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ABSTRACT. Coastal ecosystems are rapidly changing due to human-caused global
warming, rising sea level, changing circulation patterns, sea ice loss, and acidification
that in turn alter the productivity and composition of marine biological communi-
ties. In addition, regional pressures associated with growing human populations and
economies result in changes in infrastructure, land use, and other development; greater
extraction of fisheries and other natural resources; alteration of benthic seascapes;
increased pollution; and eutrophication. Understanding biodiversity is fundamental
to assessing and managing human activities that sustain ecosystem health and services
and mitigate humankind’s indiscretions. Remote-sensing observations provide rapid
and synoptic data for assessing biophysical interactions at multiple spatial and tem-
poral scales and thus are useful for monitoring biodiversity in critical coastal zones.
However, many challenges remain because of complex bio-optical signals, poor sig-
nal retrieval, and suboptimal algorithms. Here, we highlight four approaches in remote
sensing that complement the Marine Biodiversity Observation Network (MBON).
MBON observations help quantify plankton community composition, foundation spe-
cies, and unique species habitat relationships, as well as inform species distribution
models. In concert with in situ observations across multiple platforms, these efforts
contribute to monitoring biodiversity changes in complex coastal regions by provid-
ing oceanographic context, contributing to algorithm and indicator development, and
creating linkages between long-term ecological studies, the next generations of satellite

sensors, and marine ecosystem management.

INTRODUCTION

Multiple stressors to coastal ecosystems
associated with global change include
warming waters, rising sea level, reduced
oxygen, reduced pH, changing produc-
tivity, and sea ice loss (Gruber, 2011;
Doney et al.,, 2012; Mathis et al., 2014),
and these are in addition to changes in
water quality associated with upland land
use, nutrient pollution, and coastal infra-
their
(e.g., Bopp et al,, 2013), and the scales at

structure. Stressors, interactions
which they affect ecosystems are mod-
ulated by different levels of biological
organization—either through physiolog-
ical shifts or changes in species assem-
blages. These changes in the abundance
of different forms of life, or biodiversity,
can be measured at several levels of com-
plexity, from genes to populations, com-
munities, and ecosystems.

Biodiversity is a key indicator of eco-
system health; changes in assemblages
result in changing resilience, productiv-
ity, and interactions among species that
can positively or negatively affect the eco-
system services that sustain human econ-
omies and social well-being (e.g., Worm
etal., 2006; Duffy et al., 2013; Miloslavich
et al., 2018). Satellite remote sensing is

an important component of marine and
terrestrial biodiversity studies (Muller-
Karger et al., 2018a; Skidmore et al,
2021). It is a collection of methods that
provides repeat synoptic coverage of eco-
systems at multiple scales and with link-
ages between species-level information,
such as distribution and richness, and
between regional and global information,
including primary productivity, nutri-
ent cycling, and climate change (Turner
et al., 2003, 2015). For oceanic habi-
tats, where advection, mixing, and other
local heat and material exchange results
in shifts in the extents of habitats at sub-
seasonal to interannual timescales and
from submesoscale (hundreds of meters)
to basinwide (thousands of kilometers)
spatial scales, synoptic time series pro-
vide oceanographic context to ecological
observation programs (e.g., Hardman-
Mountford et al., 2008; Kavanaugh et al.,
2016). With recent advances in spectral,
spatial, and temporal resolutions and
radiometric quality (e.g., Werdell et al.,
2018; Muller-Karger et al., 2018a; Li et al.,
2019), the scientific and conservation
communities can now better measure
and model community and ecosystem
responses to environmental variability,

including climate change.

One challenge is to establish a sub-
stantive biodiversity information base by
which we can gauge changes in marine
ecosystems (Duffy et al., 2013; Muller-
Karger et al., 2014). In 2014, the National
Aeronautics and Space Administration
(NASA), the National Oceanic and
Atmospheric Administration (NOAA),
the National Science Foundation
(NSF), and the Bureau of Ocean and
Energy Management (BOEM) pooled
resources under the National Ocean
Partnership Program (NOPP) to initiate
a pilot Marine Biodiversity Observation
Network (MBON). The goal was to estab-
lish a scalable and transferable obser-
vational model for detecting biodiver-
sity and marine habitat variability with
direct application to resource manage-
ment and decision-making (Figure 1).
MBON nodes have been established in
US coastal waters that represent polar,
temperate, and subtropical ecosystems.
Four nodes were established in 2014 in
the Chukchi Sea, in central and southern
California waters, and in the southeast
Gulf of Mexico off Florida. Additional
nodes were initiated in the Pacific
Northwest and the Gulf of Maine in 2019.
Practices for these nodes are designed to
integrate existing or new data relevant
to their regions and ecosystems and to
share methods to establish best practices,
including standardizing data and infor-
mation synthesis approaches (Benson
et al., 2021, in this issue) and collection
of a wide array of remotely sensed biolog-
ical and physical variables that contribute
to understanding broad biogeographic
trends across coastal systems.

Here, we highlight where MBON
research is currently addressing knowl-
edge gaps and methodological advances
that allow inferences to be drawn at mul-
tiple levels of ecological organization
using remote sensing. Focusing primar-
ily on ocean color measurements, we first
describe the current suite of sensors used
and the ongoing challenges with observ-
ing ocean color in complex coastal zones.
We then highlight four paths where
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MBON research is addressing these chal-
lenges to observe biodiversity in and
across optically and ecologically unique
coastal environments to obtain informa-
tion on plankton community composi-
tion, foundation species, dynamic pelagic
habitats, and regional-scale species dis-
tributions. We then discuss recommen-
dations that include preparing for new
sensors, combining sensors for increased
coverage in space and time, integrat-
ing higher taxonomic detail across mul-
tiple trophic levels, and contributing to
regional to global indicators that link
in-water patterns to broad-scale marine
ecosystem management.

REMOTE SENSING AND
BIODIVERSITY: CHALLENGES
AND CURRENT CAPACITY

Satellite remote sensing, in particular
ocean color, can contribute to monitoring
biological patterns and processes by pro-
viding information on biomass or dom-
inant taxa of lower trophic levels. Ocean
color instruments measure ultraviolet,
visible, and near infrared light at the top
of Earth’s atmosphere, and atmospheric
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correction algorithms are applied to
obtain remote-sensing reflectances (R,,),
a measure of the color of Earth’s sur-
face. R, are then related to biogeochem-
ical quantities of interest using statistics
or descriptive models. In marine environ-
ments, common biogeochemical quan-
tities include chlorophyll a (Chl-a), the
concentration of particles (inorganic and
organic, including phytoplankton), dis-
solved colored molecules, and seawater.
All these “constituents” alter light through
absorption and/or scattering across dif-
ferent wavelengths. The physical, bio-
logical, geological, and chemical com-
positions of coastal and marine habitats
are complex, and different processes and
materials affect electromagnetic radiation
differently—so measuring the complexity
of these habitats requires sensors with dif-
ferent spatial, temporal, and spectral res-
olutions. Thus, a multi-sensor approach
is often required for ecological studies
to contend with the hydrodynamic and
bio-optical complexity of coastal zones.
Currently, various remote-sensing
platforms provide broad capacity for
observing biophysical phenomena and

patterns of interest that affect biodi-
versity across a hierarchy of space and
time (Figure 2). Most operational prod-
ucts are derived from multi-spectral and
passive sensors that measure changes in
reflected sunlight. At the smallest spa-
tial scales (centimeters to meters), sub-
orbital sensors, including those mounted
on unoccupied aerial systems, have been
used to observe benthic habitat charac-
teristics such as the diversity of corals and
algae (including patches) present (Collin
et al., 2018; Johnston, 2019; Bell et al.,
2020b; Monteiro et al., 2021). While the
nanosatellite constellations, for exam-
ple, CubeSats, can provide high spatial
(4 m) and high temporal resolution infor-
mation to monitor terrestrial systems
(e.g., Aragon et al.,, 2021), their spectral
resolutions and radiometric qualities cur-
rently limit their application to marine
ecosystems. However, at scales of tens of
meters, Landsat has provided time series
of multispectral data since the 1970s at
30 m resolution and 16-day repeat. This
allows assessment of slower growing,
patch-forming organisms, including large
coral reefs, kelp forests, seagrasses, and

FIGURE 1. Satellite remote sens-
ing and the Marine Biological
Observation Network. Red squares
denote the original demonstration
nodes in waters of the Arctic, Central
California, Southern California Bight,
and Florida Keys. Green squares
indicate nodes added in 2019 in
the Northern California Current/
Pacific Northwest and the Gulf of
Maine. The blue square locates an
ongoing partnership site with the
Smithsonian Institution. Each node
represents a unique coastal environ-
ment with variability in biophysical
dynamics where in situ observations
complement remote sensing. The
figure highlights biological and phys-
ical variables that are all available
with current remote sensing, includ-
ing sea ice, sea surface tempera-
ture (SST), sea surface height (SSH),
salinity (SAL), and chlorophyll a
(Chl-a), along with chromophoric dis-
solved organic matter (CDOM) from
ocean color (see section on Remote
Sensing and Biodiversity: Challenges
and Current Capacity).



mangroves, particularly with Landsat 8’s
improved ocean color sensitivity (see
Cavanaugh et al., 2011, 2019; Bell et al,,
2018, 2020a; Hamilton et al., 2020).

Over scales of hundreds of meters to
kilometers, the time evolution of plank-
ton communities can be observed over
a range of temporal and spatial scales
using ocean color sensors, which have
increased sensitivity to account for the
absorption of light by water. The Coastal
Zone Color Scanner (CZCS) provided
proof-of-concept with imagery collected
between 1978 and 1986. Since 1997, near-
daily, multispectral ocean color at ~1 km
has been provided by polar orbiting sat-
ellites launched by Japan, the European
Union, the United States, India, China,
and several other countries. In the United
States, sensors have progressed from the
Sea-viewing Wide Field-of-view Sensor
(SeaWiFS; 1997-2010) to the Moderate
Resolution Imaging Spectroradiometer
(MODIS; 2002-present), and finally to
the Joint Polar Satellite System (JPSS)
Visible Infrared Imager Radiometer
Suite (VIIRS; 2012-present). In 2015, the
European Space Agency (ESA) launched
the Sentinel constellation, which provides
higher spatial resolution (~300 m for
Sentinel-3) and improved repeat cover-
age by flying sensors on two companion
satellites. Repeat observations at scales
of minutes to hours can be acquired for
smaller regions using geostationary sat-
ellites; the South Korean Geostationary
Ocean Color Imager (GOCI) provides
ocean color imagery of marginal seas
around the Korean peninsula approxi-
mately eight times per day.

Together, multispectral imagers have
provided information on phytoplank-
ton Chl-a (Hu et al., 2012; Siegel et al.
2013), chromophoric dissolved organic
matter (Siegel et al, 2002; Werdell
et al, 2013), chlorophyll fluorescence
(a metric of phytoplankton physiology;
Behrenfeld, et al., 2009), particle back-
scatter (Loisel et al., 2006; Bisson et al.,
2021), and particulate organic carbon
(Stramski et al., 2008). These observa-
tions from passive sensors can provide

frequent and long-term measurements
of surface ocean constituents to depths
ranging from a few centimeters to several
tens of meters, depending on the turbid-
ity of the water and whether there is rela-
tively high solar illumination under clear-
sky conditions. Yet, they have been used
to estimate primary productivity in upper
ocean waters (Behrenfeld and Falkowski,
1997; Westberry et al., 2005) and the flux
of organic particulate material to the bot-
tom of the ocean (Muller-Karger et al,,
2005) using simple but effective models.
Active light detection and ranging
(lidar) observations complement pas-
sive ocean color remote sensing. Lidar
uses light from a pulsed laser to observe
the ocean, and it works during day or
night, through moderate cloud and aero-
sol interference, and in polar darkness
(Behrenfeld et al., 2017). Lidar platforms’
capacity to provide information on verti-
cal variation in particles over the upper
few tens of meters of the water column

(e.g., Luetal., 2014; Hostetler et al., 2018)
allows their use as complements to pas-
sive sensor systems that can only obtain a
single integrated value for surface waters.
Global-scale particulate organic carbon
retrievals from space-based lidar obser-
vations have been available since 2006 in
measurements from the Cloud-Aerosol
Lidar with Orthogonal Polarization
(CALIOP) sensor (Behrenfeld et al,
2013) and more recently from IceSAT2
(Lu et al, 2020). Due to their near-
nadir viewing geometry, lidar tracks
have to date offered limited spatial cov-
erage and long repeat times (16-60 days),
and thus are best used in conjunction
with passive sensors.

Relative to the open ocean, coastal
zones have many different constitu-
ents that continuously and often rapidly
change colors and turbidity conditions.
Measuring this complexity requires sen-
sors with higher spatiotemporal resolu-
tions, radiometric qualities, and spectral
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FIGURE 2. Stommel diagram showing the connections between satellite and in situ ocean observa-
tions and the spatial and temporal scales of biological organization and basic processes of interest.
Spatial and temporal coverages highlight the current sampling capacity of the Marine Biodiversity
Observation Network where in situ measurements can sample at finer spatiotemporal and taxo-
nomic resolution. Low predictability and high apparent predictability (Wiens, 1989) denote spatial
temporal scales where undersampling or naive space for time substitution may mask important
ecological mechanisms. Platforms with darker shading or italicized text denote increased tax-
onomic resolution that can be resolved. Both current and future sensors are listed, with future

sensors italicized.
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resolutions (see Mouw et al., 2015, and
Muller-Karger et al., 2018b, for reviews).
Coastal systems are highly dynamic and
contain fine-scale features (Davis et al.,
2007; Moses et al., 2017). Their character-
istics include tidal exchange and upwell-
ing, riverine/freshwater inputs, inter-
action between water and bathymetry,
and complex coastline shapes, and some
locations are subject to sea ice dynamics.
Coastal ecosystems are productive, with
high particle and dissolved organic matter
loads that attenuate light in the water, fur-
ther reducing the signal of interest leav-
ing the water (Cannizzaro and Carder,
2006; Tzortziou et al., 2007). Both ben-
thic and plankton producers fuel coastal
food webs and can drive biodiversity pat-
terns; it is difficult to separate these sig-
nals without high spectral measurements
over long time periods (Dekker et al,
2007). Nearshore suspended sediments
are bright and can swamp sensitive ocean
color sensors, affecting both in-water
algorithms and atmospheric corrections.
Dynamic and diverse airborne inputs
near land, including dust, aerosols, and
pollution, make atmospheric correction
challenging. Water masses with differ-
ent optical constituents may mix at mul-
tiple scales (e.g., Kavanaugh et al.,, 2014a,
2016; Palacios et al., 2012) and may be
advected from their origins. Many global
ocean color algorithms assume an aver-
age or constant water mass composi-
tion, which limits their direct application
in complex coastal zones. MBON sci-
ence seeks to address these challenges in
order to meet current needs while bridg-
ing between current observational capac-
ity and future sensors.

In marine systems, the scale of detec-
tion is affected by movement (horizontal
and vertical) in addition to physical mix-
ing processes, which effectively smear
the spatial footprints and timescales to
which potential mechanisms may be
attributed (Kavanaugh et al., 2016); this
leads to high apparent prediction (sensu
Wiens, 1989) but incomplete under-
standing of mechanisms. Sampling the
environment only at fine spatial scales
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typically gives little predictive capacity
for large-scale processes (low predict-
ability, Figure 2). Sampling shorter-term
processes infrequently or over larger
scales misses key features and charac-
teristics of the processes being observed,
aliasing signals of interest. Furthermore,
variability in the vertical (e.g., subsurface
foraging, diel migration, and productiv-
ity in deeper layers) is mostly invisible
to satellites.

Remote-sensing tools are often used
in conjunction with a network of ground
observations and experiments to lend
mechanistic understanding of the pro-
cesses underlying patterns and to pro-
vide information from depths to which
many satellites cannot see. MBON nodes
are strategically linked to other programs,
including the US Integrated Ocean
Observing System (I00S), the Long Term
Ecological Research (LTER) network,
and the National Marine Sanctuaries,
along with various state and federal agen-
cies to include additional observations,
mechanistic insights, and contexts (see
other articles in this issue). These groups
also benefit, as they serve as the ultimate
“users” of new information generated by
the ability of MBON to integrate multiple
information types and data streams. The
exchange of data and knowledge is itera-
tive and cooperative (e.g., Iwamoto et al.,
2019), with remotely sensed and in situ
data merged to meet current science and
management needs.

MBON: FOUR METHODS FOR
MOVING FORWARD

Remote sensing offers four methods for
measuring biodiversity, three of them
directly synoptic. The first derives infor-
mation on phytoplankton community
composition from remote-sensing reflec-
tance spectra (see reviews in IOCCG,
2014; Bracher et al,, 2017; Mouw et al,,
2017). This method makes the general
assumption that primary producer com-
munity composition is related to opti-
cally discernible pigments or cell struc-
tures. The second method maps and
quantifies the spatial distribution and

temporal dynamics of foundation species
(e.g., kelp forests, coral reefs, forage spe-
cies) that structure populations and
communities (e.g., Angelini et al., 2011;
Castorani et al., 2018; Lamy et al., 2020).
The third combines biophysical infor-
mation from multiple sensors to iden-
tify features (e.g., fronts, eddies) or habi-
tat patches (e.g., seascapes) that can map
the quality and geographic extents of
pelagic habitats (Oliver and Irwin, 2008;
Kavanaugh et al., 2014a, 2016, 2018). A
fourth indirectly synoptic method utilizes
relationships among remotely sensed
biophysical variables and occurrences or
abundances of tagged or surveyed organ-
isms to map species distributions and
biodiversity patterns (e.g., Cimino et al.,
2020; Gagné et al., 2020). All four meth-
ods assume to some degree that primary
producer community structure relates to
the structure of higher trophic level com-
munities and that phenological changes
in primary producer communities prop-
agate throughout food webs (Vargas
et al., 2006; Chavez et al., 2011; Cermefio
et al., 2013, 2014; Vallina et al.,, 2017;
Santora et al., 2017).

Method 1. Phytoplankton
Community Composition Derived
from Remote-Sensing Reflectance
Phytoplankton form the base of the oce-
anic food web, providing food for ecolog-
ically and commercially important fish-
eries and fueling the exchange of carbon
between the ocean and the atmosphere.
Most phytoplankton are beneficial; how-
ever, some species can result in toxic
or noxious blooms that can have nega-
tive immediate or cumulative effects on
higher trophic levels, including humans
(e.g., Stumpf, 2001; D.M. Anderson et al.,
2009; C.R. Anderson et al., 2015). Thus,
understanding and monitoring changes
in plankton abundance and structure is
a vital component of coastal ecosystem
monitoring and management.
Phytoplankton species can be parsed
into several classification types, based
on a mixture of heuristics including size,
geochemical function (e.g., silica pro-



ducing, nitrogen fixing), or taxonomic
groups (e.g., diatoms, dinoflagellates, cya-
nobacteria) that are expressed through
accessory pigments or absorption spec-
tra (IOCCG, 2014; Mouw et al., 2017;
Bracher et al.,, 2019). While broad classi-
fications allow detection through multi-
spectral methods, there are challenges
in all classification types—groupings
are often overly broad and misclassified.

et al., 2018) can sometimes be resolved,
depending on local ecology. Multi-
species algorithms involving domi-
nant taxa (Alvain et al., 2008), commu-
nity composition (e.g., Hirata et al., 2011;
Brewin et al., 2012; Bracher et al., 2015),
or phytoplankton community size dis-
tribution (e.g., Kostadinov et al.,, 2010,
2016; Mouw and Yoder, 2010; Bricaud

et al., 2012) have been determined using

dinoflagellates), imperfect assumptions
of size (e.g., diatoms can be <20 um), or
poor retrieval/high contamination of
the satellite Chl-a signal. Spectral algo-
rithms focus primarily on the variabil-
ity of the absorption and scattering of
particles across multiple wavelengths
(Montes-Hugo et al., 2008; Kostadinov
et al., 2009; Mouw et al., 2010; Catlett and
Siegel, 2018). Spectral absorption algo-

Understanding and monitoring changes in plankton abundance and structure is

a vital component of coastal ecosystem monitoring and management.

For example, grouping cyanobacteria all
together lumps genetically and ecolog-
ically distinct taxa (Scanlan and West,
2002). Classification of diatoms based on
their main accessory pigment fucoxan-
thin is imprecise because several dinofla-
gellate species and some haptophytes also
contain fucoxanthin (e.g., Wright et al,,
2005; Dierssen et al., 2020). Furthermore,
dinoflagellates themselves are not strictly
phytoplankton, but they have many het-
erotrophic and mixotrophic representa-
tives. Obtaining the taxonomic details of
microorganisms has traditionally relied
on costly and time-consuming genetic
and microscopy methods, with expertise
in the latter becoming increasingly rare.
Thus, the longer time series that are crit-
ical for quantifying baselines and trends
may only focus on imprecise classifica-
tions that characterize polyphyletic dif-
ferences through marker pigments or
coarse differences in spectra.

Several algorithms have been devel-
oped to relate the optical constituents
(spectra, shape, pigments) of various
plankton groups to multispectral remote
sensing. Single bloom-forming species
such as coccolithophores (Moore et al.,
2012), Trichodesmium sp. (Subramanian
et al., 2001; Westberry et al., 2005), or
diatoms (Kavanaugh et al., 2015; Kramer

spectral approaches that include both
absorbance and scattering properties
derived from moderate resolution remote
sensing reflectances (see Bracher et al,
2019, for review). Identifying dominant
phytoplankton is important for biogeo-
chemical applications in order to iden-
tify and track harmful algal blooms and
to document the distribution, extent, and
phenology of the large beneficial blooms
on which organisms depend. Size-class
algorithms are useful because much of
the ocean trophic structure depends on
the size distribution of the phytoplankton
(e.g., Lombard et al., 2019).
Phytoplankton community composi-
tion (PCC) algorithms vary in their
degrees of spectral complexity. Two gen-
eral approaches exist, abundance-based
and spectral methods. Abundance-based
algorithms rely on the empirical relation-
ship of accessory pigments or size classes
to the magnitude of absorption at a lim-
ited set of single wavelengths or Chl-a con-
centrations (Uitz et al., 2006; Hirata et al.,
2011). In many regions, however, these
relationships break down due to physio-
logical variability in the ratios of acces-
sory pigments to Chl-a (e.g., White et al,,
2015), multiple co-occurring taxa con-
taining the dominant indicator pigment
and thus spectra (e.g., diatoms and some

rithms focus on the spectral variation of
accessory pigment absorption by differ-
ent taxa (e.g., Ciotti and Bricaud, 2006;
Chase et al, 2017; Catlett and Siegel,
2018) or the role of the packaging effect
on phytoplankton absorption spec-
tra (Ciotti and Bricaud, 2006; Bricaud
et al., 2012). Spectral scattering algo-
rithms include size class algorithms that
exploit the relationship of particle size
distribution (PSD) to the spectral slope
of beam attenuation or backscattering
using inversion (e.g., Loisel and Stramski,
2000; Boss and Pegau, 2001; Kostadinov
et al., 2009; Lee et al., 2010; Werdell et al.,
2013) or empirical relationships (Carder
et al., 2004; Montes-Hugo et al., 2008;
Mouw et al., 2010).

Most PCC algorithms have been
tuned to large-scale global gradients,
thus missing some of the optical com-
plexity in coastal zones (Maritorena
et al., 2002; Siegel et al.,, 2002; Werdell
et al., 2013). Coastal zones tend to have
strong non-algal bio-optical constitu-
ents that vary in space and time, so tun-
ing global PCC algorithms for local
coastal conditions remains an import-
ant challenge and area of active research
(e.g., Kramer et al., 2018).

Ongoing MBON efforts related to sat-
ellite-derived plankton community com-
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position focus on improving the skill of
global algorithms in regional oceans,
creating more quantitative test records.
These efforts include repeated surveys to
compare absorption spectra of blooms
dominated by different taxa, includ-
ing diatoms, dinoflagellates, and others,
in artificial controls and natural assem-
blages in the Santa Barbara Chanel and
the Florida Keys (Figure 3a,b; see also
Catlett and Siegel, 2018; Montes et al.,
2020; Catlett et al., 2021). Plankton
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types can be distinguished in natural
assemblages by investigating spectral
derivatives (Figure 3b) that reveal sig-
nals from accessory pigments of differ-
ent groups. The relative contributions
of algal particles, detritus, and dissolved
constituents can also be compared across
ecologically and optically distinct water
masses (Figure 3c; see also Montes et al.,
2020). These activities will all contribute
to NASAs upcoming Plankton, Aerosol,
Cloud, ocean Ecosystem (PACE) and
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FIGURE 3. Development of phytoplankton community composition algorithms for temperate
upwelling systems and subtropical shallow shelves. (a) Representative particulate/phytoplankton
absorption spectra from blooms of four different phytoplankton groups, assessed as the highest
observed concentration of each phytoplankton group’s biomarker pigment over a 12-year, approxi-
mately monthly time series from the Santa Barbara Channel, California (see Catlett and Siegel, 2018,
for details). (b) Mean absorption spectra and (c) second derivatives of phytoplankton communities
collected in (d) two seascape categories (highlighted with black boxes on the color bar) and sea-
sons on the Florida shelf (see Montes et al., 2020). Second derivative analyses allow the quantifica-
tion of unique, or the relative dominance of, pigment biomarkers, where fucoxanthin is indicative of
nearshore diatom populations in optically shallow seascape water masses and zeaxanthin is indic-
ative of cyanobacteria (e.g., Synechococcus sp. and Prochlorococcus sp.)
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Surface Biology and Geology (SBG) mis-
sions. Both missions will include hyper-
spectral sensors to better discern inflec-
tions in the radiometric spectra that are
caused by different taxonomic groups;
these will be discussed in greater detail
in a following section. Where possible,
MBON activities compare and combine
co-occurring records of different taxo-
nomic and spectral resolution (Catlett
and Siegel, 2018; Montes et al., 2020) to
link historic ocean time series with the
capabilities of future sensors.

Method 2. Remote Sensing of
Foundation Species

Foundation species create locally stabi-
lized environments (Lamy et al., 2020)
that provide refuges (Castorani et al,
2018) or isolated patches of different,
more-complex habitats that can result
in increased local or regional biodiver-
sity. In marine environments, these spe-
cies include primary producers such as
mangroves, kelps, and seagrasses as well
as reef-forming groups such as corals
and bivalves (Figure 4). Foundation spe-
cies may also provide critical habitats for
reproduction and population growth of
ecologically and economically import-
ant fish species.

Field-based monitoring of foundation
species can be time-consuming, costly,
and spatially incomplete, and it requires
access and often specialized equipment
(e.g., scuba, underwater imaging) along
with on-the-ground expert knowledge.
Compared to environmental knowledge,
remote sensing can increase coverage, be
time efficient, and in some cases more
accurately estimate habitat distributions
(Selgrath et al., 2016). Limitations to
remote sensing include incomplete hor-
izontal or vertical coverage, challenges
due to spectral unmixing, and accu-
racy of optical data that can be affected
by depth and turbidity (Goodman et al,,
2013; Hedley et al., 2016). Furthermore,
extraction of taxonomic annotations from
imagery can be time-consuming and
computationally taxing. Nevertheless, a
broad suite of remote-sensing technol-



ogy that includes both active and passive
methods deployed on various platforms
has been used successfully (Goodman
et al,, 2013; Xu and Zhao, 2014; Hedley
et al., 2016; Purkis, 2018).

Both suborbital and satellite platforms
are common today for both active and
passive remote sensing of foundation
species. Airborne laser scanners are cur-
rently the best available technology for
providing detailed bathymetry, geomor-
phology, and rugosity for water depths
<50 m and surveys <100 km? (Rohmann
and Monaco, 2005; Wedding et al., 2008).
Airborne hyperspectral remote sensing
(also known as imaging spectroscopy) is
at the technological forefront of passive
optical sensing for providing the most
detailed benthic habitat maps (Goodman
et al,, 2013; Hedley, 2018; Foo and Asner,
2019), successfully classifying benthos
into bottom types such as fleshy algae,
turf algae, seagrass, coral, and coral rubble
(Hochberg et al., 2003). By accessing data
over time, changes in benthic maps can
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inform changes in land use, coastal devel-
opment, and reef connectivity (Mumby
et al., 2004; Raitsos et al., 2017).

A good example of the characteriza-
tion of habitat-forming species using
remote-sensing observations is the recent
use of multispectral Landsat data to assess
changes in the canopy biomass distribu-
tion of giant kelp, Macrocystis (Cavanaugh
et al.,, 2011; Figure 4a,b). MBON affil-
iates are building on this work to assess
giant kelp population dynamics on local
and regional spatial scales (Reed et al,
2011; Bell et al., 2018, 2020a) and changes
in giant kelp population dynamics and
higher trophic level responses to recent
ocean warming events (Reed et al., 2016;
Cavanaugh et al, 2019). Recent work
using Landsat imagery has also extended
these quantitative analyses of canopy bio-
mass to bull kelp, Nereocystis, (Hamilton
et al,, 2020), and enabled the mapping
of kelp populations throughout the US
West Coast and Alaska over time. In the
near future, the spectral capabilities avail-

able from NASAs upcoming SBG mis-
sion (Cawse-Nicholson et al., 2021) will
support remote sensing of giant kelp can-
opy pigment concentrations, nitrogen
content, physiological condition, and
rates of primary production (Bell et al.,
2015, 2018, 2020b; recent work of authors
Bell and Siegel). MBON research on
foundation species provides important
preparation for SBG and addresses chal-
lenges in integrating sensors with differ-
ent radiometric qualities to assess benthic
vegetation through time.

Analogous studies are occurring in
subtropical waters within and adjacent
to the Florida Keys, where multi-scale
monitoring of seagrasses and coral types
is assessed using both multi- and hyper-
spectral methods (Figure 4c—f). Landsat
and commercial satellite imagery has
been used to characterize shallow ben-
thic habitats across south Florida waters
and to assess changes in their cover
extent and distribution over time due to
multiple pressures that include thermal
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FIGURE 4. Development of foundation species algorithms for moderate spectral resolution, higher spatial resolution sensors. (a) Mean Macrocystis
canopy biomass (Cavanaugh et al., 2011) derived from Landsat satellite sensors. Image credit NASA; SBC LTER Site (b) Kelp persistence for San Miguel
Island, California, using kelp canopy data derived from Landsat sensors. Persistence is defined as the percentage of years when kelp canopy was iden-
tified in a pixel at least once during a calendar year from 1984 to 2020. (c) Sentinel-2 composite image of the Florida Keys region where MBON sur-
veys are regularly conducted. (d) Instrument used for in situ measurements of upwelling and downwelling irradiances above a patch reef during a field
campaign in May 22, 2012, near Sugarloaf Key (red marker in c). (e) Reflectances over different depths above seagrasses. (f) Reflectances over differ-

ent depths above patch reefs.

05mnaym/y/1)/ | June 2021 69



stress, water quality degradation, and
disease (Palandro et al., 2003; Rohmann
and Monaco, 2005). Subsurface and
above-water radiometric measurements
collected by MBON researchers in com-
bination with satellite ocean color data
have facilitated studies on the effect of
water quality on seagrass and patch reef
productivity in the Florida Keys (Barnes
et al, 2014, 2015; Toro-Farmer et al,
2016; Hedley et al., 2017). Coral diver-
sity in the Florida Keys has been linked
to satellite sea surface temperature (SST),
with percent cover of species of high
conservation priority highest in patch
reefs exposed to intermediate SST vari-
ance (~7° to 11°C; see Vega-Rodriguez
et al., 2015). SST imagery is now used
operationally to generate thermal stress
products developed by NOAAs Coral
Reef Watch Program (Liu et al., 2018)
in support of coral reef monitoring and
management initiatives led by NOAA
and the Florida Wildlife Commission
(McCarthy et al., 2017).

Method 3. Pelagic Seascape
Ecology: Tracking Dynamic
Features and Habitats

Seascape ecology can be broadly defined
as the reciprocal interaction of organ-
with the
ability of their environment or habitat
(Kavanaugh et al., 2014a, 2016; Pittman,
2017). Advances in observational capac-

isms spatiotemporal  vari-

ity have led to improved characteriza-
tion of dynamic habitat, better tracking
of organisms as they move through hab-
itats, and improved modeling of species-
habitat relationships. Satellite remote
sensing informs several kinds of seascape-
type analyses, including identification
of fronts (Kahru et al., 2012), the role of
Lagrangian coherent structures (LCSs) in
shaping niches and fisheries (Scales et al.,
2018; Watson et al., 2018;), the use and
occupancy of mesoscale eddies by organ-
isms, many species distribution mod-
els, and the classification and identifica-
tion of dynamic pelagic habitats (Oliver
and Irwin, 2008; Irwin and Oliver, 2009;
Kavanaugh et al, 2016, 2018). Once
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relationships are validated, understand-
ing biodiversity changes through habitat
alterations may allow tracking of shift-
ing communities even when sensor lim-
itations (e.g., spectral resolution) may not
allow direct assessment of taxa.

Surface flow fields from altimetry
and high-frequency (HF) radar can sup-
ply advective information to delineate
features or assess underlying processes
(Messié and Chavez, 2017; Matson et al.,
2019; Catlett et al.,, 2021). For exam-
ple, LCSs, areas of attraction and repul-
define
fluid dynamical niches and contribute

sion around frontal features,

to regional biodiversity (d'Ovidio et al.,
2004; Cotté et al., 2011; Scales et al., 2018;
Watson et al., 2018). MBON research-
ers used a combination of ocean color
and HF radar to partition the spatial
from the temporal part of unique cocco-
lithophorid blooms in the Santa Barbara
Channel (Matson et al., 2019) and to
attribute changes in dinoflagellate domi-
nance to anomalous advection associated
with long-term shifts in the North Pacific
Gyre (Catlett et al., 2021). Mesoscale fea-
tures can increase the spatial heterogene-
ity of water masses but also enhance dis-
persal (Clayton et al., 2013), structuring
habitat for zooplankton and larval fishes
(e.g., Govoni et al.,, 2010), mesopelagic
communities (Della Penna and Gaube,
2020), and phytoplankton (Schulien
et al,, 2020), and attracting foragers or
predators with diverse foraging strate-
gies (Oliver et al., 2019). In the Gulf of
Mexico, MBON researchers used time
series of ocean color, sea surface tem-
perature, and altimetry to document river
and other coastal and shelf waters reach-
ing the Florida Keys (Le Hénaft et al,
2019). Depending on seasonal extensions
of the Loop Current, high Chl-a water
came from the Mississippi outflow or
from as far away as the Campeche Bank
(Otis et al., 2019).

Satellite-derived seascapes (Figure 5a,b)
have been used to track features and their
variability to identify important phyto-
plankton assemblage habitats for fisher-
ies (Kavanaugh et al.,, 2015, 2016, 2018;

Montes et al., 2020). Dynamic seascapes
represent unique bio-optical and phys-
ical constituents (Kavanaugh et al,
2014a,b; Montes et al., 2020) and doc-
ument changes in pelagic habitat asso-
ciated with seasonal, interannual, and
event-scale shifts in environmental forc-
ing (Kavanaugh etal., 2017, 2018; Santora
et al., 2021, in this issue). Seascapes are
classified in a dynamic and hierarchi-
cal framework using synoptic time series
of SST, altimetry, salinity, sea ice con-
centration from microwave brightness,
and several ocean color variables includ-
ing Chl-a, normalized fluorescent line
height, and chromophoric dissolved
organic matter. Some MBON seascape
case studies are focused on optimizing
and comparing PCC algorithms as well
as quantifying species-habitat relation-
ships of plankton across the California
Current and the Florida Keys (Montes
et al., 2020), of zooplankton and seabirds
in the Arctic, and of pelagic forage species
in the California Current (Santora et al.,
2021, in this issue; recent work of author
Klajbor). In the Arctic, hotspots of ben-
thic production and diversity identified
in the shallow Chukchi and Beaufort Seas
by the Distributed Biological Observatory
(e.g., Grebmeier et al., 2012) are linked to
different seascapes (recent work of author
Kavanaugh). Most recently, seascapes
characterized using vessel automatic
identification system data have been uti-
lized in fisheries conservation to track
movement of fishing vessels in and out of
exclusive economic zones in response to
changing ocean features (Woodill et al.,
2021). Seascapes are produced operation-
ally through an MBON partnership with
NOAA CoastWatch (https://coastwatch.
noaa.gov/cw/satellite-data-products/
multi- parameter-models/seascape-
pelagic-habitat-classification.html).

Method 4. Species Distribution

and Semi-Analytical Models
Dynamic models such as species dis-
tribution models (SDMs; Figure 5c;
e.g., Cimino et al, 2020; Gagné et al,
2020) and semi-analytical models (Messié


https://coastwatch.noaa.gov/cw/satellite-data-products/multi-parameter-models/seascape-pelagic-habitat-classification.html
https://coastwatch.noaa.gov/cw/satellite-data-products/multi-parameter-models/seascape-pelagic-habitat-classification.html
https://coastwatch.noaa.gov/cw/satellite-data-products/multi-parameter-models/seascape-pelagic-habitat-classification.html
https://coastwatch.noaa.gov/cw/satellite-data-products/multi-parameter-models/seascape-pelagic-habitat-classification.html

and Chavez, 2017) use environmen-
tal variables from satellite remote sens-
ing to predict the occupancy or abun-
dances of species ranging from plankton
(e.g., Righetti et al., 2019; Elizondo et al.,
2021) to higher trophic levels, includ-
ing endangered species (Breece et al,
2018). Predictive models can also acquire
water column information (e.g., strat-
depth) from
data-assimilative ocean models, which

ification, mixed layer
use satellite data (e.g., SST, altimetry)
to improve model realism (Neveu et al.,
2016). Species response data come in dif-
ferent forms (e.g., presence/absence or
abundance) and originate from routine
ship-based surveys, biologging, acous-
tics, fisheries data, or animal telemetry
(e.g., Sequeira et al., 2021); all of these are
types of data that many MBON partner
organizations collect.

MBON affiliates have used advanced
satellite-based monitoring, particularly of
zooplankton and forage species. The spa-
tial extent of krill, an important source
of food for many marine mammals and
birds in the California Current, was pre-
dicted in an SDM using depth, SST,
Chl-a, and upwelling indices (including
transport and sea surface height; Cimino
2020). Satellite data-assimilative
models have also documented habitat

et al.,
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compression of forage species and cal-
culated whale entanglement risk associ-
ated with recent marine heatwaves in the
Northeast Pacific (Santora et al., 2020).
Finally, semi-analytical models that retain
some biogeochemical or ecological mech-
anisms, forced by remote-sensing prod-
ucts, have reproduced the spatiotemporal
evolution of key plankton species such as
copepods and krill (Messié and Chavez,
2017; Santora et al., 2021, in this issue)
and also nitrogen fixers (Messié et al.,
2020). This
works by mapping the evolution of plank-

“growth-advection” model

ton communities along satellite-derived
current trajectories from a known nutri-
ent supply process (e.g., coastal upwell-
ing along the US West Coast). Together,
these models represent a complemen-
tary range of statistical (e.g., SDMs)
to partially mechanistic (e.g., growth-
advection) uses of remote-sensing data;
a powerful approach lies in considering
both together and using their agreement
or disagreement as a measure of uncer-
tainty. Furthermore, these models can
also be turned into real-time or predictive
decision support tools, given sustained
availability of remotely sensed products
(Howell et al., 2015; Hazen et al., 2018;
Welch et al., 2019; Santora et al., 2021,
in this issue).
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(mode) seascape (a) and temporal variability (b) of seascape extent for the California shelf. Declines in
mesotrophic (cyan) and nearshore high productivity (yellow and red) seascapes are evident during the
2014 marine heatwave. These seascapes also have different occupancies and abundances of import-
ant foragers like anchovy, sardines, juvenile rockfish, and krill (recent work of author Klajbor; Santora

et al,

2021, in this issue). (c) Synoptic 2019 species distribution prediction for krill (Thysanoessa
spinifera), with actual abundances of krill sampled by trawl as part of NOAA's Rockfish Recruitment

Ecosystem Assessment Surveys shown in white circles (see Cimino et al., 2020).

2020

MBON NEXT STEPS: BRIDGING
THE NEXT GENERATION
SATELLITES, TECHNOLOGICAL
ADVANCES, AND MARINE
ECOSYSTEM MANAGEMENT
MBON
remote-sensing capabilities in a broad

researchers have advanced
spectrum of applications that can assist in
understanding and monitoring patterns
across several trophic levels, demonstrat-
ing that MBON can serve as a bridge
between remote-sensing science, ecology,
and conservation. The next steps discussed
below describe four ways in which the
marine biodiversity science and manage-
ment communities can prepare for future
science capabilities that increase spa-
tial, temporal, and taxonomic resolution
and contribute to a suite of biodiversity-
relevant indicators for marine ecosystem
management.

Prepare for Hyperspectral Sensors

NASAs PACE and SBG, due to be
launched in the next two years, will
resolve many of the limitations discussed
above and advance our capacity to view
biodiversity and ocean health from space.
PACE sensors include the Ocean Color
Instrument, a hyperspectral radiometer
that will allow scientists to better discern
the minute inflections in the radiometric
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spectra that are caused by unique tax-
onomic groups. PACE will also include
two polarimeters whose spatial coverage,
accuracy, and spectral and angular sam-
pling will measure diverse atmospheric
constituents and improve atmospheric
correction in complex coastal regions.
SBG, based on the Hyperspectral Infrared
(HysPIRI),
PACE observations by collecting visi-
ble through shortwave infrared (VSWIR)
and thermal infrared (TIR) spectroscopic

Imager will complement

data over shelf and coastal waters with
spatial resolution (tens of meter pixels)
similar to that of Landsat, revisit times of
days, and temporal resolutions to weeks
(Schneider et al., 2019; Cawse-Nicholson
et al., 2021). As with PACE, SBG will
enable improved atmospheric correc-
tion in nearshore waters and thus better-
resolved PCC detection and water quality
properties. Hyperspectral bands will pro-
vide the necessary information for simul-
taneous determinations of foundation
species abundance and physiology, as
well as improved benthic classifications
and water quality assessments. Habitat
characterization and mapping will be
achieved by merging SBG records with
suborbital spectroscopic measurements,
such as continuous bathymetric esti-
mates of coral reef environments. Finally,
while earlier in its planning stages, the
Geosynchronous Littoral Imaging and
(GLIMR) is
designed as a geostationary mission that

Monitoring Radiometer

will provide hyperspectral imagery of
the Gulf of Mexico and adjacent regions.
Planned to launch in 2026-2027, GLIMR
will provide 10-15 observations per day
to better monitor the temporal dynamics
of oil spills and plankton blooms.

Recent reviews and workshop proceed-
ings have highlighted the need for coor-
dinated hyperspectral in situ measure-
ments and more complex modeling with
more relevant units (e.g., IOCCG, 2020)
to develop algorithms that discern plank-
ton groups and submerged or emergent
vegetation (Bracher et al., 2019; Lombard
et al., 2019; Dierssen et al., 2020). While
some level of empirical prediction may
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always be necessary, particularly region-
ally, PCC algorithm development should
that
include aspects of radiative transfer the-

emphasize bio-optical models
ory (Dierssen et al., 2020), particularly
if we can account for the confounding
effects of unique optical water masses
(e.g., Palacios et al, 2012; Kavanaugh
etal., 2016). In addition, bio-optical stud-
ies can focus on the role of physiological
acclimation versus community structure
in driving absorption variations, on the
role of heterotrophic and detrital parti-
cles in driving scattering, and on how that
variability can be exploited to understand
trophic processes.

In addition to in-water hyperspectral
sensors and suborbital sensors on UAVs,
many commercial small to medium sat-
ellite operations bridge the gap by pro-
viding short-term data sets to research-
ers for determining the feasibility and
sensitivity of regional algorithms. While
spectral and geolocation challenges
affected the marine application utility
of the Hyperion sensor (which flew on
EO-1 from 2000 to 2017), smaller-scale,
marine-focused missions have been sup-
ported by airborne sensors (e.g., the
Visible Infrared
AVIRIS)

onboard the International Space Station,

Airborne Imaging

Spectrometer, and sensors
including the Hyperspectral Imager of
Coastal Oceans (HICO; 2009-2014) and
the DLR Earth Sensing Spectrometer
(DESIS, 2018-present). Together, their
data archives provide a means for validat-
ing regional algorithms across a range of
conditions to facilitate science- and man-
agement-ready products upon PACE
and SBG launch.

Incorporate Technologies and
Theory to Improve Synoptic
Coverage of Multiple Trophic Levels
Technological advancements in recent
years have enabled in situ, auto-
mated, continuous monitoring of bio-
diversity in marine environments
(e.g., D.M. Anderson et al., 2012; Muller-
Karger et al, 2018ab). Increasingly,

instrumentation is being deployed on

mobile platforms to map the distribu-
tion and abundance of species in the
ocean, some with the capability of real-
time data transmission (D.M. Anderson
et al., 2012). MBON researchers are cur-
rently using ship-based and autonomous
(e.g.
Sample Processors, ESP; Figure 2) to
collect environmental DNA (eDNA;
Djurhuus et al., 2018, 2020; Chavez et al.,
2021, in this issue), enumerate and iden-

instrumentation Environmental

tify phytoplankton and microzooplank-
ton through imaging flow cytometry
(Sosik and Olson, 2007), and survey zoo-
plankton and ichthyoplankton with an in
situ ichthyoplankton imager and sampler
(e.g., Cowen and Guigand, 2008) at high
frequency over large spatial scales.
Where
advanced observations should be col-

possible,  technologically
lected coincident with traditional meth-
ods, including microscopy, net tows,
and pigment extraction (Dierssen et al.,
2020), to facilitate retrospective analy-
ses that can be vicariously validated with
historic ocean color patterns. Currently,
MBON scientists are conducting meth-
odological comparisons within sea-
scapes to determine variability of rarefac-
tion and community composition across
eDNA, high-performance liquid chro-
matography, and imaging-based assess-
ments. Cross validation can also include
smart, simple technology such as smart
phone microscopy and spectrometry
(e.g., Leeuw and Boss, 2018) that is acces-
sible to various end users including man-
agement agencies, industry, and commu-
nity scientists.

While PACE and SBG will provide
unprecedented coverage of phytoplank-
ton and larger zooplankton, forage fish
are too large to be sensed with passive
optical measurements and too small to
be tagged. Recent advances using space-
based lidar show promise for resolv-
ing course-scale differences in the tim-
ing and biomass of vertical migration
(e.g., Behrenfeld et al.,, 2019), although
variation in water mass trophic structure
and/or size structure are not resolved well
(Dionisi et al., 2020). Lidar algorithms



cannot yet account for differences in
taxa, although size distributions may be
resolved by exploiting the polarimetry
of multi-wavelength, ship-based lidar
(Schulien et al., 2020). As a first step,
MBON research will merge traditional
spectral-based bio-optics, multi-trophic
level imaging (e.g., Brisefio-Avena et al.,

along with lightweight multi-and hyper-
spectral sensors that can adequately
detect subtle shifts in phytoplankton
with improved radiometric and spectral
sensitivity. Additional insight and spa-
tial coverage can occur with a diverse
suite of AUVs, including gliders, floats,
and sail drones.

platforms, and models (Capotondi et al.,
2019). Once feature space has been iden-
tified (Rose et al., 2007), model intercom-
parison can assist with uncertainty assess-
ment, better parameterization of optical
models, extension of properties through
depth, and stronger linkages between
observable patterns and mechanism. The

MBON researchers have advanced remote-sensing capabilities in a broad

spectrum of applications that can assist in understanding and monitoring patterns

across several trophic levels, demonstrating that MBON can serve as a bridge

between remote-sensing science, ecology, and conservation.

2020; Schmid et al., 2020), and ecologi-
cal theory to exploit signals contained
within multitrophic level size distribu-
tions (e.g., Lombard et al., 2019). MBON
research is also merging animal telemetry
and tenets of movement ecology into a
seascape ecology framework (e.g., Breece
et al., 2016) to better understand behav-
iors that can depend on water quality and
forage patchiness (Sequiera et al., 2018).

Extend Spatiotemporal Resolution
with Multi-Satellite and In Situ
Platform Integration

For coastal zones, the integration of open
ocean satellites (both geostationary and
polar orbiting) that currently have mod-
erate spectral resolution (multispectral),
moderate spatial resolution (>300 m),
and high repeat (~daily or more fre-
quent) with higher-resolution satel-
lite (e.g., Landsat 8 30 m, 16-day repeat;
pointing sensors on the International
Space Station) and suborbital observa-
tions (e.g., unoccupied aerial systems,
UASs) will be important for monitor-
ing changes, particularly for interactions
between pelagic processes and founda-
tion species. Increased capacity to use

UASs in coastal zones will be beneficial,

Over the past decade, the United States
has invested in several in- and above-
water observatories that provide critical
and complementary observations to the
MBON. On the West Coast, the Ocean
Observatories Initiative (OOI) Endurance
Array collects multi- and hyperspectral
measurements of optical properties
across Oregon and Washington shelves
and has been utilized to assess regional
and temporal patterns of phytoplankton
biomass (Freitas et al., 2018). NOAAs HF
radar array measures water currents and
waves several hundred kilometers off-
shore. Information on waves and water
quality can inform circulation processes
that affect navigation, spill responses, and
general water quality, and they can also
inform feature-based ecological analyses
such as the accumulation of larvae along
eddies, formation and evolution of local
plankton blooms, and the persistence of
fronts. Finally, MBON nodes each collab-
orate with an IOOS Regional Association
so that data is exchanged between scien-
tists and stakeholders.

Advances in modeling and integration
of both predictive and mechanistic mod-
els can assist in the integration of informa-
tion across sensors (including satellites),

complexity of regional and global models
is expanding, and now includes param-
eters that are analogous to remote sens-
ing (particularly passive remote sens-
ing; e.g., IOCCG, 2020), as a step toward
understanding the limitations of technol-
ogy and algorithms in capturing future
change signatures.

Contribute to Regional and Global
Biodiversity Indicators

MBON
National Marine Sanctuaries

nodes are partnered with
in the
Florida Keys, Monterey Bay, and the
Channel Islands, and with the new nodes
in the Olympic Coast and Stellwagen
Banks

Sanctuaries regularly use satellite-based

National Marine Sanctuaries.

measurements (e.g., SST, altimetry, scat-
terometry) to inform Condition Reports
and develop ecosystem health indica-
tors that correspond to changes in ocean
and climate (e.g., Pirhalla et al., 2009).
Derived products such as SST anoma-
lies and Bleaching Alert Areas also warn
sanctuary staft regarding habitats at risk
(Basta et al., 2015).

The NOAA Fisheries
Ecosystem Assessment (Levin et al.,

Integrated

2009) includes research and synthesis to
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support ecosystem-based management of
resources, activities, and services. While
remote-sensing data are regularly utilized
to identify physical changes in ecosys-
tems, ecological indicators rely on cruise-
based surveys (e.g., Fisher et al., 2015;
Santora et al., 2017). For the West Coast,
there are no indicators that directly con-
nect bottom-up processes, such as cur-
rents, upwelling, nutrient loading, and
temperature, to key food web groups
such as zooplankton, larval fish, filter
feeders, or higher trophic levels (Harvey
et al., 2017). Given the relationship of
phytoplankton
to food quality for higher trophic levels

community  structure
(e.g., Miller et al., 2018), the importance
of monitoring for harmful algal blooms,
and the increase in capacity to resolve
taxonomic groups with PACE, develop-
ment of satellite-based lower trophic level
indicators will be important for the next
phase of MBON research.

Satellite remote sensing is critical to
monitoring of essential ocean and bio-
diversity variables, to management, and
to policy-ready collections that adhere
to common standards and dissemina-
tion (Benson et al., 2021, in this issue;
Estes et al., 2021). The Global Ocean
Observing System created the system of
Essential Ocean Variables (EOVs), sev-
eral of which can be observed synopti-
cally from space. Relevant to MBON,
biodiversity, and ocean health, satel-
lite EOVs include sea surface tempera-
ture (microwave and near-infrared radi-
ometry measurements), sea surface
height and currents (altimetry), rough-
ness (scatterometry), salinity (scatter-
ometry and microwave radiometry), sea
ice (microwave radiometry), and a broad
category of ocean color (visible radiome-
try) (Figure 1). The diversity and biomass
of phytoplankton, and foundation groups
such as seagrass, mangroves, macroalgae,
and corals, are also each listed as an EOV
and are attainable using satellite or subor-
bital remote sensing.

Essential Biodiversity Variables (EBV's;
Pereira et al., 2013) are indicators that can
build from EOVs (e.g., Muller-Karger
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et al., 2018a,b) to provide information
on several dimensions of biodiversity,
including genetic composition, species
populations, species traits, community
composition, ecosystem functioning,
and ecosystem structure (Schmeller
et al,, 2017). While MBON nodes cur-
rently measure biodiversity across all
EBV dimensions, some are more directly
supported by satellite remote sensing.
For example, phytoplankton size is an
important species trait that reflects nutri-
ent uptake efficiencies, trophic trans-
fer, and export of carbon (Irwin and
Finkel, 2018; Lombard et al., 2019) that
is measured both in situ and remotely
(e.g., Kostadinov et al, 2009, 2016).
Productivity and disturbance regimes
are indicators of ecosystem functioning;
duration, intensity, and spatial extent of
anomalous events like severe storms or
marine heatwaves and their effects on
biogeochemistry or fisheries can all be
tracked using satellite remote sensing
(e.g., Santora et al., 2021, in this issue).
Ecosystem structure includes habitat
structure (including vertical habitat),
ecosystem extent and fragmentation, and
ecosystem composition by functional
type. MBON researchers have
developed EBVs, including kelp cover

Here,

(Cavanaugh et al, 2011) and dynamic
seascapes (e.g., Kavanaugh et al, 2016,
2018), and thus contribute to the ability
to link observations of ocean biodiversity
to a global framework of marine ecosys-
tem management and policy.

SUMMARY

Satellite remote sensing provides synop-
tic time series to monitor changing ocean
conditions over space and time. Within
the US MBON network, multi-platform
satellite remote sensing is being used at
local to global scales to define plankton
groups; to identify the extent, composi-
tion, and functioning of foundation spe-
cies as part of species distribution mod-
els; and for the classification of dynamic
features and seascape habitats. Ongoing
and future work will integrate high tax-
onomic resolution sensors and hyper-

spectral optics to better resolve the rich
multitrophic level diversity of coastal
ecosystems. As part of an integrated net-
work, satellite remote sensing provides
oceanographic context, a means to scale
in situ measurements of species to com-
munities and to broader spatial scales,
and a critical tool for understanding the
response of marine biodiversity to its
ever-changing environment.
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