different
multigraphs is given by ω0, ω1, and ω2, respectively. This
partition of the variable graph into four levels provides
information about the multiscale nature of the problem and

the different structures that are present at different
hierarchical levels.

ω = ∈ ×
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Figure 9. Inferred nSBM model of the variable graph for the integrated planning, scheduling, and dynamic optimization problem. The hollow
cycles indicate self-edges.
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The original graph is decomposed into 14 blocks, and the

planning and scheduling variables are assigned in the two
middle blocks. Variables Wikl, Zijkl, Zpijp, Yip, Nip, xkp

in , xkp
end, ukp

in ,
and ukp

end are assigned in the green block, and the other
planning/scheduling variables, in the other blocks. The
variables associated with the dynamic behavior of the
problem for each slot and period (xnfckp, umfckp, hkp

fe , tfckp) are
assigned in the blocks in the periphery. From the structure of
the ω0 matrix, we can determine that the graph has a hybrid

multicore community structure. The variables for the
dynamic optimization problems for each slot and period are
assigned into different blocks. The variables in these blocks
are densely coupled, denoting a community structure.
However, these blocks are weakly coupled with the
planning/scheduling variables, which form a multicore
structure, since these variables are assigned into two blocks
and are connected with all of the dynamic optimization
variables.
In the first level, the planning and scheduling variables are

assigned into the same block, and the dynamic optimization
variables are assigned into different blocks, leading to a core−
periphery structure, highlighted by the L shape of the ω1
matrix. Similarly, the multigraph in the second level has a
core−periphery structure. In this multigraph, the planning/
scheduling variables are in the middle node, and the variables
for the dynamic optimization problems are in the periphery.
This graph is a coarser partition of the level 1 graph, and
although each node in the periphery corresponds to the
variables of two dynamic optimization problems, these
variables are decoupled, since, in the first level, the nodes
in the periphery are not coupled directly, i.e., there does not
exist an edge between the nodes in the periphery.

Application of Generalized Benders Decomposition
Based on the Core−Periphery Structure of the First
Level Multigraph. The core−periphery structure of the
multigraph in level 1 can be used as the basis for the
application of GBD. The variables in the core (gray nodes in
Figure 11) correspond to the planning/scheduling variables
and are assigned in the master problem. The variables for the
dynamic optimization problems for each slot and period, and

Figure 11. Partition of the first level multigraph for the integrated
planning, scheduling, and dynamic optimization problem.

Table 3. Operating Conditions and Product Price for the
Integrated Planning, Scheduling, and Dynamic
Optimization Problem

product css (mol/L) Qss (L/h) production rate

A 0.24 200 150
B 0.2 100 80
C 0.30 400 278
D 0.393 1000 607

Table 4. Operating and Transition Cost for the Integrated
Planning, Scheduling, and Dynamic Optimization Problem,
Cinv = 0.026, au = 1

Coper Ctrans

product p = 1 p = 2 p = 3 A B C D

A 13 13 13 0 100 60 120
B 22 12 12 150 0 50 80
C 35 45 45 200 150 0 100
D 29 19 19 90 100 120 0

Table 5. Product Demand for the Integrated Planning,
Scheduling, and Dynamic Optimization Problem

demand (mol/week) price ($/mol)

prod. p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

A 6000 8000 7000 200 220 200
B 5000 3600 6000 160 140 150
C 7000 9000 7000 130 150 140
D 4000 11 000 11 000 110 110 120

Figure 10. Partition of the variable graph for the integrated
planning, scheduling, and dynamic optimization problem.
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the associated constraints, are assigned in the subproblem.
The complicating variables are xkp

in , xkp
end, ukp

in , ukp
end, and θkp

t . The
subproblem is solved for fixed values of the complicating
variables and is

∑ ∑ ∑ ∑α

γ

γ

γ

γ

θ θ γ

Ω −

= ̅ ∀

= ̅ ∀

= ̅ ∀

= ̅ ∀

= ̅ ∀

= = = =

−N t u u

x x n k p

x x n k p

u u m k p

u u m k p

k p

minimize ( )

subject to

Equations 58, 59, 61

, , :

, , :

, , :

, , :

, :

u
p

N

k

N

f

N

c

N

fe fckp
d

c N fckp kp
end

nkp
in

nkp
in

kl

nkp
end

nkp
end

kl

mkp
in

mkp
in

kl

mkp
end

mkp
end

kl

kp
t

kp
t

kl

1 1 1 1

1
,

2

1

2

3

4

5

per s fe cp

cp

(63)

where γ is the Lagrangean multiplier of each constraint. This
problem can be solved independently for every slot and
period. The value function of this problem is approximated
by the following Benders cut
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where the superscript v is the iteration number. The master
problem is
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To guarantee that the dynamic optimization problem is
feasible, we add the following constraint in the master
problem
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Finally, we add operational constraints similar to eq 49. The
exact derivation of the master, subproblem, and Benders cut
can be found in the Supporting Information. The master
problem is a MILP solved with Gurobi,4242 and the
subproblem is an NLP solved with IPOPT39 in Pyomo.40

The problem is solved to 0.1% optimality gap.
Results. We solve the integrated problem using the GBD

approach proposed in the previous section, and the economic
parameters of the optimization problem are presented in
Tables 3−45. The algorithm converges after 294 CPU
seconds, the evolution of the upper and lower bounds is
presented in Figure 12, and the value of the objective
function is 1.247 107$. The solution of the master problem
accounts for 76% of the total CPU time. A monolithic
solution with BARON38 cannot find a feasible solution after
500 CPU seconds.
The production results are presented in Table 6, and the

profiles of the concentration and inlet flow rate for each slot

Figure 12. Convergence of Generalized Benders decomposition based on the core−periphery structure of the first level multigraph for the
integrated planning, scheduling, and dynamic optimization problem.
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and period are presented in Figures 13, 14, and 15. No
transition occurs between the different time periods, leading
to a reduction in the transition cost. The production of the
products satisfies the demand. Furthermore, we note the
production profiles of products C and D. Product C is
overproduced in the first period, since its operating cost is
lower compared to the other two periods. Product D is
overproduced in the last period, where its operating cost is
lower, and the price is higher compared to the other periods.
From these results, we can argue that application of GBD

based on the core−periphery structure of level 1 of the
variable graph enables an efficient solution of the integrated
problem.
Remark 1. We note that in this case study, similar to the

one in the integration of scheduling and dynamic
optimization, we can apply a nested GBD approach based
on the hybrid multicore community structure of the variable

graph. We did not apply nested GBD, since the master
problem is a MILP, which can be solved efficiently with
Gurobi. For problems with a larger number of products/
periods, application of nested GBD might be necessary to
further reduce the computational time.

■ CONCLUSIONS AND FURTHER REMARKS

The integration of process operations leads to large-scale
optimization problems whose monolithic solution is challeng-
ing. In this work, we proposed nested stochastic block-
modeling and Bayesian inference as a framework to detect
the underlying hierarchical block structure and the hierarchy
itself of such optimization problems. We applied this
framework to representative problems on integration of
scheduling and dynamic optimization and planning, schedul-
ing, and dynamic optimization. The inference and solution
results highlight the inherent ability of the proposed approach
to detect the multiscale nature of these problems and the
complex block structures that are present in the different
hierarchical levels. Furthermore, we showed that the
exploitation of the structure at different hierarchical levels
enables an efficient solution of such problems using
decomposition-based solution algorithms. Finally, the follow-
ing general remarks can be made.
Remark 2. The decomposition that is obtained with this

approach is supported by statistical evidence, and when the
decomposition with the minimum description length is
selected, it is optimal from a network structure perspective.
Despite the improvement in the computational time noted
compared to the monolithic solution of the problem, it is not
guaranteed that the obtained decomposition is optimal with
respect to the computational time or convergence rate. This
problem will be addressed in future work.
Remark 3. For the integrated scheduling and dynamic

optimization problem, we applied weighted nested SBM using
a discrete geometric model for the edge weights. In general,
different models can be selected, such as discrete binomial
and Poisson and real exponential and normal.34 Since the

Table 6. Production Results for the Integrated Planning,
Scheduling, and Dynamic Optimization Problem

slot product
production amount

(mol)
production time

(h)
transition time

(h)

Period 1
1 B 5000 62.50 0.82
2 A 6000 39.83 1.19
3 C 15 418 55.31 1.73
4 D 4000 6.59 0

Period 2
1 D 11 000 18.12 1.33
2 C 581.85 2.08 1.50
3 A 8000 53.11 2.24
4 B 5000 62.5 0

Period 3
1 B 4600 57.5 1.08
2 A 8000 53.11 1.16
3 C 9000 32.29 2.01
4 D 29 089 47.92 0

Figure 13. Concentration and inlet flow rate profile for the first period.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c01570
Ind. Eng. Chem. Res. 2021, 60, 14476−14494

14491

https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig13&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.1c01570?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


selection of the model for the weights is an assumption, one
can try different models and test the suitability of the
resulting decompositions for the solution of the problem.
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Figure 15. Concentration and inlet flow rate profile for the third period.

Figure 14. Concentration and inlet flow rate profile for the second period.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c01570
Ind. Eng. Chem. Res. 2021, 60, 14476−14494

14492

https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.1c01570/suppl_file/ie1c01570_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Prodromos+Daoutidis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4803-0404
https://orcid.org/0000-0003-4803-0404
mailto:daout001@umn.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ilias+Mitrai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c01570?fig=fig14&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.1c01570?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Financial support from NSF-CBET (Award Number
1926303) is gratefully acknowledged.

■ REFERENCES
(1) Grossmann, I. Enterprise-wide optimization: A new frontier in
process systems engineering. AIChE J. 2005, 51, 1846−1857.
(2) Daoutidis, P.; Lee, J. H.; Harjunkoski, I.; Skogestad, S.; Baldea,
M.; Georgakis, C. Integrating operations and control: A perspective
and roadmap for future research. Comput. Chem. Eng. 2018, 115,
179−184.
(3) Maravelias, C. T.; Sung, C. Integration of production planning
and scheduling: Overview, challenges and opportunities. Comput.
Chem. Eng. 2009, 33, 1919−1930.
(4) Bhosekar, A.; Ierapetritou, M. Advances in surrogate based
modeling, feasibility analysis, and optimization: A review. Comput.
Chem. Eng. 2018, 108, 250−267.
(5) Pattison, R. C.; Touretzky, C. R.; Johansson, T.; Harjunkoski,
I.; Baldea, M. Optimal process operations in fast-changing electricity
markets: framework for scheduling with low-order dynamic models
and an air separation application. Ind. Eng. Chem. Res. 2016, 55,
4562−4584.
(6) Zhuge, J.; Ierapetritou, M. G. Integration of scheduling and
control for batch processes using multi-parametric model predictive
control. AIChE J. 2014, 60, 3169−3183.
(7) Burnak, B.; Katz, J.; Diangelakis, N. A.; Pistikopoulos, E. N.
Simultaneous process scheduling and control: a multiparametric
programming-based approach. Ind. Eng. Chem. Res. 2018, 57, 3963−
3976.
(8) Chu, Y.; You, F. Integrated planning, scheduling, and dynamic
optimization for batch processes: MINLP model formulation and
efficient solution methods via surrogate modeling. Ind. Eng. Chem.
Res. 2014, 53, 13391−13411.
(9) Charitopoulos, V. M.; Dua, V.; Papageorgiou, L. G. Traveling
salesman problem-based integration of planning, scheduling, and
optimal control for continuous processes. Ind. Eng. Chem. Res. 2017,
56, 11186−11205.
(10) Allman, A.; Palys, M. J.; Daoutidis, P. Scheduling-informed
optimal design of systems with time-varying operation: A wind-
powered ammonia case study. AIChE J. 2019, 65, No. e16434.
(11) Guignard, M.; Kim, S. Lagrangean decomposition: A model
yielding stronger Lagrangean bounds. Math. Program. 1987, 39,
215−228.
(12) van den Heever, S. A.; Grossmann, I. E.; Vasantharajan, S.;
Edwards, K. A Lagrangean decomposition heuristic for the design
and planning of offshore hydrocarbon field infrastructures with
complex economic objectives. Ind. Eng. Chem. Res. 2001, 40, 2857−
2875.
(13) Gupta, A.; Maranas, C. D. A hierarchical Lagrangean
relaxation procedure for solving midterm planning problems. Ind.
Eng. Chem. Res. 1999, 38, 1937−1947.
(14) Li, Z.; Ierapetritou, M. G. Production planning and
scheduling integration through augmented Lagrangian optimization.
Comput. Chem. Eng. 2010, 34, 996−1006.
(15) Benders, J. F. Partitioning procedures for solving mixed-
variables programming problems. Numer. Math. 1962, 4, 238−252.
(16) Geoffrion, A. M. Generalized benders decomposition. J.
Optim. Theory Appl. 1972, 10, 237−260.
(17) Chu, Y.; You, F. Integration of production scheduling and
dynamic optimization for multi-product CSTRs: Generalized
Benders decomposition coupled with global mixed-integer fractional
programming. Comput. Chem. Eng. 2013, 58, 315−333.
(18) Li, X.; Chen, Y.; Barton, P. I. Nonconvex generalized benders
decomposition with piecewise convex relaxations for global

optimization of integrated process design and operation problems.
Ind. Eng. Chem. Res. 2012, 51, 7287−7299.
(19) Iyer, R. R.; Grossmann, I. E. A bilevel decomposition
algorithm for long-range planning of process networks. Ind. Eng.
Chem. Res. 1998, 37, 474−481.
(20) Shi, H.; Chu, Y.; You, F. Novel optimization model and
efficient solution method for integrating dynamic optimization with
process operations of continuous manufacturing processes. Ind. Eng.
Chem. Res. 2015, 54, 2167−2187.
(21) Conejo, A. J.; Castillo, E.; Minguez, R.; Garcia-Bertrand, R.
Decomposition Techniques in Mathematical Programming: Engineering
and Science Applications; Springer, 2006.
(22) Daoutidis, P.; Tang, W.; Allman, A. Decomposition of control
and optimization problems by network structure: concepts, methods
and inspirations from biology. AIChE J. 2019, 65, No. e16708.
(23) Allman, A.; Tang, W.; Daoutidis, P. DeCODe: a community-
based algorithm for generating high-quality decompositions of
optimization problems. Optim. Eng. 2019, 20, 1067−1084.
(24) Mitrai, I.; Tang, W.; Daoutidis, P. Stochastic Blockmodeling
for Learning the Structure of Optimization Problems. AIChE J.
2021, No. e17415.
(25) Fortunato, S.; Hric, D. Community detection in networks: A
user guide. Phys. Rep. 2016, 659, 1−44.
(26) Tang, W.; Allman, A.; Pourkargar, D. B.; Daoutidis, P.
Optimal decomposition for distributed optimization in nonlinear
model predictive control through community detection. Comput.
Chem. Eng. 2018, 111, 43−54.
(27) Mitrai, I.; Daoutidis, P. Decomposition of integrated
scheduling and dynamic optimization problems using community
detection. J. Process Control 2020, 90, 63−74.
(28) Goldenberg, A.; Zheng, A. X.; Fienberg, S. E.; Airoldi, E. M.;
et al. A Survey of Statistical Network Models. Found. Trends Mach.
Learn. 2009, 2, 129−233.
(29) Peixoto, T. P. Hierarchical block structures and high-
resolution model selection in large networks. Phys. Rev. X 2014, 4,
No. 011047.
(30) Peixoto, T. P. Bayesian Stochastic Blockmodeling. In Advances
in Network Clustering and Blockmodeling; Wiley, 2019; pp 289−332.
(31) Holland, P. W.; Laskey, K. B.; Leinhardt, S. Stochastic
blockmodels: First steps. Soc. Networks 1983, 5, 109−137.
(32) Peixoto, T. P. Nonparametric Bayesian inference of the
microcanonical stochastic block model. Phys. Rev. E 2017, 95,
No. 012317.
(33) Peixoto, T. P. Entropy of stochastic blockmodel ensembles.
Phys. Rev. E 2012, 85, No. 056122.
(34) Peixoto, T. P. Nonparametric weighted stochastic block
models. Phys. Rev. E 2018, 97, No. 012306.
(35) Flores-Tlacuahuac, A.; Grossmann, I. E. Simultaneous
scheduling and control of multiproduct continuous parallel lines.
Ind. Eng. Chem. Res. 2010, 49, 7909−7921.
(36) Peixoto, T. P. The Graph-Tool Python Library, 2014. http://
figshare.com/articles/graph_tool/1164194 (accessed April 26,
2021).
(37) Zhuge, J.; Ierapetritou, M. In Simultaneous Scheduling and
Control with Closed Loop Implementation on Parallel Units,
Proceedings Foundations of Computer-Aided Process Operations
(FOCAPO), Savannah, USA, 2012.
(38) Tawarmalani, M.; Sahinidis, N. V. A polyhedral branch-and-
cut approach to global optimization. Math. Program. 2005, 103,
225−249.
(39) Wächter, A.; Biegler, L. T. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming. Math. Program. 2006, 106, 25−57.
(40) Hart, W. E.; Laird, C. D.; Watson, J.-P.; Woodruff, D. L.;
Hackebeil, G. A.; Nicholson, B. L.; Siirola, J. D. Pyomo-Optimization
Modeling in Python, 2nd ed.; Springer Science & Business Media,
2017; Vol. 67.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c01570
Ind. Eng. Chem. Res. 2021, 60, 14476−14494

14493

https://doi.org/10.1002/aic.10617
https://doi.org/10.1002/aic.10617
https://doi.org/10.1016/j.compchemeng.2018.04.011
https://doi.org/10.1016/j.compchemeng.2018.04.011
https://doi.org/10.1016/j.compchemeng.2009.06.007
https://doi.org/10.1016/j.compchemeng.2009.06.007
https://doi.org/10.1016/j.compchemeng.2017.09.017
https://doi.org/10.1016/j.compchemeng.2017.09.017
https://doi.org/10.1021/acs.iecr.5b03499?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.5b03499?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.5b03499?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/aic.14509
https://doi.org/10.1002/aic.14509
https://doi.org/10.1002/aic.14509
https://doi.org/10.1021/acs.iecr.7b04457?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.7b04457?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie501986d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie501986d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie501986d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.7b01122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.7b01122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.7b01122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/aic.16434
https://doi.org/10.1002/aic.16434
https://doi.org/10.1002/aic.16434
https://doi.org/10.1007/BF02592954
https://doi.org/10.1007/BF02592954
https://doi.org/10.1021/ie000755e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie000755e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie000755e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie980782t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie980782t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.compchemeng.2009.11.016
https://doi.org/10.1016/j.compchemeng.2009.11.016
https://doi.org/10.1007/BF01386316
https://doi.org/10.1007/BF01386316
https://doi.org/10.1007/BF00934810
https://doi.org/10.1016/j.compchemeng.2013.08.003
https://doi.org/10.1016/j.compchemeng.2013.08.003
https://doi.org/10.1016/j.compchemeng.2013.08.003
https://doi.org/10.1016/j.compchemeng.2013.08.003
https://doi.org/10.1021/ie201262f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie201262f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie201262f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie970383i?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie970383i?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie503857r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie503857r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie503857r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/aic.16708
https://doi.org/10.1002/aic.16708
https://doi.org/10.1002/aic.16708
https://doi.org/10.1007/s11081-019-09450-5
https://doi.org/10.1007/s11081-019-09450-5
https://doi.org/10.1007/s11081-019-09450-5
https://doi.org/10.1002/aic.17415
https://doi.org/10.1002/aic.17415
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.compchemeng.2017.12.010
https://doi.org/10.1016/j.compchemeng.2017.12.010
https://doi.org/10.1016/j.jprocont.2020.04.003
https://doi.org/10.1016/j.jprocont.2020.04.003
https://doi.org/10.1016/j.jprocont.2020.04.003
https://doi.org/10.1561/2200000005
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1103/PhysRevE.95.012317
https://doi.org/10.1103/PhysRevE.95.012317
https://doi.org/10.1103/PhysRevE.85.056122
https://doi.org/10.1103/PhysRevE.97.012306
https://doi.org/10.1103/PhysRevE.97.012306
https://doi.org/10.1021/ie100024p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie100024p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
https://doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.1c01570?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(41) Sahinidis, N.; Grossmann, I. E. Convergence properties of
generalized Benders decomposition. Comput. Chem. Eng. 1991, 15,
481−491.
(42) Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual. https://www.gurobi.com (accessed April 26, 2021).
(43) Gutiérrez-Limón, M. A.; Flores-Tlacuahuac, A.; Grossmann, I.
E. MINLP formulation for simultaneous planning, scheduling, and
control of short-period single-unit processing systems. Ind. Eng.
Chem. Res. 2014, 53, 14679−14694.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c01570
Ind. Eng. Chem. Res. 2021, 60, 14476−14494

14494

https://doi.org/10.1016/0098-1354(91)85027-R
https://doi.org/10.1016/0098-1354(91)85027-R
https://www.gurobi.com
https://doi.org/10.1021/ie402563j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie402563j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.1c01570?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

