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We study the pairing of fermions by an interaction consisting of a Hubbard repulsion, mimicking a screened
Coulomb potential, and a dynamical phonon-mediated attraction. For such interaction, the gap equation allows
even- and odd-frequency solutions A, and A,. We show that odd-frequency pairing does not develop within

the Eliashberg approximation due to over-critical pair breaking from the self-energy. When vertex corrections
are included, the pairing interaction gets stronger, and A, can develop. We argue that even in this case keeping
the self-energy is still a must as it cancels out the thermal piece in the gap equation. We further argue that A,
is not affected by Hubbard repulsion and for strong repulsion is comparable to a reduced A,. The resulting
superconducting state is a superposition A, £ iA,, which spontaneously breaks the time-reversal symmetry,

despite that the pairing symmetry is an ordinary s wave.

DOI: 10.1103/PhysRevB.106.104515

I. INTRODUCTION

When two electrons in a superconductor form a Cooper
pair with gap function A(r,t), they must obey the Pauli
principle. This iron fact enables a systematic symmetry clas-
sification of superconducting order parameters. Interestingly,
the Pauli principle can be obeyed even when A(r,t) is
odd under time exchange A,(r,t) = —A,(r, —t) [1-5]. The
Fourier transform of such a gap function is an odd function
of frequency along the Matsubara axis, where Ak, w,) =
—A,(k, —w,,) can be made real by a proper choice of the
phase [3]. This implies that at T = 0, A,(k,0) = 0. Odd-
frequency (OF) superconductivity has a number of profound
physical consequences, e.g., it leads to an s-wave supercon-
ductivity with no gap in the density of states at 7 = 0 without
magnetic impurities. OF pairing has been argued to develop
in a two-channel Kondo model [6] and is particularly favor-
able in disordered electron liquids [7,8] and heterostructures
[9,10], where it was argued to be observed in experiments
[11,12]. It also has a rich interplay with topological effects
[13]. OF pairing can also be induced by an external magnetic
field [14-18].

However, in a regular bulk superconductor at zero field,
OF superconductivity remains mostly elusive despite being
intensively searched for over the last three decades. From a
theoretical perspective, there are three obstacles to OF super-
conductivity. First, an OF solution A,(w,,) does not emerge
at weak coupling because the vanishing of A,(0) implies that
there is no enhancement of the pairing susceptibility by the
Cooper logarithm. Second, OF pairing is eliminated by the de-
velopment of even-frequency (EF) superconductivity, which
reduces the kernel in the OF pairing channel [3]. Third, even
if EF superconductivity does not develop for some reason, OF
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pairing is destroyed by pair-breaking effects from fermionic
self-energy [19].

While the strong-coupling requirement cannot be avoided,
we argue there are ways to overcome the two other obstacles.
In this work we revisit them in the context of phonon-
mediated superconductivity by studying a model of spin-1,/2
fermions with an effective dynamical interaction

V(Qm)oc)»<f—29—%2>. (1)
Ql +Qm

This model captures the competition between Hubbard re-
pulsion, parametrized by f, and phonon-mediated attraction
[20-28].

Phonon-mediated OF superconductivity has been analyzed
before, most notably by Balatsky and co-workers (see [3] and
references therein). They, however, focused on spin-singlet
A,(k, ), which is odd in both k and w. We follow the original
proposal by Berezinskii [1] and consider OF superconduc-
tivity in the spin-triplet, spatially even channel A,(k, w) =
Ay(—k, w), Ak, w) = —A,(k, —w). For such superconduc-
tivity the momentum dependence of the interaction is not
relevant, and one can approximate the electron-phonon in-
teraction by the interaction with an Einstein phonon, as in
Eq. ().

The model of Eq. (1) has been analyzed in Ref. [26] for par-
ticular A and A and without including fermionic self-energy
into consideration. We extend the analysis of [26] to arbitrary
parameters and also analyze how the results change when the
self-energy is included. A numerical analysis of the effects
of fermionic self-energy and vertex corrections for phonon-
mediated OF superconductivity has been recently performed
in Ref. [29]. Where applicable, our results are in agreement
with this work.

We first analyze OF superconductivity in the model of
Eg. (1) on its own, assuming the EF superconductivity is not
present. We prove a compact and fairly general theorem that
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OF superconductivity cannot develop within the canonical
Eliashberg approximation, in which the interaction that gives
rise to the pairing is exactly the same one that determines the
fermionic self-energy. More specifically we show that thermal
contributions from the static interaction to the pairing vertex
®,(w,,) and the self-energy ¥(w,,) are exactly the same and
cancel out in the gap equation for A,(w,,) = ®,(w,)/[1 +
Y(wm)/wn,], but the nonthermal piece is stronger for the
self-energy, and this does not allow OF superconductivity
to develop. We then go beyond this approximation, include
vertex corrections, and show that the dressed interaction in the
particle-particle channel becomes different from the one in the
particle-hole channel. We show that in our model the pairing
interaction gets relatively stronger and, as a result, OF super-
conductivity does develop at strong enough coupling. This is
in agreement with Ref. [29], where OF superconductivity has
been obtained numerically in “vertex-corrected” Eliashberg
theory [30].

We compute the onset temperature for OF pairing 7, and
show that a nonzero OF condensate develops below T.. We
argue, however, that the self-energy cannot be neglected en-
tirely as thermal contributions to the pairing vertex and the
self-energy still cancel out even when vertex corrections are
present.

We next analyze the interplay between OF and EF su-
perconductivity. It has been shown previously [26,31] that
static Hubbard repulsion suppresses EF superconductivity, but
cancels out in the gap equation for OF pairing. Taken at
face value, this would imply that OF superconductivity wins
at sufficiently strong Hubbard repulsion. We show that the
situation is more complex: While Hubbard repulsion is always
detrimental to EF pairing, it does not eliminate it completely at
strong coupling, which we need for OF pairing [by strong cou-
pling we mean large overall coupling constant A in Eq. (1)].
The argument is that the EF gap function A, (w,,) changes sign
between small and large frequencies, and for large enough
A the system chooses the position of the gap change to al-
most completely eliminate the effect of the Hubbard f. The
outcome is that EF superconductivity survives even when f
tends to infinity, and the corresponding 7, for EF pairing does
not depend on f. We argue that in this situation the onset
temperature for EF pairing is still higher, but the one for
OF pairing becomes comparable when the Debye frequency
@ in (1) becomes comparable to the Fermi energy, which
acts as the UV cutoff for the model. This condition can be
realized in low-density materials such as SrTiO; [23,25,32],
Bi [33], and half-Heusler compounds [34]. When the onset
temperatures for EF and OF pairing are comparable, both A,
and A, become nonzero below a certain T. We show that the
superconducting condensation energy is the largest when the
phases of the two gap functions differ by +m /2, i.e., the order
parameter is A, £ iA,. Such an order spontaneously breaks
time-reversal symmetry, even though the paring symmetry is
still an ordinary s wave.

This paper is structured as follows: In Sec. II we introduce
the model and the gap equation for the EF and OF compo-
nents. In Sec. I A we momentarily neglect the self-energy
and analyze the appearance of the OF solution for the gap
once the coupling exceeds a certain threshold. Furthermore,
we discuss the special role of the thermal term in the gap

equation. In Sec. IIIB we include the self-energy, analyze
the set of coupled Eliashberg equations for the pairing ver-
tex and the self-energy and show that the thermal term gets
canceled in the gap equation, and that there is no solution for
anonzero OF gap function. We then go beyond the Eliashberg
approximation, evaluate vertex corrections at 7 = 0 and show
that they increase the interaction in the particle-particle chan-
nel compared to that in the particle-hole channel and make
OF superconductivity possible at strong enough coupling. In
Sec. III C we analyze vertex corrections at a finite 7 > 0 and
show that the thermal term in the gap equation still cancels
out. In Sec. IV we discuss the interplay between EF and OF
superconductivity: First, in Sec. IV A we analyze the suppres-
sion of the EF solution by a static repulsion and show that
once the coupling A exceeds a critical value, EF superconduc-
tivity exists for arbitrary strong Hubbard repulsion f. Then, in
Sec. IV B we compare the couplings and critical temperatures
for EF and OF solutions. Finally, in Sec. V we discuss the
coexistence of EF and OF gap functions and argue that in
such a state time-reversal invariance is spontaneously broken.
Conclusion and outlook are presented in Sec. VI. Technical
details are relegated to the Appendixes.

II. MODEL AND GAP EQUATION

We consider a system of spin-1/2 particles that interact via
a dynamical interaction [20-25,27,28]:
92
1 ) . (@

2
V() = ;X(Qm)v X(Qm) = A‘(f - m

where €2,, is a bosonic Matsubara frequency, p is the den-
sity of states, A is a dimensionless coupling constant, f is a
dimensionless measure of the Hubbard repulsion, and €2; is
a typical phonon energy scale, e.g., Debye energy. To dis-
tinguish between 7 =0 and a finite 7 in the calculations
on the Matsubara axis, we will label fermionic and bosonic
frequencies as w, 2 in the T — 0 limit, and as w,,, 2, at a
finite 7. We will measure all frequencies in units of €2; and
set 2 = 1.

The dynamical interaction (2) gives rise to perturbations in
both the particle-particle and particle-hole channels. Without
vertex corrections [the terms that dress V(£2,,)], it yields a
set of two coupled Eliashberg equations for the dynamical
pairing vertex ®(w) and the self-energy X(w). These two
equations can be combined into a closed-form equation for the
dynamical gap function A(w) = ®(w)/[1 + Z(w)/w] (see,
e.g., Ref. [35] and Appendix B). We assume that the EF gap
function A, is spin singlet, and OF A, is spin triplet and do
not write spin indices explicitly. One can easily verify that the
gap equation has the same form for both A, and A,. AtT = 0,

A(@) — A(w)Z
V@) +A@)P
where the second term in the numerator on the right-hand
side (r.h.s.) is the contribution coming from the self-energy.
The dimensionless UV cutoff A is generally of order of the
Fermi energy in units of €2;. For most metals A > 1, but

for low-density systems A ~ 1. We will study both A >
1 and A ~ 1. Since we consider a momentum-independent

3

A
Alw) = —/ do'x(w — o)
—A
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interaction for simplicity, the resulting gap function A(w) has
s-wave symmetry; more general interaction potentials can also
lead to d-wave states, etc.

The gap equation can be reexpressed by introducing even
and odd components: A,(w) = A (—w), Ay(w) = —A,(—w)
[3,14,25,26]:

A 1
Ao =3 do’
ol@) =3 /,A @R+ 1Au@) 1 Aot

Xe(®, @) = x (0 — ) + x(0+ ) =210f —

Xo(®, @) = x (0 — &) — x(0+ ) = —

Viewed separately, A.(w) and A,(w) can be made real. Ob-
serve that the Hubbard repulsion f is present in y,, but drops
out of x, and that the self-energy contribution [the last term
on the r.h.s. of Eq. (4)] contains x, for both A/, i.e., it does
not contain f. This last result is a consequence of putting a
symmetric cutoff on the fermionic o’ rather than on a bosonic
' — w, like in canonical Eliashberg theory. If we used the
canonical expression, we would find that the Eliashberg self-
energy does contain a term which depends on f. In the normal
state this term is

Ao
Y(w) = —Af do' (7

A—w

in the sign convention such that G~ (k, ) = i[w + Z(w)] —
&(k), with &£(k) the electron dispersion. For simplicity we
work with a parabolic electron dispersion & = |k|?>/2m — pu,
which can be linearized near the Fermi surface. Equation (7)
would yield X(w) = —2X fw and lead to the unphysical result
that the quasiparticle residue Z = 1/(1 — 2Af) > 1. We argue
that this is an artifact. The issue can be traced back to the
applicability of the canonical Eliashberg-type treatment of the
self-energy for a model with frequency-independent Hubbard
repulsion. We recall that the Eliashberg self-energy is obtained
by integrating over £ (k) in infinite limits, before integrating
over frequency. This procedure is well justified when the
interaction drops starting from frequencies below the cutoff,
which is the case for the electron-phonon term, but it is not
justified for the frequency-independent Hubbard term. Indeed,
if we compute the self-energy to first order in f by integrating
over frequency first, we find that it is purely static and just
renormalizes the chemical potential. The implication is that
the dynamical —2X fw term in the self-energy is a parasitic
one. It can be eliminated by either keeping the cutoff in the
bosonic propagator, but adding a ghost counter-term to the
Eliashberg self-energy, or by imposing a symmetric cutoff on
the integral over fermionic o’ rather than bosonic @’ — w. This
is what we did in Eqgs. (3) and (4). Either way, the Hubbard f
term does not contribute to the dynamical self-energy, and the
quasiparticle Z remains below 1. We verified that for the equa-
tion for the pairing vertex and for vertex corrections, which we
consider later, the frequency integrals are UV convergent, and
there is no difference between placing a symmetric cutoff on
a fermionic or a bosonic frequency.

(xe/o(w, &) Aeso(@) — Yol w’)Ae/o(a»%), )
= * ©)
l+(w—w)? 14+ (w+o)?
41 X ww'
©6)

[1+ (@ — )1+ (0 + )]

III. PROPERTIES OF THE GAP EQUATION
FOR ODD-FREQUENCY PAIRING

In this section we solve the gap equation for A,, assuming
that A, is absent.

A. Without fermionic self-energy

It is instructive to first solve the gap equation for A,(w)
without fermionic self-energy. We remind that the self-energy
accounts for the second term in the numerator on the r.h.s.
of Eq. (4). Neglecting this term, we obtain the truncated gap
equation

A /Aa ’
Ay(w) = — drw dof —2 @)

0 (') + A2(w)
1

X .
[14 (@ — &)?][1 + (0 + o')?]

This equation can be solved numerically by iteration. At small
A, there is no nonzero solution for A,(w) because the pair-
ing kernel is not logarithmically singular. However at large
enough A, exceeding the critical one A?, which depends on
A, the solution does exist. We show A as a function of A in
Fig. 1. The critical coupling decreases with increasing A and
saturates at A? >~ 0.88 at A — oo.

In Fig. 2 we show A, for A = 10 and representative A =
1.1 > A2. We see that A,(w) scales as w at small frequen-
cies, passes through a maximum at a higher w, and at even
higher w decreases as 1/w?. This last behavior can be obtained

®)

FIG. 1. Critical value of the coupling A? as a function of the
cutoff A. Odd-frequency superconductivity at 7 = O develops when
A > AL
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FIG. 2. Odd-frequency gap functionat 7 =0 for A = 1.1, A =
10, obtained by solving the gap equation without fermionic self-
energy.

analytically by extracting w from the kernel on the r.h.s. of (8)
and verifying a posteriori that the remaining integral over o’
converges.

We next move to finite 7. To obtain the critical temperature
T? for OF pairing, it is convenient to treat the linearized gap
equation as a matrix problem. A straightforward discretization
of Eq. (8) leads to a matrix equation

Ag(@n) = Y K(@n, @),)Ao(@),), ©)

,
w,,>0

where w,, = 2m + 1)xT are (positive) Matsubara frequen-
cies and K is the matrix kernel

8 lw,
[1 4 (@), — 0?11 + (@), + on)*]

At the critical temperature 7,7, the largest eigenvalue «(7')
of the matrix K is equal to 1. It would be natural to expect
that «(T") is a decreasing function of T, such that x(7") < 1
atT > T?and k(T) > 1 at T < T?. However, the numerical
analysis yields a different result: x(7T") increases with T (the
green line in Fig. 3). This leads to a quite exotic behavior: For

K(wp, w,))=T (10)

2.5 T T T T T
ol J
—~ 151 -
= % —— diagonal
z 7 ——no diagonal
1r , 1
/
/
05 / i
/
/
0 s 1 1 1 1 1 T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T

FIG. 3. Scaling of the largest eigenvalue «(T') of the gap equa-
tion kernel K, in the OF case for parameters A = 100, A = 1.2. The
green line shows « (7') when the diagonal elements of K are included,
and the dashed gray line corresponds to the eigenvalue estimate of
Eq. (11). The blue line shows «(7T") when the diagonal elements are
excluded. As expected, the green and blue lines approach the same
limit as 7 — 0, because the weight of the diagonal entries vanishes
in this limit.

A > A2, OF superconductivity exists at all 7', and for A < A?,
it emerges at some finite 7, and exists at larger temperatures.
For the model of Eq. (2) this behavior was first obtained in
Refs. [26,36]. A similar behavior for spin-singlet supercon-
ductivity with gap function odd in both k and w was obtained
in the pioneering work of Ref. [2]. It was argued in [26] that
k (T") is nonmonotonic and eventually drops at high enough 7.
This gives rise to a finite 7.7 for A > A?, but to nonmonotonic
temperature variation of A, below this temperature, and to
reentrant OF superconductivity at A < A2, which exists in the
window T? < T < T2, [for both end points, k(T") = 1]. This
behavior is reproduced in our model if we impose a UV cutoff
on momentum integration, like it was done in [26].

The exotic behavior of x(7') is easy to understand from
Eq. (10): because typical w,, are of order T, off-diagonal
elements of K scale as 1/ T2, while the diagonal elements
K(w,,, w,), which are thermal contributions from the static in-
teraction V (0), saturate at a finite value at large 7. As a result,
the largest eigenvalue of K at large enough T is determined by
the largest diagonal element [26], the one at w,, = w|, =7 T:

8A(T)?

T>1: _—
> 1 +4(xT)?

k(T)—> K(xT,nT) = (11)
We present a numerical check of this behavior in Fig. 3. The
gray line in this figure is «(7') obtained by keeping only the
diagonal terms in K (w,,, w),) [this is «(T') from Eq. (11)], the
green line is the full k(7). We see that the two expressions
coincide at large T. We argue below that this exotic behavior
is an artifact of neglecting the self-energy. Indeed, one can see
that in the full Eliashberg gap equation (3), which includes the
self-energy, the thermal contribution with w,, = ), cancels
out. We show in Sec. III C that this cancellation holds beyond
the Eliashberg approximation. This cancellation has a drastic
effect on where OF superconductivity develops in the (A, T)
phase diagram, which we discuss in detail in the next section.
As a preview, in Fig. 3 by a blue line we show the scaling
of k(T) for K(wy,, w),) still given by (10), but with diagonal
terms set to zero. We see that «(7) has a conventional be-
havior: it decreases with increasing 7. For such «(T), there
is no OF superconductivity if A < A2, and if A > A?, the gap
Ay(wy) is nonzero for T < T?.

B. Role of self-energy at T = 0

We now discuss the self-energy in more detail. Our first
point is that when this term is kept, there is no nonzero solu-
tion of the full Eliashberg gap equation (4) for A,(w,,) at any
T, including 7 = 0. For interaction with acoustic phonons,
this was first observed in Ref. [19]. In our case of purely
dynamical interaction with an Einstein boson, we can prove
this explicitly. Namely, we argue that if A,(w,) emerges
at some 7.°, the corresponding linearized gap equation at T
immediately below T has to satisfy the inequality

>, (12)

Zm KnTm Ay(wrp)
< max
1+ Zm KnT,m I )
where KnT . 18 the transpose of the OF matrix kernel in Eq. (10)
(see Appendix B for details). Because all components of K
are positive, Y-, K /(14> KI' )< 1, hence a nonzero

Ao(wn)

Wn

n
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FIG. 4. (a) Relevant corrections for the pairing vertex ®. Straight lines represent full Green’s functions (including the self-energy), wiggly
lines the interaction V. Four-momentum notation is used: k = (w, k), p = (&, p). (b) Relevant correction for the self-energy. (c) The vertex
correction piece. (d) Relevant contributions with zero frequency transfer €2,, = 0, represented by dashed interaction lines. Full interaction lines

imply a summation over all frequencies £2,,.

A,(wy,) has to satisfy the strict inequality

Ay(w,) Ay(wy,)
max max
n w, n W,

if A,#£0, (13)

which is impossible.

When vertex corrections are included, the interplay be-
tween the attraction in the odd-frequency pairing channel and
pair breaking by the self-energy becomes more nuanced as the
interaction in the particle-particle channel y,,, and the one
in the particle-hole channel ,,, generally become different.
Keeping the two interactions as separate variables in the gap
equation at T = 0, we obtain the gap equation in the form

Ap(@) = Ap(@)2a(w—a)

VAL (@) + ()

Ay(w) = — / dw,pr(a) — o)
(14)
where

Xph(w — ')

a(w—w) = (@ — ) .

s)
For our purposes, this equation has to be projected to an odd-
frequency channel.

That vertex corrections make xp, and x,, nonequivalent
can be seen already in perturbation theory, by collecting vertex
corrections for these two interactions to leading order in A.
We present the diagrams in Fig. 4, and discuss computational
details in Appendix B. We emphasize that the result for the
vertex correction diagram does not depend on whether we
impose a symmetric cutoff on an internal fermionic frequency
or on a bosonic frequency in the evaluation.

The key point is that there are two vertex correction dia-
grams for the pairing vertex but only one for the self-energy. In
both cases, the integration over two fermionic and one bosonic
propagator in the vertex correction piece in Fig. 4(c) yields

21 f. Then under vertex renormalization

Xpp - pr(l + 4)\'f)’ Xph - Xph(l + 2)Lf) (16)
Hence
14 21f
0=—"<
1+4rf

To simplify the analysis, below we treat @ < 1 as a phe-
nomenological parameter. In Fig. 5 we show the behavior of
the critical OF coupling A? as a function of «, in the limit
of large A. At o = 1 (the original model with no vertex cor-
rections), A? = oo, which implies that there is no OF pairing
for any value of A, as we already discussed. However, once
o becomes smaller than 1, A2 becomes finite, i.e., for strong
enough A, OF pairing does develop. At @ — 0, A2 approaches
0.88, as expected. The fact that OF pairing develops when
vertex corrections are included has also been observed in a
recent numerical work [29].

1. (17)

FIG. 5. Critical value of the coupling A for large A =20 as a
function of the self-energy parameter . When o = 1, A? diverges
and OF superconductivity cannot be realized.
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We note in passing that for quantum-critical OF pairing by
a gapless boson (the limit ; — 0, A — o0, )\Q% tends to a
constant), the system is at the boundary towards OF pairing
already without vertex corrections. In this case OF supercon-
ductivity emerges already at infinitesimally small 1 — o« [37].

Also, the authors of Ref. [19] argued that the effect of
vertex corrections can be modeled by adding a spin-dependent
component of the interaction that acts differently in the
particle-particle and particle-hole channels. Accordingly, our
results can be also modeled by introducing an extra spin-spin
component of the interaction.

C. Role of self-energy at T > 0: Cancellation of thermal
terms in the gap equation

So far we discussed vertex corrections at 7 = 0. The sit-
uation at a finite 7' is a bit more tricky. Namely, at a finite
T we have to distinguish between vertex renormalization of
the interaction at a finite frequency transfer €2, and at zero
frequency €2,, = 0. The contributions from the latter to the
pairing vertex and the self-energy are associated with thermal
fluctuations. Vertex renormalizations to x,,(£2,,) and x,,(£2,,)
at a finite €2, are essentially the same as at 7 = 0, and the
interplay between vertex corrections to x,,(£2,,) and x,,(£2,,)
is governed by « < 1. For interactions with €2, = 0, compu-
tations to the leading (first) order in A yield a different result:
there is no factor of 2 difference between vertex corrections
0 xpp(0) and x,(0). To see this, in Fig. 4(d) we pictorially
single out the interactions with €2,, = 0 by dashed interaction
lines. For the pairing vertex at €2,, = 0, there are two different
vertex correction diagrams, as before, hence there is an overall
factor of 2. For the self-energy, there is only one diagram, but
there are two choices to select which of the two interaction
lines carries €2,, = 0 and hence is associated with x,,(0).
This gives an extra factor of 2. Then the vertex corrections to
Xxpp(0) and x,;(0) are the same. As a result, the thermal piece
in the gap equation cancels out even in the presence of vertex
corrections. We conjecture that this holds beyond first order
in 1. We recall that this cancellation eliminated a would-be
highly exotic behavior, in which the coupling constant for OF
pairing increases with increasing T .

To summarize, inclusion of vertex corrections with proper
treatment of the thermal terms makes OF superconductivity
possible. However, the condition A > A? = O(1) is required,
and A? is large if the vertex corrections are weak. The condi-
tions for OF pairing are easier to fulfill in a quantum-critical
regime, where the coupling is large.

IV. INTERPLAY BETWEEN EF AND OF PAIRING
AT STRONG REPULSION

A. EF superconductivity and its suppression by static repulsion

As we said in the Introduction, a particle-particle inter-
action of the form of Eq. (2) also allows for a conventional
superconductivity with even-frequency gap function A.(w).
Below we set A.(w) to be real (we recall that we label by w
a continuous Matsubara frequency at T = 0). For a nonzero
Hubbard repulsion f and A > 1, such A.(w) necessarily has
a node [22,38]. A representative A,(w) at T = 0 is shown in
Fig. 6(b).

(a)

0 1 2 3 4 é 6 7 8 9 10
w
1 [ ]
05 (b) 1
g o
0.5 4

FIG. 6. A comparison of OF (a) and EF (b) gap functions at T =
0, obtained by solving the gap equation without the fermionic self-
energy. Weset A = 1.1, f = 1.5, and A = 10.

For generic f < 1, A, is much larger than A, because
of the Cooper logarithm, and for A < A¢ is the only super-
conducting solution at 7 = 0. When the Hubbard repulsion
f increases, A, is suppressed. At weak coupling, a phase
transition into the normal state occurs when f reaches a
critical value f.. For A > 1 and o = 0, this critical value is
given by [28]

1

fe= 1 —2xlog(A)

+0M) for A>1. (18)
An exemplary (T-f) phase diagram for EF superconductiv-
ity is shown in Fig. 7. It is obtained by solving the gap
equation (14) for infinitesimally small A (w) for two values

of a. As expected, the critical temperature for EF pairing

0.07 T T T T T
—©-a=0
—©-a=0.25

0.06Q

7 0.05
g 0.04
o0 0.03
o

=002

0.01

FIG. 7. | log(Tf)\_1 as a function of f for two values of «,
which measures the strength of pair-breaking effect due to fermionic
self-energy (at o = O there is no effect from the self-energy). One
can see that |log(T)|~! scales linearly with f, meaning that 7.¢ ~
exp[l/(f; — f)]. We set A =10, A = 0.12. A nonlinear frequency
grid was used to reach the required exponentially small temperatures.
We have checked that the details of the discretization have no impact
on T near where it vanishes. Very close to f,, the critical tempera-
tures become too small to be numerically accessible; an extrapolation
of T is shown with dashed lines.
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FIG. 8. Comparison of A (red) and A? (blue) as a function of A
for o = 0.2.

T, vanishes at f > f.. As seen in the figure, an inclusion
of a finite self-energy reduces 7Y at f < f., but hardly im-
pacts the value of f. itself. To understand this, we note that
the self-energy in the even-frequency case still contains the
odd component of the dynamical interaction y,, see Eq. (4).
Near f = f, the transition temperature 7. is determined by
fermions with small frequencies due the IR-divergent Cooper
logarithm. Because x,(w, @’) vanishes at ® = o’ = 0, it does
not affect the critical f,.

At a first glance the vanishing of T at f > f. implies
that for such f EF superconductivity is not a competitor to
OF superconductivity, and to get OF pairing one just needs
to find a way to increase f. However, the actual situation is
more complex. The reason is that, as we found earlier, OF
superconductivity only holds when A > 19, and A is at least
O(1), while Eq. (18) for f. only holds for small A. Once we
increase A, we find that there is another critical value

. 1

MW —— for A1, 19
<= Jlogay 8 AP (19)

at which f, diverges. We have verified Eq. (19) numerically
and show the results in Appendix C. For A > A{, the EF gap
function is nonzero at 7 = 0 for all values of f. The node
in the corresponding A.(w) is placed in such a way that
ffda)’%(f’,) — const. when f — oo.

B. Critical couplings and temperatures
for EF and OF superconductivity

We see from Eq. (19) that at large A and o =0, A ~
1/log (A) while A? >~ 0.88 is a constant. Then A < A?. This
is also true at a finite o as A? increases and A{ remains al-
most the same. In this situation it is natural to expect that
EF superconductivity prevents the development of OF su-
perconductivity, because when A.(w) becomes nonzero, it
reduces the strength of the pairing kernel on the OF channel.
This is the last of the three obstacles for OF pairing that we
listed in the Introduction.

This obstacle becomes less drastic when A = O(1), like
in low-density materials, e.g., SrTiO3 [23,25,32], Bi [33], and
half-Heusler compounds [34]. In this situation A¢ and 1¢ be-
come comparable, as we show in Fig. 8. Correspondingly, T
and 7 also become comparable. There is even a window of A
in Fig. 8 where OF superconductivity develops first. For small

0.02

0.015

& 001

0.005

FIG. 9. Numerical results for T¢ (circles) and 7, (dashed hor-
izontal line) as a function of f. We set A =2, A = 1.5, « =0.3.
Yellow shading denotes the superconducting region. The label A, +
iA, indicates the superconducting state with broken time-reversal
symmetry.

a, the requirement on A is even less restrictive. In Fig. 6 we
show A, and A,, obtained independently by solving the gap
equation at T = 0 at ¢ = 0, i.e., without the self-energy term,
for A =1.1, f = 1.5, and A as large as 10. We see that even
for such large A the magnitudes of A, and A, are comparable.

These observations suggest that at 7 = 0 both EF and OF
gap functions may be nonzero. Our next goal is to find such
a mixed state and determine the relative phase factor between
the U (1) order parameters A, and A,.

V. SPONTANEOUS BREAKING
OF TIME-REVERSAL SYMMETRY

We show an exemplary phase diagram in the (7', f) plane
in Fig. 9 by choosing a A for which EF superconductivity
develops first below T, but 7.7 is close, and while it is reduced
by a finite A,, the OF component still develops below a
finite T'.

As we will demonstrate below, the gap function in the
mixed state at 7 = 0 is of the form

A@) = A(0) £ iA (o). (20)

This agrees with Ref. [29], where a mixed state with spin-
singlet EF and spin-triplet OF order parameter with the
relative phase £m/2 has been found numerically (for a
cupratelike Fermi surface and d-wave spatial symmetry of
both gap functions).

A superconducting state with A(w) from Eq. (20) has a
special property: it spontaneously breaks time-reversal sym-
metry, despite that separately spin-singlet A, and spin-triplet
A, are invariant under time reversal. We show in Appendix D
that time-reversal 7 acts on the gap function along the Mat-
subara axis simply as a complex conjugation:

(T o A)(w) = [A(w)]". 2

Taken separately, A.(w) and A,(w) are time-reversal invariant
(we recall that A, is odd under time permutation, but even
under time reversal [3,39]). However, A(w) from (20) does
not remain invariant under time reversal.

To see that the relative phase between A, and A, is £ /2,
we consider the gap equation at 7 = 0 without self-energy
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correction and assume that the gap function is
A(@) = A (@) + exp(ig) Ay(w), (22)

and that A, is smaller than A,. To leading order in A,, the gap
equation in the OF channel then takes the form
b Xo(@ — @) Ay (0)
do
(@) + AZ (@)
cos(¢)A2(w')
(@) + AZ(w)
+ O[AZ(@))]. (23)

exp(ig)Ay(w) =2
0

X (exp(i¢>) -

One can easily verify that ¢ can be either zero or /2.
For ¢ =0, the expression in parentheses reduces to 1 —
A2/[(@')* + A?], which reduces x,. For ¢ = /2, the ex-
pression in parentheses becomes =i, in which case there is no
suppression. We conclude therefore that the mixed state with
¢ = £ /2 is indeed preferential. We note in passing that the
state A = A, £ iA, is also realized when the time-reversal
symmetry is broken explicitly by applying a magnetic field,
as shown in Ref. [14].

A spontaneous breaking of time-reversal symmetry can
be detected experimentally via muon spin relaxation or Kerr
rotation [40] and such states have been intensively discussed
in recent years, but chiefly for non-s-wave spatial symmetry,
or for multiband s-wave superconductors [41]. In our case
a superconducting state with broken time-reversal symmetry
emerges in a one-band s-wave superconductor.

VI. CONCLUSION AND OUTLOOK

In this work we considered OF superconductivity in
a model of fermions with an interaction potential which
contains a static Hubbard repulsion and a dynamical phonon-
mediated attraction. We critically reexamined the three foes
which usually prevent OF superconductivity: The necessity
for strong coupling, the self-energy effect, and the suppres-
sion by EF superconductivity. We have found that the strong
coupling requirement cannot be avoided, but there are ways to
overcome the other two obstacles. The self-energy does pre-
vent OF superconductivity in the Eliashberg approximation, if
the same interaction determines the pairing and the fermionic
self-energy. We argued that vertex corrections change this
balance and make OF pairing possible. At the same time, the
self-energy cannot be simply neglected as with and without
vertex corrections it leads to cancellation of the thermal terms
in the gap equation. Consequently, we find an OF state, which
is stable below T down to zero temperature, and not the
reentrant behavior observed in previous works.

The suppression of OF pairing by pre-existing EF su-
perconductivity remains a problem when the Fermi energy
is much larger than the typical phonon energy scale. How-
ever, when these scales become comparable, the critical
temperatures for EF and OF orders are comparable, and OF
superconducting order can coexist with EF superconductivity.
We have shown that a mixed state with the gap function
A.(w) £ iA,(w) can be realized in this case. This state spon-
taneously breaks the time-reversal invariance.

It has been argued that induced OF superconducting state
may exhibit a paramagnetic Meissner effect (see Ref. [42]
and references therein). However, as shown in Refs. [4,5,43]
and also discussed in Ref. [3], for spontaneous OF supercon-
ductivity in the bulk, induced by a retarded interaction, the
Meissner effect is diamagnetic. This can be seen explicitly by
computing the superfluid density n, (see Appendix E), which
is manifestly positive. While this result has been questioned
in the literature due to possible issues with spontaneous U (1)
symmetry breaking [44], in our understanding all ambiguities
can be avoided by consistently working in the functional-
integral formalism (and avoiding a Hamiltonian description).
The fact that a diamagnetic Meissner effect is “conventional”
can also be seen by reformulating the OF theory in terms of
D(w) = A,(w)/w, which is an even function of frequency,
like A.(w) for EF superconductivity. Using the description of
OF superconductivity in terms of D(w), one straightforwardly
obtains conventional electromagnetic response of the super-
conducting state. A paramagnetic Meissner effect can develop
for induced OF superconductivity at a boundary of a system,
but this is a different setup from the one considered in this
work.

Our analysis of the OF state was performed by studying
gap functions on the Matsubara axis. On the other hand, the
measurable physical properties of the system are determined
by the gap function on the real axis. Since the OF gap vanishes
at w = 0, the density of states of an OF superconductor is
qualitatively similar to that of an EF gapless superconductor
in the presence of magnetic impurities [45]. However, we
expect crucial differences in, say, the phase winding of the gap
function and in the behavior of low-energy collective modes,
which could be fruitful objects for future studies.

Note added. Shortly after this paper was posted, a work
appeared [46] which contains a more general version of the
“No-go-theorem” for OF superconductivity within the Eliash-
berg approximation due to the self-energy effects.
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APPENDIX A: PROOF THAT A, VANISHES WITHIN
THE ELIASHBERG APPROXIMATION

We introduce a function D(w) = A,(w)/w. In terms of D,
the linearized gap equation (3) at finite T reads

D(w,) =Y K[, [D(@n) — D(@,)], (A1)

where K,Zm = K(wy,,, w,) is the transpose of the OF kernel
defined in Eq. (10).

By bringing D(w,) to the left side, we get
KiZ"m
D(w,) = Z mD(wml

m

(A2)
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Now we assume that D(w,) is finite for all » and look at
max, |D(w,)|:

Zm K}Z m

max |D(w,)| = max mD(wm)

< max —Zm Ko
= n 1 + Zm KnT:m

max | ———————| max wy)|.

S K !
Since y, is attractive, all entries of K are positive. Then we
can rewrite Eq. (A3) as

|D(wm)

(A3)

an KnT:m
1 + Zm Ki{m
The first factor in the second inequality is smaller than 1 for

any n. Assuming that max, |D(w,)| > 0, we obtain the strict
inequalitiy

max |D(w,)| < mle |D(Q)[)|

max |D(w,)| < max |D(w,)|, (A4)

which is a contradiction. Therefore, we must have D = 0 <
A, =0.

APPENDIX B: VERTEX CORRECTIONS
1. Evaluationat 7 =0

Including the second-order diagrams of Fig. 4 in the main
text, the linearized Eliashberg equation at 7 = 0 can be writ-
ten down as

dk) = — / D(p)G(p)G(—p)V (k — p)[1 + 2I'(k, p)],
P

X(k) = —i/ G(p)V(k — p)[1 + T'(k, p)l, (B1)
p
where
Lk, p) =— fG(l)G(p +1-kV(k—1), (B2)
i

and we use notations k = (w, k), p = (o, p),l = (®,1) and
the conventions

G(k) = (iw — E(k) +iz(k)) ™", (B3)
. dwdk B4
/k B / )’ B

with & (k) the electron dispersion, which can be linearized near
the Fermi surface. We will focus on d = 2 for concreteness,
and comment on the analogous 3D results along the way.

Without the vertex corrections, I' = 0, the gap equation (3)
directly follows from (B1) by rewriting the definition of the
gap A(w) = ®(0)/[1 + (w)/w] as

A(w)
Alw) = (@) - Tz(w), (B5)

and evaluating the momentum integrals in (B1).
We now evaluate the vertex correction I', using bare
Green’s functions (no X), and working in the limit A — oo

for simplicity. Shifting the integration variables, I can be
written as

Pk — (1o [ 4o 2 1
(k. py=(=1) <2n>35< _1+<a)>2>
1 1

“i@ @) & i@t ) £
£ =s(l+%<p—k>>, £ =s<z - %@_m).
(B6)
We expand the dispersion as
£, =8 +3dq, & =§&1)—4q,
8¢ = jvrlglcos(¢), q=Ip—kl, ¢=4LgD, B

and integrate over £ (/) in infinite limits. Such an expansion is
legitimate as for Q = o' — w <« Ep the relevant contributions
come from small angle scattering where |q| < |k|, |p|. We
call I'; the part o< f and the remainder I';. To compute '}, we
need to perform the frequency integral first, since the integral
is not absolutely convergent. The computation is standard; it
is the same as for the polarization function, since the part ~ f
is short range. We obtain
12| >
, (B8)

V&% + (vrlgl)?

The second term in I'; contains |g|. To find the renormaliza-
tion of the interactions which enter the Eliashberg equations,
we can take the s-wave part of this term. That is we write

lgl> = |p —k|> = 4k sin®(6/2), 0= 4(p.k), (BY)

T =2,\f(1—

where k and p are on the Fermi surface. We then average

/2” do 12| _ el log(EF)
0o 27 \/92+16E;sin2(9/2) 2mEF €2
(B10)

In d = 3, one obtains a correction ~|€2|/Er without the loga-
rithm. In the limit Er >> 1, the dynamical correction is small,
in accordance with Migdal’s theorem [47].

To compute 'y, it is easier to perform the integral over dis-
persion & (1) first. This is allowed because the extra frequency
dependence renders the integral absolutely convergent. The
result is

', =21 fsgn(2)

1
V(vrlgl)? + Q2

o (2) ()]

This term depends on w and ’ separately. That is it depends
on both  — @’ and w + w’. However, after taking the s-wave
part it will scale as |2|/EF similar to (B10).

Collecting the results, the vertex correction reads

(B11)

1
F

The static part reads 2A f, as stated in the main text.
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(a)

.....

_____

,,,,,,

FIG. 10. (a) Additional second-order diagrams not considered in
the main text. (b) Self-energy contribution where both interaction
lines are thermal.

2. Additional diagrams

In Fig. 10(a) we show additional second-order diagrams
not considered so far. The first diagram renormalizes both
Xpp and x,;, alike, thus it cannot lead to a nonzero OF so-
lution. The second “rainbow” diagram is already contained
in the self-consistent Eliashberg equation. The third diagram
can contribute in principle, but it depends on w + @’ even
for frequency-independent interactions, and its contribution
does not vanish for w = «’. Thus, it cannot be treated in the
Eliashberg framework.

3. Cancellation of the thermal terms

As discussed in the main text, at a finite temperature we
can isolate two thermal contributions from the second-order
self-energy diagram. However, we need to subtract the contri-
bution shown in Fig. 10(b), where the frequency transfer on
both lines is zero. But this contribution vanishes: To see this,
we can expand the fermionic dispersion around the external
momentum k as

£k + p) = £(k) + vepy + P2 /2m), (B13)

where p|, p, are the components of p parallel and perpendic-
ular to k, respectively, and m is an effective mass. Expanding
&(k 4+ p +1) in the same way, for instance, the integral over
py vanishes for zero frequency transfer: if the integral is eval-
uated by contour integration in infinite limits, both poles are
in the same half-plane. Note that such an argument does not
work if only one of the transferred frequencies is nonzero,
while the other frequency is integrated over, since in this case
the additional frequency integral must be evaluated before the
momentum integrals, yielding nonzero.

As a result, the thermal contributions to ¢ and X in
Eq. (B1) read (with @ = ' and after evaluating momentum

70

-1/
——21log(A)

log(A
— — 2log(A)/ (1 T —“g;iTg‘)

60

50

40
30
20

10

0 . ‘ ‘ . ‘

102 10* 108 128 100 102 10™

FIG. 11. Numerical estimation of A¢ (blue line), without self-
energy correction. Gray lines show the analytical estimates (19) and
(C1).

integrals):

_ d(w)

Pp(w) = o rs@l pr TV (0)[1 + 4rf]
A(w)

= —WWTTV(O)[I + 4111,

Tn(w) = —sgn(@)pn TV (0)[1 4 41f],
A

Ap(w) = Pp(w) — C(Ow) Yin(w) = 0. (B14)

APPENDIX C: BEHAVIOR OF A{

In Fig. 11 we numerically check the behavior of A¢ =~
1/[21log(A)] at large A by plotting 1/A{. Apart from the
nearly constant offset, which is expected since the formula
only holds with “logarithmic accuracy,” at very large A the nu-
merical result for 1/A¢ decreases compared to the asymptotic
expression. This is expected since in the numerics a nonzero,
though very small temperature T is used, while A¢ is defined
as the critical coupling at zero temperature. Adapting the
evaluation in Ref. [28] [see Eq. (15) within], one can provide
an estimate for A¢ at a finite temperature 7 if one assumes that
T only serves as an IR cutoff, similar to A,(0) in Ref. [28].

One finds
1 log A

A = ( o8 ) (1)
2log(A) [log(T)|

As seen in Fig. 11, this formula correctly reproduces the
numerics up to the constant offset.

APPENDIX D: TIME-REVERSAL TRANSFORMATION
OF THE GAP FUNCTION

To derive the action of the time-reversal transformation
T on gap functions on the Matsubara axis, we first derive
the action on real-frequency gap functions. We work with
retarded and advanced gap functions in the time domain at
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zero temperature, which are defined as
AR(r) = —i0 (1) (1M (1)|0) ,

(D)
A1) = +i6(=1) (0[M(1)]0) ,
with |0) the interacting ground state, and
M) = {ca(0), cpO)lioy(dol +d - 0)], 50 (D2)

where the spin term describes both singlet (dy = 1, d, = 0)
and mixed triplet (dy = 0, d, = 1). T acts on state vectors |{r)
and operators O as

[Ty) =T Iy),
ToO=TO0T",

where T is an antiunitary matrix. Furthermore, expectation
values fulfill

(D3)

(TYITo) = (WIT'Te) = (Ylp)*. (D4)
Using these properties, AR transforms as
(T o A®)@) = i6(—1) (TO|T o M(1)|T0)
= i0(—t) (0|T"TM ()T ~'T|0)
= i0(—1) (OIM(1)0)" = —[A*(D)]*.  (D5)
Fourier transforming, we obtain
(T o AR)(Q) =To / dt exp(iQt)AR(t)
=- / dr exp[—iQ(=0)[AY(D)]*
= —[AY(-Q)". (D6)

Note that 7 does not act on the measure dt, as can be checked
considering the inverse Fourier transform. With Eq. (D6) at
hand, we can infer the action of 7 on the Matsubara gap
function A(w) from Cauchy’s theorem. For concreteness, we
focus on A, and assume that A, € R as in the main text. For
o > 0, A, is related to AR and A% as

1 AR(w)
Ayf(w)=— [ dQ—2—, D7
@) 27'ri/ Q—iw ®7)
1 A?(Q)
Af(—w)=—-— | dQ—F. (D8)
2mi Q+iw

By writing ARA(Q) = AM4(Q) 4 iA¥*(), one can check
that the condition A, € R leads to

AT = A7 (-9,

(D9)
AP Q) = AT (-),
In addition, from A,(w) = —A,(—w) we obtain
ANQ) = —Ak@). (D10)
Now we can compute (7 o A,)(w) for w > 0:
*
on.me) 1 —[AS ()]
Ao = —_— dQ—
(T 0 Ao)(@) 2 / Q+iw
) 1 [ o8
T 2w Q+iw
D _A(—0) = A@) = Afw)'. (DI)

Proceeding analogously for A, € IR, one also finds
(T o A)(w) = Ae(w)*. Due to the antilinearity of 7T,
(T o A)(w) = A(w)* then holds for arbitrary A(w) of
the form A(w) = A.(w) + exp(ip)A,(w), as required in
Sec. V.

APPENDIX E: MEISSNER EFFECT

The magnetic response of a superconductor is determined
by the energy cost of phase fluctuations. Given a spatially
homogeneous mean-field solution A with fluctuating phase
0(x), the momentum-space action for 0 is

Sp ~ / dq nylq*0(q)0 (—q), (E1)

where we neglected temporal fluctuations of 6. As shown in
previous works [3-5,43,44], the superfluid density n,;, which
enters Eq. (E4), takes the same form for both EF and OF
bulk superconductivity. We explicitly verified this result and
confirmed it. At T = 0, the superfluid density n,, normalized
to the normal-state density of electrons, is

1 / |A (@)
"2 P lap r e
This is a manifestly positive expression. Therefore, the Meiss-
ner effect is diamagnetic in both EF and OF cases.

If we simply evaluate Eq. (E4) in the OF state at 7 = 0, we
run into a problem: for A(w) ~ @ as w — 0 (see Sec. Il A),
the integral is logarithmically divergent at small frequencies,
as already observed in Ref. [44]. Note that this is the case
only if the gap function is linear in w; for a general gap
function which scales as A(w) ~ o with a # 1, the integrand
scales as

(E2)

(E3)

which leads to a convergent result.

For the given w-linear gap function, the logarithmic singu-
larity of n; will be cut off by finite momenta q. Therefore, the
action for the phase field (E4) is modified to

Sg ~ /dq ns(@)lg1*0(@)0(—q), ny(q) ~ log(kr/Iql).
(E4)

The Meissner response can be obtained by coupling the
system to an electromagnetic field A. In the conventional
case of Eq. (E4), the constant n; acts a a mass term for A,
which leads to a penetration depth A ~ 1/,/n,. Taken at face
value, the logarithmic ny(q) obtained in (E4) then implies
a superexponential decay of an external magnetic field in a
superconductor, B(x) ~ exp[—x log(x)]. However, we do not
regard this as an observable effect, but rather as an artifact
of the mean-field approximation: the logarithmic divergence
of ny(q) likely signals that in the full theory with fluctuations
included, the gap function A(w) scales as w?, with a # 1. As
discussed above, in this case n, is finite, and the Meissner
response is a conventional.
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