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We prove explicit doubling inequalities and obtain uniform upper Received 4 September 2021
bounds (under (d — 1)-dimensional Hausdorff measure) of nodal sets Accepted 27 September 2021
of weak solutions for a family of linear elliptic equations with rapidly
oscillating periodic coefficients. The doubling inequalities, explicitly
depending on the doubling index, are proved at different scales by
a combination of convergence rates, a three-ball inequality from cer-
tain “analyticity,” and a monotonicity formula of a frequency func-
tion. The upper bounds of nodal sets are shown by using the 2010 MATHEMATICS
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1. Introduction

The paper is concerned with doubling inequalities and upper bounds of nodal sets of
solutions in periodic elliptic homogenization. We consider a family of elliptic operators
in divergence form with rapidly oscillating periodic coefficients

L,=-V-(Ax/e)V), (1.1)
where ¢ >0, and A(y) = (a;(y)) is a symmetric d x d matrix-valued function in R?
with dimension d > 2. Assume that A(y) satisfies the following assumptions:
e Strong ellipticity: there is A > 0 such that
AJEP < (A()E &) < |¢],  for any y € R%, & € RY. (1.2)
e DPeriodicity:
A(y+z)=A(y) for any y € R?for any z € Z°. (1.3)
e Lipschitz continuity: There exists a constant ¥ > 0 such that
|A(x) — A(y)| < ylx—y, for any x,y € RY. (1.4)

The doubling inequality describes quantitative behavior to characterize the strong
unique continuation property, which has important applications in inverse problems,
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control theory and the study of nodal sets of eigenfunctions. For harmonic functions or
solutions of general elliptic equations in divergence form with Lipschitz coefficients, the
doubling inequality is a consequence of a monotonicity formula or Carleman estimates;
see [1-4]. In periodic elliptic homogenization, the first doubling inequality was obtained
recently by Lin and Shen [5] with an implicit dependence on the doubling index.
Precisely, they proved that if u, is a weak solution of £,(u,) =0 in B, = B,(0) and

J uigNJ ul, (1.5)
B, Ba

then for any r € (0,1),

J ul < C(N)J ul, (1.6)
B, B,

where C(N) depends only on d, A,y and N. The point here is that the constant C(N) is
independent of the small parameter ¢. This cannot be derived directly from the classical
doubling inequality as the Lipschitz constant of the coefficients blows up as &
approaches zero. However, it is not known that how the constant C(N) in (1.6) depends
on N, because (1.6) was proved by a compactness argument. We mention that if ¢ =1,
the classical doubling inequality shows that C(N) = CNX for some C,K > I; also see
Lemma 3.2.

On the other hand, the Hadamard three-ball inequality also describes the quantitative
unique continuation property. In periodic elliptic homogenization, two different ver-
sions of the three-ball inequality with error terms were discovered in [6] and [7]. In
general, the three-ball inequalities with errors are weaker than the doubling inequalities,
as they alone do not imply the strong unique continuation.

Our first goal of this paper is to find an explicit estimate for the constant C(N) in the
doubling inequality in periodic elliptic homogenization. The explicit doubling inequality
not only provides more clear quantitative information for the solutions (such as the
vanishing order), but also has more applications. We state the result as follows.

Theorem 1.1. Assume that A = A(y) satisfies the conditions (1.2)-(1.4). Let u, be a weak
solution of L;(u;) = 0 in By.

i. Ford > 3 and every t > 0, there exist 0 € (0,1/2) and C > 1, depending only on
d,t, A and v, such that if u, satisfies

J ul < NJ uz, (1.7)
B, By
then for every r € (0, 1),
J u? < exp(exp(CNT))J ul. (1.8)
B, ’ Byr ’

ii. For d = 2, there exists a constant C > 1 depending only on A and y such that if
u, satisfies
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J uﬁgNJ ul, (1.9)
B, B%

then for every r € (0,1),

J u? < exp (C(lnN)Z)J ul. (1.10)

X B

The double exponential growth exp (exp (CN")) for d > 3 in (1.8) and sub-exponen-
tial growth exp (C(InN)?) = NN for d=2 in (1.10) seem to be the best we can
obtain from our method; see Remark 4.5. Our ultimate hope is for an estimate of the
form C(N) = NC(InIaNY" " for some p>0 depending on d, A and 7. Such an estimate
would have very important consequences for the study of long-standing open problems
regarding the spectral properties of second order elliptic operators with periodic coefti-
cients and their quantitative unique continuation properties (see for instance Conjecture
6.13, Theorem 6.15 and Conjecture 6.16 in [8]). This connection between the conjec-
tured optimal doubling estimates and Conjecture 6.13 in [8] was observed by the first
author, D. Mendelson and C. Smart in the fall of 2019. This motivated the cur-
rent work.

As a straightforward corollary, Theorem 1.1 implies that the vanishing order of u, at
the origin does not exceed exp (CN®) for d >3 and C(InN)* for d=2. Theorem 1.1
also implies a three-ball inequality without an error term, in contrast to the results in
[6] and [7], namely (e.g., for d > 3),

T 1-1;
[, < ewewen(] ) (] ) n
By, By, B,

for any 0 < 77 < 1.
The Proof of Theorem 1.1 breaks down into three steps:

e Step 1: ¢/r<N~>. In this case, we take advantage of the convergence rate in
homogenization theory and use the precise three-ball inequality of harmonic
functions. The smoothness of the coefficients is not needed in this step.

e Step 2: In this step, we need to use “analyticity,” which distinguishes between
d>3 and d=2. For d >3, we let N_SSS/}’SN_%T, and use a three-ball
inequality with a sharp exponential error term proved recently in [6] by
Armstrong, Kuusi and Smart, which is a consequence of the “large-scale analy-
ticity” from periodic homogenization. This will lead to a nontrivial improvement
on the exponent so that T > 0 in Theorem 1.1 can be arbitrarily small. Again in
this case, the periodic structure will play a role; but the smoothness of coeffi-
cients is still not required. For d=2, we let N> <g/r =<1, and apply a doubling
inequality derived from quasi-regular mappings [9] (related to complex analytic-
ity), which requires no smoothness or periodicity on the coefficients.
Unfortunately, this method works only in two dimensions.

e Step 3:g/r=N 7 ford>3or g/r=1 for d=2. In this case, the classical dou-
bling inequality for elliptic operators with Lipschitz coefficients can be handled
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by a monotonicity formula for the frequency function. If d > 3, the Lipschitz
constant of the coefficients turns out to be O(N®") after rescaling. A careful cal-
culation shows that the constant in (1.8) is at least exp (exp (CN¥)), if the peri-
odicity is not used. If d=2, the Lipschitz constant of the coefficients after
rescaling is bounded by C, independent of ¢ and N. This allows us to obtain a
much better estimate in two dimensions.

For d > 3, one will see in the proof that the estimate in Step 3 leads to the double-
exponential growth of the constant in (1.8). What happens when ¢/r = N"7°? To gain
some intuition, consider a typical harmonic function wy = * cos (ko) in R? (see [1] or
[10]). Note that

jBl W%
IB,, Wi

By setting N = CO~ %, we see that the intrinsic frequency of wy (i.e., the number of

= Co %,

times that wy changes signs) is approximately In N/(—1n 0). Now, let u, be a weak solu-
tion of L,(u;) = 0 whose limit is w; (the homogenized solution) as ¢ — 0. In view of
the interior first-order approximation u, ~ wi + ex(x/¢)Vwy, the intrinsic frequency of
wy will interact with the frequency of oscillation of the corrector y(x/e). Particularly,
under rescaling, if /¢ = InN, the frequency of oscillation of the rescaled coefficients
A(rx/e) (or correctors) is comparable to the intrinsic frequency of wy. Note that the
intrinsic frequency does not change under rescaling. It seems that the resonance
between these two frequencies causes the failure of the arguments in Step 1 and Step 2
when &/r ~ (InN)"' =N (note that 7 can be arbitrarily small and thus N7 is close
to the resonant situation), and we do not have a tool to handle this situation (except
for d=2). We believe that an effective argument should take advantage of both the
periodicity and the Lipschitz continuity of the coefficients.

Our second goal is to obtain an upper bound for the nodal sets of solutions in peri-
odic elliptic homogenization. The study of the (d — 1)-dimensional Hausdorff measure
of nodal sets centers around Yau’s conjecture for Laplace eigenfunctions on smooth
manifolds:

—Agd) =14, on M, (1.12)

where M is a compact smooth Riemannian manifold without boundary. It was conjec-
tured in [11] that the bounds of nodal sets of eigenfunctions in (1.12) are controlled by

VA< H* '({x € M|¢p,(x) =0}) < CVL (1.13)

where C, ¢ depend only on the manifold M and H%! denotes the (d — 1)-dimensional
Hausdorff measure. The conjecture (1.13) was shown for real analytic manifolds by
Donnelly-Fefferman in [12]. Lin [13] also proved the upper bound for the analytic case,
using an approach by frequency functions. We should mention that, by a lifting argu-
ment, Yau’s conjecture can be reduced to studying the nodal sets of harmonic functions
on smooth manifolds. In recent years, there was an important breakthrough made by
Logunov and Malinnikova [14,15] and [16]. A polynomial upper bound was given in
[14] and the sharp lower bound in the conjecture was shown in [16]. We are interested



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS @ 553

in the upper bound of nodal sets for £.(u,) = 0 with rapidly oscillating periodic coeffi-
cients. The study of nodal sets in homogenization was initiated by Lin and Shen [5],
where an implicit upper bound depending on the doubling index was shown. We are
able to provide an explicit upper bound.

Theorem 1.2. Assume that A = A(y) satisfies the conditions (1.2)-(1.4). Let u, be a non-
zero weak solution of L.(u,) = 0 satisfying (1.5).

i. Ifd> 3, then for any o > 8, it holds that
H ' ({x € By|u,(x) = 0}) < exp (CN”), (1.14)

where C depends only on d, A,y and o.
ii. Ifd = 2, then it holds that

H'({x € By luy(x) = 0}) < exp (C( InN)?), (1.15)
where C depends only on A and y.

The strategy of the proof is as follows. For relatively large ¢, we adapt a blow-up argu-
ment to obtain the upper bounds of nodal sets. For small ¢, the solution u, can be
approximated by a harmonic function u,, and thus the nodal set of u, is a small per-
turbation of the nodal set of uy,. We then derive a quantitative estimate for the nodal
set of u, by carefully studying the small perturbations near the nodal set and critical set
of ug, which has its root in the analogous qualitative estimates obtained in [5]. By iterat-
ing such quantitative estimate, we are able to show the upper bound for the nodal sets
of u,. The restriction o > 8 for d > 3 arises from the doubling inequality (5.2) for f§ €
(3,1). If we consider N to be exp (CM) for some large constant M, which is the case
for the doubling inequality of eigenfunctions, the upper bounds of nodal sets are double
exponential functions exp (exp (CM)). In this sense, the restriction o > 8 only affects
the constant C in such upper bounds, which does not play an important role. For d=2,
we point out that there is no misprint in the exponential (compared to d > 3). We still
have the exponential, because in this situation, instead of the doubling inequality in
(1.10), the suboptimal quantitative stratification of the critical set of harmonic functions
[17] dominates the upper bound.

Remark 1.3. Several months after the first version of our paper appeared on arXiv,
Armstrong, Kuusi and Smart [18] proved the almost optimal doubling inequality at
large scales by a more accurate use of the large-scale analyticity, and therefore improved
the results in Theorem 1.1. We point out that for d=2, by using an intermediate esti-
mate (4.4) in [18] and the technique of quasi-regular mappings in Section 4 (see
Remark 4.6), we can obtain

J uz < CNClnlnNJ le,

B, B

&
Or

for all r > ¢ if (1.4) is not assumed, or for all >0 if (1.4) is assumed.
The paper is organized as follows. Section 2 is devoted to a doubling inequality at

relatively large scales by the homogenization theory. In section 3, we derive the dou-
bling inequality, using frequency functions, and show how it depends on the large
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Lipschitz constant of the coefficients. Then, Theorem 1.1 is proved in section 4 and
Theorem 1.2 is proved in section 5. Throughout the paper, the letters ¢, C, C, C, C;, ¢;
denote positive constants that do not depend on ¢ or u;, and they may vary from line
to line.

2. Homogenization

1
In this section, we deal with the case ¢/ r=N #1 for all dimensions. Indeed, we will
prove a quantitative version of [5, Theorem 3.1].
Let £y = —V - (AV) be the homogenized operator and A be the homogenized coeffi-
cient matrix of A (see, e.g., [19] for the general theory of periodic elliptic homogeniza-
tion). Define the ellipsoid

E ={xeR: ((A) 'xx) <r*}.
The following is the main theorem of this section.

Theorem 2.1. Let 0 € (0,1/2] and A satisfy conditions (1.2)-(1.4). There exists C>0
depending only on d and A such that if L,(u,) =0 in E; and

J ufﬁNJ u?,
E Ey

then for any CN" g < r < 1 — /&, we have

j ul < ZNJ ul.
E, Eor

This follows from Lemmas 2.2 and 2.3.

Lemma 2.2. Let 0 € (0,1/2]. Suppose u, is a solution of L,(u;) = 0 in E; satisfying

2 2
J u; §NJ u,.
E, Ey

For any B € (3/4,1), there exist ¢,C > 0, depending only on d,A and P, such that if
& < cN '3, then for any r € [0,1 — \/g]

J w2 < N(1 +CNsﬁ%)J 2. 2.1)
E, E

Or

Proof. Let t>0, to be determined. Since dist(OE,_;, OE;) < Ct, by the Caccioppoli

inequality, we have
C CN
|Vug|2+ ug <Z| <= A
12 & 12 ¢
Ei_; Ei_; E, Eg

By the co-area formula, we can find some ¢y € (1,2) so that

CN
J |Vu8|2—|—J u? §—3J ul.
aEl—cor OE t Ep

1—cot

Without loss of generality, let us simply assume ¢y = 1. Hence u|y; € H'(9E,_;). By
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[20, Theorem 1.1],

&

CNe?
J (l/lg — uo)z < ngﬂ”ub”ip (OE1_;) < 3 J uz, (22)
Ei¢ Eo

where 1 is the solution of L£y(u9) = 0 and uy = u, on OE,_, and f§ € (0,1) is arbitrary.
As a result, we have

ol 2,y < Ml 2,y + e = ol (2.3)
< VN1 + CP2)Jug| o - .
Also,
||us||L2(E()) < ||“0||L2(Eo) + C\/N.Sﬁt73/2||u8||142(50)'

We will choose ¢ < 1 so that Cy/Neft~3/2 < 1/2. Consequently,

-1
||uEHL2(E0) < (1 - C\/ﬁgﬁtiyz) ||u0||L2(E0) < (1 + C\/Ngﬁt73/2)||u0||L2(E(;)' (2.4)
Inserting this into (2.3), we have

o]l 2, ) < VN (1 + CYNPE2) (1 + CePE312) Juo |,
< VN(1+ CVNPE2) g 2 g,
where we have used the simple fact that (1+a)* <1+ 3a for a € [0,1] and enlarged

the constant C in the last inequality.
Next, by the interior L™ estimate for A-harmonic functions, we have

(2.5)

||“0||L2(E0) < ||”0||L2(Eﬂ<1—t>) * ||u0||L2<E0\Eﬂ(H>)
) + C\/07t||u0||L2(El—t)

Inserting this into (2.5) and choosing ¢ sufficiently small so that Cv/Nv/0t < 1/2, we
obtain

< uol[ 2 (Bopr—n

[t 125, ) < VN + VNCeP %) (1 + CVNVOD) |luoll sy, -
Choose t = \/e. We arrive at
o 2gs, ) < VN(1+ c\/ﬁgﬁ—m)||u0||L2(EO(H)). (2.6)

Note that the above calculation goes through only if v/NCeft~3/2 < 1/2 and Cv/Nv/t <
1/2. This implies that we require

—1
e < CINTFm,

for some large constant C. ]
Recall that u, is a weak solution of Lo(u) =0 in E(1 — /2). Let wy(x) = up (Aix).
Then Awy = 0 in Bi_ and (2.6) is equivalent to

||W0||L2(Bl,\/;> S \/N(l + C\/ﬁ8/573/4)||wo||]~2( (27)

Bo(pﬁ)) )

Now, as a consequence of the well-known three-sphere theorem for harmonic func-
tions,
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o(r) = long wé (2.8)

By

is a convex function in (—o0,0] and therefore ¢(t) — ¢(f — ¢) is a nondecreasing func-

tion in ¢, for any fixed ¢ > 0. Hence, we obtain from (2.7) that for any r € (O, 1-— \/5),
Iwolls) < VN(1 + CVNEP4) lwol 25, -

(The doubling index with 0 is an increasing function of radius.) Again, this is equivalent
to

||u0||L2(E,) < \/ﬁ(l + C\/NS’[;73/4)||M0||L2(EO,) (29)

for any r € (0,1 - \/Z)
Now, let r € [0,1 — \/¢). It follows by (2.9) that

H”s”LZ(E,) < ju: — ”OHLZ(E,) + H”OHLZ(E,)
< CVNE 34 uy| | e,y + VN1 + CVNEP ) ug| 12 g,
< CVNeP 4[] o, + VN1 + CYN ) |luo — w2z,
+VN(1+ C\/Nﬁﬁ_3/4)||”s||L2(Eo,)
< CNeF3/4(1 + C\/Nsﬁ_3/4)||ug||Lz<Er) +VN(1 + C\/NSﬁ_3/4)‘|”8||L2(EH,)’

where we have used the fact Ey C E, in the third inequality and (2.2) in the second and
last inequalities. Assume further that & < ¢N~/(#-3/4), Then

VN(1 + Cv/Nebf-3/4)
||u8||L2(E,) < 1— CNS/;,3/4 ||u8||L2(E(),)
< VN1 + CN ) g 2, -

This proves the lemma. O

Now, if & < cN"Y(F=3/49) the above lemma allows us to iterate (2.1) down to r =
¢ INVB=3/4) ¢, Precisely, if r = 0F > CNY/(B=3/9¢ and

2 2
J U, < AkJ U,
E, Eg,

with Ag = N, then

2 2
J u, < Ak—H J U
Eor E()zr

where
A = A(1 4 CAL(07 %)),
provided Ak(é?*ks)ﬁ%/4 <c.

Lemma 2.3. For all k < ky with 0 e ~ ¢,N~V/F=3/4) and ¢; > 0 sufficiently small, one
has

A < 2N.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS @ 557

Proof. Define By = A/N. Then By = 1 and
Byt = Bi(1 + CBO FP=3/96=3/4N) < By (1 + ¢, CB 0% R(B=3/4)y,
It follows that
Byi1 — By < aiCBo™ ™,

where 6 = 0/73/4 < (1/2)”73/4 < 1. The above inequality yields

k
Biy1 < By + Z C1CB]-25k°7j- (2.10)

j=0

We prove by induction that if ¢; is sufficiently small, then By <2 and Ak(G_ks)ﬁ <

2¢; for all k < ky. Actually, if
00 -1
4 1-0
< (4 S——
o < ( cjzo&) -

and B; <2 for all 1 <j <k, then it is easy to see from (2.10) that By;; <2 and
Ap(07%e)P=3/* < 2N(07%0¢)f3/* < 2¢,. This proves the desired estimate. O

Remark 2.4. Observe that in the above proof, the smoothness of the coefficients has not
been used explicitly, except for (2.2) by [20, Theorem 1.1]. But this actually can be
replaced by, e.g, [21, Theorem 1.4] with m=1, which does not require
any smoothness.

Remark 2.5. It is not difficult to see that (2.1) implies the following three-ball inequality
with an error term

. o\ )
Ul [ 125, ) C(;) utel| 25, (2.11)

for any 6 € (0,4 and e (3,1). Compared to the three-ball inequalities in [6] (see
Theorem 4.1 below) and [7], our major term on the right-hand side of (2.11) is sharp.
In particular, if ¢ — 0, (2.11) recovers precisely the three-ball inequality for A-harmonic

functions.

1
||”6HL2(E0,) < ||”8||2LZ(E,)|

Theorem 2.6. Given arbitrary 0 € (0, A/2], there exists C >0 depending only on d and
A such that if £,(u;) =0 in B, and

J uﬁgNJ ul, (2.12)
By By

1
then for any CN'i¢ < r < 1, we have
J ul < 8N3J ul.
B, By,

Proof. This is deduced from Theorem 2.1 and the fact
Bz, CE, CB,. (2.13)
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Indeed, (2.12) and (2.13) imply

J u§<NJ u§<NJ ul.
E By Eyvx

IzioteL that 9>e (0,A/2] implies 0/vA € (0,v/A/2] € (0,1/2]. Now, if re

CN'ig,1 —\/e), we may apply Theorem 2.1 (three times) with ' = 0/\/K and
obtain

J uggj uig(ZN)3J u§§8N3J uf§8N3J u?.

B, E /& Epa—2, Eor By,

For r € [1 — /¢, 1] (without loss of generality, assume ¢ < 1/4), we may apply
Theorem 2.1 once to obtain

J uggj uggNJ uﬁgzsz
r Bl B() B

This ends the proof. O

u? < 2N2J ul.

]
2 -1 By,

3. Dependence on the lipschitz constant

In this section, we derive the doubling inequality with a large Lipschitz constant, which
will be used in the Step 3 of the Proof of Theorem 1.1. We aim to show how the
Lipschitz character of the coefficients plays a role in quantitative unique continuation,
which seems to be largely unexplored. Assume that

Li(u) ==V (A(x)Vu) =0, (3.1)
where A(x) satisfies (1.2) and
|A(x) = A(y)] < Llx —y| (3.2)

for some large positive constant L > 1. We emphasize that throughout this section, the
constant C will never depend on L. Since the L™ norm and the L*> norm of u are com-
parable, parallel to the assumption (1.7), we may assume the following

||u||L0C(Bl) < M||”||L°°(B()) (33)

for some large constant M > 1.

In order to define the frequency function later, we need to construct the geodesic
polar coordinates. The construction of polar coordinates has been obtained in [22]. We
adopt a slightly different construction of the metric from [10, Chapter 3.1]. We follow
the construction with an eye on the explicit dependence of the Lipschtiz constant L. For
d > 3, we define the Lipschitz metric g = g,;(x)dx; ® dx; as follows

g;(x) = a¥(x)det(A(x))7, (3.4)

where a’(x) is the entry of A~'(x). The case d=2 will be discussed in Remark 3.3.
Note that g is Lipsthitz continuous and satisfies
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8(x) —g ()| < CLIx —y|. (3.5)
Define
rr=r*(x) = 8;(0)xix; (3.6)
and
~kl (97‘ 87’

Y(x) =g (x o

From (3.6), we can also write

[ . .
Y(x) = ;gkl(x)gik(o)gjz(o)xixj-
Thus, we can check that y/(x) is a non-negative Lipschitz function satisfying

(%) =y ()| < CLIx —yl, (37)

where C depends only on d and A. We introduce a new metric g = g;i(x)dx; ® dx; by
setting

8ij(x) = Y(x)g;;(x)- (3.8)

We can write the metric ¢ in terms of the intrinsic geodesic polar coordinates
(rao-l’-“aad—l)’

g=dredr+ rzbz-j(r, o)do; ® daj, (3.9)
where b;; satisfies
|0ybjj(r,0)] < CL, fori,j=1,...,d—1, (3.10)

and C depends only on d and A.

The existence of the geodesic polar coordinates (r, ¢) allows us to consider geodesic
balls. Denote by B, the geodesic ball in the metric g of radius r and centered at the ori-
gin. In particular, from (3.6) and (3.9), r(x) = | /£;;(0)xix; is the geodesic distance from
x to the origin in the new metric g. Thus, it is conformal to the usual Euclidean ball.
For convenience of presentation, we may assume that the geodesic balls coincide with
the Euclidean balls, i.e., £,;(0) = d;.

Let
_d=2
nx) == (3.11)
Obviously, #(x) is a Lipschitz function satisfying
G <nx) <G, (3.12)

where C; and C, depend on d and A. In the polar coordinates,
|0m(r,0)| < CL. (3.13)
In this new metric g, Eq. (3.1) can be written as
—V, - (n(x)Vau(x)) =0 inB;. (3.14)
Let
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D(r) :J n|Veul*dv, (3.15)
B,
and
H(r) = J nu*ds,, (3.16)
B,

where dS, represents the area element of OB, under the metric g. We define the fre-
quency function by
_ rD(r)

N(r) 1)

(3.17)

For future application, we will also use the notation N(p,r) to specify the center of the
ball B,(p) in the definition of frequency function.

Lemma 3.1. Let u € H'(B,) be a nontrivial solution of (3.1). There exists a positive con-
stant C depending on d and A such that

N (r) = exp (CLr)N (1) (3.18)
is a non-decreasing function of r € (0,1).

Proof. The proof of the lemma is essentially contained in [1]. Since we want to show
the explicit dependence of the Lipschtiz constant L in the estimates, we sketch the proof
by considering the role of L. Taking derivative with respect to r for A/, we have

N'(r) P! D’(r)_H’(r)

= (- . 3.19
N -G T HD (3.19)
In order to prove the lemma, it suffices to show
1 D H
1,00 HE) S o (3.20)

r D(r) H(r)

Thus, we consider the derivatives of H(r) and D(r), respectively. Setting b(r,o) =
|det(b;(r,5))|. Note that dS, = r*~'/b(r,0)do. We write H(r) as

H(r) = rdlj n(r,o)u?(r,6)\/b(r,0)do. (3.21)
031
Taking derivative with respect to r, one has
H'(r) = d- 1H(r) + J Lar(17\/5)uzng + ZJ nuo,udS,, (3.22)
r OB, Vb OB,
where 0,u = (V,u, %) on 0B,. By (3.10), (3.12) and (3.13), we have
H'(r) = <d; ! + O(L))H(r) + ZJ nuO,udS,. (3.23)
0B,

Multiplying both sides of (3.14) by u and performing the integration by parts give that

D(r) —J n|Veul*dv, —J nuo,udS,. (3.24)
B, OB,
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It follows that
d—1

r

Ho = (

Similarly, we may compute the derivative of D(r) as in [1] and obtain

+ O(L))H(r) +2D(r). (3.25)

D(r) = (d ; 2 + O(L)>D(r) + zL n(0,u)*dS,. (3.26)

Combining the estimates (3.25) and (3.26), and using the Cauchy-Schwarz inequality,
we obtain

1 D(r) H(r) Jop,n(Oru)*dSy [y nud,uds,

- — =O(L) +2 —
r + D(r) H(r) L)+ faBrnuarung faBr””Zng
> O(L).
This proves (3.20) and thus the lemma. O

Next we derive the doubling inequality with an explicit dependence on L.

Lemma 3.2. Let u be a solution of (3.1) satisfying (3.2) and (3.3). For a fixed constant
0 < 0 <1 we have

CoL

el 2,y < Mae 4]l 25,,) (3.27)

for 0 < r <1 where C; depends on 0, and C, depends on d, A.

Proof. From (3.25) and the definition of A (r), we have

H(r)Y 2 -
<ln o > =0(L) + ;./\/'(r) exp (—CLr). (3.28)
Note that here O(L) is a function in r satisfying —CL < O(L) < CL. We would like to
obtain an upper bound and a lower bound for the quotient H(r,)/H(r) with 0 < r; <
r,. To find the upper bound, we integrate the equality (3.28) from r, to r, and use the
monotonicity of A (r) to obtain

H(r) H(r)
ri-1 a ri-1

In In

< CL(ry — 1) + 2N (r,) In <?> exp (—CLry). (3.29)
1

Taking the exponential of both sides gives the upper bound

2N (r;) exp (—CLry )+d—1
H(rz) < eCL(’zh)(rZ) et a .

H(r) n

(3.30)

To see the lower bound, we integrate (3.28) from r, to r, and apply the monotonicity
of N (r) again to obtain

H(r H(r _ r
In rg(zl) — In rigll) > —CL(r, — r1) 4+ 2N (1) exp (—CLr,) In (i) (3.31)

Raising to the exponential form, we have
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2N (1) exp (—=CLry)+d—1
H(ry) S e_CL(rz_rl)<r_2) (n) exp (=CLro)+ |
H(Tl) - 81

(3.32)

Combining (3.30) and (3.32), we arrive at

ef(ZL(rzfrl) 1’_2
5}

N (r1) exp (—CLr)+d—1 2N (1) exp (—CLry )+d—1
)2 (n) el 7 <H(T’2) < eCL(Tzfl)(Q) e " .
- H(T’l) - 8]

(3.33)

Next we want to show an upper bound for A'(3). Let =2 and 0 <r; =r <?2.

1
From the estimate (3.32), we have
d-1
) <
3

eiCL(%fr) <
Using the fact that 0 < 6 <1, we have
wdv, < CJ4 H(r)dr
0

T

6}
(r)

=N I lw

(3.34)

T

)2y < cj
B3
4
: 3 3 (3.35)

< CJ A-1,CLA-1) H<Z> dr

0

< Ce“'H <§) ,
4

where C depends on d and A. Obviously,

|l (5, > CJ u*ds,. (3.36)

1

Therefore, from (3.3), (3.32) and (3.35), we have

2
u o0
2 [l |7 3, S CH(1)

3
CeCtH (Z) (3.37)

(4 d-142N (3)e @
>e = .
- 3

— 2
||MHL°°(Bg)

Thus, we can get an upper bound for N (%) as
(3
N (Z) < Ce%InM, (3.38)

where M >1 is a large constant. Choosing any r <1, we integrate (3.28) from 0r to r,
by the monotonicity of N, we derive that
H(r) H(0r) 1

- (3
In . In o] < CLr + 2N <Z> In 7

(3.39)

1
< CLr + Ce“* InMIn k
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Thus, we obtain that

H(r) < exp (CLr + e InMln l) H(0r)

0 (3.40)
< ol pg—(In ())e‘lLH(Gr),
where M > 1 is large. By further integrations, we can also obtain that
—d (1 0)eCt
||”||L2(B,) <M (In®) ||“||L2(Bu,) (3.41)
foro<r< %, where C depends only on d and A. O

Remark 3.3. For the case d=2, we introduce a new variable to apply a lifting argument.
Let v(x, t) = e'u(x). Then the new function v(x, f) satisfies the equation

V- (A(x,t)V¥) +v=0 in By, (3.42)

A(x,t) = (Ag)x) (1))

and B, is the ball with radius 1 in R>. It is easy to see that A satisfies the conditions
(1.2) and (3.2). Following the procedure performed as d > 3, we are able to introduce
the new metric g and geodesic polar coordinates. Thus, in the metric g as (3.8) and 7 as
(3.13), we have

where

—V - (n(x)Vgv) + v =0 inBy, (3.43)
where ¢, = \/%. As before, we could make use of the monotonicity of the frequency
elg

function to obtain the doubling inequality. Precisely, we may define

D(r) = J n\ng|2 + cgvdeg (3.44)
and
H(r) = J - pdS,. (3.45)
0B,
Then the frequency function is defined as
_ D)
N(r) = Hir) (3.46)

Following the proof of Lemma 3.1 and [10, Theorem 3.2.1], we can obtain the almost
monotonicity of N (r). That is, for any ry € (0, 1), it holds that

exp (CLr)N (r) < exp (CLrg) + exp (CLro)N (ro) (3.47)

for any r € (0, ry) where C depends on A. By mimicking the argument in the proof of

Lemma 3.2, we can obtain the doubling inequality for v in B,. This also leads to the
doubling inequality for u as (3.27) in B,.
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Remark 3.4. For a better estimate when d =2, see Remark 4.6.

4, Proof of Theorem 1.1

This section is devoted to the Proof of Theorem 1.1. Step 1 and Step 3 of the proof
have been handled in Section 2 and Section 3, respectively. For convenience of presenta-
tion, we choose f§ such that 715 = 5. Our argument works for any f§ € (3,1). To handle
the case N °<¢/r<N7 in S4tep 2, we will use particular doubling properties, obtained
from some sort of “analyticity,” as a transition in order to improve our estimates.
Indeed, for d > 3, we will employ the three-ball inequality with a sharp exponential
error term obtained in [6]; for d =2, we will use quasi-regular mappings [9] which pro-
vides a much better doubling estimate.

We first introduce a three-ball inequality for all dimensions d > 2. For convenience,

we define the normalized L* norm by

1/2
. 2
ol 2, = (j ) .

The following theorem is essentially taken from [6, Theorem 1.4], which is a corollary
of the “large-scale analyticity” in periodic homogenization. This result relies on the peri-
odic structure of the coefficients, but does not depend on the smoothness of
coefficients.

Theorem 4.1. For each 1 € (0,1/2), there exist ¢ =c(d,A) >0 and 0= 0(1,d,A) €
(0,1/2] such that if u is a weak solution of L£,(u) = 0 in Bg with 0*R > 2, then

HMHLZ(B()R) S ||u||Ij2(B()zR)‘f‘|u‘|i721(BR) + eXp<_C82R>||U||L2(BR). (41)

As a simple corollary, we have

Corollary 4.2. Let u be a weak solution of L,(u) = 0 in Bg. For every oy > 0, there exist
C>0and 0 € (0,1/2) such that if

N>C and 6R>CN, (4.2)
and

||uHI_42(BR) SNHM”I_JZ(B@R)’ (43)

then

lull 2, < NV (44)

u||L2(302R).

The sharp exponential tail in (4.1) is crucial for our purpose which is related to the
condition (4.2). The lower bound In N in (4.2) allows us to iterate the estimate down to
a scale at which the classical theory in Section 3 may apply.

Next, for the case d =2, we introduce a stronger doubling property using quasi-regu-
lar mappings (related to complex analyticity). We briefly give some background on
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quasi-regular mappings. For a detailed account of this topic, please refer to the presen-
tation in [9, 23, Chapter 11.6] and references therein.

Let u be a weak solution of the equation £;(u) = 0 in B with only bounded measur-
able coefficients satisfying (1.2). Let z = x + iy for x,y € R. Define

1 1
0.f =5 (0f +idf). Of =3 (0f — idyf). (45)
We introduce a stream function (the generalized harmonic conjugate) associated with u as
Vv = JAVu,

where ] is the rotation matrix in the plane

0 -1
=00 )
Let f = u + iv. Then we have f € H} (Bg) and satisfies
O.f = udf +vo.f,

where the complex valued function p and v can be explicitly written in term of A and

W+l S T p <

V| < ——< 1.

=114
Hence, f : By — C is a {-quasi-regular mapping. Moreover, it can be written as f =
Foj, where F is holomorphic and } : Bgx — Bg is a +-quasiconformal homeomorphism
satisfying 7(0) = 0 and }(1) = 1. Define

B ={z€Bgr:|p(z)] <7}

The quasi-balls B; are comparable to the standard Euclidean balls in the sense

Br = Bg, and BR 1 CB; C BR(%;)«, forr < R, (4.6)

(@
where C > 1 and 0 < « < 1 depend only on A. Observe that 3; tends to be singular if
7 < R, which fortunately is not too restrictive as we only use it in the transition at
intermediate scales.

From the fact that F is a holomorphic function, the following doubling property
holds [9].

Lemma 4.3. If u € H\, (Br) is a nonzero weak solution of L£1(u) = 0 in By, then
||“||Loe(BR>

[l (54)

4

|[ul |L‘X(B;)

4] [ (5)

<cC , for 0<?<R (4.7)

Remark 4.4. Note that Lemma 4.3 does not use periodicity, and it is also true for solu-
tions of £,(u;) = 0, with a constant independent of ¢. This gives “almost monotonicity
of the doubling constant,” a statement stronger than that of Theorem 1.1, but for quasi-
balls, as opposed to the usual balls. As we pointed out above, quasi-balls are difficult to
manage as the radius r goes to zero. Because of this, we still need to use the periodicity
assumption and Step 1 below, when d = 2, to cover the range r > CN¢. We then apply
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Lemma 4.3 in the range Ce¢ < r < CN’¢, using (4.6) since r is not too small. Finally,
the case 0 < r < Cg is handled by scaling and Lemma 3.2. The details are below.
Equipped with Corollary 4.2 and Lemma 4.3, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. According to the relationship between ¢ and N, one needs to
consider three cases based on the comparison of ¢ with N> and N2 (or 1 for d =2).
Without loss of generality, we may just consider the most complicated case ¢<N~>,
since all the three steps listed in the introduction will be involved as r approaches 0.

Hence, we fix ¢ and N so that CN°¢ < 1, and then discuss the different ranges of r.

Step 1: CN°¢ < r < 1. Under either (1.7) or (1.9), Theorem 2.6 implies

J ul < 8N3J uz, (4.8)
B, By,
for any given 0 € (0, 4]. This estimate holds for all dimensions d > 2.
Step 2: In this step, we need to treat the cases d > 3 and d =2 separately.
Case 1: d > 3 and CeN: < r < CN°¢ for any fixed © > 0. Let m be the smallest inte-

ger so that 0~"r > CN°¢. If N is bounded by some absolute constant, then Step 2 is not
needed. Since r > CeN3, for sufficiently large N, m satisfies

< 6InN (4.9)
~ —ln0’ '
Because of (4.8), we have
J u: < 8N3J ul. (4.10)
Bﬂ*mr B(;—erl,
Let My = 8N? and M; be the constant such that
J u? gM,-J ul. (4.11)
By—m+j, By—mjr1,

The goal is to estimate M,,, with m comparable to the bound in (4.9).
Thanks to Corollary 4.2, and by rescaling, we know that for a given oy > 0 with 0
small enough, we have

M; = CA/I}_*I“I. (4.12)
Note that the left-end restriction r > Celn M; is needed in order to apply Corollary 4.2,
due to (4.2). This can be guaranteed if we eventually show M; < M,,, < Cexp (N3).

We now proceed to estimate M;. Using the initial condition M, = 8N>, one can
show explicitly that
M; = exp(—InC/m) exp[(l +0o,Y(3InN + In (SCI/"“))}. (4.13)

It follows from (4.9) that
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M,, < Cexp [exp (In(1+01)(=In0)'6InN) - (3InN + ln(8C1/“1))]. (4.14)

Note that 7 is any given positive constant. Then, we may choose o; small enough (hence
0 is also small), so that

gz6ln(1+al)(—ln9)*1. (4.15)
Thus, if N is large enough,
M,, < Cexp (N7). (4.16)
This implies that for any CNi'g < r < CN’¢, we have
J u> < Cexp (N%T)JB ul, (4.17)
. or

Case 2: d=2 and C¢ < r < CN°¢. From (4.8) with 0 =4 in Step 1, for R ~ C&N?,
J ul < 8N3J ul.
Bx By,
By the L* norm estimates, it follows that
||”s||Lx(BR) < CNEHMSHL*(BB)' (4.18)
We would like to to apply Lemma 4.3 to u,. From the relation (4.6) of quasi-balls B;
and the standard balls, as well as the iteration of the doubling inequality (4.18), we have

ellimigy - Mellimmy e (4.19)

Ug||r0o T U]
ol sy~ Tollee s,
where k depends only on A. Thus, (4.7) implies that for any 0 < 7 < R

||u<5| |L“°(B;)

< CNF. (4.20)
o]l (%)

In order to establish a doubling inequality at small scale on standard Euclidean balls,
we iterate the above doubling inequality m times to obtain

[futel [ o (5,) < (CNk)mHuSHL‘x(BL)‘ (4.21)
2m
By the relation (4.6),
A < (CNOY"[futel |y 8o, -
o (BR%)%) T (B

We choose m >0 to be the smallest integer so that

R(C—?) < %R( ) (4.22)

Consequently,
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R

|ua||Lx<B A ) < (CN")’"HusIILx(B ) (4.23)
R

lp 1
SR(ER)

Note that 7, satisfying 0 < 7 < R ~ CeN°, is arbitrary and m is chosen depending on 7.
We now assume 7 > Ce”R'"* ~ CeN°(1"%). Hence, r:= R(% ) > Ce. Moreover, from
(4.22), we have m < CIn N, where C depends only on A. Thus, it follows from (4.23)
that

H”s”m < CNClnNH”sHLx(By) (4.24)

for all Ce < r < R ~ CeN®. Since L norm can be replaced by L*> norm in the above
inequality, we derive the desired estimate for the case d =2.

Step 3: For r < CeN* (or r < Ce for d=2), by rescaling, the equation may be
reduced to the case in which the Lipschitz constant of coefficients is bounded by CN:
(bounded by C for d=2). It follows from (3.27) and (4.17) that for d > 3 and any
0 < r < CeN¥,

Cex 2I
C [exp (N%f)] b JBO

exp (exp (CNY)) me z
For d=2, it follows from (3.27) and (4.24) that for any 0 < r < Cg,

jB, u;

<
<

J u? < C[NC‘“N]CJ u? < CNCI“NJ u?. (4.25)
. By ;
Note that N°™N = exp (C(InN)?). This completes the Proof of Theorem 1.1. O

Remark 4.5. It was shown in [6] that the exponential tail in (4.1) is sharp (up to the
end point T =1), without any smoothness assumption on the coefficients. If the critical
T =1/2 in (4.1) can also be achieved (which seems like a very difficult task), then
Corollary 4.2 with «; = 0 would follow. By the argument in Step 2, this would yield the
estimate

J u? SCN"J u? (4.26)
B, By,

for CelnN < r < CeN°. If we then apply (3.27) as in Step 3, with Lipschitz constant
CInN, we would obtain the bound C(N) = exp (CN) for 0 < r <1 (for the range 0 <
r < Ce, (3.27) does give the optimal bound). On the other hand, the estimate (3.27) in
term of the large Lipschitz constant L may not be sharp. This is a well-known difficult
issue in quantitative unique continuation, for which none of the currently known meth-
ods apply. Any improvement here would have many consequences. Alternatively, in the
range Ce <r < CelnN, one could try to use a method taking advantage of both peri-
odicity and smoothness. No such method is available at the moment.

Remark 4.6. If we consider, when d=2, elliptic operators with Lipschitz coefficients,
with Lipschitz constant L>1 (and no periodicity assumption), we can obtain the
improved bound M“!"! in Lemma 3.2. To show this, we break down the scales into

1<r<1and 0<r<7i. For the case { <r <1, we use Lemma 4.3, (4.6) and the
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argument from (4.19) to (4.23). For the case 0 < r < %, we scale to reduce to the case
L=1 and then apply Lemma 3.2 as it stands. This may suggest that the bound in
Lemma 3.2 is not optimal, also for d > 3.

Remark 4.7. The disadvantage of Theorem 4.1 for d > 3 is that 0 may be very small.
If we do not apply Theorem 4.1 to improve the exponent 7, Step 1 and 3 in the Proof
of Theorem 1.1 allows 0 to be any number in (0, A/2]. In particular, under (1.5), for

any f§ € (%, 1), we have
J ul < exp <exp (CN”%)>J ul. (4.27)
B, Barja

For convenience, we will use this doubling inequality (4.27), instead of (1.8), in estimat-
ing the upper bound of nodal sets in the next section. The price is that o has to be
larger than 8 in (1.14).

5. Upper bounds of nodal sets

In this section, we study of the upper bounds of nodal sets for u,, where u, is a non-
zero solution of L£,(u;) = 0 satisfying (1.5). We will focus on the general treatment for
all dimensions d > 2 and with an eye toward d =2 in the end. Throughout this section,

up to a change of variable, we assume £y = —A. Note that in this case, E,’s are just
balls, and in view of Theorem 2.1, the assumption (1.5) can be replaced by
J u; < NJ u;, (5.1)
B, B

and (4.27) holds with A=1.

5.1. Small scales

We first show that a doubling inequality centered at 0 implies the doubling inequality
with shifted centers.

Lemma 5.1. Let u, be a weak solution of L,(u;) = 0 in B, satisfying (5.1). Then for any
x € Byy3 and By (x) C B,, we have

J u? < exp (exp (CNE))J ul, (5.2)
By, (x) B,(x)

1

3

Proof. Let us first assume CeN’i < 1 for some large C. In this case, by Theorem 2.1
with 0 = 1/2, we have

J uggNJ u§§2N2J ul. (5.3)
B, B, By

Now, for any x € B3, note that B, C Bs;s(x) and Bs/3(x) C B,. It follows from (5.3)
that
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J uﬁgj uﬁgzNZJ uﬁgzNZJ ul. (5.4)
Bs/3(x) Bi)z

Since Theorem 2.1 and (4.27) are invariant under translation, we can apply them in
Bs/3(x) with N replaced by 2N?. Thus, for all r € (0,5/6),

J u> < exp (exp (CNF%))J ul,

By, (x) (%)

To handle the case CeN#-3 > 1, we use (4.27) directly and obtain
J ur < NJ u? < exp (exp (CNE>)J ul.
B, B By

Then the desired estimate follows from the same idea as the first case and a blow up
argument as in Step 3 in the Proof of Theorem 1.1. O

Let us define the nodal sets as
Z(u;) = {x € By|lu, = 0} (5.5)
and the density function of nodal sets as

Er) - Hdl(Z(:j)lm B() 66

Based on Lemma 5.1 and a blow up argument, we can estimate the Hausdoff measure
of the nodal set of u, in small balls.

Lemma 5.2. For any 0 < r < 1/3 and xo € By such that B,(xo) C By3,
E.(x,7) < <1 + g) exp (CNE%), (5.7)
where C depends on d, A, f and y.

Proof. First of all, we consider the case 0 <r <e and B,(xy) C Byj3. Let v(x) =
uy(xo 4 rx) and A%"(x) = A(e™" (xo 4 rx)). Then

V(AL () V() = 0. 69
By (1.4),
A% (x) = A% ()] < yre”x = 3] < vk — ] (59)

for x,y € B,. Therefore, in this case, the coefficient matrix has a uniform Lipschitz con-
stant independent of ¢ and N. Then, a change of variable and the doubling inequality in
Lemma 5.1 give that
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][ Vv dx :J ul dx
B, By (%0)

exp (exp (CN@) )J ul dx (5.10)

Br(XO)

IN

IN

exp (exp (CNﬁ)){ v dx.

By

By the upper bound of nodal sets in [14], there exists a constant f§;, > 1 so that

Bo
HY(Z(v)NBy) < [exp (CN/‘_)} < exp (CINE), (5.11)
which implies, by rescaling,

Hd*l(Z(us) N Br(XO)) S exp (CINE_—%) T"d71

for any r € (0,¢] and B,(xy) C By3.

Next, to deal with the case r > ¢, we simply use a covering argument. Let xo € By /3
and r > ¢. There there exists a family of balls B,(x;),i = 1,2,..., M, that covers B,(xo)
with a finite number of overlaps depending only on d. Note that M~ (r/ e)d.
Consequently,

H(Z(u;) N By (x0)) < ZHd_I(Z(uc) N Bq(x:))

2
< Mexp (CIN/‘*%) gt

|
oo

< Criclexp (CIN’f* .
We obtain the desired estimate by enlarging the constant C;. O
Remark 5.3. The above lemma does not rely on the periodicity of the coefticients.
Actually, its proof also gives how the estimate depends on the Lipschitz constant of the

coefficients. Precisely, if v is a solution of V- (A(x)Vv) =0 in B,. In addition to the
ellipticity condition (1.2), we assume

[(A(x) = (A(y)| < Llx —yl. (5.12)
Then
E.(x0,7) < C(1 + Lr)N(v, Q)™,
for B,(x9) C Q, where the definition of N(v, Q) is given below in (5.27).

5.2. Large scales

To deal with the nodal sets at large scales, we need to use the homogenization theory.
Precisely, in the following, we find an approximate solution u,, close to u, under L™
norm, and satisfying a doubling inequality.
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Lemma 5.4. Suppose r > 3C\/Ne for some large C. Let u, be a solution of L.(u;) =0 in
By, satisfying

J ul < NJ ul. (5.13)
BZy Br
Then there exists u satisfying Lo(uo) = 0 in B such that
Ce
||t — u0||L°<(B3,) < —|[ue| |12 (Bar), (5.14)
2 r =
and
J up < 16N2J ug, (5.15)
B, Br/Z

where C depends on d, A and y.

Proof. By rescaling, we may assume r= 1. The construction of such locally homogenized
solution #, and the estimate (5.14) can be found in [5, Theorem 2.3]. Note that it is not
necessary that u, = uy on 6B%. Then, it suffices to show (5.15). By (5.13) and (5.14), we
have

ul < CszNJ ul. (5.16)

||Ms - uO||]%%(B§) S CSZJ
2 B,

B,

We now establish estimates to compare the norms of u, and uy. Thanks to (5.16),
||u0||L2(33) < ||“s||L2(32) + [|us — UOHLZ(BQ)
2 2
< VN|Jugl2(5,) + CVNE| ||| 25, (5.17)
= \/N(l + C8)||u8||L2(31)'
By the same strategy, using (5.16), we obtain that

||u8HLZ(B1) < us — uOHLZ(Bl) + ||u0||L2(B])

(5.18)
< CV/Nel || 25, + 10| 25,
Since Cy/Ne < %, the above estimate yields
el 25y < (14 CVNE) ol 125, (5.19)
Combining (5.17) and (5.19) together yields that
10/l 8y < VN (L4 CVNE) ]|, (5.20)
< 2VN|[uo| 23,)-
Now, we use the fact that
o(s) = logzj[ up (5.21)
Bs

is a convex function with respect to s. Then f(s) = ¢(s) — @(s — ¢) is nondecreasing for
any ¢ > 0. This implies
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[luollr25,) < 2\/N||u0||L2(B%)
< 4N]|uo) 2 (B) (5.22)
9

1)’

This proves (5.15) and the lemma. O

§4N||”0||L2(B

Remark 5.5. We would like to point out that the advantage of Lemma 5.4, compared to
(2.2), is that it provides an L™ (or pointwise) error estimate which is much stronger
than the L error estimate in (2.2). This L estimate will play an essential role in the
estimation of nodal sets.

Let B be a ball and u, be a C' function in 2B. In order to show some quantitative
stratification results for uy and Vu,, we introduce the doubling index:

N(up, B) = log, M (5.23)
supy [uo|
and
_ sup,p [V
N(Vuy, B) = log, 7sup3 Vo] (5.24)

If u, is a weak solution of the equation Ly(uy) =0, the doubling index for |uy| and
|Vuy| are monotonic in the sense that

N(uo, tB) < CN(uO,B) (5.25)
and
N(Vuo, tB) S CN(VM(), B), (526)

for t <1 and C depending only on d. This follows from (2.8) and the line after it.
We also define a variant of the above doubling index for cubes. For a cube Q, denote
by s(Q) the side length of Q. Define the doubling index in the cube Q by

N(up,Q) = sup  N(up,B,(x)) (5.27)
x€Q, r<s(Q)
and
N(Vup,Q) = sup  N(up,B,(x)). (5.28)
x€Q, r<s(Q)

The doubling index defined in cubes is convenient in the sense that if a cube g is a sub-

set of Q, then N(up,q) < N(up, Q). Let g be a subcube of Q and K = % > 2. Then

sup |uo| > K~ N0 gup |uy), (5.29)
q Q

where C depends only on d. Similarly, it also holds
sup | V| > K~NVu0Q sup Vg (5.30)
q Q
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The following quantitative stratification for Vu, is the key ingredient of this section.
The idea of the proof originates from Lemmas 3.5 and 5.2 in [24].

Lemma 5.6. Assume that u, is harmonic in 5Q. Suppose N(Vug, Q) < No. If 0 < 6 <
e CNo Jor some C> 0 depending on d, there exists a finite sequence of balls {B; (x;)};_y,
such that

N 1
G; = {x € EQ: |Viug(x)| < 5sup|Vu0 } UB x;j) (5.31)

and

i - £<(Q)>d1. (5.32)

j=1

Proof. In the following proof, all the constants C, Cy, C1, Gy, ..., depend only on d, and
Ny is a large constant. We divide the cube 1Q into Kd subcubes with side length )
The size of K;, depending on , will be chosen later. The cube gj is called bad if

1nf [Vuo| < csup [V (5.33)
29

for some small ¢ depending only on d. We claim that the number of bad cubes g; is not
greater than ¢V OKd 2, where C, depends on d.

To show the above claim, we need to use [17, Theorem 1.1]. Recall the effective crit-
ical set is defined as

d 2
Cr(ug) = {x €Q: énf V) < ELBz,(x)(u — u(x)) }

Let B,(C,(up)) be the r-neighborhood of C,(up), namely, B,(C,(up)) ={x€Q:
dist(x,C,(ug)) < r}. Then [17, Theorem 1.1] implies

2
] /s
IB,(C, (up)) N B < CN o) (E) 1By, (5.34)

where B, Bys are concentric balls such that By, C Q and N is the modified frequency
function defined by

- 25, |Vuol®
N (ug, Bys) := B 3>
fagh(uo — uo(2))

where z is the center of B,. By [10, Corollary 2.2.6] and the mean value property of har-
monic functions, we have

Jp,, (w0 — uo(2))*

Js,, (10 — uo(2))°

supg, Vu,

N(up, Bys) < Clog sup | V|
B,

< Clog, < CN(Vug, Q) < CNy,

where we have also used a gradient estimate for harmonic functions in the second
inequality. Hence, (5.34) implies
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A2 2
|B,(C,(149)) N B| < CNo (g) |B,|. (5.35)

Next, we show that if g; is a bad cube with sufficiently small ¢, then g; N C,(uo) # 0.
Actually if g; is bad and x; is the point in g; so that [Vuo(x;)| = infy, [V, then

inf |Vuo| < |Vug(x;)| = inf |[Vuo| < csup [V,
Br(xj) qj 2%‘

where we used the condition (5.33) in the last inequality. Fix r = Zﬁs(qj). Then 2g; C
B,(x;). It follows from the gradient estimate and the Caccioppoli inequality that

infp, (y) r| V| < crsupy () [Vuo| < cCar :fB3 |Vuo|2)1/2
< cCﬁ(jﬁBh(Xjﬂuo - “o(xj)|2)1/2-

In view of [10, Corollary 2.2.7], we have

CC2 1/2
infp, ) 7| Vo) g—df o — o () [*
d \Jos, (x)

< — Uy — Ul X; >
- 16(1@Bzr(xj)| ’ ol ])| >

where in the last inequality, we choose ¢ small so that ¢C3/d < \/d/16. This implies
that x; € C,(uo) and g; N C,(ug) # 0. Because r = 2v/ds(q;), we have g; C B,(C.(u0)).
This means that all the bad cubes g; are contained in B,(C,(u)). Finally, let s be com-
parable to s(Q) and note that 3 Q can be covered by finitely many, depending only on d,
B, w1th By C Q Then, by (5. 35) the total volume of bad cubes in 2Q is bounded by
CNO(S(q])/S( ))?1Q| < CYoK;?|Q|. Hence, the number of bad cubes is not greater than
N 0K%=2. The claim has been proved.

Now, for any gj, the monotonicity of the doubling index of Vu, in cubes in (5.30)
shows that

sup |Vug| > CZKfCIN0 sup |Vug|. (5.36)
g Q

If g; is not bad, the reverse inequality of (5.33) yields

inf [Vug| > C3K1_C1N° sup |Vl (5.37)
9 Q

Given 3, small enough (to be quantified later), we want to estimate the set Ga
defined in (5.31). If g; is not bad and we choose K to be the smallest integer such that

Cy(Ky +1)" 9N <5, (5.38)
then (5.37) gives

inf |Vug| > C3K1_C1N° sup [Vug| > & sup [Vig|.
qj Q Q

N P
This implies that g; does not intersect Gs. It also shows that K; ~ §“0". Thus, the set

(

G is covered by the union of bad cubes of size 5. Again, we may now replace bad g;
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s(g))Vd

>— . Let /i be the number of bad cubes and

by B; (x;) with the same center and t=
recall that e“V gKf_z > 1. It follows that
-1

ad—1 . d-1 CN2 -2 S(Q)

t;  =Cm-s(q)" < Ce oK (2—K1

j=Tin

Na B
< (_) Sd_l(Q)CeCdNOKl_l
2 (5.39)

1 -1 I J
: (5) ST (Q)Ce o5

1\
< (Z) s71(Q)
where we have chosen 6 < e in the last inequality for some C>0 depending only
on d. This completes the proof. O

—cN;

Next we estimate the density function E.(y,r) of nodal sets, which is the initial step
for an iterative argument to obtain Theorem 1.2. The following lemma is a quantitative
version of [5, Lemma 4.5]. Without loss of generality, we may identify Q in Lemma 5.6
by Bé'

Lemma 5.7. Let f € (3,1) and (5.1) hold. If & < exp (—C(InN)?), then there exists a
finite sequence of balls {B; (y;) : j = 1---,m} such that y; € By, t; € (0, %) and

1 -2, 1 N
E, (O, —) < exp (CN”*%) +— sup E:(y) 1), (5.40)

where ¢ and C depend on d, A and y.

Proof. We assume E, (0, 1—16) > 0. Otherwise, (5.40) is trivial. By normalization, we may
assume that IBz u? = 1. We will make use of the approximation estimate by a harmonic

function in Lemma 5.4. Using (5.14) with r=1, we have
[lu, — u0||Loc(Bl) < Cs||ug||L2(Bz> = Ce. (5.41)
8

We would like to estimate the doubling indices for u, and Vuy. From (5.20) and
convexity of ¢ in (5.21), we have

HMOHLZ(BQ) < 2\/N||u0||L2(Bt) (5.42)
2

for all 0 < t < 1. By elliptic estimates and using (5.42) twice,

1

lollay) + V3ol sy < c(j )

s . (5.43)

gcmq ug) §CN<J ug> < Nl 5
B B 2

3
1

I

The above estimate includes
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[[uol[ 1 (5,) < CN”uO”L’@(B%)' (5.44)

Thus, N (uo,B%) < log,(CN). Similarly to the frequency function in Section 3, one can
define the frequency function introduced for the harmonic function u, as

rfBr(x) |V |?
faB,(x) g

It is known that the doubling index and the frequency function are comparable. Indeed,
it follows from [14, Lemma 7.1] that

N(x,r)=

N(O, %) < CN (uo, B1) < Clog(CN), (5.45)

where C depends on d. By Theorem 2.2.8 in [10], it holds that

1/1 1

for any x € Bg and 0 < R < 3. From (5.46) and (5.45), let R = §, we obtain that
N(x, 13_6> < Clog,(CN).
Using [14, Lemma 7.1] again, we see that
N(uig, Br(x)) < CA” (x, 136) < Clog,(CN) (5.47)

for any 0 <r < gand x € By.
Next, we claim that there are zeros for u, in B%. In fact, from (5.41) and Theorem 2.1
with 6 = 1/2, we have

l|ue — UOHLz(Bl) < CN28||ug||L2(BL). (5.48)
8 8
Then
||”0||L2(Bl) >(1- CNZS)H”&HLZ

)

(1 — CN%)
2 Tﬂusﬂp(szy (5.49)
It follows that ||Ll()||Lz(Bl) > = if &€ < cN72. Hence, (5.15) implies
8
1
=7 < lluoll 25y < CNI[uoll 2 (g, y- (5.50)
CN () (%)

Now, let us assume that uo has no zeros in Bi and therefore does not change signs in
Bi. Without loss of generality, we may assume that u, is positive. By the Harnack
inequality and (5.50),

1
inf |ug| > Csup |ug| > —. 5.51
B%|0|_ Bf|0|_CN3 (5.51)
16

From (5.41), for x € B]_ls, we get
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1 N
N Ce < u,(x). (5.52)

Since ¢ < CN3, then u,(x) >0 for x € Bi. This contradicts our assumption that
E, (0, 16) > 0. Thus, the claim has been shown.

Now, since u, has zeros in B% (and hence in B%), we obtain from (5.43) and the mean
value theorem that

sup |Vug| < CN sup [Vuy]. (5.53)
B;

Again, by the relation of the frequency function for Vi, (namely, the frequency func-
tion with u — u(0)) and the doubling index, we can argue as the derivation of (5.47)
that (5.53) implies that
N(Vuy, B,(x)) < Clog,(CN) (5.54)
for any 0 < r < g and any x € B,.
From the definition of N(Vuo, Q) and (5.54), we know that N(Vug, Q) < Ng :=
ClogN for Q C By and N> C. Since we may choose sequence of Q C Bi, comparable
to B1, to cover Blé, in the following argument, we will work on By for convenience. In

order to apply Lemma 5.6, we assume that ‘3 ~ e ¢~ ClosN)' With ‘the aid of (5.41), we
have

Z(u;) N By C Z(u,) N {x € By : |up(x)| < Cs}

N |

C Z(ug) N {x € By : ug(x)| < Ce and |Vu(x)| > =sup |Vuo|}

B (5.55)

ool

UZ(u,) N {x € By ug(x)] < Ce and |Viuo(x)| gg sup |Vu0|}

B

ool

C (Z(u)NG)U (Ujm:1z(“8) N Bij()’j)))

where

NIQm

G= {x € By Jug(x)] < Ce and |Vu(x)| > p |Vu0|} (5.56)

oo|»—

and B; (;) are given by Lemma 5.6. Thus, it follows from Lemma 5.6 that

H*N(Z(u,) NBL) < H(Z(u;) N G) + in’l(Z(ug) N B;, ()
j=1
S Hd_l(Z(l/lC) N G) + SupEg(yj, 2']) , 2’d71
i j=1

(5.57)

d-1
1 1 “
< Hd_l(Z(uC) NG)+-|{ — sup E;(y), tj).
4\ 16 ;

Since N is large, by the decomposition in Lemma 5.6, we may assume 0 < f; < 5.
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Next we estimate the upper bound for HY'(Z(u,) N G). We will cover G by balls
with radius comparable to ¢ and estimate the number of these balls so that Lemma 5.2
can apply. First, note that (5.50), the fact that u, has zeros in B% and the definition of G

imply
|Viug(x)| > N and  |uo(x)| < Ce (5.58)

for any point x € G. For k = 1,2, ...,d, define
= {x € G| Jup(x)| < Ce, + = (x) > ——

Then (5.58) implies that G is contained in U{_ (F; UF,’). Without loss of generality, it
suffices to estimate F, . By the C regularity of u, for any x, € F;", there exists a cylin-
der C(xo) centered at x,, whose base is a square perpendicular to e, with side length
Ce, such that the height of C(xo) is 528 and

814() 8C1
—(x) > ——, for any x € C(xp), 5.59
Oxy )2 2dN? Y (xo) (5:59)
where ¢; > 0 is a constant smaller than c.
Ce
‘ JEN e,

L =6bc;(2dNH)1
Figure 1. The cylinder C(xo).

We would like to show that C(xo) N F{ can be covered by m, balls with radius Cs,
where m; < C;2dN%5. Let S (x0) be the cross section containing x, of the cylinder C(xo)
which is perpendicular to e Since |Vu| < C and |uy(x)| < Ce, we see that |uy(y)| <
Ci¢ for any y € S(xp). Next, because of (5.59), for any y € S(x¢) and t> 0,

uo(y + tex) > — Cie.

5
d 2
This implies that y + fe ¢E if t> w.

% This implies that !
1

Similarly, y+tex ¢ F if t<

(Cl + C)SZdNZ }
8C1 '

Consequently, F;” N C(xo) can be covered by m, balls with radius Ce and m; <
Now, because F; C G can be covered by m, cylinders, with m, = EC‘”Y , such that the
C(xo)’s have finite overlaps, then F;" can be covered by m balls with radius Ce (denoted

by {Bci(zf,) : £ = 1,2,....,m}), where

F NC(x) C {y—l— ter|y € S(x), |t] <

C,2dN?
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Cd*N*

8‘1432 .

Note that the same estimate holds for F,_ as well for each k = 1,2,...,d.
Hence, by Lemma 5.2, we derive that

m=mm; <

d m
H (Z(u) N G) <D > H ! (2(u) N Bai(z))
k=

(5.60)

where in the last inequality, we have used the fact 5~ exp (C(InN)?) and enlarged
the constant C. Note that here f§ € (3,1) can be arbitrary. Thus, (5.60) and (5.57)
together lead to the conclusion (5.40). O

5.3. Proof of Theorem 1.2

Thanks to Lemma 5.7, we are able to show the upper bound of the nodal sets of u; in
the interior domain.

Proof of Theorem 1.2 (d > 3). We first consider the case & < exp (—C(InN)?). Recall
from (5.4) that

J ul < 2N2J u’ (5.61)

Bs/3(x) Bss(x)

for any x € By/3. By Theorem 2.1, it follows that
J ut < 4N2J u? (5.62)
Bzr(x) Br(x)

1

for CN/ie < r < 2 and any x € By /3. By (5.62) and Lemma 5.4, we derive that
J up < CN‘*J ug (5.63)
Br(x) BY(X)

2
1
as in (5.15) for x € B: and CNHe < r < 2. By examining the proof of Lemma 5.7, the
estimates (5.62) and (5.63) guarantee that the arguments in the Lemma 5.7 hold for
E(xo,s) for xg € B and Céexp (C(InN) <s<&.
Let v(x) = u,(xo + tx) for any t satisfying CN’ie < Ceexp (C(InN)’) <t <2 and
Xo € Byg. Then v(x) satisfies

V- (A (x)Vv(x)) =0 in B, (5.64)
where A%!(x) = A(e”!(xo + tx)). By Lemma 5.7, we have
H*Y(Z(v) NBL(0 2\ 1 H*Y(Z(v)NBs(y;
ZOOBO) (o) 4 LT EO 0B )

& N 47 )"

, (5.65)
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where §; € (0
obtain that

H*'(Z(u:) N B (x0))

. 1ap) and y; € B1(0). By rescaling, we reduce the estimate to u, and

1 HY(Z(u,) N Bg,(xo + ty;
< exp( CN"™ >+—sup (2s:) 1 B, (x y])).

— —— (5.66)
©"! 4 ()"
Let T = i, then Ceexp (C(InN)’) < t < &. Thus,
1
E (x(), ‘C) < exp( Nﬂi_) +qupEﬁ(5/j’ 31) (567)
j

where J; = xo + ty; € B(xo), §; = 15; € (0, §). Note that B;(y;) may not be fully con-
tained in B;(xp), since y; may be the centers of subcubes which intersect the boundary
of B:(xp) (we identify the ball B;(xy) as a cube when we perform the subcubes decom-
position). However, B;,(J;) C Bri:(xo) since §; € (0, §). If we iterate (5.67), st(y) stlll
stays close to B;(xp). Actually, B;, (y]) C Bi(xo) for any large j, where = > °, & = &,

Now, we iterate (5.67) to obtaln the desired estimate. The estimate (5.40) yields the
initial step of the iteration,

1 2 1 N
E, <0, —) < exp (CN"’%) +— sup Eg(y;t)). (5.68)
16 41<jcim
Assume that sup,_;;, E; (yj»1;) is achieved at some E,(y;,,tj,) with |y]0| <Land |t;] <
. Let xo = yj, and #;, = 7. Since 5; <%, we apply (5.67) to E;(yj»Lj,) to get to the
estimates of nodal sets at a smaller scale, that is,

1 1 2\ 1
El0,— )< (14> ( fof%) —sup E.(¥.,5,). )
<0 16> < < —|—4> exp \C +451j}p 3j>$5) (5.69)

We apply (5.67) repeatedly down to the case r ~ Ceexp (C(InN)?) or the case that
E.(y,7) is empty. Note that By (y;) C Buy s (0) C B1(0). Thus, we derive that

7x128

E, (0 i) 24 exp (CN’* >+ sup {E.(y,r): 0 <r < Ceexp(C(InN)*)}

y€B4 (0)
12

|+

) + (1 + Cexp (C(InN)*)) exp (CNé)

)

where we have used (5.7) in the second inequality. This proves the desired estimate for
the case ¢ < exp (—C(InN)?).

Finally, for the case & > exp (—C(InN)’), the desired estimate follows directly from
(5.7). Since f € (i, 1) is arbitrary, so (1.14) holds for any o > 8. This ends the proof of
the theorem. O

il

< exp (CN”*

< exp (CN’"

|~
L

(5.70)

Following the above Proof of Theorem 1.2 for d > 3, we sketch the proof of upper
bounds of nodal sets in d=2.

Proof of Theorem 1. 3 (d=2). Since the proof is parallel to d > 3, we only present the
changes for d=2. Thus, we only present the changes for d=2. By the argument in
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Lemma 5.2 and the doubling inequality (1.10), we can obtain for 0 < r < 1/3,
Eu(x0,7) < c<1 +f>(1nN)2. (5.71)
€

On the other hand, the statements of (5.31) and (5.32) still hold for u, with a better
bound for 6 for d=2. Precisely, [17, Theorem B.1] implies

i 2
|B,(C (1)) N By| < CNUoB2)) (’) |By|. (5.72)

s
By rgimicking the argument of Lemma 5.6, we can show (5.31) and (5.32) with 0 < 5 <
e “No. Following the proof of Lemma 5.7, we may show that if 0<¢<

exp (—C(InN)?), then

1 1 X
E, (0, —) < exp (C(InN)?) + - sup E.(yj>t)), (5.73)

with y; € B1, t; € (0, {5). Observe that the quantitative stratification of critical sets
Vuy, instead of the doubling inequality, plays the dominant role in the estimate (5.73).
We iterate (5.73), as in the proof for d > 3, to get

E, (O, i) < iéfi exp (C(InN)*) 4+ sup {E,(y,7): 0 <r < Ceexp (C(InN)*)}
16 i=0 y€B1(0)

exp (C(InN)?) 4+ C(1 4 Cexp (C(InN)*))(InN)?

exp (C(InN)?).

VAN VAN

This provides the desired estimate (1.15) for 0 < ¢ < exp(—C(InN)?). For &>
exp (—C(InN)?), (5.71) yields the desired estimate directly. This ends the proof. O
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