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ABSTRACT:  Adeno-associated viral (AAV) vectors have emerged as gene therapy and vaccine delivery systems. Differential 
scanning fluorimetry or differential scanning calorimetry are commonly used to measure the thermal stability of AAVs, but 
these global methods are unable to distinguish the stability of different AAV subpopulations in the same sample. To address 
this challenge, we combined charge detection-mass spectrometry (CD-MS) with a variable temperature (VT) electrospray 
source that controls the temperature of the solution prior to electrospray. Using VT-CD-MS, we measured the thermal stability 
of empty and filled capsids. We found that filled AAVs ejected their cargo first and formed intermediate empty capsids before 
completely dissociating. Finally, we observed that pH stress caused a major decrease in thermal stability. This new approach 
better characterizes the thermal dissociation of AAVs, providing the simultaneous measurement of the stabilities and disso-
ciation pathways of different subpopulations. 

AAV vectors are currently being used as gene therapy 
and vaccine delivery systems for a range of diseases,1-5 with 
multiple FDA-approved AAV therapies.1,3,6 For example, 
Luxturna is an AAV2 therapeutic for hereditary blindness, 
and Zolgensma is an AAV9 therapeutic for spinal muscular 
atrophy.7 One component in the quality control and devel-
opment of AAV capsid therapeutics is the measurement of 
their thermal stability.8-9 Typically, differential scanning flu-
orimetry (DSF) and differential scanning calorimetry (DSC) 
are used to characterize the stability of AAVs by measuring 
their melting temperature (Tm).3,10-12 Most AAV serotypes 
have published Tm values in different buffers and in differ-
ent stressed conditions.10,12  DSF and DSC experiments have 
shown that AAVs have Tm values that typically range from 
55–85 °C, and filled AAVs typically have similar or higher Tm 

values compared to their empty counterparts.10-12 These ex-
periments provide simple measurements of the global ther-
mal stability of AAV samples, but many preparations of 
AAVs have heterogeneous populations of empty, partially 
filled, and filled capsids that are not distinguishable by con-
ventional methods.13-16  

Native charge detection-mass spectrometry (CD-MS) 
has previously been used to measure the intact mass of AAV 
capsids and characterize the ratios of empty, partially filled, 
fully filled, and extra filled viral capsids.13-14,17-18 Native MS 
retains non-covalent interactions in the gas-phase, which 

allows AAV capsids to remain intact in the mass spectrome-
ter.14,19 CD-MS simultaneously measures the m/z and charge 
of ions to directly determine the mass. CD-MS was pio-
neered using home built instruments,14,20-21 but recent work 
has extended this to commercial Orbitrap instruments.19,22   

Although CD-MS with AAVs has advanced significantly, 
our hypothesis was that CD-MS could be coupled with vari-
able temperature electrospray ionization (VT-ESI) to char-
acterize the thermal stability of AAV subpopulations during 
mass analysis. A previous CD-MS study4 heated AAV capsids 
prior to mass analysis, and we wanted to build on this 
method by heating the capsids during continuous CD-MS 
analysis. By carefully controlling the temperature of the an-
alyte solution in the needle during ionization, VT-ESI-MS 
with conventional native MS has previously been used to 
study protein unfolding23 and thermodynamics of bio-
molecular interactions.24-27 A recent review gives a compre-
hensive overview of variable temperature MS methods.24  

Although it is possible to resolve empty AAVs and per-
form online thermal denaturing with conventional native 
MS (Figure S1–S3 and Supplemental Results), the raw data 
was noisy, and it was difficult to resolve the individual 
charge states for AAV capsids at higher temperatures. Fur-
thermore, we were unable to resolve filled AAVs with native 
MS. To address these limitations, we used Orbitrap CD-MS, 
which uses the signal intensity of single ions to determine 
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Figure 1.  
C C, which shows a loss of mass at higher temperatures. B) Temperature vs mass plot of AAV8 capsids at pH 7 as blue
circles, pH 5 as red squares, and pH 3 in magenta diamonds. Stressed capsids dissociate at a lower Tm
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