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a b s t r a c t 

The integration of process operations and dynamic optimization leads to large scale optimization prob- 

lems whose monolithic solution is challenging. In this paper we propose a new formulation of the inte- 

grated planning, scheduling, and dynamic optimization problem for continuous single stage systems. We 

analyze the structure of the problem using Stochastic Blockmodeling and we show that the estimated 

structure can be used as the basis for a multicut Generalized Benders decomposition (GBD) algorithm, 

which can solve the problem in reduced computational time. Furthermore, we propose an accelerated 

hybrid multicut algorithm which can lead to further reduction in computational time. Through case stud- 

ies, we analyze the computational performance of the proposed formulation and decomposition based 

solution algorithms. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The optimal operation of process systems depends on the so- 

ution of a wide class of optimization problems which are typi- 

ally considered independently. However, fast changing economic 

nvironments render this approach suboptimal and motivate the 

ntegration of different decision levels ( Grossmann, 2005; Daou- 

idis et al., 2018 ). A typical example is the integration of process 

perations, i.e. production planning and scheduling, with dynamic 

ptimization ( Baldea and Harjunkoski, 2014; Chu and You, 2015; 

ias and Ierapetritou, 2017 ). In these problems, production deci- 

ions such as execution of a task and allocation of resources are 

ade simultaneously with optimal control decisions leading to in- 

reased profitability. 

In order to achieve this integration two solution ap- 

roaches have been proposed in the literature ( Baldea and 

arjunkoski, 2014 ). In the “top-down” approach, the dynamic 

ehavior of the system is incorporated in the planning/scheduling 

roblem, the problem is solved once and the results provide 

he production sequence which is the set point for the control 

evel ( Flores-Tlacuahuac and Grossmann, 2006; Nie et al., 2012; 

utiérrez-Limón et al., 2014 ). In the “bottom up” approach the 

ntegrated problem is solved in a rolling horizon manner resulting 

n a closed loop implementation ( Zhuge and Ierapetritou, 2012; 
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attison et al., 2017; Chu and You, 2014b; Risbeck et al., 2019; 

aspari et al., 2020 ). 

We can argue that the main limitation in both approaches is 

he solution of the resulting optimization problem. The main chal- 

enges arise due to the inherently nonlinear behavior of most pro- 

ess systems, which in conjunction with the multiple time scales 

f the different decision making problems lead to large scale Mixed 

nteger Nonlinear Programs (MINLP). The monolithic solution of 

uch problems is challenging due to the presence of continuous 

nd discrete variables which are coupled through nonlinear con- 

traints ( Belotti et al., 2013 ). In order to improve the tractabil- 

ty of these problems two paths can be followed. In the first, the 

ptimization problem is simplified using surrogate models, typi- 

ally approximating the nonlinear dynamic behavior of the system 

 Pattison et al., 2016; Zhuge and Ierapetritou, 2014; Burnak et al., 

018; Chu and You, 2014a; Shi et al., 2015; Charitopoulos et al., 

017 ). The alternative approach is to use decomposition based so- 

ution algorithms and exploit the structure of the full optimization 

roblem. Typical examples of this approach include the application 

f Lagrangean ( Terrazas-Moreno et al., 2008; Mora-Mariano et al., 

020 ) and Benders ( Nie et al., 2015; Chu and You, 2013a; 2013b )

ecomposition. Although these algorithms can potentially reduce 

he computational time, their application is challenging too. First, 

 decomposition of the optimization problem itself is necessary. 

ts structure however, as it relates to the requisite solution algo- 

ithm, is not always evident. In recent research in our group we 

ave proposed the application of Stochastic Blockmodeling (SBM) 

https://doi.org/10.1016/j.compchemeng.2022.107859
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2022.107859&domain=pdf
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nd Bayesian inference as a tool to learn the underlying structure 

f the problem ( Mitrai et al., 2021; Mitrai and Daoutidis, 2021 ). In

his approach the optimization problem is represented as a graph, 

nd application of statistical inference allows learning the struc- 

ure of the problem which can guide us towards the selection of 

he most appropriate decomposition based solution algorithm. 

The second issue is related to the convergence of decompo- 

ition based solution algorithms which depends strongly on the 

roblem formulation. For the integration of planning, scheduling, 

nd dynamic optimization for continuous systems, two problem 

ormulations have been proposed: one based on slots ( Gutiérrez- 

imón et al., 2014 ) and another one based on the Traveling Sales- 

an Problem ( Charitopoulos et al., 2017 ). In this work we will fo-

us on the slot based formulation, where the planning horizon is 

iscretized into periods, and each period is discretized into slots. 

he values of the state and manipulated variables for each slot 

nd period depend on the production sequence and the transi- 

ion time. We have recently shown that application of nested SBM 

 Mitrai and Daoutidis, 2021 ) can reveal the underlying structure of 

uch a problem and can be used as the basis for the application of 

eneralized Benders Decomposition (GBD) ( Mitrai and Daoutidis, 

021; Geoffrion, 1972 ). However, global optimality can not be guar- 

nteed due to the nonconvexity of the dynamic optimization prob- 

ems that consider the dynamic transition of the system between 

he different products. 

In this work, we propose a new formulation of the integrated 

roblem for single stage continuous processes. Specifically, moti- 

ated by the formulation of the integrated scheduling and dynamic 

ptimization problem for batch systems ( Chu and You, 2013a ), we 

onsider all the transitions between the products for all the slots 

nd periods simultaneously. We analyze the structure of the prob- 

em using SBM and Bayesian inference. Based on the inference 

esults, we find that the planning/scheduling and dynamic opti- 

ization constraints are coupled only through the transition times. 

herefore, the cost associated with the dynamic optimization prob- 

em for each transition, slot, and period depends only on the tran- 

ition time and can be replaced by its value function in the objec- 

ive function. This structure lends itself to the application of mul- 

icut Generalized Benders decomposition, which solves the prob- 

em in reduced computational time compared to other formula- 

ions of the problem and decomposition based solution algorithms 

 Gutiérrez-Limón et al., 2014; Mitrai and Daoutidis, 2021 ). In or- 

er to reduce further the computational time we propose a hy- 

rid multicut Generalized Benders decomposition algorithm where 

he cut associated with one transition in one slot and period is 

dded for all slots and periods. We show that this approach leads 

o further reduction in computational time without affecting the 

olution quality. The rest of the document is organized as follows: 

n Section 2 we present the integrated optimization problem, in 

ection 3 we analyze the structure of the integrated problem and 

n Section 4 we present the decomposition based solution algo- 

ithms. Finally in Sections 5,6 we analyze the performance of the 

roposed algorithms. 

. Problem formulation 

.1. Production planning and scheduling 

In this section we will present the planning and scheduling 

odel for a single stage single line continuous process proposed in 

ogan and Grossmann (2006) . We assume that N p (i = { 1 , . . . , N p } )
roducts must be produced over a planning horizon which is dis- 

retized into N pr (p = { 1 , . . . , N pr } ) periods, which are further dis-

retized into N s (k = { 1 , . . . , N s } ) slots. First we define a binary

ariable W ikp which is equal to 1 if product i is produced at slot

 in period p and zero otherwise. We also define the variable 
2 
 i jkp ∈ { 0 , 1 } which is equal to 1 if a product i is followed by prod-

ct j in slot k in period p, and the variable Zp i jp which is equal to

ne if transition occurs between product i and j between time pe- 

iods. At each time slot only one product can be produced, which 

s enforced with the following constraints: 
 

i 

W ikp = 1 ∀ k, p. (1) 

ased on the sequence of the products at the end of each slot, ei- 

her a transition occurs from product i to j or the same product 

s produced in the next slot. The transition between products for 

very slot and period is modeled though the following equations: 

Z i jkp ≥ W ikp + W j,k +1 ,p − 1 ∀ i, j, k � = N s , p 

p i jkp ≥ W iN s p + W j, 1 ,p+1 − 1 ∀ i, j, p, (2) 

here the first constraint considers the transitions between the 

lots in a period, and the second constraint considers the transi- 

ions between the periods. Due to the possible transitions, each 

lot is composed of a production and a transition regime. The pro- 

uction time of product i in slot k in period p is �ikp and the tran-

ition time in slot k in period p is θ̌ t 
kp 
. The timing constraints are 

he following: 

T s 1 , 1 = 0 

T e k,p = T s k,p + 

∑ 

i 

�ikp + θ̌ t 
kp ∀ k, p 

 
s 
k +1 ,p = T e k,p ∀ k � = N s , p 

 
s 
1 ,p+1 = T e N s ,p ∀ k, p � = N per 

�ikp ≤ W ikp H p ∀ i, k, p 

ˆ �ip = 

∑ 

k 

�ikp ∀ i, p 

T e k,p ≤ pH p ∀ k, p, (3) 

here T s 
kp 

is the starting tine of slot k in period p, T e 
kp 

is the ending

ime in slot k and period p, H p is the duration of period p and ˆ �ip 

s the production time of product i in period p. We assume that the 

emand of product i in period p (d ip ) must be satisfied in the end

f the period. The production rate of product i is r i , the amount of

roduct i produced in slot k at period p is ˆ q ikp and the amount of 

roduct i produced in period p is q ip . The production and inventory 

onstraints are: 

ˆ  ikp = r i �ikp ∀ i, k, p 

q ip = 

∑ 

k 

ˆ q ikp ∀ i, p 

I ip = I ip−1 + q ip − S ip ∀ i, p 

A ip = H p (I ip−1 − S ip−1 ) + q ip H p ∀ i, p 

S ip ≥ d ip ∀ i, p, (4) 

here I ip is the inventory of product i in period p, A ip is the lin-

ar overestimation of the integral of inventory, S ip is the amount of 

roduct i sold in period p. Finally, the following symmetry break- 

ng constraints are included: 

Y ip ≥ W ikp ∀ i, k, p 

Y ip ≤ N ip ≤ N̄ Y ip ∀ i, p 

 ip ≥ N −
(∑ 

i 

Y ip − 1 

)
− M(1 −W i 1 p ) ∀ i, p 

 ip ≤ N −
(∑ 

i 

Y ip − 1 

)
+ M(1 −W i 1 p ) ∀ i, p 

 ip = 

∑ 

k 

W ikp ∀ i, p (5) 
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here Y ip ∈ { 0 , 1 } is equal to 1 if product i is assigned in period
p and zero otherwise, N̄ is the number of slots, M is a parameter, 

nd N ip is equal to the number of slots that product i is manu-

actured in period p. The first constraint (in Eq. (5) ) ensures that 

very product is assigned to at least one slot every period, the sec- 

nd constraint guarantees that if a product is manufactured in a 

eriod then at least one slot must be used, and the last constraint 

nforces that a product is manufactured in consecutive slots if nec- 

ssary. We refer the reader to Dogan and Grossmann (2006) for a 

etailed explanation of these constraints. 

.2. Dynamic model 

We assume that the dynamic behavior of the system is de- 

cribed by a system of ordinary differential equations 

˙  (t) = F (x, u ) , (6) 

here x ∈ R 
n are the states of the system, u ∈ R 

m are the manip-

lated variables and F : R 
n + m → R 

n are vector functions. The dif- 

erential equations are discretized using the method of orthogonal 

ollocation on finite elements using N f e ( f = { 1 , . . . , N f e } ) finite el-
ments and N c (c = { 1 , . . . , N c } ) collocation points. In this work, we

ill consider simultaneously all the possible transitions and will 

efine the variables x n 
i j f ckp 

and u m 

i j f ckp 
as the values of the n th state

nd m th manipulated variable for a transition from product i to 

roduct j at finite element f , collocation point c, slot k and period 

p. We will also define θi jkp as the transition time for the transition 

rom product i to j in slot k and period p. The discretized differen- 

ial equations are: 

x n i j f ckp = x 0 n i j f kp + h f e 
kp 

N cp ∑ 

m =1 

�mc ̇ x 
n 
i j fmkp ∀ n, i, j, f, c, k, p 

h f e 
i jkp 

= 

θi jkp 
N f e 

∀ i, j, k, p 

x 0 n i j f kp = x 0 n i j, f−1 kp + h f e 
i jkp 

N cp ∑ 

m =1 

�mc ̇ x 
n 
i j, f−1 ,mkp ∀ n, i, j, f ≥ 2 , c, k, p 

˙ x n i j f ckp = F (x n i j f ckp , u 
m 
i j f ckp ) ∀ n, i, j, f, c, k, p 

t d i j f ckp = h f e 
i jkp 

( f − 1 + γc ) ∀ i, j, f, c, k, p 

x 0 i j1 kp = x ss i ∀ i, j, k, p 

x i jN f e N cp kp = x ss j ∀ i, j, k, p 

u i j11 kp = u ss i ∀ i, j, k, p 

 i jN f e N cp kp 
= u ss j ∀ i, j, k, p, (7) 

here x ss 
i 

, u ss 
i 

are the steady state values of the state and ma-

ipulated variables for product i , � is the collocation matrix, 

nd γ are the Radau roots. We note that in this formulation, 

he values of the state and manipulated variables at the begin- 

ing and end of each slot and period do not depend on the 

inary variables W ikp or Z i jkp . This is different from Gutiérrez- 

imón et al. (2014) , Charitopoulos et al. (2017) where the values of 

he states/manipulated variables at the beginning and end of each 

lot and period depend on the values of the binary variables. 

.3. Integrated problem 

The objective function of the integrated optimization problem 

s: 

= 

∑ 

i,p 

(
P ip S ip −C oper 

ip 
q ip −C in v A ip 

)

−
∑ 

i, j,k,p 

C trans i j Z i jkp −
∑ 

i, j,p 

C trans i j Zp i jp 
3 
−
∑ 

i, j,p,k 

Z i jkp 

(
αu 

∑ 

f,c 

N 
−1 
f e 
t d i j f ckp �c,N cp (u i j f ckp − u ss j ) 

2 
)

−
∑ 

i, j,p 

Zp i jkp 

(
αu 

∑ 

f,c 

N 
−1 
f e 
t d i j f cN s p �c,N cp (u i j f cN s p − u ss j ) 

2 
)
, (8) 

here P ip is the price of product i in period p, C 
oper 
ip 

is the operating

ost of product i in period p, C in v is the inventory cost, C trans 
i j 

is the

ransition cost from product i to j, and a u is a weight coefficient. 

he first term represents the sales, the second and third terms are 

elated to the operating and inventory costs, and the fourth and 

fth terms represent the fixed transition cost between the slots 

nd periods. The last two terms represent the transition cost. In 

hese terms, the cost of a transition from product i to j in slot k 

nd period p is multiplied by Z i jkp (and by Zp i jp if we consider 

he transition between the time periods). Therefore, if a transition 

oes not occur, i.e. Z i jkp = 0 or Zp i jp = 0 , then the cost does not

ontribute to the objective. Finally, the transition time for each slot 

nd period depends on the transitions that occur and the following 

quations are added: 

θ̌ t 
kp = 

N p ∑ 

i =1 

N p ∑ 

i =1 

θi jkp Z i jkp ∀ k, k � = N s , p 

θ̌ t 
N s p 

= 

N p ∑ 

i =1 

N p ∑ 

i =1 

θi jN s p Zp i jp ∀ p, p � = N per 

i jkp ≥ θmin 
i j ∀ i, j, k, p, (9) 

here θmin 
i j 

is the minimum transition time for a transition be- 

ween product i and j. The integrated optimization problem is: 

aximize �
ubject to Eq . (1) , (2) , (3) , (4) , (5) , (7) , (9) 

(10) 

This is the general problem formulation for the integration of 

lanning, scheduling, and dynamic optimization for a single stage 

ingle unit system. In this formulation, each slot is composed of 

 production and a transition regime. Therefore, if the number of 

lots is equal to the number of products, in the last slot of the last

eriod no transition occurs. Hence the variables and constraints as- 

ociated with all the transitions for this slot can be removed from 

he optimization problem. 

. Problem decomposition 

In this section we will analyze the structure of the integrated 

roblem using SBM and Bayesian inference. We refer the reader 

o the Supplementary material for an introduction to SBM and 

o Mitrai et al. (2021) , Mitrai and Daoutidis (2021) for a detailed 

xplanation on the application of this approach to optimization 

roblems. For illustration, we consider an isothermal continuous 

tirred tank reactor where an irreversible reaction occurs (A → 3 B ) .

he dynamic behavior of the system is described by the following 

quation ( Gutiérrez-Limón et al., 2014 ): 

dc(t) 

dt 
= 

Q(t) 

V 
(c f eed − c(t)) − kc(t) 3 , (11) 

here c is the concentration of the reactant, Q is the in- 

et flowrate (manipulated variable) and V = 50 0 0 L, c f eed = 

 mol/L, k = 2 L 2 / (hr mol 2 ) are the reactor volume, inlet concentra-

ion and reaction rate constant, respectively. In order to keep the 

raph simple, we will assume that two products must be produced 

n three planning periods and the dynamic model is discretized us- 

ng 20 finite elements with 3 collocation points. We apply degree 

orrected SBM in the constraint graph of the problem using graph- 

ool ( Peixoto, 2014 ). In this graph, the nodes are the constraints of 
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Fig. 1. Inference results on the constraint graph of the integrated optimization 

problem. 
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s 2 
he problem and the edges are the variables that couple two con- 

traints. Based on the inference results ( Fig. 1 ), twenty five blocks 

re identified. The planning/scheduling constraints are assigned in 

ne block (nodes in the middle of the graph), and the constraints 

hat are associated with the dynamic behavior of the system for 

ach transition, slot, and period are assigned into different blocks. 

hese blocks are connected with the block in the center of the 

raph through one edge, the coupling variables. In this case the 

oupling variables are the transition times θi jkp . This hybrid core 
ommunity structure in the graph is also manifested in the L shape 

f the ω (block density) matrix inferred for the SBM: 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1392 1 1 . . . 1 
1 6794 0 . . . 0 
1 0 6794 . . . 0 
. . . 

. . . 
. . . 

. . . 
1 0 . . . . . . 6794 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

∈ R 
25 ×25 , 

here the ω i j entry of this matrix is equal to the number of edges

etween the nodes in block i and the nodes in block j. The plan-

ing/scheduling constraints form the core, which is connected with 

ll the communities, i.e. the constraints of the dynamic optimiza- 

ion problems, through the variables θi jkp . 
We note that although the structure of this problem is the 

ame as the one identified using nested SBM in our previous work 

 Mitrai and Daoutidis, 2021 ) based on the problem formulation 

roposed in Gutiérrez-Limón et al. (2014) , the coupling variables 

iffer. In Mitrai and Daoutidis (2021) the coupling variables are the 

ransition time, initial and final states, and manipulated variables. 

n this case the coupling variables are only the transition times 

i jkp . This coupling of the variables/constraints can be attributed 

o the modeling of the transitions. The state and manipulated vari- 

bles depend on the transition times through the discretization of 

he differential equations. 
4 
. Decomposition based solution algorithm 

.1. Problem reformulation based on the identified structure from 

BM 

Given the structure of the problem the variables can be decom- 

osed into three sets. The first contains the variables that are as- 

ociated with planning and scheduling decisions, the second set 

ontains the variables that are associated with transitions between 

roducts, and the last set contains the coupling variables (transi- 

ion times) that couple the planning/scheduling decisions with the 

ynamic optimization decisions. Given this partition of the vari- 

bles, if we fix the planning/scheduling and the coupling variables, 

hen the dynamic optimization problems for the transitions are in- 

ependent and depend only on the transition time θi jk . The dy- 
amic optimization problem for a transition from product i to j in 

lot k and period p is: 

aximize −αu 

∑ N fe 
f=1 

∑ N cp 
c=1 

N 
−1 
fe 

t d 
ijfc kp 

�c,N cp 

(
u ijfc kp − u ss 

j 

)2 
ubject to x n 

ijfc kp 
= x 0 n 

ijfkp 
+ h fe 

kp 

∑ N cp 
m =1 

�mc ̇ x 
n 
ijfm kp 

∀ n, f, c 

h fe 
ijkp 

= 

ˆ θijkp 
N fe 

x 0 n 
ijfkp 

= x 0 n 
ij , f−1 kp 

+ h fe 
ijkp 

∑ N cp 
m =1 

�mc ̇ x 
n 
ij , f−1 , mkp 

∀ n, f ≥ 2 , c 

˙ x n 
ijfc kp 

= f 
(
x n 
ijfc kp 

, u m 
ijfc kp 

) ∀ n, f, c 

t d 
ijfc kp 

= h fe 
ijkp ( f − 1 + γc ) ∀ f, c 

x 0 ij 1 kp = x ss 
i 

x ij N fe N cp kp = x ss 
j 

u ij 11 kp = u ss 
i 

u ij N fe N cp kp = u ss 
j 

ˆ θijkp = θijkp . 

(12) 

e will write this problem as: 

aximize − f dyn 
i jkp 

ubject to g dyn 
i jkp 

≤ 0 

ˆ θi jkp = θi jkp 

(13) 

hich is equivalent to minimizing f 
dyn 

i jkp 
subject to g 

dyn 

i jkp 
≤ 0 and 

ˆ 
i jkp = θi jkp . The solution of this problem depends on the value of 

he transition time θi jkp . We define as φi jkp the value function of a 

ransition from product i to j in slot k and period p, which is equal

o the optimal value of the objective function of the following op- 

imization problem: 

inimize f dyn 
i jkp 

ubject to g dyn 
i jkp 

≤ 0 

ˆ θi jkp = θi jkp : λi jkp (14) 

here λi jkp is the Lagrange multiplier for the equality constraint 

ˆ 
i jkp = θi jkp . The value function depends only on the transition 
ime, i.e. the coupling variable. 

The objective function of the integrated problem can be decom- 

osed into two parts. The first contains the cost associated with 

he planning/ scheduling variables (�1 ) and the second part con- 

iders the transition costs (� ) : 
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1 = 

∑ 

i,p 

(
P ip S ip −C oper 

ip 
q ip −C in v A ip 

)

−
∑ 

i, j,k,p 

C trans i j Z i jkp −
∑ 

i, j,p 

C trans i j Zp i jp 

2 = 

∑ 

i, j,k,p 

Z i jkp 

(
αu 

∑ 

f,c 

N 
−1 
f e 
t d i j f ckp �c,N cp (u i j f ckp − u ss j ) 

2 
)

+ 

∑ 

i, j,p 

Zp i jkp 

(
αu 

∑ 

f,c 

N 
−1 
f e 
t d i j f cN s p �c,N cp (u i j f cN s p − u ss j ) 

2 
)
. 

ased on the value function of the dynamic optimization problem, 

he integrated problem is written as follows: 

maximize �1 −
∑ 

i jkp 

Z i jkp φi jkp (θi jkp ) −
∑ 

i jp 

Zp i jp φi jN s p (θi jN s p ) 

ubject to Eqs . (1) , (2) , (3) , (4) , (5) , (9) . (15) 

This problem is equivalent to the original integrated problem 

 Eq. (10) ) since φi jkp is only a function of the transition time 

i jkp as identified by the application of SBM. Therefore, if a tran- 

ition does not occur, i.e. Z i jkp = 0 , then Z i jkp φi jkp (θi jkp ) = 0 even

f φi jkp (θi jkp ) � = 0 , so the cost associated with this transition does

ot affect the profit. If the transition occurs, i.e. Z i jkp = 1 , then the

ost, which is equal to φi jkp (θi jkp ) , affects the profit. 

.2. Solution algorithm 

The above problem can not be solved directly since the value 

unctions are not known explicitly. We will follow a cutting plane 

ethod to solve the problem. Specifically, we will approximate 

he value functions with hyperplanes. From Geoffrion (1971) , it is 

nown that if the value function φi jkp is convex and we solve the 

roblem in Eq. (14) for θ̄i jkp = θi jkp , we can outer approximate φi jkp 

s follows: 

i jkp (θi jkp ) ≥ φi jkp ( ̄θi jkp ) 

+ ∂φi jkp ( ̄θi jkp )(θi jkp − θ̄i jkp ) ∀ θi jkp ≥ θmin 
i j (16) 

here ∂φ( ̄θi jkp ) is the subgradient of the value function for θi jkp = 

¯
i jkp and is equal to the negative of the optimal Lagrange multiplier 

i jkp for the equality constraint θi jkp = θ̄i jkp . 
Given this approximation, if we solve the dynamic optimization 

roblems for different values of θi jkp we can approximate the func- 

ion φi jkp and the problem: 

inimize 
θi jkp 

φi jkp (θi jkp ) (17) 

s equivalent to Geoffrion (1970a,b) : 

minimize 
θi jkp 

ηi jkp 

subject to ηi jkp ≥ φv 
i jkp ( ̄θ

v 
i jkp ) − λv (θi jkp − θ̄ v 

i jkp ) ∀ v = 1 , . . . , V (18) 

here V = { v 1 , v 2 , . . . , v n } is the number of points used to approxi-

ate the value function and the overbar denotes a fixed value. The 

ntegrated optimization problem can be written as: 

aximize �1 −
∑ 

i jkp Z i jkp ηi jkp −
∑ 

i jp Zp i jp ηi jN s p 

ubject to Eqs . (1) , (2) , (3) , (4) , (5) , (9) 

ηi jkp ≥ φv 
i jkp 

− λv 
i jkp 

(θi jkp − θ̄ v 
i jkp 

) ∀ i, j, k, p, v ∈ V 
(19) 

e note that the tangent approximation corresponds to the Ben- 

ers cuts ( Geoffrion, 1972 ). We will follow a Generalized Ben- 

ers Decomposition approach to solve this problem. The mas- 

er problem is the relaxed planning/scheduling problem and the 

ubproblems are independent dynamic optimization problems for 
5 
ach transition, slot, and period. The dynamic optimization prob- 

ems are solved only for the transitions that occur, i.e. (i, j, k, p) ∈
 (i, j, k, p) | Z i jkp = 1 } , (i, j, p) ∈ { (i, j, p) | Zp i jp = 1 } . Once the sub-

roblems are solved, the following Benders cuts are added in the 

aster problem: 

i jkp ≥ φi jkp − λi jkp (θi jkp − θ̄i jkp ) 

f Z i jkp = 1 and 

i jN s p ≥ φi jN s p − λi jN s p (θi jN s − θ̄i jN s p ) 

f Zp i jp = 1 , where the overbar denotes a fixed value. The 

teps that are followed to solve the problem are presented in 

lgorithm 1 . In this approach at every iteration one cut is added 

lgorithm 1 Multicut Generalized Benders Decomposition based 

n the learnt structure. 

equire: Optimization problem 

1: Set UB = ∞ , LB = −∞ 

2: Set tolerance and optimality gap (tol) 

3: Initialize the algorithm by fixing the production sequence and 

obtain the transitions that occur, transition times, Lagrangean 

multipliers λi jkp , φi jkp and add tangent approximation (Line 10) 

4: while (UB − LB ) /LB ≥ tol / 100 do 

5: Solve the master problem (Eq. 19), obtain UB and transitions 

6: Solve the dynamic optimization problems (Eq. 14) that cor- 

respond to Z i jkp = 1 , Zp i jp = 1 

7: Obtain Lagrangean multipliers λi jkp , φi jkp , �1 , �2 

8: Update lower bound LB = max { LB, �1 − �2 } 
9: Add following tangent approximation in the relaxed prob- 

lem: 

0: 

if Z i jkp = 1 add ηi jkp ≥ φi jkp − λi jkp (θi jkp − θ̄i jkp ) 

if Zp i jp = 1 add ηi jN s p ≥ φi jN s p − λi jN s p (θi jN s p − θ̄i jN s p ) 

11: end while 

2: return Upper, lower bound and variable values 

or every transition that occurs, therefore multiple cuts are added 

er iteration. This approach is known in the literature as multicut 

enders decomposition ( Birge and Louveaux, 2011 ). 

We can exploit further the structure of the problem to accel- 

rate its solution. Specifically, since η is defined for all (i jkp) , the 

pproximation of the transition from i to j in slot 1 is also valid in

ll the other slots and periods. Therefore, we propose an acceler- 

ted hybrid multicut algorithm where in each iteration we add the 

onstraints: 

i jk ′ p ′ ≥ φi jkp − λi jkp (θi jk ′ p ′ − θ̄i jkp ) ∀ i, j, k ′ ∈ N s , p 
′ ∈ N per 

f Z i jkp = 1 and 

i jk ′ p ′ ≥ φi jN s p − λi jN s p (θi jk ′ p ′ − θ̄i jN s p ) ∀ i, j, k ′ ∈ N s , p 
′ ∈ N per 

f Zp i jp = 1 , where the overbar denotes a fixed value. In this ap-

roach, at each iteration, for each transition that occurs multiple 

uts are added. We note that the addition of multiple cuts per iter- 

tion is a common strategy in decomposition based solution meth- 

ds for MINLP problems ( Su et al., 2015; Kronqvist et al., 2016 ). In

hese cases the solution of the master problem provides a pool of 

olutions which can be used to solve multiple subproblems which 

ead to the addition of multiple cuts per iteration. In the proposed 

ybrid multicut GBD approach, the subproblems are solved based 

n the global solution of the master problem but the cut for a 

ransition between product i and j in slot k and period p is used 

o approximate the value functions for the specific transition for all 

lots and periods. The steps that are followed to solve the problem 

re presented in Algorithm 2 . For both algorithms (multicut and 
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Algorithm 2 Hybrid Multicut Generalized Benders Decomposition. 

Require: Optimization problem 

1: Set UB = ∞ , LB = −∞ 

2: Set tolerance and optimality gap (tol) 

3: Initialize the algorithm by fixing the production sequence and obtain the transitions that occur, transition times, Lagrangean multipliers 

λi jkp , φi jkp and add tangent approximation (Line 10) 

4: while (UB − LB ) /LB ≥ tol / 100 do 

5: Solve the master problem (Eq. 19), obtain UB and transitions 

6: Solve the dynamic optimization problems (Eq. 14) that correspond to Z i jkp = 1 , Zp i jp = 1 

7: Obtain Lagrangean multipliers λi jkp , φi jkp , �1 , �2 

8: Update lower bound LB = max { LB, �1 − �2 } 
9: Add following tangent approximation in the relaxed problem: 

10: 
if Z i jkp = 1 add ηi jk ′ p ′ ≥ φi jkp − λi jkp (θi jk ′ p ′ − θ̄i jkp ) ∀ i, j, k ′ ∈ N s , p 

′ ∈ N per 

if Zp i jp = 1 add ηi jk ′ p ′ ≥ φi jN s p − λi jN s p (θi jk ′ p ′ − θ̄i jN s p ) ∀ i, j, k ′ ∈ N s , p 
′ ∈ N per 

11: end while 

12: return Upper, lower bound and variable values 

Table 1 

Operating conditions and product price for the first case study. 

Product c ss (mol/L ) Q ss (L/h ) Production rate 

A 0.24 200 150 

B 0.2 100 80 

C 0.30 400 278 

D 0.39 1000 607 
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Fig. 2. Transition cost for a transition from product 1 to products 2,3,4. The x axis 

is the transition time and the y axis the scaled cost. The steady state values of the 

state and manipulated variable are given in Table 1 . 

Fig. 3. Approximation of the value function for three different values of θ . 

s

v

o

s
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a

t

ybrid multicut), the relaxed problem is a Mixed Integer Nonlin- 

ar Program (MINLP) with bilinear terms in the objective function 

 Z i jkp ηi jkp , Zp i jp ηi jN s p ) and in Eq. (9) ( Z i jkp θi jkp , Zp i jp θi jN s p ) solved
ith Gurobi ( Gurobi Optimization, LLC, 2021 ). We note that this 

roblem can be transformed into a Mixed Integer Linear Program 

MILP) by linearizing the bilinear terms. Specifically we can replace 

very bilinear term, e.g. Z i jkp ηi jkp with η ∈ [ η
i j 
, η̄i j ] as follows 

min { 0 , η
i j 
} ≤ δi jkp ≤ η̄i j 

η
i j 
Z i jkp ≤ δi jkp ≤ η̄i j Z i jkp 

i jkp − (1 − Z i jkp ) ̄ηi j ≤ δi jkp ≤ ηi jkp − (1 − Z i jkp ) ηi j 

δi jkp ≤ ηi jkp + (1 − Z i jkp ) ηi j 
. 

(20) 

he computation of η
i j 
, η̄i j is presented in the Supplementary ma- 

erial. Similarly we can linearize the Z i jkp θi jkp bilinear terms. Al- 

hough this leads to a MILP, we found that for small planning hori- 

ons solving the master problem with the bilinear terms (using 

urobi) is faster than solving the MILP model. Hence, in the first 

ase study ( Section 5 ) the master problem is a MINLP whereas in

he second case study ( Section 6 ) we use the MILP model. The sub-

roblems are nonlinear optimization problems solved with IPOPT 

 Wächter and Biegler, 2006 ) and the values of the dual variables 

hat are used are the ones returned by IPOPT. The algorithm is im- 

lemented in Python using Pyomo ( Hart et al., 2017 ). 

emark 1. In the proposed algorithms the hyperplanes that ap- 

roximate a value function are valid under the assumption that 

he value function is concex. For the isothermal CSTR considered 

n Section 3 , when four products can be produced, the value func- 

ion for each transition from product 1 to the other products is 

hown in Fig. 2 and the Benders cut for the transition from prod- 

ct 1 to product 2 is shown in Fig. 3 (the steady state values of the

oncentration and inlet flowrate are presented in Table 1 ). From 

hese figures we observe that the value functions are convex and 

he Benders cuts are valid understimators. 

emark 2. Given the convexity of the value functions, the pro- 

osed multicut and hybrid multicut algorithms can be used to 
6 
olve the problem to global optimality since the Benders cuts are 

alid understimators of the value functions. However, the solution 

f the integrated problem to global optimality requires that the 

ubproblems are also solved to global optimality. Although this can 

e achieved using global optimization solvers like BARON ( Kılınç

nd Sahinidis, 2018 ), this can increase the CPU time in cases where 

he subproblems have a large number of variables/constraints and 
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Table 2 

Operating and transition cost for the first case study, C in v = 0 . 026 , a u = 1 . 

C oper C trans 

Product p = 1 p = 2 A B C D 

A 13 13 0 100 60 120 

B 22 12 150 0 50 80 

C 35 45 200 150 0 100 

D 29 19 90 100 120 0 

Table 3 

Product demand for the first case study. 

Demand (mol/week) Price ( $ /mol) 

Prod. p = 1 p = 2 p = 1 p = 2 

A 8000 9000 200 220 

B 4000 3600 160 140 

C 7000 8000 130 150 

D 6000 11,000 110 110 
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Fig. 4. Evolution of the gap for the proposed algorithms and GBD (Benders decom- 

position) based on Gutiérrez-Limón et al. (2014) , Mitrai and Daoutidis (2021) for 

the first case study. 

Fig. 5. Evolution of the upper and lower bounds for the proposed algorithms and 

GBD (Benders decomposition) based on Gutiérrez-Limón et al. (2014) , Mitrai and 

Daoutidis (2021) for the first case study. 
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onconvex terms. In the case studies presented in this paper 

e solve the subproblems with IPOPT and therefore global op- 

imality cannot be guaranteed. We also note that in the gen- 

ral case, where the value functions are not convex the pro- 

osed algorithms can still be applied but global optimality can- 

ot be guaranteed even if the subproblems are solved to global 

ptimality. 

emark 3. The idea of replacing the transition cost with 

ts value function has been previously pursued in literature. 

n Shi et al. (2015) , the dynamic optimization problem was 

olved for different values of the transition time and a flexi- 

le recipe approach was followed to solve the integrated plan- 

ing, scheduling, and dynamic optimization problem. Similarly in 

haritopoulos et al. (2017) a surrogate model was used to ap- 

roximate the transition cost. A similar approach was followed in 

hu and You (2014a) , where a cooperative game theoretical ap- 

roach was followed and the problem was formulated as a two 

evel game. The first level agent solves the scheduling problem and 

he second level agent solves the dynamic optimization problem by 

onsidering only its objective value. The value function of the dy- 

amic optimization problem was approximated using piece-wise 

inear functions. In the above approaches the transition cost and 

alue of the objective function obtained are approximate. In our 

pproach, the proposed algorithm provides the exact solution of 

he problem. 

. Case study 1: Isothermal CSTR 

In the first case study we consider the isothermal CSTR whose 

ynamic behavior is described by Eq. (11) . We assume that four 

roducts must be produced in two planning periods, each com- 

osed of four slots. The economic data of the problem, adapted 

rom Gutiérrez-Limón et al. (2014) , can be found in Tables 1, 2 , 3 .

e solve the problem with the proposed formulation and multi- 

ut and hybrid multicut decomposition based solution algorithms 

nd compare them with the application of Generalized Benders 

ecomposition based on the structure found in Mitrai and Daou- 

idis (2021) using the formulation of the integrated problem pro- 

osed in Gutiérrez-Limón et al. (2014) . The formulation of the 

ntegrated problem and formulation of GBD ( Mitrai and Daou- 

idis, 2021 ) can be found in the Supplementary material. In this 

ase study, we constrain the rate of change of the manipulated 

ariable for the dynamic optimization problems through the fol- 
7 
owing constraints: 

 
m 

i j f ckp 
− u m 

i j f−1 ,ckp 
≤ U 

max 
m 

(t d 
i j f ckp 

− t d 
i j f−1 ,ckp 

) 

∀ m, i, j, f ≥ 1 , c, k, p 

 
m 

i j f ckp 
− u m 

i j f c−1 ,kp 
≤ U 

max 
m 

(t d 
i j f ckp 

− t d 
i j f c−1 ,kp 

) 

∀ m, i, j, f, c ≥ 1 , k, p 

 
m 

i j f ckp 
− u m 

i j f−1 ,ckp 
≥ U 

min 
m 

(t d 
i j f ckp 

− t d 
i j f−1 ,ckp 

) 

∀ m, i, j, f ≥ 1 , c, k, p 

 
m 

i j f ckp 
− u m 

i j f c−1 ,kp 
≥ U 

min 
m 

(t d 
i j f ckp 

− t d 
i j f c−1 ,kp 

) 

∀ m, i, j, f, c ≥ 1 , k, p, 

(21) 

here U 
max 
m 

, U 
min 
m 

is the maximum and minimum change for ma- 

ipulated variable m . The dynamic model is discretized using 20 

nite elements with 3 collocation points. For all algorithms the 

ptimality gap was set equal to 0 . 1% , and the initial production se-

uence was A → B → C → D for both periods. The master problem

n the first iteration has 592 variables and 445 constraints and the 

ynamic optimization problem for each transition, slot and period 

as 265 variables and 326 constraints. 

The evolution of the optimality gap and the upper and lower 

ound with the CPU time for the different algorithms is presented 

n Fig. 4 , 5 . Based on the results, GBD based on the formulation

nd decomposition from Gutiérrez-Limón et al. (2014) , Mitrai and 

aoutidis (2021) converges after 150 CPU seconds (131 iterations) 

nd the value of the objective function is 8 . 781 × 10 6 . The multi-

ut algorithm converges after 15 CPU seconds (28 iterations) lead- 
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Table 4 

Production results for the for the first case study. 

Period 1 

Slot Product Production amount (mol) Production time (hr) Transition time (hr) 

1 B 4000 50.0 0.98 

2 A 8000 53.3 1.21 

3 C 14,176 51 1.58 

4 D 6000 9.8 0 

Period 2 

Slot Product Production amount (mol) Production time (hr) Transition time (hr) 

1 D 29,968 49.3 1.87 

2 C 823 2.9 1.55 

3 A 9000 60 2.24 

4 B 4000 50 0 

Fig. 6. Concentration and inlet flowrate profiles for each slot and period for the first case study. 
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ng to a 90% reduction in CPU time and the objective function is 

 . 782 × 10 6 . From Fig. 5 we observe that the multicut algorithm

educes the bounds faster even though initially the lower bound 

btained from GBD is better. The hybrid multicut algorithm con- 

erges after 5 s (8 iterations) leading to a 96% reduction in CPU 

ime compared to GBD and 66% compared to the multicut algo- 

irhm. The solution that is obtained is the same as the one ob- 

ained from the multicut algorithm. The difference in the solution 

ime is due to the fact that in the hybrid multicut algorithm, in 

ach iteration more information is added in the master problem 

hrough the multiple cuts for each transition. In GBD and the mul- 

icut algorithm, in each iteration the Benders cut provides infor- 

ation only about the specific production sequence and transition 

ime. The production results obtained from the proposed algorithm 

re presented in Table 4 , and the concentration and inlet flowrate 
8 
rofiles are presented in Fig. 6 . From the production results, we 

ee that the demand is satisfied and product D is overproduced in 

he second period. Additionally, product C is overproduced in the 

rst period in order to satisfy the demand in the second period 

here the operating cost is higher, compared to the first period. 

inally, no transition occurs between the two periods leading to a 

eduction in the cost and increase in the profit. 

. Case study 2: MMA polymerization reactor 

In the second case study we will consider a methyl methacry- 

ate (MMA) polymerization process. The states of the system are 

he concentration of the monomer c m , the concentration of the ini- 

iator c i , concentration of dead chains D 0 and mass concentration 

f dead chains D . The input is the flowrate of the initiator F and
1 i 
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Table 5 

Parameters of the dynamic model for the MMA rector. 

Parameter Value 

F 10 m 
3 / h 

V 10 m 
3 

f ∗ 0.58 

k p 2 . 5 10 6 m 
3 / (kmol h) 

k td 1 . 09 10 11 m 
3 / (kmol h) 

k fm 2 . 45 10 3 m 
3 / (kmol h) 

k i 1 . 02 10 −1 h −1 

c in 
i 

8 kmol / m 
3 

c in m 6 kmol / m 
3 

M m 100.12 kg/kmol 

Table 6 

Steady state and production rate values for the MMA rector. 

Products 

Steady state value 1 2 3 4 

c m 3.07 3.22 3.33 3.43 

c i 0.14 0.12 0.1 0.09 

D 0 0.019 0.016 0.014 0.012 

D 1 292 277 267 257 

Y 15,000 17,000 18,500 20,000 

F i 0.2 0.16 0.14 0.12 

Prod. rate (kg/hr) 123 76.4 50.8 35.2 
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Table 7 

Operating and transition cost for the second case study, C in v = 0 . 026 , a u = 10 6 . 

C oper C trans 

Product p = 1 p = 2 p = 3 A B C D 

1 23 10 15 0 150 120 180 

2 30 25 20 160 0 180 160 

3 45 55 40 150 100 0 90 

4 50 29 20 110 100 120 0 

Table 8 

Product demand and price for the second case study. 

Demand (kg/week) Price ( $ /kg) 

Prod. p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 

1 2500 2200 2150 300 280 250 

2 2200 1400 1800 180 150 160 

3 3000 3500 2500 160 190 180 

4 1000 2000 1500 120 120 130 

Fig. 7. Evolution of the upper and lower bound for the different algorithms for the 

second case study. 

Fig. 8. Evolution of the optimality gap for the different algorithms for the second 

case study. 
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he output is the molecular weight of each product Y . Based on the

alue of the initiator inlet flowrate, products with different molec- 

lar weight can be produced. The dynamic behavior of the sys- 

em is described by the following differential equations ( Chu and 

ou, 2013b ): 

dc m (t) 

dt 
= −(k p + k fm 

) P c m (t) 
√ 

c i (t) + 

F (c in m 
− c m (t)) 

V 

dc i (t) 

dt 
= −k i c i (t) + 

F i (t) c 
in 
i 

− F c i (t) 

V 

dD 0 (t) 

dt 
= (0 . 5 k tc + k td ) P 

2 c i (t) + k fm 
P c m (t) 

√ 

c i (t) −
F D 0 (t) 

V 

dD 1 (t) 

dt 
= M m (k p + k fm 

) P c m (t ) 
√ 

c i (t ) −
F D 1 (t ) 

V 

Y (t) = D 1 (t) /D 0 (t) 

P = 

√ 

2 f ∗k f 
k td + k tc 

(22) 

he parameters of the dynamic model can be found in Table 5 

 Chu and You, 2013b ). We will assume that four products must 

e produced in three planning periods. The steady state values of 

he states, inlet flowrate and molecular weight are presented in 

able 6 . In this case, the dynamic model is discretized using 20 fi- 

ite elements and 3 collocation points. The dynamic optimization 

roblems for each slot has 741 variables and 689 constraints and 

n the first iteration the master problem has 1368 variables and 

966 constraints. We solve the problem using the proposed mul- 

icut and hybrid multicut algorithms and GBD based on Gutiérrez- 

imón et al. (2014) , Mitrai and Daoutidis (2021) . The algorithms 

re initialized by fixing the product sequence to 1 → 2 → 3 → 4

or all periods and the optimality gap tolerance is set to 0 . 1% . The

conomic data of the problem are presented in Tables 6, 7 , 8 . 

The evolution of the optimality gap and the upper and lower 

ound with the CPU time for the different algorithms is presented 

n Fig. 7 , 8 . The multicut algorithm converges after 90 CPU sec- 

nds (17 iterations), the hybrid multicut algorithm converges af- 

er 35 s (7 iterations) and the value of the objective function is 

 . 06 × 10 6 . GBD based on Gutiérrez-Limón et al. (2014) , Mitrai and

aoutidis (2021) converges after 425 CPU seconds (71 iterations) 

nd the value of the objective function is 4 . 84 × 10 6 . The produc-
9 
ion sequence that is obtained from this algorithm is the same 

s the initial guess, leading to lower value of the objective func- 

ion compared to the solution obtained by the multicut and hybrid 

ulticut algorithm. In this case, the hybrid multicut algorithm re- 

uces the CPU time by 91 % , the multicut algorithm by 78% and

he value of the objective is improved by 4 . 5% . Similar to the pre-

ious case study the multicut and hybrid multicut algorithms im- 

rove the upper and lower bounds faster compared to GBD. Also, 

he addition of multiple cuts per transition in the hybrid multicut 
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Table 9 

Production results for the second case study. 

Period 1 

Slot Product Production amount (kg) Production time (hr) Transition time (hr) 

1 4 1000 28.36 1.10 

2 3 4013 78.86 1.14 

3 2 2200 28.76 1.41 

4 1 3481 28.28 0 

Period 2 

Slot Product Production amount (kg) Production time (hr) Transition time (hr) 

1 1 3481 28.28 1.95 

2 2 2200 28.76 1.69 

3 3 2486 48.85 1.66 

4 4 2000 56.72 0 

Period 3 

Slot Product Production amount (kg) Production time (hr) Transition time (hr) 

1 4 2000 56.72 1.10 

2 3 3500 68.77 1.25 

3 2 1000 13.07 1.41 

4 1 3156 25.64 0 

Table 10 

Convergence results for the MMA reactor for different planning periods. 

4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks 

Hybrid Multicut algorithm 

Master problem 
a 

Variables 1824 (400) b 2280 (500) b 2736 (600) b 3192 (700) b 3648 (800) b 4104 (900) b 4560 (1000) b 

Constraints 3959 4952 5945 6938 7931 8924 9917 

Objective (×10 6 ) 7.57 9.66 10.70 12.24 14.7 17.64 21.58 

CPU time (sec) 56 72 123 100 161 128 247 

Master prob. 14.2 20 54 28.8 62.5 41.3 106 

Subproblem 41.8 52 68 71.2 98.5 86.7 141 

Iterations 7 6 7 6 7 5 6 

Multicut algorithm 

Master problem 
a 

Variables 1824 (400) b 2280 (500) b 2736 (600) b 3192 (700) b 3648 (800) b 4104 (900) b 4560 (1000) b 

Constraints 3959 4952 5945 6938 7931 8924 9917 

Objective (×10 6 ) 7.57 9.66 10.70 12.24 14.7 17.64 21.5 

CPU time (sec) 156 199 464 289 681 613 1193 

Master prob. 42.58 72.94 212.32 111 306 256 612 

Subproblem 113.15 126.06 251.68 178 375 357 571 

Iterations 23 21 28 17 27 19 30 

Generalized Benders Decomposition from ( Gutiérrez-Limón et al., 2014; Mitrai and Daoutidis, 2021 ) 

Master problem 
a 

Variables 865 (400) b 1081 (500) b 1297 (600) b 1513 (700) b 1729 (800) b 1945 (900) b 2161 (1000) b 

Constraints 865 1086 1307 1507 1725 1943 2616 

Objective (×10 6 ) 7.27 9.27 10.2 11.5 14 16.7 20.6 

CPU time (sec) 908 1812 2087 5095 6800 9748 11,246 

Master prob. 22 42 47 106 256 247 314 

Subproblem 886 1170 2040 4989 6544 9488 10,932 

Iterations 96 165 179 252 418 424 451 

a First iteration. 
b Binary variables. 
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lgorithm leads to improved performance compared to the mul- 

icut algorithm (see Fig. 7 ). The production results obtained with 

he proposed approach are presented in Table 9 and the profiles 

f the output and manipulated variables are presented in Fig. 10 . 

rom the production results, we observe that no transitions occur 

etween the time periods leading to a reduction in the transition 

ost. Product C is overproduced in the first period where the oper- 

ting cost is lower compared to the second time period and prod- 

ct D is overproduced in the last period. 

Finally, we solve the problem for different numbers of planning 

eriods and the convergence results are presented in Table 10 . In 

ll the cases the algorithms are initialized by fixing the production 
10 
equence to 1 → 2 → 3 → 4 for all periods and the optimality gap

olerance is set to 0 . 1% . The economic data can be found in the

upplementary Material. 

From the results we observe that for all cases the proposed 

lgorithms solve the problem faster than GBD and the solution 

hat is obtained is better, i.e. the value of the objective function is 

igher. Specifically, the multicut algorithm reduces the CPU time 

p to 94% (for 7 planning periods) and the hybrid multicut al- 

orithm up to 98% (for 9 planning periods). Both algorithms pro- 

ide better results since the value of the objective function is in- 

reased up to 6 . 4% for 7 planning periods. For all algorithms an

ncrease in the number of planning periods leads to an increase in 
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Fig. 9. Average computational time per iteration for the solution of the master 

problem for different planning periods. 
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he CPU time. For the proposed algorithms this increase is caused 

y the increase in the number of variables/constraints in the mas- 

er problem. For example, the solution of the master problem re- 

uires 43% of the CPU time for the hybrid multicut algorithm for 

 planning periods and 53% of the CPU time for the multicut algo- 

ithm for 10 planning periods, whereas for the GBD algorithm the 

olution of the master problem requires (on average) 2 . 5% of the 

PU time. However, the overall CPU time for the proposed algo- 

ithms is lower since fewer iterations are required, i.e. the master 

roblem and subproblems are solved fewer times. Comparing the 

erformance of the hybrid multicut and multicut algorithm, from 

ig. 9 we observe that the solution time of the master problem per 
Fig. 10. Inlet flowrate and output pro

11 
teration is similar, however since the hybrid multicut algorithm 

equires fewer iterations the total CPU time for the solution of the 

roblem and the solution of the master problem is lower. 

We note that the dynamic optimization problems that are 

olved in each iteration for all algorithms are independent and can 

e solved in parallel. Although this will lead to a reduction in the 

otal CPU time, it will not affect the computational performance 

f the hybrid multicut algorithm compared to GBD, since this par- 

llelization will reduce the computational time for the solution of 

he subproblems. The solution time of the master problem will not 

e affected. From Table 10 we can see that for the cases considered 

he total solution time of the master problem in the hybrid mul- 

icut algorithm is lower than the total solution time of the mas- 

er problem in the GBD algorithm. Therefore, the solution time of 

he hybrid multicut algorithm will still be lower than the solution 

ime of GBD. Finally, based on these results we note that for a 

arge number of products/planning periods the limiting step in the 

roposed algorithm will be the solution of the master problem. In 

uch cases one must employ different acceleration techniques for 

he solution of the master problem, such as using decomposition 

ased solution algorithms like Benders ( Benders, 1962 ) or bilevel 

 Erdirik-Dogan and Grossmann, 2008; Shi et al., 2015 ) decomposi- 

ion. 

. Conclusions 

The optimal operation of process systems depends on the so- 

ution of problems that involve different time scales, the integra- 

ion of which leads to large scale optimization problems. In this 

ork, we proposed a new formulation of the integrated plan- 

ing, scheduling, and dynamic optimization problem for continu- 

us systems. In this approach, all the possible transitions are con- 
file for the second case study. 
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idered simultaneously. Using SBM we analyzed the structure of 

he problem and proposed a multicut and a hybrid multicut Gen- 

ralized Benders Decomposition algorithm. Through case studies 

e showed that the proposed problem formulation and multicut 

nd hybrid multicut GBD algorithms can reduce the necessary CPU 

ime and find a better solution compared to the application of GBD 

sing other formulations. Finally, we point out some extensions of 

he proposed problem formulation and decomposition based solu- 

ion approach in the remarks below. 

emark 4. In this work we considered the case of planning, 

cheduling, and dynamic optimization. The same problem formu- 

ation and solution approach can be followed in the case of the 

ntegration of scheduling and dynamic optimization for continuous 

ystems for different problems such as cyclic/ non-cyclic schedules 

nd single and parallel lines. 

emark 5. In the case studies considered, the production planning 

nd scheduling problem was modelled using a slot based formu- 

ation. We can also follow a Traveling Salesman Problem formula- 

ion ( Charitopoulos et al., 2017; Liu et al., 2008 ). In that case the

ime horizon is discretized into periods and in each period each 

ransition can occur at most once. We can define φi jp as the value 

unction for the dynamic optimization cost for the transition from 

roduct i to j in slot p. The value of φi jp will depend on the value

f the transition time. Therefore, we can follow the same hybrid 

ulticut GBD algorithm to solve the problem. 
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