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The integration of process operations and dynamic optimization leads to large scale optimization prob-
lems whose monolithic solution is challenging. In this paper we propose a new formulation of the inte-
grated planning, scheduling, and dynamic optimization problem for continuous single stage systems. We
analyze the structure of the problem using Stochastic Blockmodeling and we show that the estimated
structure can be used as the basis for a multicut Generalized Benders decomposition (GBD) algorithm,
which can solve the problem in reduced computational time. Furthermore, we propose an accelerated
hybrid multicut algorithm which can lead to further reduction in computational time. Through case stud-
ies, we analyze the computational performance of the proposed formulation and decomposition based
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1. Introduction

The optimal operation of process systems depends on the so-
lution of a wide class of optimization problems which are typi-
cally considered independently. However, fast changing economic
environments render this approach suboptimal and motivate the
integration of different decision levels (Grossmann, 2005; Daou-
tidis et al., 2018). A typical example is the integration of process
operations, i.e. production planning and scheduling, with dynamic
optimization (Baldea and Harjunkoski, 2014; Chu and You, 2015;
Dias and lerapetritou, 2017). In these problems, production deci-
sions such as execution of a task and allocation of resources are
made simultaneously with optimal control decisions leading to in-
creased profitability.

In order to achieve this integration two solution ap-
proaches have been proposed in the literature (Baldea and
Harjunkoski, 2014). In the “top-down” approach, the dynamic
behavior of the system is incorporated in the planning/scheduling
problem, the problem is solved once and the results provide
the production sequence which is the set point for the control
level (Flores-Tlacuahuac and Grossmann, 2006; Nie et al., 2012;
Gutiérrez-Limoén et al., 2014). In the “bottom up” approach the
integrated problem is solved in a rolling horizon manner resulting
in a closed loop implementation (Zhuge and lerapetritou, 2012;
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Pattison et al., 2017; Chu and You, 2014b; Risbeck et al., 2019;
Caspari et al., 2020).

We can argue that the main limitation in both approaches is
the solution of the resulting optimization problem. The main chal-
lenges arise due to the inherently nonlinear behavior of most pro-
cess systems, which in conjunction with the multiple time scales
of the different decision making problems lead to large scale Mixed
Integer Nonlinear Programs (MINLP). The monolithic solution of
such problems is challenging due to the presence of continuous
and discrete variables which are coupled through nonlinear con-
straints (Belotti et al., 2013). In order to improve the tractabil-
ity of these problems two paths can be followed. In the first, the
optimization problem is simplified using surrogate models, typi-
cally approximating the nonlinear dynamic behavior of the system
(Pattison et al., 2016; Zhuge and lerapetritou, 2014; Burnak et al.,
2018; Chu and You, 2014a; Shi et al., 2015; Charitopoulos et al.,
2017). The alternative approach is to use decomposition based so-
lution algorithms and exploit the structure of the full optimization
problem. Typical examples of this approach include the application
of Lagrangean (Terrazas-Moreno et al., 2008; Mora-Mariano et al.,
2020) and Benders (Nie et al., 2015; Chu and You, 2013a; 2013b)
decomposition. Although these algorithms can potentially reduce
the computational time, their application is challenging too. First,
a decomposition of the optimization problem itself is necessary.
Its structure however, as it relates to the requisite solution algo-
rithm, is not always evident. In recent research in our group we
have proposed the application of Stochastic Blockmodeling (SBM)
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and Bayesian inference as a tool to learn the underlying structure
of the problem (Mitrai et al., 2021; Mitrai and Daoutidis, 2021). In
this approach the optimization problem is represented as a graph,
and application of statistical inference allows learning the struc-
ture of the problem which can guide us towards the selection of
the most appropriate decomposition based solution algorithm.

The second issue is related to the convergence of decompo-
sition based solution algorithms which depends strongly on the
problem formulation. For the integration of planning, scheduling,
and dynamic optimization for continuous systems, two problem
formulations have been proposed: one based on slots (Gutiérrez-
Limon et al., 2014) and another one based on the Traveling Sales-
man Problem (Charitopoulos et al., 2017). In this work we will fo-
cus on the slot based formulation, where the planning horizon is
discretized into periods, and each period is discretized into slots.
The values of the state and manipulated variables for each slot
and period depend on the production sequence and the transi-
tion time. We have recently shown that application of nested SBM
(Mitrai and Daoutidis, 2021) can reveal the underlying structure of
such a problem and can be used as the basis for the application of
Generalized Benders Decomposition (GBD) (Mitrai and Daoutidis,
2021; Geoffrion, 1972). However, global optimality can not be guar-
anteed due to the nonconvexity of the dynamic optimization prob-
lems that consider the dynamic transition of the system between
the different products.

In this work, we propose a new formulation of the integrated
problem for single stage continuous processes. Specifically, moti-
vated by the formulation of the integrated scheduling and dynamic
optimization problem for batch systems (Chu and You, 2013a), we
consider all the transitions between the products for all the slots
and periods simultaneously. We analyze the structure of the prob-
lem using SBM and Bayesian inference. Based on the inference
results, we find that the planning/scheduling and dynamic opti-
mization constraints are coupled only through the transition times.
Therefore, the cost associated with the dynamic optimization prob-
lem for each transition, slot, and period depends only on the tran-
sition time and can be replaced by its value function in the objec-
tive function. This structure lends itself to the application of mul-
ticut Generalized Benders decomposition, which solves the prob-
lem in reduced computational time compared to other formula-
tions of the problem and decomposition based solution algorithms
(Gutiérrez-Limén et al., 2014; Mitrai and Daoutidis, 2021). In or-
der to reduce further the computational time we propose a hy-
brid multicut Generalized Benders decomposition algorithm where
the cut associated with one transition in one slot and period is
added for all slots and periods. We show that this approach leads
to further reduction in computational time without affecting the
solution quality. The rest of the document is organized as follows:
In Section 2 we present the integrated optimization problem, in
Section 3 we analyze the structure of the integrated problem and
in Section 4 we present the decomposition based solution algo-
rithms. Finally in Sections 5,6 we analyze the performance of the
proposed algorithms.

2. Problem formulation
2.1. Production planning and scheduling

In this section we will present the planning and scheduling
model for a single stage single line continuous process proposed in
Dogan and Grossmann (2006). We assume that Np (i={1,...,Np})
products must be produced over a planning horizon which is dis-
cretized into Ny (p={1,..., Np;}) periods, which are further dis-
cretized into Ns (k={1,...,Ns}) slots. First we define a binary
variable Wy, which is equal to 1 if product i is produced at slot
k in period p and zero otherwise. We also define the variable
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Zijkp € {0, 1} which is equal to 1 if a product i is followed by prod-
uct j in slot k in period p, and the variable Zp;;, which is equal to
one if transition occurs between product i and j between time pe-
riods. At each time slot only one product can be produced, which
is enforced with the following constraints:

ZWikP =1Vk,p. (1)
i

Based on the sequence of the products at the end of each slot, ei-
ther a transition occurs from product i to j or the same product
is produced in the next slot. The transition between products for
every slot and period is modeled though the following equations:

Zijkp = Wip + Wik1p— 1 Vi, jik# N, p
ZDijkp = Wingp + W1 p1 — 1 Vi, j, p, (2)
where the first constraint considers the transitions between the
slots in a period, and the second constraint considers the transi-
tions between the periods. Due to the possible transitions, each
slot is composed of a production and a transition regime. The pro-
duction time of product i in slot k in period p is ®;,, and the tran-

sition time in slot k in period p is é]ﬁp- The timing constraints are
the following:
7;=0
kap = Tlf,p + Z ®ikp + Glgp Vk, p
i

Tep=Tp Yk#Ns,p
Tpi =TNp Yk p# Nper

®ikp < ‘/V,'kap Vl, I(, p
(:)ip = Z G)ikp Vi, D
k

Ty < PHp Vk.p. (3)
where Tksp is the starting tine of slot k in period p, Tkep is the ending

time in slot k and period p, Hp is the duration of period p and @ip
is the production time of product i in period p. We assume that the
demand of product i in period p (d;,) must be satisfied in the end
of the period. The production rate of product i is r;, the amount of
product i produced in slot k at period p is g, and the amount of
product i produced in period p is g;p. The production and inventory
constraints are:

Gitp = 1Oy Vi k,p
Gip = Y iy Vi.P
k
lip = lip-1+qip = Sip Vi, p
Aip = Hp(lip—l - Sip—l) + qipHP Vi, p
Sip > dip Vl, D, (4)

where [, is the inventory of product i in period p, A;p is the lin-
ear overestimation of the integral of inventory, S;, is the amount of
product i sold in period p. Finally, the following symmetry break-
ing constraints are included:

Yip = ‘/Vikp Vl, k, b
Yip = Nip = Nylp Vi, p

Nip = N (X ¥p—1) = M(1-Wyy) Vip
i

Ny <N-— (ZY,-,,_1)+M(1 ~ Wi, Vip
i

Nip = Zvvikp Vl, p (5)
k
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where Y;, € {0, 1} is equal to 1 if product i is assigned in period
p and zero otherwise, N is the number of slots, M is a parameter,
and N, is equal to the number of slots that product i is manu-
factured in period p. The first constraint (in Eq. (5)) ensures that
every product is assigned to at least one slot every period, the sec-
ond constraint guarantees that if a product is manufactured in a
period then at least one slot must be used, and the last constraint
enforces that a product is manufactured in consecutive slots if nec-
essary. We refer the reader to Dogan and Grossmann (2006) for a
detailed explanation of these constraints.

2.2. Dynamic model

We assume that the dynamic behavior of the system is de-
scribed by a system of ordinary differential equations

X(t) = F(x. u), (6)

where x € R" are the states of the system, u € R™ are the manip-
ulated variables and F : R™™ — R" are vector functions. The dif-
ferential equations are discretized using the method of orthogonal
collocation on finite elements using Ny, (f ={1,...,Ng}) finite el-
ements and N. (c = {1,..., N¢}) collocation points. In this work, we
will consider simultaneously all the possible transitions and will
define the variables Xlnjfckp and u;’}fckp as the values of the nth state
and mth manipulated variable for a transition from product i to
product j at finite element f, collocation point c, slot k and period
p. We will also define 6;j,,, as the transition time for the transition
from product i to j in slot k and period p. The discretized differen-
tial equations are:

Nep
n —un fe on )
Xiickp = XO0jjprp + My > QmeXijfmkp VN0 J. foC ko p
m=1

0.
hfe = ZUkp i g
e = N, j.k.p

Nep
_ f : P
X0y = X0 ¢ 14 +hiﬁ<p E QuncXj r 1y Y0 f=2,¢k p
m=1

Xy = F e UWiiparp) Y1 G foekp
tiep = i (f =1+ v0) Vij f.ck.p
X0jj1kp = X3* Vi, j. k. p
XijNpNepkp = X? Vi, j k. p
Uijrikp = u Vi j. k. p
UijN, Negkp = U Vi, o K, D, (7)

where x°,u¥ are the steady state values of the state and ma-
nipulated variables for product i, € is the collocation matrix,
and y are the Radau roots. We note that in this formulation,
the values of the state and manipulated variables at the begin-
ning and end of each slot and period do not depend on the
binary variables Wy, or Zj,. This is different from Gutiérrez-
Limon et al. (2014), Charitopoulos et al. (2017) where the values of
the states/manipulated variables at the beginning and end of each
slot and period depend on the values of the binary variables.

2.3. Integrated problem

The objective function of the integrated optimization problem
is:

=3 (Pipsip — Gy dip — Cim}At‘p)
i.p

trans trans
— Y G Zijgp — Y CI™Zpyp
i,jk,p i,j,p
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- > Ziwp (“” 2 N2 g e, (Uijgeep = u?)z)
i,j,p.k f.c

_ ZZpijkp (au ZN}T; tidijNspQCvNCD (u,»jchsp — uj,s)2> , (8)
i.j.p fie

where P, is the price of product i in period p, Cflfer is the operating
cost of product i in period p, Ci"V is the inventory cost, ijfa”S is the
transition cost from product i to j, and a, is a weight coefficient.
The first term represents the sales, the second and third terms are
related to the operating and inventory costs, and the fourth and
fifth terms represent the fixed transition cost between the slots
and periods. The last two terms represent the transition cost. In
these terms, the cost of a transition from product i to j in slot k
and period p is multiplied by Z;, (and by Zp;;, if we consider
the transition between the time periods). Therefore, if a transition
does not occur, i.e. Zj, =0 or Zp;;, =0, then the cost does not
contribute to the objective. Finally, the transition time for each slot
and period depends on the transitions that occur and the following
equations are added:

N, N,
QIEP = Z Zgijkpzijkp Yk, k # Ns, p
i=1 i=1
N, N,
Onp = Z Zgijwspzpup VP, p # Nper
i=1 i=1
Oijkp = 67 Vi, j k. p, ©)

where 9{}““ is the minimum transition time for a transition be-
tween product i and j. The integrated optimization problem is:

maximize &

subject to Eq. (1), (2), (3), (4), (5), (7). (9) (10)

This is the general problem formulation for the integration of
planning, scheduling, and dynamic optimization for a single stage
single unit system. In this formulation, each slot is composed of
a production and a transition regime. Therefore, if the number of
slots is equal to the number of products, in the last slot of the last
period no transition occurs. Hence the variables and constraints as-
sociated with all the transitions for this slot can be removed from
the optimization problem.

3. Problem decomposition

In this section we will analyze the structure of the integrated
problem using SBM and Bayesian inference. We refer the reader
to the Supplementary material for an introduction to SBM and
to Mitrai et al. (2021), Mitrai and Daoutidis (2021) for a detailed
explanation on the application of this approach to optimization
problems. For illustration, we consider an isothermal continuous
stirred tank reactor where an irreversible reaction occurs (A — 3B).
The dynamic behavior of the system is described by the following
equation (Gutiérrez-Limoén et al., 2014):

240 — A (s — ctt)) — ke, ()

where ¢ is the concentration of the reactant, Q is the in-
let flowrate (manipulated variable) and V =5000 L,Cfeeq=
1 mol/L, k = 2 L%/ (hr mol?) are the reactor volume, inlet concentra-
tion and reaction rate constant, respectively. In order to keep the
graph simple, we will assume that two products must be produced
in three planning periods and the dynamic model is discretized us-
ing 20 finite elements with 3 collocation points. We apply degree
corrected SBM in the constraint graph of the problem using graph-
tool (Peixoto, 2014). In this graph, the nodes are the constraints of
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Fig. 1. Inference results on the constraint graph of the integrated optimization
problem.

the problem and the edges are the variables that couple two con-
straints. Based on the inference results (Fig. 1), twenty five blocks
are identified. The planning/scheduling constraints are assigned in
one block (nodes in the middle of the graph), and the constraints
that are associated with the dynamic behavior of the system for
each transition, slot, and period are assigned into different blocks.
These blocks are connected with the block in the center of the
graph through one edge, the coupling variables. In this case the
coupling variables are the transition times 6;j,. This hybrid core
community structure in the graph is also manifested in the L shape
of the w (block density) matrix inferred for the SBM:

1392 1 1 ... 1
1 6794 0 . 0
o= 1 0 6794 ... 0 € R25%25
1 0 6794

where the w;; entry of this matrix is equal to the number of edges
between the nodes in block i and the nodes in block j. The plan-
ning/scheduling constraints form the core, which is connected with
all the communities, i.e. the constraints of the dynamic optimiza-
tion problems, through the variables 0;jyp,.

We note that although the structure of this problem is the
same as the one identified using nested SBM in our previous work
(Mitrai and Daoutidis, 2021) based on the problem formulation
proposed in Gutiérrez-Limén et al. (2014), the coupling variables
differ. In Mitrai and Daoutidis (2021) the coupling variables are the
transition time, initial and final states, and manipulated variables.
In this case the coupling variables are only the transition times
B;jkp- This coupling of the variables/constraints can be attributed
to the modeling of the transitions. The state and manipulated vari-
ables depend on the transition times through the discretization of
the differential equations.
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4. Decomposition based solution algorithm

4.1. Problem reformulation based on the identified structure from
SBM

Given the structure of the problem the variables can be decom-
posed into three sets. The first contains the variables that are as-
sociated with planning and scheduling decisions, the second set
contains the variables that are associated with transitions between
products, and the last set contains the coupling variables (transi-
tion times) that couple the planning/scheduling decisions with the
dynamic optimization decisions. Given this partition of the vari-
ables, if we fix the planning/scheduling and the coupling variables,
then the dynamic optimization problems for the transitions are in-
dependent and depend only on the transition time ¢;j. The dy-
namic optimization problem for a transition from product i to j in
slot k and period p is:

Ne —Nep nr_ 2
fe cp 1¢d B 1SS
—ow el 2 Ny tyfglkaan (Wi — u j)
n — n e P Vi
Xijfekp _3<OUﬂ<p + h{m P chxijfmkp vn, f.c
e _ Oijkp
ijkp = Ne M
n _ n e cp vl
X0y = XOj r_1jp + h)t;'kp Yome1 LmeXij ¢4 iy
v — n m
Ky = f (K> Uijsp) V1. f €
d _pf (f_
tijfckp - h{jkp (f 1+ )/c) Vf’ ¢
X0jiip = X°
" — x5S
XijNeNepkp = X
Uik = U
" — 155
uUNIENrukP - uj

maximize
subject to

vn, f>2,c

Osikp = Osip-

We will write this problem as:

dyn
ijkp

<0 (13)

maximize —

subject to

Oijkp = ijip

which is equivalent to minimizing fl‘;{z subject to gﬂ'}) <0 and

Oijkp = Vijkp- The solution of this problem depends on the value of
the transition time 6;j,. We define as ¢;j,,, the value function of a
transition from product i to j in slot k and period p, which is equal
to the optimal value of the objective function of the following op-
timization problem:

minimize ~ f&"

ijkp
subject to i};{'}) <0
Oiitp = Oijkp ~ * Mijikp (14)
where A, is the Lagrange multiplier for the equality constraint

Oijkp = Oijkp- The value function depends only on the transition
time, i.e. the coupling variable.

The objective function of the integrated problem can be decom-
posed into two parts. The first contains the cost associated with
the planning/ scheduling variables (®¢) and the second part con-
siders the transition costs (®;):
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P = Z(Pipsm Clolf]erq — C"A; )

iLp
trans trans

- Z C Zl]kp ch]‘ Zpijp

ijk.p ijp
— 5512
b; = Z Zz]kp(auz fe Ukap Qe N, Wijfekp _uj) )
i,j.k,p
$5\2

Zzpukp<auz fe l]fCNsp C,Ncp(uijchSp - uj) )
LJp

Based on the value function of the dynamic optimization problem,
the integrated problem is written as follows:

- Zzijkp¢ijlcp(9ijlcp) - Zzpiqusiijp(eistp)
ijkp ijp
subject to Egs. (1), (2), (3), (4), (5), (9). (15)

This problem is equivalent to the original integrated problem
(Eq. (10)) since ¢, is only a function of the transition time
B;jkp as identified by the application of SBM. Therefore, if a tran-
sition does not occur, i.e. Zjj, =0, then Zj,;jkp (Gijkp) = 0 even
if @jkp(Bijip) # 0, so the cost associated with this transition does
not affect the profit. If the transition occurs, i.e. Z;, = 1, then the
cost, which is equal to ¢;j, (6;jxp), affects the profit.

maximize &,

4.2. Solution algorithm

The above problem can not be solved directly since the value
functions are not known explicitly. We will follow a cutting plane
method to solve the problem. Specifically, we will approximate
the value functions with hyperplanes. From Geoffrion (1971), it is
known that if the value function ¢;j,,, is convex and we solve the
problem in Eq. (14) for Qukp = 0;jkp, We can outer approximate ¢;jy,
as follows:

Biiip Oijt) = Bijiep i)
+ a¢l]kp(91]kp)(91jkp - el]kp) ngjkp = gmm (16)

where 8(1)(9,]@) is the subgradient of the value function for 6;j, =
0, ikp and is equal to the negative of the optimal Lagrange multiplier
Aijkp for the equality constraint 6;j, = 9,]kp

Given this approximation, if we solve the dynamic optimization
problems for different values of 6;;,,, we can approximate the func-
tion ¢, and the problem:

ijkp»

ijkp

minimize Dijip Oijip) (17)
ijkp

is equivalent to Geoffrion (1970a,b):

minimize Nijkp
eijky
subjectto My = Pl Oy) — A Orjip — O )Vv=1..... v (18)

where V = {vq, 5, ..., Vn} is the number of points used to approxi-
mate the value function and the overbar denotes a fixed value. The
integrated optimization problem can be written as:

maximize
subject to

D1 — 3 ik ZijkpMijkp — 2ijp ZPijpMijNep

Egs. (1), (2), 3), (4),(5),(9)

Mijkp = Py — Mitep Grep — ,]kp) Vi, jk.pveV
(19)

We note that the tangent approximation corresponds to the Ben-
ders cuts (Geoffrion, 1972). We will follow a Generalized Ben-
ders Decomposition approach to solve this problem. The mas-
ter problem is the relaxed planning/scheduling problem and the
subproblems are independent dynamic optimization problems for
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each transition, slot, and period. The dynamic optimization prob-
lems are solved only for the transitions that occur, i.e. (i, j, k, p) €
{(1, js kv p)lzijkp = ]}’ (ls jr p) € {(la jv p)|Zp1]p = 1}' Once the sub-
problems are solved, the following Benders cuts are added in the
master problem:

nukp = ¢1]kp - )"ljl(p(eljkp - Gukp)
if Zijkp =1 and
NiiNep = Pijnep — Aijngp (Gijn, — Oijnp)

if Zp;jj, =1, where the overbar denotes a fixed value. The
steps that are followed to solve the problem are presented in
Algorithm 1. In this approach at every iteration one cut is added

Algorithm 1 Multicut Generalized Benders Decomposition based
on the learnt structure.
Require: Optimization problem

1: Set UB = 00, LB = —c0

2: Set tolerance and optimality gap (tol)

3: Initialize the algorithm by fixing the production sequence and
obtain the transitions that occur, transition times, Lagrangean
multipliers A;jp, ¢ijkp and add tangent approximation (Line 10)

4: while (UB - LB)/LB > tol/100 do

5: Solve the master problem (Eq. 19), obtain UB and transitions

6: Solve the dynamic optimization problems (Eq. 14) that cor-
respond to Zj, = 1,Zp;jp = 1

Obtain Lagrangean multipliers A;jip, Pijkps D1, P2

8: Update lower bound LB = max{LB, ®; — ®,}

9: Add following tangent approximation in the relaxed prob-
lem:

10:

if Zijp=1 add nijkp > ijkp — Aijkp Gijip — éijkp)_

if Zpijp=1 add mijnp = Gijnp — Aijnep Gijvgp — Gijnp)
11: end while
12: return Upper, lower bound and variable values

for every transition that occurs, therefore multiple cuts are added
per iteration. This approach is known in the literature as multicut
Benders decomposition (Birge and Louveaux, 2011).

We can exploit further the structure of the problem to accel-
erate its solution. Specifically, since n is defined for all (ijkp), the
approximation of the transition from i to j in slot 1 is also valid in
all the other slots and periods. Therefore, we propose an acceler-
ated hybrid multicut algorithm where in each iteration we add the
constraints:
Nijkp = Dijkp — Mijkp Gijieyy — Oijkp) Vi, j. k' € Ns, p' € Nper
if Zijkp =1 and

Nijkp = Dijnp — Mijngp By — Oijnp) Vi, J. k' € N, P’ € Nper

if Zp;jp = 1, where the overbar denotes a fixed value. In this ap-
proach, at each iteration, for each transition that occurs multiple
cuts are added. We note that the addition of multiple cuts per iter-
ation is a common strategy in decomposition based solution meth-
ods for MINLP problems (Su et al., 2015; Kronqvist et al., 2016). In
these cases the solution of the master problem provides a pool of
solutions which can be used to solve multiple subproblems which
lead to the addition of multiple cuts per iteration. In the proposed
hybrid multicut GBD approach, the subproblems are solved based
on the global solution of the master problem but the cut for a
transition between product i and j in slot k and period p is used
to approximate the value functions for the specific transition for all
slots and periods. The steps that are followed to solve the problem
are presented in Algorithm 2. For both algorithms (multicut and
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Algorithm 2 Hybrid Multicut Generalized Benders Decomposition.

Require: Optimization problem
1: Set UB = 00, LB = —c¢
2: Set tolerance and optimality gap (tol)

3: Initialize the algorithm by fixing the production sequence and obtain the transitions that occur, transition times, Lagrangean multipliers

Aijkp» @ijkp and add tangent approximation (Line 10)
. while (UB — LB)/LB > tol/100 do

Solve the master problem (Eq. 19), obtain UB and transitions

Solve the dynamic optimization problems (Eq. 14) that correspond to Z;j, = 1,Zp;j, = 1

4

5

6:

7: Obtain Lagrangean multipliers A;jip, @jjip, 1, P2
8 Update lower bound LB = max{LB, ®; — ®,}

9

Add following tangent approximation in the relaxed problem:
if Zijp=1 add iy = Gijep — Aijip Oijiy — Oijip) Vi, j. k' € Ns, p’ € Nper

if Zpl-jp =1 add nijk/p’ > ¢istP — )“istp(eijk/p/ — Gistp) Vl, j, K e Ns, p’ € Nper

11: end while
12: return Upper, lower bound and variable values

Table 1
Operating conditions and product price for the first case study.
Product ¢ (mol/L) QsS(L/h) Production rate
A 0.24 200 150
B 0.2 100 80
C 0.30 400 278
D 0.39 1000 607

hybrid multicut), the relaxed problem is a Mixed Integer Nonlin-
ear Program (MINLP) with bilinear terms in the objective function
(ZijkpNijkp» ZPijpMijngp) and in Eq. (9) (ZijipBijkp» ZDijpbijngp) SOlved
with Gurobi (Gurobi Optimization, LLC, 2021). We note that this
problem can be transformed into a Mixed Integer Linear Program
(MILP) by linearizing the bilinear terms. Specifically we can replace
every bilinear term, e.g. Z;ji,;jkp With 7 € [ﬂij’ 11;j] as follows

min{O,Qij} < Sijkp < 1ij
ﬁijzijkp < Bijkp < MijZijkp
Nijkp — (1 = Zijiep)Mij < Sijp < Nijkp — (1 —Zijkp)ﬂij
Sijep = Nijkep + (1 = Zijip) ;-

(20)

The computation of Mo 7j;; is presented in the Supplementary ma-

terial. Similarly we can linearize the Z;jy,0;;, bilinear terms. Al-
though this leads to a MILP, we found that for small planning hori-
zons solving the master problem with the bilinear terms (using
Gurobi) is faster than solving the MILP model. Hence, in the first
case study (Section 5) the master problem is a MINLP whereas in
the second case study (Section 6) we use the MILP model. The sub-
problems are nonlinear optimization problems solved with IPOPT
(Wdchter and Biegler, 2006) and the values of the dual variables
that are used are the ones returned by IPOPT. The algorithm is im-
plemented in Python using Pyomo (Hart et al., 2017).

Remark 1. In the proposed algorithms the hyperplanes that ap-
proximate a value function are valid under the assumption that
the value function is concex. For the isothermal CSTR considered
in Section 3, when four products can be produced, the value func-
tion for each transition from product 1 to the other products is
shown in Fig. 2 and the Benders cut for the transition from prod-
uct 1 to product 2 is shown in Fig. 3 (the steady state values of the
concentration and inlet flowrate are presented in Table 1). From
these figures we observe that the value functions are convex and
the Benders cuts are valid understimators.

Remark 2. Given the convexity of the value functions, the pro-
posed multicut and hybrid multicut algorithms can be used to

1.0 4 — 1 2, bpaz = 10.8 x 103
) == 13, bpar = 12.8 x 10
0s4 | —— 1 =4, ¢pae = 42.7 x 10*
|
= 0.6 l‘.
I~
g
s \
i
S 0.4 \
\
0.2 4
0.0 4
2 3 4 5 6 7 8

Time hr

Fig. 2. Transition cost for a transition from product 1 to products 2,3,4. The x axis
is the transition time and the y axis the scaled cost. The steady state values of the
state and manipulated variable are given in Table 1.
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= Approximation at = 2.5
8000 4 — = Approximation at § = 4
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6000
<
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2000 A
0 -
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Time hr

Fig. 3. Approximation of the value function for three different values of 6.

solve the problem to global optimality since the Benders cuts are
valid understimators of the value functions. However, the solution
of the integrated problem to global optimality requires that the
subproblems are also solved to global optimality. Although this can
be achieved using global optimization solvers like BARON (Kiling
and Sahinidis, 2018), this can increase the CPU time in cases where
the subproblems have a large number of variables/constraints and
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Table 2
Operating and transition cost for the first case study, C"" = 0.026, a, = 1.
CO]J@T CU’GHS

Product p=1 p=2 A B C D
A 13 13 0 100 60 120
B 22 12 150 0 50 80
C 35 45 200 150 0 100
D 29 19 90 100 120 0

Table 3
Product demand for the first case study.

Demand (mol/week) Price ($/mol)

Prod. p=1 p=2 p=1 p=2
A 8000 9000 200 220
B 4000 3600 160 140
C 7000 8000 130 150
D 6000 11,000 110 110

nonconvex terms. In the case studies presented in this paper
we solve the subproblems with IPOPT and therefore global op-
timality cannot be guaranteed. We also note that in the gen-
eral case, where the value functions are not convex the pro-
posed algorithms can still be applied but global optimality can-
not be guaranteed even if the subproblems are solved to global
optimality.

Remark 3. The idea of replacing the transition cost with
its value function has been previously pursued in literature.
In Shi et al. (2015), the dynamic optimization problem was
solved for different values of the transition time and a flexi-
ble recipe approach was followed to solve the integrated plan-
ning, scheduling, and dynamic optimization problem. Similarly in
Charitopoulos et al. (2017) a surrogate model was used to ap-
proximate the transition cost. A similar approach was followed in
Chu and You (2014a), where a cooperative game theoretical ap-
proach was followed and the problem was formulated as a two
level game. The first level agent solves the scheduling problem and
the second level agent solves the dynamic optimization problem by
considering only its objective value. The value function of the dy-
namic optimization problem was approximated using piece-wise
linear functions. In the above approaches the transition cost and
value of the objective function obtained are approximate. In our
approach, the proposed algorithm provides the exact solution of
the problem.

5. Case study 1: Isothermal CSTR

In the first case study we consider the isothermal CSTR whose
dynamic behavior is described by Eq. (11). We assume that four
products must be produced in two planning periods, each com-
posed of four slots. The economic data of the problem, adapted
from Gutiérrez-Limon et al. (2014), can be found in Tables 1, 2, 3.
We solve the problem with the proposed formulation and multi-
cut and hybrid multicut decomposition based solution algorithms
and compare them with the application of Generalized Benders
Decomposition based on the structure found in Mitrai and Daou-
tidis (2021) using the formulation of the integrated problem pro-
posed in Gutiérrez-Limén et al. (2014). The formulation of the
integrated problem and formulation of GBD (Mitrai and Daou-
tidis, 2021) can be found in the Supplementary material. In this
case study, we constrain the rate of change of the manipulated
variable for the dynamic optimization problems through the fol-
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Fig. 4. Evolution of the gap for the proposed algorithms and GBD (Benders decom-
position) based on Gutiérrez-Limén et al. (2014), Mitrai and Daoutidis (2021) for
the first case study.
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Fig. 5. Evolution of the upper and lower bounds for the proposed algorithms and
GBD (Benders decomposition) based on Gutiérrez-Limén et al. (2014), Mitrai and
Daoutidis (2021) for the first case study.

lowing constraints:

d d
Uiigekp ~ Uip—t.cep = Un™ Wjap — Ljp_1.c1p)
vm,i,j, f>=1,¢ckp
d d
Un™ (Eipep — Llipe_1.1p)
vm,i, j, f,c>1,kp

m m
Wiitekp ~ Yijfe—1hp =

i d d
u;?fckp - u?}f—l,ckp = Un™ gtl'l,'ffkp - tijf—Lckp)
vm,i, j, f>1,c,k,p
i d d
Wik ~ Uijge-1kp = Un'" e ~ Lijre1.1)
vm,i, j, f,c>1k, p,

where UPa Umin js the maximum and minimum change for ma-
nipulated variable m. The dynamic model is discretized using 20
finite elements with 3 collocation points. For all algorithms the
optimality gap was set equal to 0.1%, and the initial production se-
quence was A — B — C — D for both periods. The master problem
in the first iteration has 592 variables and 445 constraints and the
dynamic optimization problem for each transition, slot and period
has 265 variables and 326 constraints.

The evolution of the optimality gap and the upper and lower
bound with the CPU time for the different algorithms is presented
in Fig. 4, 5. Based on the results, GBD based on the formulation
and decomposition from Gutiérrez-Limon et al. (2014), Mitrai and
Daoutidis (2021) converges after 150 CPU seconds (131 iterations)
and the value of the objective function is 8.781 x 106. The multi-
cut algorithm converges after 15 CPU seconds (28 iterations) lead-
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Table 4
Production results for the for the first case study.
Period 1
Slot Product Production amount (mol) Production time (hr) Transition time (hr)
1 B 4000 50.0 0.98
2 A 8000 533 1.21
3 C 14,176 51 1.58
4 D 6000 9.8 0
Period 2
Slot Product Production amount (mol) Production time (hr) Transition time (hr)
1 D 29,968 49.3 1.87
2 C 823 2.9 1.55
3 A 9000 60 2.24
4 B 4000 50 0
Period 1 Period 2
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Fig. 6. Concentration and inlet flowrate profiles for each slot and period for the first case study.

ing to a 90% reduction in CPU time and the objective function is
8.782 x 108, From Fig. 5 we observe that the multicut algorithm
reduces the bounds faster even though initially the lower bound
obtained from GBD is better. The hybrid multicut algorithm con-
verges after 5 s (8 iterations) leading to a 96% reduction in CPU
time compared to GBD and 66% compared to the multicut algo-
tirhm. The solution that is obtained is the same as the one ob-
tained from the multicut algorithm. The difference in the solution
time is due to the fact that in the hybrid multicut algorithm, in
each iteration more information is added in the master problem
through the multiple cuts for each transition. In GBD and the mul-
ticut algorithm, in each iteration the Benders cut provides infor-
mation only about the specific production sequence and transition
time. The production results obtained from the proposed algorithm
are presented in Table 4, and the concentration and inlet flowrate

profiles are presented in Fig. 6. From the production results, we
see that the demand is satisfied and product D is overproduced in
the second period. Additionally, product C is overproduced in the
first period in order to satisfy the demand in the second period
where the operating cost is higher, compared to the first period.
Finally, no transition occurs between the two periods leading to a
reduction in the cost and increase in the profit.

6. Case study 2: MMA polymerization reactor

In the second case study we will consider a methyl methacry-
late (MMA) polymerization process. The states of the system are
the concentration of the monomer c;;, the concentration of the ini-
tiator ¢;, concentration of dead chains Dy and mass concentration
of dead chains D;. The input is the flowrate of the initiator F and
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Table 5
Parameters of the dynamic model for the MMA rector.
Parameter Value
F 10 m3/h
\% 10 m3
f* 0.58
kp 2.5 10 m3/(kmol h)
Kea 1.09 10" m3/(kmol h)
kfm 2.45 10° m3/(kmol h)
; 1.02 10! h!
cin 8 kmol/m?
cin 6 kmol/m?
Mp, 100.12 kg/kmol
Table 6
Steady state and production rate values for the MMA rector.
Products
Steady state value 1 2 3 4
Cm 3.07 3.22 3.33 3.43
G 0.14 0.12 0.1 0.09
Dy 0.019 0.016 0.014 0.012
Dy 292 277 267 257
Y 15,000 17,000 18,500 20,000
F 0.2 0.16 0.14 0.12
Prod. rate (kg/hr) 123 76.4 50.8 35.2

the output is the molecular weight of each product Y. Based on the
value of the initiator inlet flowrate, products with different molec-
ular weight can be produced. The dynamic behavior of the sys-
tem is described by the following differential equations (Chu and
You, 2013b):

dem(t) F(cit — cp(t))

rT —(kp + kpm)Pcm (t)y/Ci(t) + v

% = —kic;i(t) + w
dD(;t(t) = (0.5kec + kg)P2i () + kP (£)y/ci(£) — FD‘(;(t)
dD{;t(t) = My (kp + k)P (£) /i) — FD‘l/(t)
Y(t) = D1(t)/Do(t)
_ 2f*kg
= m (22)

The parameters of the dynamic model can be found in Table 5
(Chu and You, 2013b). We will assume that four products must
be produced in three planning periods. The steady state values of
the states, inlet flowrate and molecular weight are presented in
Table 6. In this case, the dynamic model is discretized using 20 fi-
nite elements and 3 collocation points. The dynamic optimization
problems for each slot has 741 variables and 689 constraints and
in the first iteration the master problem has 1368 variables and
2966 constraints. We solve the problem using the proposed mul-
ticut and hybrid multicut algorithms and GBD based on Gutiérrez-
Limén et al. (2014), Mitrai and Daoutidis (2021). The algorithms
are initialized by fixing the product sequence to 1 —2 — 3 — 4
for all periods and the optimality gap tolerance is set to 0.1%. The
economic data of the problem are presented in Tables 6, 7, 8.

The evolution of the optimality gap and the upper and lower
bound with the CPU time for the different algorithms is presented
in Fig. 7, 8. The multicut algorithm converges after 90 CPU sec-
onds (17 iterations), the hybrid multicut algorithm converges af-
ter 35 s (7 iterations) and the value of the objective function is
5.06 x 106, GBD based on Gutiérrez-Limén et al. (2014), Mitrai and
Daoutidis (2021) converges after 425 CPU seconds (71 iterations)
and the value of the objective function is 4.84 x 106. The produc-

Table 7
Operating and transition cost for the second case study, C" = 0.026, a, = 10°.
COPET C[YUHS
Product p=1 p=2 p=3 A B C D
1 23 10 15 0 150 120 180
2 30 25 20 160 0 180 160
3 45 55 40 150 100 0 90
4 50 29 20 110 100 120 0
Table 8
Product demand and price for the second case study.
Demand (kg/week) Price ($/kg)
Prod. p=1 p=2 p=3 p=1 p=2 p=3
1 2500 2200 2150 300 280 250
2 2200 1400 1800 180 150 160
3 3000 3500 2500 160 190 180
4 1000 2000 1500 120 120 130
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Fig. 7. Evolution of the upper and lower bound for the different algorithms for the
second case study.
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Fig. 8. Evolution of the optimality gap for the different algorithms for the second
case study.

tion sequence that is obtained from this algorithm is the same
as the initial guess, leading to lower value of the objective func-
tion compared to the solution obtained by the multicut and hybrid
multicut algorithm. In this case, the hybrid multicut algorithm re-
duces the CPU time by 91 %, the multicut algorithm by 78% and
the value of the objective is improved by 4.5%. Similar to the pre-
vious case study the multicut and hybrid multicut algorithms im-
prove the upper and lower bounds faster compared to GBD. Also,
the addition of multiple cuts per transition in the hybrid multicut
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Table 9
Production results for the second case study.
Period 1
Slot Product Production amount (kg) Production time (hr) Transition time (hr)
1 4 1000 28.36 1.10
2 3 4013 78.86 1.14
3 2 2200 28.76 1.41
4 1 3481 28.28 0
Period 2
Slot Product Production amount (kg) Production time (hr) Transition time (hr)
1 1 3481 28.28 1.95
2 2 2200 28.76 1.69
3 3 2486 48.85 1.66
4 4 2000 56.72 0
Period 3
Slot Product Production amount (kg) Production time (hr) Transition time (hr)
1 4 2000 56.72 1.10
2 3 3500 68.77 1.25
3 2 1000 13.07 1.41
4 1 3156 25.64 0
Table 10
Convergence results for the MMA reactor for different planning periods.
4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks
Hybrid Multicut algorithm
Master problem?
Variables 1824 (400)° 2280 (500)° 2736 (600)° 3192 (700)° 3648 (800)° 4104 (900)° 4560 (1000)°
Constraints 3959 4952 5945 6938 7931 8924 9917
Objective (x108) 7.57 9.66 10.70 12.24 14.7 17.64 21.58
CPU time (sec) 56 72 123 100 161 128 247
Master prob. 14.2 20 54 28.8 62.5 413 106
Subproblem 41.8 52 68 71.2 98.5 86.7 141
Iterations 7 6 7 6 7 5 6
Multicut algorithm
Master problem?
Variables 1824 (400)° 2280 (500)° 2736 (600)° 3192 (700)° 3648 (800)° 4104 (900)° 4560 (1000)°
Constraints 3959 4952 5945 6938 7931 8924 9917
Objective (x106) 7.57 9.66 10.70 12.24 14.7 17.64 21.5
CPU time (sec) 156 199 464 289 681 613 1193
Master prob. 42.58 72.94 212.32 111 306 256 612
Subproblem 113.15 126.06 251.68 178 375 357 571
Iterations 23 21 28 17 27 19 30

Generalized Benders Decomposition from (Gutiérrez-Limén et al., 2014; Mitrai and Daoutidis, 2021)

Master problem?

Variables 865 (400)° 1081 (500)° 1297 (600)°
Constraints 865 1086 1307
Objective (x108) 7.27 9.27 10.2

CPU time (sec) 908 1812 2087
Master prob. 22 42 47
Subproblem 886 1170 2040
Iterations 96 165 179

1513 (700)° 1729 (800)" 1945 (900)° 2161 (1000)°

1507 1725 1943 2616
115 14 16.7 20.6
5095 6800 9748 11,246
106 256 247 314
4989 6544 9488 10,932
252 418 424 451

2 First iteration.
b Binary variables.

algorithm leads to improved performance compared to the mul-
ticut algorithm (see Fig. 7). The production results obtained with
the proposed approach are presented in Table 9 and the profiles
of the output and manipulated variables are presented in Fig. 10.
From the production results, we observe that no transitions occur
between the time periods leading to a reduction in the transition
cost. Product C is overproduced in the first period where the oper-
ating cost is lower compared to the second time period and prod-
uct D is overproduced in the last period.

Finally, we solve the problem for different numbers of planning
periods and the convergence results are presented in Table 10. In
all the cases the algorithms are initialized by fixing the production

10

sequence to 1 — 2 — 3 — 4 for all periods and the optimality gap
tolerance is set to 0.1%. The economic data can be found in the
Supplementary Material.

From the results we observe that for all cases the proposed
algorithms solve the problem faster than GBD and the solution
that is obtained is better, i.e. the value of the objective function is
higher. Specifically, the multicut algorithm reduces the CPU time
up to 94% (for 7 planning periods) and the hybrid multicut al-
gorithm up to 98% (for 9 planning periods). Both algorithms pro-
vide better results since the value of the objective function is in-
creased up to 6.4% for 7 planning periods. For all algorithms an
increase in the number of planning periods leads to an increase in
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Fig. 9. Average computational time per iteration for the solution of the master
problem for different planning periods.

the CPU time. For the proposed algorithms this increase is caused
by the increase in the number of variables/constraints in the mas-
ter problem. For example, the solution of the master problem re-
quires 43% of the CPU time for the hybrid multicut algorithm for
6 planning periods and 53% of the CPU time for the multicut algo-
rithm for 10 planning periods, whereas for the GBD algorithm the
solution of the master problem requires (on average) 2.5% of the
CPU time. However, the overall CPU time for the proposed algo-
rithms is lower since fewer iterations are required, i.e. the master
problem and subproblems are solved fewer times. Comparing the
performance of the hybrid multicut and multicut algorithm, from
Fig. 9 we observe that the solution time of the master problem per
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iteration is similar, however since the hybrid multicut algorithm
requires fewer iterations the total CPU time for the solution of the
problem and the solution of the master problem is lower.

We note that the dynamic optimization problems that are
solved in each iteration for all algorithms are independent and can
be solved in parallel. Although this will lead to a reduction in the
total CPU time, it will not affect the computational performance
of the hybrid multicut algorithm compared to GBD, since this par-
allelization will reduce the computational time for the solution of
the subproblems. The solution time of the master problem will not
be affected. From Table 10 we can see that for the cases considered
the total solution time of the master problem in the hybrid mul-
ticut algorithm is lower than the total solution time of the mas-
ter problem in the GBD algorithm. Therefore, the solution time of
the hybrid multicut algorithm will still be lower than the solution
time of GBD. Finally, based on these results we note that for a
large number of products/planning periods the limiting step in the
proposed algorithm will be the solution of the master problem. In
such cases one must employ different acceleration techniques for
the solution of the master problem, such as using decomposition
based solution algorithms like Benders (Benders, 1962) or bilevel
(Erdirik-Dogan and Grossmann, 2008; Shi et al., 2015) decomposi-
tion.

7. Conclusions

The optimal operation of process systems depends on the so-
lution of problems that involve different time scales, the integra-
tion of which leads to large scale optimization problems. In this
work, we proposed a new formulation of the integrated plan-
ning, scheduling, and dynamic optimization problem for continu-
ous systems. In this approach, all the possible transitions are con-
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Fig. 10. Inlet flowrate and output profile for the second case study.
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sidered simultaneously. Using SBM we analyzed the structure of
the problem and proposed a multicut and a hybrid multicut Gen-
eralized Benders Decomposition algorithm. Through case studies
we showed that the proposed problem formulation and multicut
and hybrid multicut GBD algorithms can reduce the necessary CPU
time and find a better solution compared to the application of GBD
using other formulations. Finally, we point out some extensions of
the proposed problem formulation and decomposition based solu-
tion approach in the remarks below.

Remark 4. In this work we considered the case of planning,
scheduling, and dynamic optimization. The same problem formu-
lation and solution approach can be followed in the case of the
integration of scheduling and dynamic optimization for continuous
systems for different problems such as cyclic/ non-cyclic schedules
and single and parallel lines.

Remark 5. In the case studies considered, the production planning
and scheduling problem was modelled using a slot based formu-
lation. We can also follow a Traveling Salesman Problem formula-
tion (Charitopoulos et al., 2017; Liu et al., 2008). In that case the
time horizon is discretized into periods and in each period each
transition can occur at most once. We can define ¢;;, as the value
function for the dynamic optimization cost for the transition from
product i to j in slot p. The value of ¢;;, will depend on the value
of the transition time. Therefore, we can follow the same hybrid
multicut GBD algorithm to solve the problem.
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