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Abstract

Coexistence of similar species can be influenced by the intensity of interspe-

cific interactions, which often depends on the availability of limiting resources.

Habitat availability varies strongly with tidal phase in many intertidal ecosys-

tems, potentially affecting interspecific interaction strength, particularly for

mobile species. Four closely related species of highly mobile intertidal

detritivores (talitrid amphipods Megalorchestia californiana, M. corniculata,

M. benedicti, M. minor) inhabit sandy beaches in southern California, where

they consume wave-cast macroalgal wrack originating on coastal reefs. Their

coexistence suggests that mechanisms, such as niche separation, are operating

to weaken competition among these species. To evaluate this possibility, we

explored how tidal phase may mediate temporal and spatial patterns of habitat

use among these closely related congeners. We hypothesized that neap tides

that reduce intertidal habitat would strengthen temporal separation between

species, whereas spatial separation would be greater during spring tides when

more habitat is available. We investigated these questions during spring and

neap tide phases using (1) comparisons of intertidal distributions of burrowed

amphipods and (2) observations of surface activity of amphipods from pitfall

traps and mesocosms. We found significant effects of tide phase and species

identity on mean intertidal positions and separation of burrowed amphipods.

Intertidal distributions of the four species overlapped during neap tide and

were significantly separated during spring tide when more intertidal habitat

was available. Surface activity patterns differed among species and were more

widely separated in time during neap tide than during spring tide. Conse-

quently, the cumulative activity time of all species on neap tides was twice that

observed during spring tides. Our findings suggest that mobile intertidal spe-

cies, like these sympatric talitrid amphipods, can avoid interspecific competi-

tion by shifting their activity patterns with tide phase and beach condition. As

rising sea levels reduce beach habitat, interspecific competition among these
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important intertidal consumers may increasingly influence their behavior and

coexistence.

KEYWORD S
interspecific competition, Megalorchestia, niche separation, sandy beach, Special Feature:
Honoring Charles H. Peterson, Ecologist, talitrid amphipods, tide phase, zonation

INTRODUCTION

Species coexistence is central to the maintenance and pro-
motion of biodiversity (Chesson, 2000). Niche differentia-
tion and consequent reduction in interspecific competition
for limiting resources have long been thought to be the
most important general mechanism for coexistence
(Hutchinson, 1961; Tilman & Pacala, 1993). The apparent
coexistence of ecologically similar species, however, has
challenged this idea (Leibold & McPeek, 2006; Levine &
HilleRisLambers, 2009; Mayfield & Levine, 2010) and
engendered many potential explanations and hypotheses
(Palmer, 1994; Wilson, 1990a; Wright, 2002), particularly
neutral processes (Hubbell, 2011). Nevertheless, specializa-
tion of many niche dimensions may not be readily appar-
ent (Futuyma & Moreno, 1988); for example, ecologically
similar species can avoid competitive exclusion by par-
titioning their habitat and food resources across time as
well as space (Cloyed & Eason, 2017; Jensen et al., 2017; Lea
et al., 2020; Sala & Ballesteros, 1997; Schoener, 1974) by
developing activity patterns that differ from potential com-
petitors (Albrecht &Gotelli, 2001; Gertsch &Riechert, 1976).

The mechanisms of stabilizing coexistence were summa-
rized by Chesson (2000) and divided into two primary
categories based on the role of heterogeneity. Variation-
independent mechanisms of stabilizing species coexistence
occur in the absence of spatial or temporal heterogeneity
and include resource partitioning and frequency-dependent
predation (Chesson, 2000; Levine & Hart, 2020). Variation-
dependent mechanisms of stabilizing coexistence include
temporal and spatial storage effects, temporal and spatial
relative nonlinearity of competition, and fitness-density
covariance (Chesson, 2000; Levine & Hart, 2020). Deter-
mining the role of heterogeneity is a scale-dependent
question, as heterogeneity, and its importance for coex-
istence, is expected to decline with habitat area
(Snyder & Chesson, 2003). The role of spatial scales with
respect to species coexistence is complex, but a unifying
feature is the function of tradeoffs across environmental
conditions and spatial scales (Kneitel & Chase, 2004).
Coexistence across patches depends on the degree of
heterogeneity, dispersal among patches, and species
similarity (Mouquet & Loreau, 2002), and can occur
through habitat (Stewart et al., 2010; Streams, 1987) and

food selection (Oakley-Cogan et al., 2020; Pardo et al.,
2015), or intraspecific aggregation (Ives, 1991; Presa Abos
et al., 2006). Time is also a segregable niche dimension
(Carothers & Jaksi�c, 1984; Castro-Arellano &
Lacher, 2009). Separation of the timing of resource use
(food or habitat), for example, can occur via avoidance or
differential activity periods on diurnal or longer scales
(Adams & Thibault, 2006; Albrecht & Gotelli, 2001;
Stewart et al., 2002) and successional patterns of coloni-
zation (Edwards & Stachowicz, 2010; Young et al., 1996).

Such mechanisms of niche separation are profoundly
affected by environmental variability, the magnitude of
which strongly influences the strength and outcome of
competitive interactions (Levins, 1979; Li & Chesson,
2016). For example, a harsh and fluctuating environment
can slow the process of competitive exclusion (Chesson
et al., 2004; Chesson & Huntly, 1997). In harsh environ-
ments, some argue that the intensity and importance
of competitive interactions decrease in favor of positive
interactions or facilitation (Barrio et al., 2013; Fugère
et al., 2012; Kawai & Tokeshi, 2007, but see Hart &
Marshall, 2013). However, such conditions may also make
species less tolerant of competitive interactions and pro-
mote niche differentiation through environmental fluctua-
tions (Chesson & Huntly, 1997). Gutt (2006) suggests
that the ability of similar species to coexist, therefore, is
dependent on minimizing competitive displacement by
maximizing utilization of environmental variability.

Intertidal marine ecosystems provide ideal systems to
explore how spatial and temporal heterogeneity affect species
coexistence and community dynamics. Studies of competitive
interactions in unvegetated soft-sediment ecosystems, such
as mudflats and sandy beaches, are relatively limited
(Peterson, 1991) compared to the rocky intertidal, where
interactions among sessile or sedentary species can shape
zonation and other aspects of community structure
(Chesson, 1985; Connell, 1961a; Dayton, 1971; Paine, 1974).
However, the potentially important role of competitive inter-
actions in soft-sediment marine ecosystems was illuminated
by the pioneering work of Peterson (1977, 1982) and Peter-
son and Andre (1980) on intertidal bivalves in lagoons along
with studies of a variety of infaunal taxa (Drolet et al., 2013;
Gallagher et al., 1983, 1990; Martinetto et al., 2007;
Wilson, 1990b). On the open coast, the intertidal zone of
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sandy beaches has traditionally been described as a harsh
environment where ecological communities are structured
primarily by strong physical factors (waves, tides, and grain
size) rather than biotic interactions (Defeo et al., 2003;
McLachlan, 1990). However, this long-standing paradigm
has been challenged in recent years (Bruce & Soares, 1996;
Dugan et al., 2004; McLachlan, 1998) and falls short in
addressing the high biodiversity of intertidal communities on
sandy beaches that receive large subsidies of marine macro-
phytes or wrack, such as kelp and seagrass, from nearshore
reefs (Dugan et al., 2003; Schooler et al., 2017).

On beaches, numerous similar species of mobile
invertebrates depend on wrack subsidies for food and
habitat (Colombini et al., 2000; Dugan et al., 2003;
Olabarria et al., 2007). One possible mechanism of coexis-
tence for these animals is the spatial or temporal par-
titioning of intertidal habitat by species. Spatial zonation
is common among rocky intertidal organisms, especially
sessile biota (Harley & Helmuth, 2003), but is less distinct
in the mobile biota of soft-sediment ecosystems
(Peterson, 1991). On sandy beaches, where mobility of
infauna is particularly high, zonation patterns are
dynamic, and many species actively migrate on diurnal
and tidal scales (Dugan et al., 2013; Jaramillo et al., 1993,
2000; Jaramillo & Fuentealba, 1993). These movements
can be in response to water levels and the distribution of
resources, for example, wrack deposits, as well as avoid-
ance of potentially negative biotic interactions, such as
competition and predation (Colombini et al., 2013).
Tides, a zeitgeber of the shore, may benefit sandy beach
macrofauna by aiding their orientation and locomotion
or providing cues to signal the need to relocate (Fanini
et al., 2016; Rossano et al., 2008; Scapini, 2006; Scapini
et al., 2019). Because they include many components
(diurnal, semilunar, lunar, and longer) which drive much
of the inundation and desiccation patterns on intertidal
beaches it is likely they mediate the behavior of sandy
beach organisms.

Sandy beaches in southern California can support a
species rich and functionally redundant community of
upper beach macroinvertebrates (Schooler et al., 2017),
providing an ideal system to evaluate how similar
species can coexist in a dynamic and harsh ecosystem.
We explored niche partitioning among four congeneric
species of talitrid amphipods found on southern
California beaches in (1) space, via occupation of dif-
ferent levels of the intertidal zone and (2) time, via dif-
ferent periods of activity. We hypothesized that neap
tides that reduce the area of preferred intertidal habitat
would strengthen temporal niche separation in these
species, whereas spatial separation would be more evi-
dent during spring tides, when a wider habitat zone is
available. We also hypothesized that body size may

affect surface activity patterns with the two large-
bodied species having an advantage over the two small-
bodied species and juveniles.

METHODS

Study sites and species

Our field surveys (spatial coring and pitfall sampling)
were conducted on an unmanaged, unarmored beach
with no vehicle access or beach grooming, located
east of Goleta Beach County Park in Santa Barbara,
California, USA (34�25002.100N, 119�48056.700W). The
mesocosm experiments were conducted at nearby Cam-
pus Point Beach (34�24022.600N, 119�50038.000W) for
access and safety reasons. All species of talitrid
amphipods (Megalorchestia californiana, M. corniculata,
M. minor, M. benedicti) used in the mesocosm study
were collected by hand at local beaches (where they are
highly abundant) on the morning of each experiment.
M. corniculatawas collected at Isla Vista Beach (34�24033.600N,
119�52023.000W), M. minor at R beach (34�24058.100N,
119�53012.300W), and M. californiana and M. benedicti at
Goleta Beach. This guild of congeners is the dominant
wrack-associated taxon in the study region in terms of
abundance and biomass (Dugan et al., 2003). These highly
mobile species are most active on the sand surface at
night when they forage on kelp and other wrack. During
the day, they occupy freshly dug intertidal burrows in damp
sand that are typically aggregated into distinct, often
species-specific, beds of characteristically bioturbated sand
(Dugan et al., 2013).

Spatial distribution surveys

To compare zonation patterns and spatial separation
across species, we quantified the distribution and abun-
dance of wrack-associated macroinvertebrates on two
dates with contrasting spring and neap tide phases
(2 [spring] and 10 [neap] August 2016). All surveys were
conducted during the day when the majority of animals
were burrowed in the sand. For each survey, six shore-
normal transects were set up to extend from the upper
beach boundary (cliff base) to the water table outcrop
during low tide. We measured the abundance of macro-
phyte wrack as cover on each transect using a line inter-
cept method (Dugan et al., 2003). Along each transect,
we also collected 30 evenly spaced cores (10 cm diame-
ter, 20 cm depth) from the upper beach boundary to the
lowest distribution limit of upper beach
macroinvertebrates. Each core was placed in a 1.5-mm
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mesh bag sieve, rinsed in seawater, and the contents were
bagged and frozen. Each frozen sample was sorted in the
laboratory and invertebrates were identified to species
level, counted, and weighed. For the purpose of this study,
we focused on the spatial distributions of the four conge-
neric species of talitrid amphipods (M. californiana,
M. corniculata, M. minor, M. benedicti) that coexist on
sandy beaches in our study region. JuvenileMegalorchestia
(length <8 mm) were included as a separate group
because they make up a large portion of total talitrid abun-
dance on the beach and prior research has shown that
juvenile activity differs from that of adults (Lastra
et al., 2010).

Temporal distribution—Surface activity

Surface activity patterns of the four Megalorchestia spe-
cies were assessed using observations in controlled meso-
cosm experiments and through pitfall trapping on the
beach during spring and neap tide phases. The observa-
tional study used mesocosm containers placed on the
upper beach at Campus Point Beach in Santa Barbara,
California on contrasting neap and spring tide phases,
31 July and 7 August 2017, respectively. The mesocosms
(n = 4 per species) consisted of 18.9 L buckets filled to a
depth of 20 cm with sieved dry sand and wetted using fil-
tered seawater. Eighty individuals of each species were
collected the morning of each experiment from the local
beaches described above, and single-species treatments
were set up with 20 individuals per bucket (four repli-
cates per species) with a fresh blade of giant kelp
(Macrocystis pyrifera) as a food source and habitat ele-
ment. The 16 mesocosms were set up in the laboratory
and left to acclimate for approximately 6 h before obser-
vations commenced. After the acclimation period,
buckets were buried to 20 cm depth on the upper beach
(the same depth as the sand in the bucket) to help main-
tain ambient temperature and lighting conditions. Every
hour for 24 h, the total number of individuals active on
the surface was observed for 1 min and recorded.

Pitfall traps were used to assess in situ surface activity
patterns of Megalorchestia spp. along the high tide line of
Goleta Beach on contrasting neap and spring tide phases
(16 [neap] July and 8 [spring] August 2017). Traps were
placed at the high tide line where most of the fresh kelp
wrack is deposited and where these organisms aggregate
to feed. After high tide on each sampling date, twelve
470-ml cups with lids were buried flush with the sand
surface 0.5 m apart along the high tide line, parallel to
the water in randomized order (from 1 to 12). This was
replicated in four groups with each group of 12 cups
10 m apart. Seawater mixed with a few drops of dish soap

was added to the bottom of each cup to prevent trapped
organisms from escaping. One trap in each of the four
groups was opened for 30 min every 2 h for 24 h. The
organisms collected in the traps were transferred to
labeled bags and frozen for later processing. The contents
from each trap were sorted in the laboratory, identified to
species level, and counted.

Data analysis

For the spatial distribution surveys, we calculated the
mean position, P, for each species during each tide
phase as:

P¼
Xni�DiP

ni
,

where ni is the number of individuals at each sampling
distance from the bluff Di. Within-species mean positions
were compared between the two tide ranges using Stu-
dent’s t test. One-way analysis of variance (ANOVA) was
used to compare mean position by species on the neap
tide and on the spring tide. Mean positions of the four
species were also compared using a two-way ANOVA
with mean positions as the response variable and species
and tide as fixed factors. The percent increase in habitat
area, H, was calculated as:

H¼ n� s
n

�100%,

where n is the mean position of the neap tide high tide
strandline and s is the mean position of the spring high
tide strandline.

Observational data from the mesocosm experiments
were averaged for the four species across the four repli-
cates and were analyzed using circular statistics. We cal-
culated the mean time of activity (�standard deviation)
for each species on each tide phase based on the number
of individuals observed each hour. We also calculated
Rayleigh’s Z for each species on each tide phase, which
serves as a measure of how clumped (high values) or dis-
persed (low values) observations were around the mean
hour over the 24-h period. Lastly, we determined the
total time range of activity by calculating the number of
hours from when the first maximum number of individ-
uals of one species was observed to when the last maxi-
mum number of individuals of some other species was
observed for each tide phase. This time range, therefore,
contained the peaks of activity for all four species
and was used to estimate temporal separation among the
species on the different tide phases.
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Data presented for the pitfall traps include three
Megalorchestia spp., as M. corniculata adults were not
caught in pitfall traps. Numerous juvenile Megalorchestia
were also caught and analyzed as an independent group
because their activity may differ from that of adults
(Lastra et al., 2010). As with the observational study, we
calculated the total time range of activity across the
three adult species by determining the number of hours
between the first peak of activity for one species and the
last peak of activity for the remaining species to estimate
temporal separation among the species in the field on the
different tide phases. The data from pitfall traps were
analyzed using circular statistics to determine the mean
time of activity (�standard deviation) for each species
based on the mean number of individuals trapped every
2 h for each tide phase. We also calculated Rayleigh’s
Z for each species on each tide phase. Circular statistics
analyses were done using Oriana v4 (Kovach, 2011); all
other analyses were conducted with base R (R Core
Team, 2019) and Tidyverse (Wickham et al., 2019).

RESULTS

Spatial distribution

Our samples from quantitative field surveys included
adult individuals of all four species of Megalorchestia as
well as unidentified juveniles in both the spring and neap

tide phase surveys (Figure 1). From the neap tide to the
spring tide survey, the location of the high tide strandline
shifted 15 m higher on the beach. The corresponding
increase in habitat area, H, was 54.1%. The abundance of
macrophyte wrack (cover) did not differ between our
neap (3.79 m2 m�1) and spring (3.31 m2 m�1) tide sur-
veys (one-way ANOVA, F = 0.42, p = 0.53). The mean
positions of Megalorchestia in relation to the back-beach
limit (bluff base) varied across species and tide phase.
Among the four species, M. californiana adults were
located farthest from the water and closest to the bluff at
29.3 � 1.4 m (mean � standard deviation) on the neap
tide and 20.8 � 3.5 m on the spring tide. Moving down
the beach toward the water, M. benedicti were next, with
mean positions of 29.9 � 1.2 m on the neap tide and
20.9 � 4.8 m on the spring tide. M. minor were lower on
the beach at 31.2 � 1.4 m on the neap tide and
26.2 � 2.4 m on the spring tide. Mean positions of
M. corniculata were closest to the water at 32.6 � 0.4 m
on the neap tide and 26.7 � 1.7 m on the spring tide.
Juvenile Megalorchestia were closest to the bluff on aver-
age, at 29.2 � 3.6 m on the neap tide and 20.5 � 5.0 m on
the spring tide. The order of mean positions was the same
for spring and neap tide ranges with juveniles nearest to
the bluff, then M. californiana, M. benedicti, M. minor,
and finally M. corniculata closest to the water. However,
the range of positions for adults of the four species was
nearly double on the spring tide (5.9 m) than on the neap
tide (3.3 m), and mean positions on the spring tides dif-
fered significantly from mean positions on the neap tide
for all four adult species and juveniles (pairwise t tests,
p values for all five groups ≤0.001). The spread of
Megalorchestia (i.e., mean position standard deviations)
across the beach face was also greater for all species and
juveniles on the spring tide with the net increase in SD
ranging from 1.0 to 3.6 m. On the neap tide, the mean
positions of adults of the four talitrid amphipod species
and juveniles were spatially compressed and did not dif-
fer significantly (F = 2.7, p = 0.06, n = 27). In contrast,
during the spring tide, adults of the four species and juve-
niles were more widely separated and their mean posi-
tions differed significantly (F = 4.2, p = 0.01, n = 29). We
found a significant effect of species (two-way ANOVA,
F = 4.8, p = 0.002, n = 56) and tide phase (F = 86.5,
p < 0.001, n = 56) on mean position, and no significant
interaction between species and tide phase (p = 0.5).

Temporal distribution—Surface activity

Observations of adults of the four species of Megalorchestia
in the mesocosms for 24 h revealed different temporal
patterns in surface activity between the neap tide and the

F I GURE 1 Location along the cross-shore beach profile (from

bluff = 0 moving toward the ocean) where talitrid amphipods

(Megalorchestia species including juveniles) were burrowed during

a neap (blue) and spring (gold) tide. The size of each circle

corresponds to the number of individuals in the core sample at that

location. The black diamonds represent the mean position of the

species relative to the bluff. Vertical dashed lines represent the

location of the high tide strandline on the neap (blue) and spring

(gold) tide
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spring tide phases. On the neap tide, the four species
exhibited distinctly different peaks in surface activity,
whereas on the spring tide there was large overlap in
surface-active periods (Figure 2). During the neap tide,
there was also a greater time range of surface activity
(7.5 h, Appendix S1: Figure S1) compared to the spring
tide (4 h, Appendix S1: Figure S1). The mean hour of sur-
face activity, derived from the number of individuals
active each hour, was earlier in the night for the two
larger species (M. californiana and M. corniculata) than
for the two smaller species (M. minor and M. benedicti)
on both tide phases (Table 1). Rayleigh’s Z values, a mea-
sure of clustering, that is, how concentrated the data are

around the mean for each species, varied across tide
phases for all species, with only M. minor having notably
higher values on both tides, indicating relatively narrow
windows of peak activity (Table 1).

In the pitfall trap samples, we captured adults of three
of the four species (no M. corniculata), and many juve-
niles (length <8 mm). As with the mesocosm experi-
ments, the time peaks when individuals were active
(caught in pitfall traps) were more distinct on the neap
tide compared to the spring tide, where we observed
much greater overlap in the surface-active periods of the
species (Figure 2). During the neap tide, the overall dura-
tion of surface activity of the amphipods (adult species

F I GURE 2 The mean number of surface-active individuals (�SE) of Megalorchestia californiana (MCAL), Megalorchestia corniculata

(MCOR), Megalorchestia benedicti (MEBE), and Megalorchestia minor (MEMI) observed at each hour in mesocosms during the (a) neap and

(b) spring tides on Campus Point Beach that began at 6:00 PM Pacific Daylight Time (PDT) and from pitfall trap samples every 2 h

(12 samples for the 24-h period) during the (c) neap and (d) spring tide phase on Goleta Beach that began at 7:00 PM PDT. The gray shading

represents nighttime hours from sunset to sunrise
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and juveniles) was double (14 h, Appendix S1: Figure S2)
that observed for the spring tide (7 h, Appendix S1:
Figure S2). Similar to the results of the mesocosm experi-
ment, the larger species (M. californiana) was active earlier
in the night compared to the two smaller species (M. minor
and M. benedicti) during both tide phases (Table 1). Large
Rayleigh’s Z values indicated that M. californiana and
juvenile Megalorchestia had aggregated activity distribu-
tions, or relatively tight windows of peak activity, during
both tide phases, while the two small-bodied talitrid species
were more dispersed across time in their activity (Table 1).

DISCUSSION

The interspecific spatial and temporal niche separation that
we found suggests that negative biotic interactions, such as
competition, are operating on dynamic open coast sandy
beaches. In sheltered habitats, such as mudflats and
marshes, soft-sediment infauna spatially partition habitat
to reduce competition for space (Peterson & Andre, 1980;
Wilson, 1990b; Woodin, 1974). Our results demonstrate
that mobile intertidal species inhabiting apparently harsh
sandy beach habitats also partition habitat in space

and time, and that this partitioning varies with tide phase.
The degree of spatial and temporal separation of the four
congeneric species of intertidal talitrid amphipods we
observed varied strongly with tide phase and the resulting
>50% change in habitat availability, with stronger temporal
patterns in niche separation on a neap tide when habitat is
most limiting, and greater spatial separation on a spring
tide when more habitat is available.

Strong interspecific temporal variation in surface
activity of the four amphipod species was observed in situ
in the presence of congeners, with pitfall sampling, and
in mesocosms in the absence of congeners, suggesting
that these behavioral patterns were entrained responses
to tide phase (Enright, 1965, 1972; Hastings, 1981;
Naylor, 1985). Such temporal separation in activity may
be a mechanism of avoiding competitive interactions over
limiting resources like food and habitat, but may trade-
off with other potential foraging costs, such as predation
and desiccation risk (Beyst et al., 2002; Williams, 1980).
During the neap tide phase, when biotic interactions are
expected to be more intense due to habitat limitation, a
longer overall period of active surface time was observed
across the four species than during the spring tide,
reflecting interspecific separation of activity peaks. On

TAB L E 1 Mean time of activity (Pacific Daylight Time, UTC-07:00) with standard deviations (SD) and values of Rayleigh’s Z (higher

values relative to other groups indicate clumped activity distributions or relatively tight windows of peak activity observations) for

Megalorchestia californiana (MCAL), Megalorchestia corniculata (MCOR), Megalorchestia benedicti (MEBE), and Megalorchestia minor

(MEMI) and juvenile Megalorchestia spp. (J) during the neap and spring tide mesocosm experiments on Campus Point Beach and the neap

and spring tide pitfall sampling on Goleta Beach

Statistic MCAL MCOR MEBE MEMI J

Neap tide mesocosm

Mean 22:35 1:14 7:11 1:33 N/A

SD 1:28 3:01 4:51 3:34 N/A

Rayleigh Z 17.2 9.1 2.2 16.2 N/A

Spring tide mesocosm

Mean 2:20 2:02 5:56 3:22 N/A

SD 2:56 1:54 3:53 3:18 N/A

Rayleigh Z 8.3 17.2 8.2 32.1 N/A

Neap tide pitfall

Mean 22:18 N/A 10:34 14:37 23:36

SD 4:00 N/A 4:16 6:17 4:43

Rayleigh Z 31 N/A 9.1 2.8 56.2

Spring tide pitfall

Mean 0:12 N/A 6:58 2:39 0:26

SD 3:00 N/A 5:32 5:49 3:05

Rayleigh Z 77.2 N/A 5.7 4.5 384.2

Note: Values were calculated using the circular statistics program Oriana (v4).
Abbreviation: N/A, not applicable.
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the spring tide when more habitat was available and spa-
tial separation possible, higher overlap in peak surface
activity was observed, suggesting that ideal activity and for-
aging time might be the same for these similar species
absent interspecific interaction. Tidal fluctuation on the
sandy beach may therefore provide a means of niche expan-
sion via a reduction in competitor densities (Bolnick
et al., 2010; Crego et al., 2018; Petrozzi et al., 2021).

The role of fluctuating conditions, such as tides, in
mediating biotic interactions is relatively unexplored,
but our study results and others imply that the tide
phase is an important factor to consider with respect
to coexistence, particularly of mobile intertidal species
(Berglund, 1982; Lea et al., 2020; Steibl & Laforsch, 2019).
Zonation has been well studied for rocky intertidal shores
providing valuable insights on the relative influence
of physical factors and biotic interactions in setting patterns
(Connell, 1972; Harley & Helmuth, 2003; Menge &
Sutherland, 1976; Tomanek & Helmuth, 2002). However,
the majority of those observational and experimental
studies have focused on sessile or sedentary organisms
whose zonation is relatively stable over time and mediated
by physical stressors including temperature, inundation
period, waves, wind, oxygen availability, and desiccation
(Connell, 1961b; Lubchenco, 1980; Newell, 1976;
Underwood & Denley, 1984; Wefhey, 1984). Although
tolerance to physical factors sets up the broader inter-
tidal zones that species can inhabit, within these
zones the effects of biotic interactions can be strong
including competitive interactions for food and space
(Dayton, 1971; Paine, 1971; Peterson, 1982, 1991;
Yamada & Boulding, 1996). For the diversity of mobile
intertidal species of soft sediment and even of rocky
shores, those classic tenets concerning zonation and
the relative roles of physical factors and biotic interac-
tions may not apply. The zonation of mobile intertidal
species can be tightly coupled to their behavioral
adaptations (Gravem & Morgan, 2017) with tidal
migration of different frequencies a commonly
observed response (Dugan et al., 2013). On the sandy
beach, where all organisms are highly mobile and
interact with water motion, including tidal fluctua-
tions as well as other physical factors by moving
(McLachlan, 1988), intertidal zonation patterns are
far more dynamic. Understanding how mobile species
partition the intertidal zone provides a fresh dimen-
sion for evaluating the role of biotic interactions in
intertidal habitats.

Activity patterns of intertidal sandy beach invertebrates
have been related to species-specific needs, such as burrowing
to avoid predation and desiccation during the day or migrat-
ing to optimize feeding in the swash, on wrack, or on carrion
on the sand surface at night when the temperature

and predation risks are lower (Brown & McLachlan, 1990;
Cardoso, 2002; Gibson, 2003; Naylor & Rejeki, 1996; Scapini
et al., 1992). We would expect wrack availability to signifi-
cantly influence both community composition and behavior
(Dugan et al., 2003; Fanini et al., 2016; Michaud et al., 2019;
Poore & Gallagher, 2013). However, we found no differences
in wrack abundance between the spatial distribution surveys
conducted during neap and spring tides in our study. The rel-
atively consistent environmental conditions other than tide
during both our surveys strengthen the evidence pointing to
the mediating effect of tide phase on species interactions and
their mechanisms of avoidance of potentially negative biotic
(interspecific and intraspecific) interactions. Biotic rather
than environmental factors are likely driving the spatial sepa-
rations and activity patterns observed for intertidal inverte-
brates with overlapping niche spaces on sandy beaches.

Different species tailor surface activity periods to
time of day, tides, moon phase, predation risk, sea con-
ditions, and more (Colombini et al., 1994, 1996, 1998,
2000; Fallaci et al., 1996; Lastra et al., 2010). At higher
trophic levels, shorebirds spatially partition habitat use
to reduce antagonistic interactions but also structure
their foraging habits around tide level with species-
specific foraging times in relation to low tide rather than
time of day (Burger et al., 1977; Neuman et al., 2008).
On southern California beaches, shorebirds feed using
visual cues, tactile probing, and active foraging/gleaning
for prey whose abundances fluctuate with the amount
of wrack inputs and beach conditions (Dugan
et al., 2003, 2008, 2013). Shorebirds opportunistically
feed at all intertidal levels ranging from the dry upper
beach, through the high tide strandline and into the
swash zone (Hubbard & Dugan, 2003; Lafferty, 2001).
While shorebirds feed across the intertidal zone, primar-
ily along or below the high tide strandline where we
found the greatest abundance of talitrid amphipods, it is
unlikely that the talitrid spatial patterning we observed
is a mechanism of avoidance of shorebird predation.
Rather, the nighttime surface activity observed across
species may reduce predation threats from visual preda-
tors in addition to lowering the desiccation risk associ-
ated with daytime surface activity.

Mobile species with larger body size likely have a
competitive edge over smaller species, allowing them to
occupy prime locations and time periods that maximize
access to resources and limit risk factors, such as preda-
tion, cannibalism by adults on juveniles, and desiccation
(Norkko et al., 2013; Wallace & Temple, 1987; Woodward
et al., 2005). Interestingly, small juvenile Megalorchestia
and the species with the smallest adult body size,
M. benedicti, occupied the widest habitat distribution dur-
ing both tide phases. While avoidance of negative biotic
interactions may drive the observed spatial separation of all
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of these species during spring tides when more suitable
habitat is available, such interactions (i.e., competition, pre-
dation, cannibalism; see Duarte et al., 2010) may be acting
on the smaller talitrid amphipod species as well as the juve-
niles of all species regardless of tide phase. This may push
them into less suitable habitats and activity times to avoid
competitive exclusion or predation by larger congeners
across tide phases.

Our study results suggest that beach habitat loss and
intertidal zone compression due to wave events, seasonal
changes, El Niño, and sea level rise (Dugan et al., 2013;
Vitousek et al., 2017), and coastal armoring (Dugan et al.,
2008, 2017; Jaramillo et al., 2021; Myers et al., 2019) have
implications for habitat partitioning to avoid biotic inter-
actions (Gilman et al., 2010). Future reductions of inter-
tidal habitat area due to climate change may increase
competitive exclusion, causing a loss of similar species
and functional redundancy with consequent effects on
biodiversity and ecosystem functioning (Emery et al.,
2021). Competitive interactions in highly mobile inter-
tidal species can be more challenging to observe than in
sedentary or sessile taxa, but niche separation and coexis-
tence of such species may depend on their mobility and
ability to respond to changing environmental conditions.
Such behavioral plasticity may not only mitigate the
effects of changing environmental conditions (Colombini
et al., 2013), but also alters the strength of biotic interac-
tions on both temporal and spatial scales. Activity modifi-
cations due to circalunar rhythms by the invertebrate
community at large may in fact be a mechanism of
stabilization for the community and therefore a mecha-
nism of coexistence (i.e., diversity of biological rhythm)
(Mougi, 2021). Our findings for talitrid amphipods are
consistent with a strong role of biotic interactions in
structuring the highly mobile intertidal communities of
dynamic harsh ecosystems where physical factors have
long been assumed to control community structure.
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