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Doubling inequalities and nodal sets in periodic elliptic
homogenization
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ABSTRACT
We prove explicit doubling inequalities and obtain uniform upper
bounds (under ðd� 1Þ-dimensional Hausdorff measure) of nodal sets
of weak solutions for a family of linear elliptic equations with rapidly
oscillating periodic coefficients. The doubling inequalities, explicitly
depending on the doubling index, are proved at different scales by
a combination of convergence rates, a three-ball inequality from cer-
tain “analyticity,” and a monotonicity formula of a frequency func-
tion. The upper bounds of nodal sets are shown by using the
doubling inequalities, approximations by harmonic functions and an
iteration argument.
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1. Introduction

The paper is concerned with doubling inequalities and upper bounds of nodal sets of
solutions in periodic elliptic homogenization. We consider a family of elliptic operators
in divergence form with rapidly oscillating periodic coefficients

Le ¼ �r � ðAðx=eÞrÞ, (1.1)

where e > 0, and AðyÞ ¼ ðaijðyÞÞ is a symmetric d� d matrix-valued function in R
d

with dimension d � 2: Assume that A(y) satisfies the following assumptions:

� Strong ellipticity: there is K > 0 such that

Kjnj2 � hAðyÞn, ni � jnj2, for any y 2 R
d, n 2 R

d: (1.2)

� Periodicity:

Aðyþ zÞ ¼ AðyÞ for any y 2 R
d for any z 2 Z

d: (1.3)

� Lipschitz continuity: There exists a constant c � 0 such that

jAðxÞ � AðyÞj � cjx � yj, for any x, y 2 R
d: (1.4)

The doubling inequality describes quantitative behavior to characterize the strong
unique continuation property, which has important applications in inverse problems,
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control theory and the study of nodal sets of eigenfunctions. For harmonic functions or
solutions of general elliptic equations in divergence form with Lipschitz coefficients, the
doubling inequality is a consequence of a monotonicity formula or Carleman estimates;
see [1–4]. In periodic elliptic homogenization, the first doubling inequality was obtained
recently by Lin and Shen [5] with an implicit dependence on the doubling index.
Precisely, they proved that if ue is a weak solution of LeðueÞ ¼ 0 in B2 ¼ B2ð0Þ andð

B2

u2e � N
ð
BK

u2e , (1.5)

then for any r 2 ð0, 1Þ, ð
Br

u2e � CðNÞ
ð
Br=2

u2e , (1.6)

where C(N) depends only on d,K, c and N. The point here is that the constant C(N) is
independent of the small parameter e: This cannot be derived directly from the classical
doubling inequality as the Lipschitz constant of the coefficients blows up as e
approaches zero. However, it is not known that how the constant C(N) in (1.6) depends
on N, because (1.6) was proved by a compactness argument. We mention that if e ¼ 1,
the classical doubling inequality shows that CðNÞ ¼ CNK for some C,K � 1; also see
Lemma 3.2.
On the other hand, the Hadamard three-ball inequality also describes the quantitative

unique continuation property. In periodic elliptic homogenization, two different ver-
sions of the three-ball inequality with error terms were discovered in [6] and [7]. In
general, the three-ball inequalities with errors are weaker than the doubling inequalities,
as they alone do not imply the strong unique continuation.
Our first goal of this paper is to find an explicit estimate for the constant C(N) in the

doubling inequality in periodic elliptic homogenization. The explicit doubling inequality
not only provides more clear quantitative information for the solutions (such as the
vanishing order), but also has more applications. We state the result as follows.

Theorem 1.1. Assume that A ¼ AðyÞ satisfies the conditions (1.2)–(1.4). Let ue be a weak
solution of LeðueÞ ¼ 0 in B1.

i. For d � 3 and every s > 0, there exist h 2 ð0, 1=2Þ and C > 1, depending only on
d, s,K and c, such that if ue satisfiesð

B1

u2e � N
ð
Bh

u2e , (1.7)

then for every r 2 ð0, 1Þ, ð
Br

u2e � exp ð exp ðCNsÞÞ
ð
Bhr

u2e : (1.8)

ii. For d ¼ 2, there exists a constant C > 1 depending only on K and c such that if
ue satisfies
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ð
B1

u2e � N
ð
BK
2

u2e , (1.9)

then for every r 2 ð0, 1Þ,
ð
Br

u2e � exp ðCð lnNÞ2Þ
ð
Br
2

u2e : (1.10)

The double exponential growth exp ð exp ðCNsÞÞ for d � 3 in (1.8) and sub-exponen-
tial growth exp ðCð lnNÞ2Þ ¼ NC lnN for d¼ 2 in (1.10) seem to be the best we can
obtain from our method; see Remark 4.5. Our ultimate hope is for an estimate of the
form CðNÞ ¼ NCð ln lnNÞp , for some p> 0 depending on d,K and c. Such an estimate
would have very important consequences for the study of long-standing open problems
regarding the spectral properties of second order elliptic operators with periodic coeffi-
cients and their quantitative unique continuation properties (see for instance Conjecture
6.13, Theorem 6.15 and Conjecture 6.16 in [8]). This connection between the conjec-
tured optimal doubling estimates and Conjecture 6.13 in [8] was observed by the first
author, D. Mendelson and C. Smart in the fall of 2019. This motivated the cur-
rent work.
As a straightforward corollary, Theorem 1.1 implies that the vanishing order of ue at

the origin does not exceed exp ðCNsÞ for d � 3 and Cð lnNÞ2 for d¼ 2. Theorem 1.1
also implies a three-ball inequality without an error term, in contrast to the results in
[6] and [7], namely (e.g., for d � 3),ð

Bhr

u2e � exp ð exp ðCNsÞÞ
�ð

Bh2r

u2e

�s1�ð
Br

u2e

�1�s1

(1.11)

for any 0 < s1 < 1:
The Proof of Theorem 1.1 breaks down into three steps:

� Step 1: e=r�N�5: In this case, we take advantage of the convergence rate in
homogenization theory and use the precise three-ball inequality of harmonic
functions. The smoothness of the coefficients is not needed in this step.

� Step 2: In this step, we need to use “analyticity,” which distinguishes between
d � 3 and d¼ 2. For d � 3, we let N�5 � e=r�N�1

2s, and use a three-ball
inequality with a sharp exponential error term proved recently in [6] by
Armstrong, Kuusi and Smart, which is a consequence of the “large-scale analy-
ticity” from periodic homogenization. This will lead to a nontrivial improvement
on the exponent so that s > 0 in Theorem 1.1 can be arbitrarily small. Again in
this case, the periodic structure will play a role; but the smoothness of coeffi-
cients is still not required. For d¼ 2, we let N�5 � e=r� 1, and apply a doubling
inequality derived from quasi-regular mappings [9] (related to complex analytic-
ity), which requires no smoothness or periodicity on the coefficients.
Unfortunately, this method works only in two dimensions.

� Step 3: e=r�N�1
2s for d � 3 or e=r� 1 for d¼ 2. In this case, the classical dou-

bling inequality for elliptic operators with Lipschitz coefficients can be handled
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by a monotonicity formula for the frequency function. If d � 3, the Lipschitz
constant of the coefficients turns out to be O N

1
2sð Þ after rescaling. A careful cal-

culation shows that the constant in (1.8) is at least exp ð exp ðCNsÞÞ, if the peri-
odicity is not used. If d¼ 2, the Lipschitz constant of the coefficients after
rescaling is bounded by C, independent of e and N. This allows us to obtain a
much better estimate in two dimensions.

For d � 3, one will see in the proof that the estimate in Step 3 leads to the double-
exponential growth of the constant in (1.8). What happens when e=r�N�1

2s? To gain
some intuition, consider a typical harmonic function wk ¼ rk cos ðkaÞ in R

2 (see [1] or
[10]). Note that Ð

B1
w2
kÐ

Bh
w2
k

¼ Ch�2k:

By setting N ¼ Ch�2k, we see that the intrinsic frequency of wk (i.e., the number of
times that wk changes signs) is approximately lnN=ð� ln hÞ: Now, let ue be a weak solu-
tion of LeðueÞ ¼ 0 whose limit is wk (the homogenized solution) as e ! 0: In view of
the interior first-order approximation ue � wk þ evðx=eÞrwk, the intrinsic frequency of
wk will interact with the frequency of oscillation of the corrector vðx=eÞ: Particularly,
under rescaling, if r=e 	 lnN, the frequency of oscillation of the rescaled coefficients
Aðrx=eÞ (or correctors) is comparable to the intrinsic frequency of wk. Note that the
intrinsic frequency does not change under rescaling. It seems that the resonance
between these two frequencies causes the failure of the arguments in Step 1 and Step 2
when e=r 	 ð lnNÞ�1 �N�1

2s (note that s can be arbitrarily small and thus N�1
2s is close

to the resonant situation), and we do not have a tool to handle this situation (except
for d¼ 2). We believe that an effective argument should take advantage of both the
periodicity and the Lipschitz continuity of the coefficients.
Our second goal is to obtain an upper bound for the nodal sets of solutions in peri-

odic elliptic homogenization. The study of the ðd � 1Þ-dimensional Hausdorff measure
of nodal sets centers around Yau’s conjecture for Laplace eigenfunctions on smooth
manifolds:

�Dg/k ¼ k/k, on M, (1.12)

where M is a compact smooth Riemannian manifold without boundary. It was conjec-
tured in [11] that the bounds of nodal sets of eigenfunctions in (1.12) are controlled by

c
ffiffiffi
k

p
� Hd�1ðfx 2 Mj/kðxÞ ¼ 0gÞ � C

ffiffiffi
k

p
(1.13)

where C, c depend only on the manifold M and Hd�1 denotes the ðd � 1Þ-dimensional
Hausdorff measure. The conjecture (1.13) was shown for real analytic manifolds by
Donnelly-Fefferman in [12]. Lin [13] also proved the upper bound for the analytic case,
using an approach by frequency functions. We should mention that, by a lifting argu-
ment, Yau’s conjecture can be reduced to studying the nodal sets of harmonic functions
on smooth manifolds. In recent years, there was an important breakthrough made by
Logunov and Malinnikova [14,15] and [16]. A polynomial upper bound was given in
[14] and the sharp lower bound in the conjecture was shown in [16]. We are interested
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in the upper bound of nodal sets for LeðueÞ ¼ 0 with rapidly oscillating periodic coeffi-
cients. The study of nodal sets in homogenization was initiated by Lin and Shen [5],
where an implicit upper bound depending on the doubling index was shown. We are
able to provide an explicit upper bound.

Theorem 1.2. Assume that A ¼ AðyÞ satisfies the conditions (1.2)–(1.4). Let ue be a non-
zero weak solution of LeðueÞ ¼ 0 satisfying (1.5).

i. If d � 3, then for any a > 8, it holds that

Hd�1ðfx 2 BK
16
jueðxÞ ¼ 0gÞ � exp ðCNaÞ, (1.14)

where C depends only on d, K, c and a.
ii. If d ¼ 2, then it holds that

H1ðfx 2 BK
16
jueðxÞ ¼ 0gÞ � exp ðCð lnNÞ2Þ, (1.15)

where C depends only on K and c.

The strategy of the proof is as follows. For relatively large e, we adapt a blow-up argu-
ment to obtain the upper bounds of nodal sets. For small e, the solution ue can be
approximated by a harmonic function u0, and thus the nodal set of ue is a small per-
turbation of the nodal set of u0. We then derive a quantitative estimate for the nodal
set of ue by carefully studying the small perturbations near the nodal set and critical set
of u0, which has its root in the analogous qualitative estimates obtained in [5]. By iterat-
ing such quantitative estimate, we are able to show the upper bound for the nodal sets
of ue: The restriction a > 8 for d � 3 arises from the doubling inequality (5.2) for b 2
3
4 , 1
� �

: If we consider N to be exp ðCMÞ for some large constant M, which is the case
for the doubling inequality of eigenfunctions, the upper bounds of nodal sets are double
exponential functions exp ð exp ðCMÞÞ: In this sense, the restriction a > 8 only affects
the constant C in such upper bounds, which does not play an important role. For d¼ 2,
we point out that there is no misprint in the exponential (compared to d � 3). We still
have the exponential, because in this situation, instead of the doubling inequality in
(1.10), the suboptimal quantitative stratification of the critical set of harmonic functions
[17] dominates the upper bound.

Remark 1.3. Several months after the first version of our paper appeared on arXiv,
Armstrong, Kuusi and Smart [18] proved the almost optimal doubling inequality at
large scales by a more accurate use of the large-scale analyticity, and therefore improved
the results in Theorem 1.1. We point out that for d¼ 2, by using an intermediate esti-
mate (4.4) in [18] and the technique of quasi-regular mappings in Section 4 (see
Remark 4.6), we can obtain ð

Br

u2e � CNC ln lnN
ð
Bhr

u2e ,

for all r > e if (1.4) is not assumed, or for all r> 0 if (1.4) is assumed.

The paper is organized as follows. Section 2 is devoted to a doubling inequality at
relatively large scales by the homogenization theory. In section 3, we derive the dou-
bling inequality, using frequency functions, and show how it depends on the large
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Lipschitz constant of the coefficients. Then, Theorem 1.1 is proved in section 4 and
Theorem 1.2 is proved in section 5. Throughout the paper, the letters c, C, Ĉ, ~C, Ci, ci
denote positive constants that do not depend on e or ue, and they may vary from line
to line.

2. Homogenization

In this section, we deal with the case e=r�N
� 1

b�3
4 for all dimensions. Indeed, we will

prove a quantitative version of [5, Theorem 3.1].
Let L0 ¼ �r � ðÂrÞ be the homogenized operator and Â be the homogenized coeffi-

cient matrix of A (see, e.g., [19] for the general theory of periodic elliptic homogeniza-
tion). Define the ellipsoid

Er ¼ fx 2 R
d : hðÂÞ�1x, xi < r2g:

The following is the main theorem of this section.

Theorem 2.1. Let h 2 ð0, 1=2
 and A satisfy conditions (1.2)–(1.4). There exists C> 0
depending only on d and K such that if LeðueÞ ¼ 0 in E1 andð

E1

u2e � N
ð
Eh

u2e ,

then for any CN
1

b�3
4e < r < 1� ffiffi

e
p

, we haveð
Er

u2e � 2N
ð
Ehr

u2e :

This follows from Lemmas 2.2 and 2.3.

Lemma 2.2. Let h 2 ð0, 1=2
. Suppose ue is a solution of LeðueÞ ¼ 0 in E1 satisfyingð
E1

u2e � N
ð
Eh

u2e :

For any b 2 ð3=4, 1Þ, there exist c,C > 0, depending only on d,K and b, such that if
e < cN

� 1
b�3

4, then for any r 2 ½h, 1� ffiffi
e

p 
ð
Er

u2e � N 1þ CNeb�
3
4

� �ð
Ehr

u2e : (2.1)

Proof. Let t> 0, to be determined. Since distð@E1�t, @E1Þ � Ct, by the Caccioppoli
inequality, we have ð

E1�t

jruej2 þ
ð
E1�t

u2e �
C
t2

ð
E1

u2e �
CN
t2

ð
Eh

u2e :

By the co-area formula, we can find some c0 2 ð1, 2Þ so thatð
@E1�c0 t

jruej2 þ
ð
@E1�c0t

u2e �
CN
t3

ð
Eh

u2e :

Without loss of generality, let us simply assume c0 ¼ 1: Hence uej@E1�t
2 H1ð@E1�tÞ: By
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[20, Theorem 1.1], ð
E1�t

ðue � u0Þ2 � Ce2bjjuejj2H1ð@E1�tÞ �
CNe2b

t3

ð
Eh

u2e , (2.2)

where u0 is the solution of L0ðu0Þ ¼ 0 and u0 ¼ ue on @E1�t and b 2 ð0, 1Þ is arbitrary.
As a result, we have

jju0jjL2ðE1�tÞ � jjuejjL2ðE1Þ þ jjue � u0jjL2ðE1�tÞ
� ffiffiffiffi

N
p ð1þ Cebt�3=2ÞjjuejjL2ðEhÞ:

(2.3)

Also,

jjuejjL2ðEhÞ � jju0jjL2ðEhÞ þ C
ffiffiffiffi
N

p
ebt�3=2jjuejjL2ðEhÞ:

We will choose t< 1 so that C
ffiffiffiffi
N

p
ebt�3=2 < 1=2: Consequently,

jjuejjL2ðEhÞ � 1� C
ffiffiffiffi
N

p
ebt�3=2

� ��1jju0jjL2ðEhÞ � 1þ C
ffiffiffiffi
N

p
ebt�3=2

� �
jju0jjL2ðEhÞ: (2.4)

Inserting this into (2.3), we have

jju0jjL2ðE1�tÞ �
ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
ebt�3=2

� �
ð1þ Cebt�3=2Þjju0jjL2ðEhÞ

� ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
ebt�3=2

� �
jju0jL2ðEhÞ,

(2.5)

where we have used the simple fact that ð1þ aÞ2 � 1þ 3a for a 2 ½0, 1
 and enlarged
the constant C in the last inequality.
Next, by the interior L1 estimate for Â-harmonic functions, we have

jju0jjL2ðEhÞ � jju0jjL2ðEhð1�tÞÞ þ jju0jjL2ðEhnEhð1�tÞÞ
� jju0jjL2ðEhð1�tÞÞ þ C

ffiffiffiffiffi
ht

p jju0jjL2ðE1�tÞ

Inserting this into (2.5) and choosing t sufficiently small so that C
ffiffiffiffi
N

p ffiffiffiffiffi
ht

p
< 1=2, we

obtain

jju0jjL2ðE1�tÞ �
ffiffiffiffi
N

p
1þ

ffiffiffiffi
N

p
Cebt�3=2

� �
1þ C

ffiffiffiffi
N

p ffiffiffiffiffi
ht

p� �
jju0jjL2ðEhð1�tÞÞ:

Choose t ¼ ffiffi
e

p
: We arrive at

jju0jjL2ðE1�tÞ �
ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
eb�3=4

� �
jju0jjL2ðEhð1�tÞÞ: (2.6)

Note that the above calculation goes through only if
ffiffiffiffi
N

p
Cebt�3=2 < 1=2 and C

ffiffiffiffi
N

p ffiffi
t

p
<

1=2: This implies that we require

e � C�1N
�1

2ðb�3=4Þ,

for some large constant C.
Recall that u0 is a weak solution of L0ðu0Þ ¼ 0 in E 1� ffiffi

e
p� �

: Let w0ðxÞ ¼ u0 Â
1
2x

� �
:

Then Dw0 ¼ 0 in B1� ffiffi
e

p and (2.6) is equivalent to

jjw0jjL2 B1� ffi
e

pð Þ �
ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
eb�3=4

� �
jjw0jjL2 Bhð1� ffi

e
p Þð Þ: (2.7)

Now, as a consequence of the well-known three-sphere theorem for harmonic func-
tions,
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uðrÞ ¼ log 2
=

ð
B2r

w2
0 (2.8)

is a convex function in ð�1, 0
 and therefore uðtÞ � uðt � cÞ is a nondecreasing func-
tion in t, for any fixed c> 0. Hence, we obtain from (2.7) that for any r 2 0, 1� ffiffi

e
p� �

,

jjw0jjL2ðBrÞ �
ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
eb�3=4

� �
jjw0jjL2ðBhrÞ:

(The doubling index with h is an increasing function of radius.) Again, this is equivalent
to

jju0jjL2ðErÞ �
ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
eb�3=4

� �
jju0jjL2ðEhrÞ (2.9)

for any r 2 0, 1� ffiffi
e

p� �
:

Now, let r 2 ½h, 1� ffiffi
e

p Þ: It follows by (2.9) that

jjuejjL2ðErÞ � jjue � u0jjL2ðErÞ þ jju0jjL2ðErÞ
� C

ffiffiffiffi
N

p
eb�3=4jjuejjL2ðEhÞ þ

ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
eb�3=4

� �
jju0jjL2ðEhrÞ

� C
ffiffiffiffi
N

p
eb�3=4jjuejjL2ðErÞ þ

ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
eb�3=4

� �
jju0 � uejjL2ðEhrÞ

þ ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
eb�3=4

� �
jjuejjL2ðEhrÞ

� CNeb�3=4 1þ C
ffiffiffiffi
N

p
eb�3=4

� �
jjuejjL2ðErÞ þ

ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
eb�3=4

� �
jjuejjL2ðEhrÞ,

where we have used the fact Eh � Er in the third inequality and (2.2) in the second and
last inequalities. Assume further that e � cN�1=ðb�3=4Þ: Then

jjuejjL2ðErÞ �
ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
eb�3=4

� �
1� CNeb�3=4

jjuejjL2ðEhrÞ
� ffiffiffiffi

N
p ð1þ CNeb�3=4ÞjjuejjL2ðEhrÞ:

This proves the lemma. w

Now, if e < cN�1=ðb�3=4Þ, the above lemma allows us to iterate (2.1) down to r ¼
c�1N1=ðb�3=4Þe: Precisely, if r ¼ hk > CN1=ðb�3=4Þe andð

Er

u2e � Ak

ð
Ehr

u2e ,

with A0 ¼ N, then ð
Ehr

u2e � Akþ1

ð
Eh2r

u2e ,

where

Akþ1 ¼ Akð1þ CAkðh�keÞb�3=4Þ,
provided Akðh�keÞb�3=4 < c:

Lemma 2.3. For all k � k0 with h�k0e ’ c1N�1=ðb�3=4Þ and c1 > 0 sufficiently small, one
has

Ak � 2N:
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Proof. Define Bk ¼ Ak=N: Then B0 ¼ 1 and

Bkþ1 ¼ Bkð1þ CBkh
�kðb�3=4Þeb�3=4NÞ � Bkð1þ c1CBkh

ðk0�kÞðb�3=4ÞÞ:
It follows that

Bkþ1 � Bk � c1CB
2
kd

k0�k,

where d ¼ hb�3=4 � ð1=2Þb�3=4 < 1: The above inequality yields

Bkþ1 � B0 þ
Xk
j¼0

c1CB
2
j d

k0�j: (2.10)

We prove by induction that if c1 is sufficiently small, then Bk � 2 and Akðh�keÞb�3=4 �
2c1 for all k � k0: Actually, if

c1 �
�
4C

X1
j¼0

dj
��1

¼ 1� d
4C

,

and Bj � 2 for all 1 � j � k, then it is easy to see from (2.10) that Bkþ1 � 2 and
Akðh�keÞb�3=4 � 2Nðh�k0eÞb�3=4 � 2c1: This proves the desired estimate. w

Remark 2.4. Observe that in the above proof, the smoothness of the coefficients has not
been used explicitly, except for (2.2) by [20, Theorem 1.1]. But this actually can be
replaced by, e.g., [21, Theorem 1.4] with m¼ 1, which does not require
any smoothness.

Remark 2.5. It is not difficult to see that (2.1) implies the following three-ball inequality
with an error term

jjuejjL2ðEhrÞ � jjuejj
1
2
L2ðErÞjjuejj

1
2
L2ðEh2rÞ þ C

�
e
r

�1
2ðb�3

4Þ
jjuejjL2ðErÞ, (2.11)

for any h 2 ð0, 12
 and b 2 3
4 , 1
� �

: Compared to the three-ball inequalities in [6] (see
Theorem 4.1 below) and [7], our major term on the right-hand side of (2.11) is sharp.
In particular, if e ! 0, (2.11) recovers precisely the three-ball inequality for Â-harmonic
functions.

Theorem 2.6. Given arbitrary h 2 ð0,K=2
, there exists C> 0 depending only on d and
K such that if LeðueÞ ¼ 0 in B1 and ð

B1

u2e � N
ð
Bh

u2e , (2.12)

then for any CN
1

b�3
4e < r < 1, we haveð

Br

u2e � 8N3
ð
Bhr

u2e :

Proof. This is deduced from Theorem 2.1 and the fact

B ffiffiffi
K

p
r � Er � Br: (2.13)
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Indeed, (2.12) and (2.13) implyð
E1

u2e � N
ð
Bh

u2e � N
ð
Eh=

ffiffi
K

p
u2e :

Note that h 2 ð0,K=2
 implies h=
ffiffiffiffi
K

p 2 ð0, ffiffiffiffi
K

p
=2
 � ð0, 1=2
: Now, if r 2

CN
1

b�3
4e, 1� ffiffi

e
p� �

, we may apply Theorem 2.1 (three times) with h0 ¼ h=
ffiffiffiffi
K

p
and

obtain ð
Br

u2e �
ð
Er=

ffiffi
K

p
u2e � ð2NÞ3

ð
Eh3K�2r

u2e � 8N3
ð
Ehr

u2e � 8N3
ð
Bhr

u2e :

For r 2 ½1� ffiffi
e

p
, 1
 (without loss of generality, assume e < 1=4), we may apply

Theorem 2.1 once to obtainð
Br

u2e �
ð
B1

u2e � N
ð
Bh

u2e � 2N2
ð
Bh2K�1

u2e � 2N2
ð
Bhr

u2e :

This ends the proof. w

3. Dependence on the lipschitz constant

In this section, we derive the doubling inequality with a large Lipschitz constant, which
will be used in the Step 3 of the Proof of Theorem 1.1. We aim to show how the
Lipschitz character of the coefficients plays a role in quantitative unique continuation,
which seems to be largely unexplored. Assume that

L1ðuÞ ¼ �r � ðAðxÞruÞ ¼ 0, (3.1)

where A(x) satisfies (1.2) and

jAðxÞ � AðyÞj � Ljx� yj (3.2)

for some large positive constant L> 1. We emphasize that throughout this section, the
constant C will never depend on L. Since the L1 norm and the L2 norm of u are com-
parable, parallel to the assumption (1.7), we may assume the following

jjujjL1ðB1Þ � MjjujjL1ðBhÞ (3.3)

for some large constant M> 1.
In order to define the frequency function later, we need to construct the geodesic

polar coordinates. The construction of polar coordinates has been obtained in [22]. We
adopt a slightly different construction of the metric from [10, Chapter 3.1]. We follow
the construction with an eye on the explicit dependence of the Lipschtiz constant L. For
d � 3, we define the Lipschitz metric ĝ ¼ ĝ ijðxÞdxi � dxj as follows

ĝ ijðxÞ ¼ aijðxÞdetðAðxÞÞ 1
d�2, (3.4)

where aijðxÞ is the entry of A�1ðxÞ: The case d¼ 2 will be discussed in Remark 3.3.
Note that ĝ is Lipsthitz continuous and satisfies
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jĝðxÞ � ĝðyÞj � CLjx � yj: (3.5)

Define

r2 ¼ r2ðxÞ ¼ ĝ ijð0Þxixj (3.6)

and

wðxÞ ¼ ĝ klðxÞ @r
@xk

@r
@xl

:

From (3.6), we can also write

wðxÞ ¼ 1
r2
ĝ klðxÞĝ ikð0Þĝ jlð0Þxixj:

Thus, we can check that wðxÞ is a non-negative Lipschitz function satisfying

jwðxÞ � wðyÞj � CLjx � yj, (3.7)

where C depends only on d and K. We introduce a new metric g ¼ gijðxÞdxi � dxj by
setting

gijðxÞ ¼ wðxÞĝ ijðxÞ: (3.8)

We can write the metric g in terms of the intrinsic geodesic polar coordinates
ðr, r1, :::, rd�1Þ,

g ¼ dr � dr þ r2bijðr, rÞdri � drj, (3.9)

where bij satisfies

j@rbijðr, rÞj � CL, for i, j ¼ 1, :::, d � 1, (3.10)

and C depends only on d and K.
The existence of the geodesic polar coordinates ðr, rÞ allows us to consider geodesic

balls. Denote by Br the geodesic ball in the metric g of radius r and centered at the ori-
gin. In particular, from (3.6) and (3.9), rðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝ ijð0Þxixj

q
is the geodesic distance from

x to the origin in the new metric g. Thus, it is conformal to the usual Euclidean ball.
For convenience of presentation, we may assume that the geodesic balls coincide with
the Euclidean balls, i.e., ĝ ijð0Þ ¼ dij:
Let

gðxÞ ¼ w�d�2
2 : (3.11)

Obviously, gðxÞ is a Lipschitz function satisfying

C1 � gðxÞ � C2, (3.12)

where C1 and C2 depend on d and K. In the polar coordinates,

j@rgðr, rÞj � CL: (3.13)

In this new metric g, Eq. (3.1) can be written as

�rg � ðgðxÞrguðxÞÞ ¼ 0 inB1: (3.14)

Let
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DðrÞ ¼
ð
Br

gjrguj2dVg (3.15)

and

HðrÞ ¼
ð
@Br

gu2dSg , (3.16)

where dSg represents the area element of @Br under the metric g. We define the fre-
quency function by

NðrÞ ¼ rDðrÞ
HðrÞ : (3.17)

For future application, we will also use the notation Nðp, rÞ to specify the center of the
ball BrðpÞ in the definition of frequency function.

Lemma 3.1. Let u 2 H1ðB1Þ be a nontrivial solution of (3.1). There exists a positive con-
stant C depending on d and K such that

�N ðrÞ ¼ exp ðCLrÞN ðrÞ (3.18)

is a non-decreasing function of r 2 ð0, 1Þ:
Proof. The proof of the lemma is essentially contained in [1]. Since we want to show
the explicit dependence of the Lipschtiz constant L in the estimates, we sketch the proof
by considering the role of L. Taking derivative with respect to r for N , we have

N 0ðrÞ
N ðrÞ ¼ ð1

r
þ D0ðrÞ

DðrÞ �
H0ðrÞ
HðrÞ Þ: (3.19)

In order to prove the lemma, it suffices to show

1
r
þ D0ðrÞ

DðrÞ �
H0ðrÞ
HðrÞ � �CL: (3.20)

Thus, we consider the derivatives of H(r) and D(r), respectively. Setting bðr, rÞ ¼
jdetðbijðr, rÞÞj: Note that dSg ¼ rd�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr, rÞp

dr: We write H(r) as

HðrÞ ¼ rd�1
ð
@B1

gðr, rÞu2ðr, rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr, rÞ

p
dr: (3.21)

Taking derivative with respect to r, one has

H0ðrÞ ¼ d � 1
r

HðrÞ þ
ð
@Br

1ffiffiffi
b

p @r g
ffiffiffi
b

p� �
u2dSg þ 2

ð
@Br

gu@rudSg , (3.22)

where @ru ¼ hrgu, xri on @Br: By (3.10), (3.12) and (3.13), we have

H0ðrÞ ¼
�
d � 1
r

þ OðLÞ
�
HðrÞ þ 2

ð
@Br

gu@rudSg : (3.23)

Multiplying both sides of (3.14) by u and performing the integration by parts give that

DðrÞ ¼
ð
Br

gjrguj2dVg ¼
ð
@Br

gu@rudSg : (3.24)
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It follows that

H0ðrÞ ¼
�
d � 1
r

þ OðLÞ
�
HðrÞ þ 2DðrÞ: (3.25)

Similarly, we may compute the derivative of D(r) as in [1] and obtain

D0ðrÞ ¼
�
d � 2
r

þ OðLÞ
�
DðrÞ þ 2

ð
@Br

gð@ruÞ2dSg : (3.26)

Combining the estimates (3.25) and (3.26), and using the Cauchy-Schwarz inequality,
we obtain

1
r
þ D0ðrÞ

DðrÞ �
H0ðrÞ
HðrÞ ¼ OðLÞ þ 2

Ð
@Br

gð@ruÞ2dSgÐ
@Br

gu@rudSg
� 2

Ð
@Br

gu@rudSgÐ
@Br

gu2dSg

� OðLÞ:
This proves (3.20) and thus the lemma. w

Next we derive the doubling inequality with an explicit dependence on L.

Lemma 3.2. Let u be a solution of (3.1) satisfying (3.2) and (3.3). For a fixed constant
0 < h � 1

2, we have

jjujjL2ðBrÞ � MC1eC2L jjujjL2ðBhrÞ (3.27)

for 0 < r � 1
2, where C1 depends on h, and C2 depends on d, K.

Proof. From (3.25) and the definition of �N ðrÞ, we have�
ln

HðrÞ
rd�1

�0
¼ OðLÞ þ 2

r
�N ðrÞ exp ð�CLrÞ: (3.28)

Note that here O(L) is a function in r satisfying �CL � OðLÞ � CL: We would like to
obtain an upper bound and a lower bound for the quotient Hðr2Þ=Hðr1Þ with 0 < r1 <
r2: To find the upper bound, we integrate the equality (3.28) from r1 to r2 and use the
monotonicity of �N ðrÞ to obtain

ln
Hðr2Þ
rd�1
2

� ln
Hðr1Þ
rd�1
1

� CLðr2 � r1Þ þ 2 �N ðr2Þ ln r2
r1

� �
exp ð�CLr1Þ: (3.29)

Taking the exponential of both sides gives the upper bound

Hðr2Þ
Hðr1Þ � eCLðr2�r1Þ

�
r2
r1

�2 �N ðr2Þ exp ð�CLr1Þþd�1

: (3.30)

To see the lower bound, we integrate (3.28) from r1 to r2 and apply the monotonicity
of �N ðrÞ again to obtain

ln
Hðr2Þ
rd�1
2

� ln
Hðr1Þ
rd�1
1

� �CLðr2 � r1Þ þ 2 �N ðr1Þ exp ð�CLr2Þ ln r2
r1

� �
: (3.31)

Raising to the exponential form, we have
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Hðr2Þ
Hðr1Þ � e�CLðr2�r1Þ

�
r2
r1

�2 �N ðr1Þ exp ð�CLr2Þþd�1

: (3.32)

Combining (3.30) and (3.32), we arrive at

e�CLðr2�r1Þ
�
r2
r1

�2 �N ðr1Þ exp ð�CLr2Þþd�1

� Hðr2Þ
Hðr1Þ � eCLðr2�r1Þ

�
r2
r1

�2 �N ðr2Þ exp ð�CLr1Þþd�1

:

(3.33)

Next we want to show an upper bound for �N 3
4

� �
: Let r2 ¼ 3

4 and 0 < r1 ¼ r < 3
4 :

From the estimate (3.32), we have

e�CLð34�rÞ
� 3

4

r

�d�1

� H 3
4

� �
HðrÞ : (3.34)

Using the fact that 0 < h � 1
2 , we have

jjujj2L1ðBhÞ � C
ð
B3
4

u2dVg � C
ð3

4

0
HðrÞdr

� C
ð3

4

0
rd�1eCLð

3
4�rÞH

3
4

� �
dr

� CeCLH
3
4

� �
,

(3.35)

where C depends on d and K. Obviously,

jjujj2L1ðB1Þ � C
ð
@B1

u2dSg : (3.36)

Therefore, from (3.3), (3.32) and (3.35), we have

M2 � jjujj2L1ðB1Þ
jjujj2L1ðBhÞ

� CHð1Þ
CeCLH

3
4

� �

� e�CL 4
3

� �d�1þ2 �N 3
4ð Þe�CL

:

(3.37)

Thus, we can get an upper bound for �N 3
4

� �
as

�N 3
4

� �
� CeCL lnM, (3.38)

where M> 1 is a large constant. Choosing any r � 1
2 , we integrate (3.28) from hr to r,

by the monotonicity of �N , we derive that

ln
HðrÞ
rd�1

� ln
HðhrÞ
ðhrÞd�1 � CLr þ 2 �N 3

4

� �
ln

1
h

� CLr þ CeCL lnM ln
1
h
:

(3.39)
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Thus, we obtain that

HðrÞ � exp CLr þ eCL lnM ln
1
h

� �
HðhrÞ

� h1�dM�ð ln hÞeCLHðhrÞ,
(3.40)

where M> 1 is large. By further integrations, we can also obtain that

jjujjL2ðBrÞ � h
�d
2 M�ð ln hÞeCL jjujjL2ðBhrÞ (3.41)

for 0 < r � 1
2 , where C depends only on d and K. w

Remark 3.3. For the case d¼ 2, we introduce a new variable to apply a lifting argument.
Let vðx, tÞ ¼ etuðxÞ: Then the new function v(x, t) satisfies the equation

�r � ð~Aðx, tÞrvÞ þ v ¼ 0 in B̂1, (3.42)

where

~Aðx, tÞ ¼ AðxÞ 0
0 1

� �

and B̂1 is the ball with radius 1 in R
3: It is easy to see that ~A satisfies the conditions

(1.2) and (3.2). Following the procedure performed as d � 3, we are able to introduce
the new metric g and geodesic polar coordinates. Thus, in the metric g as (3.8) and g as
(3.13), we have

�rg � ðgðxÞrgvÞ þ cgv ¼ 0 in B̂1, (3.43)

where cg ¼ 1ffiffiffiffiffiffi
detg

p : As before, we could make use of the monotonicity of the frequency

function to obtain the doubling inequality. Precisely, we may define

DðrÞ ¼
ð
B̂r

gjrgvj2 þ cgv
2dVg (3.44)

and

HðrÞ ¼
ð
@B̂r

gv2dSg : (3.45)

Then the frequency function is defined as

NðrÞ ¼ rDðrÞ
HðrÞ : (3.46)

Following the proof of Lemma 3.1 and [10, Theorem 3.2.1], we can obtain the almost
monotonicity of NðrÞ: That is, for any r0 2 ð0, 1Þ, it holds that

exp ðCLrÞN ðrÞ � exp ðCLr0Þ þ exp ðCLr0ÞN ðr0Þ (3.47)

for any r 2 ð0, r0Þ where C depends on K. By mimicking the argument in the proof of

Lemma 3.2, we can obtain the doubling inequality for v in B̂r: This also leads to the
doubling inequality for u as (3.27) in Br.
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Remark 3.4. For a better estimate when d¼ 2, see Remark 4.6.

4. Proof of Theorem 1.1

This section is devoted to the Proof of Theorem 1.1. Step 1 and Step 3 of the proof
have been handled in Section 2 and Section 3, respectively. For convenience of presenta-
tion, we choose b such that 1

b�3
4
¼ 5: Our argument works for any b 2 3

4 , 1
� �

: To handle
the case N�5 � e=r�N�1

2s in Step 2, we will use particular doubling properties, obtained
from some sort of “analyticity,” as a transition in order to improve our estimates.
Indeed, for d � 3, we will employ the three-ball inequality with a sharp exponential
error term obtained in [6]; for d¼ 2, we will use quasi-regular mappings [9] which pro-
vides a much better doubling estimate.
We first introduce a three-ball inequality for all dimensions d � 2: For convenience,

we define the normalized L2 norm by

jjujjL
�

2ðBtÞ
¼

�
=

ð
Bt

u2
�1=2

:

The following theorem is essentially taken from [6, Theorem 1.4], which is a corollary
of the “large-scale analyticity” in periodic homogenization. This result relies on the peri-
odic structure of the coefficients, but does not depend on the smoothness of
coefficients.

Theorem 4.1. For each ŝ 2 ð0, 1=2Þ, there exist c ¼ cðd,KÞ > 0 and h ¼ hðŝ, d,KÞ 2
ð0, 1=2
 such that if u is a weak solution of L1ðuÞ ¼ 0 in BR with h2R > 2, then

jjujjL
�

2ðBhRÞ
� jjujjL

�

2ðBh2RÞŝ
jjujj1�ŝ

L
�

2ðBRÞ
þ exp ð�ch2RÞjjujjL

�

2ðBRÞ
: (4.1)

As a simple corollary, we have

Corollary 4.2. Let u be a weak solution of L1ðuÞ ¼ 0 in BR. For every a1 > 0, there exist
C> 0 and h 2 ð0, 1=2Þ such that if

N > C and h2R � C lnN, (4.2)

and

jjujjL
�

2ðBRÞ
� NjjujjL

�

2ðBhRÞ
, (4.3)

then

jjujjL
�

2ðBhRÞ
� CN1þa1 jjujjL

�

2ðBh2RÞ
: (4.4)

The sharp exponential tail in (4.1) is crucial for our purpose which is related to the
condition (4.2). The lower bound lnN in (4.2) allows us to iterate the estimate down to
a scale at which the classical theory in Section 3 may apply.
Next, for the case d¼ 2, we introduce a stronger doubling property using quasi-regu-

lar mappings (related to complex analyticity). We briefly give some background on
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quasi-regular mappings. For a detailed account of this topic, please refer to the presen-
tation in [9, 23, Chapter II.6] and references therein.
Let u be a weak solution of the equation L1ðuÞ ¼ 0 in BR with only bounded measur-

able coefficients satisfying (1.2). Let z ¼ xþ iy for x, y 2 R: Define

@�z f ¼
1
2
ð@xf þ i@yf Þ, @zf ¼ 1

2
ð@xf � i@yf Þ: (4.5)

We introduce a stream function (the generalized harmonic conjugate) associated with u as

rv ¼ JAru,

where J is the rotation matrix in the plane

J ¼ 0 �1
1 0

� �
:

Let f ¼ uþ iv: Then we have f 2 H1
locðBRÞ and satisfies

@�z f ¼ l@zf þ �@zf ,

where the complex valued function l and � can be explicitly written in term of A and

jlj þ j�j � 1� K
1þ K

< 1:

Hence, f : BR ! C is a 1
K-quasi-regular mapping. Moreover, it can be written as f ¼

F 
 v̂, where F is holomorphic and v̂ : BR ! BR is a 1
K-quasiconformal homeomorphism

satisfying v̂ð0Þ ¼ 0 and v̂ð1Þ ¼ 1: Define

Br̂ ¼ fz 2 BR : jv̂ðzÞj < r̂g:
The quasi-balls Br̂ are comparable to the standard Euclidean balls in the sense

BR ¼ BR, and B
Rð r̂

CRÞ
1
a
� Br̂ � BRðCr̂R Þa , for r < R, (4.6)

where C � 1 and 0 < a < 1 depend only on K. Observe that Br̂ tends to be singular if
r̂ � R, which fortunately is not too restrictive as we only use it in the transition at
intermediate scales.
From the fact that F is a holomorphic function, the following doubling property

holds [9].

Lemma 4.3. If u 2 H1
locðBRÞ is a nonzero weak solution of L1ðuÞ ¼ 0 in BR, then

jjujjL1ðBr̂ Þ
jjujjL1 Br̂

2

� � � C
jjujjL1ðBRÞ
jjujjL1 BR

4

� � , for 0 < r̂ � R: (4.7)

Remark 4.4. Note that Lemma 4.3 does not use periodicity, and it is also true for solu-
tions of LeðueÞ ¼ 0, with a constant independent of e: This gives “almost monotonicity
of the doubling constant,” a statement stronger than that of Theorem 1.1, but for quasi-
balls, as opposed to the usual balls. As we pointed out above, quasi-balls are difficult to
manage as the radius r goes to zero. Because of this, we still need to use the periodicity
assumption and Step 1 below, when d ¼ 2, to cover the range r � CN5e: We then apply
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Lemma 4.3 in the range Ce < r < CN5e, using (4.6) since r is not too small. Finally,
the case 0 < r < Ce is handled by scaling and Lemma 3.2. The details are below.

Equipped with Corollary 4.2 and Lemma 4.3, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. According to the relationship between e and N, one needs to
consider three cases based on the comparison of e with N�5 and N�s

2 (or 1 for d¼ 2).
Without loss of generality, we may just consider the most complicated case e�N�5,
since all the three steps listed in the introduction will be involved as r approaches 0.
Hence, we fix e and N so that CN5e < 1, and then discuss the different ranges of r.

Step 1: CN5e < r < 1: Under either (1.7) or (1.9), Theorem 2.6 implies

ð
Br

u2e � 8N3
ð
Bhr

u2e , (4.8)

for any given h 2 ð0, K2
: This estimate holds for all dimensions d � 2:

Step 2: In this step, we need to treat the cases d � 3 and d¼ 2 separately.

Case 1: d � 3 and CeN
s
2 < r < CN5e for any fixed s > 0: Let m be the smallest inte-

ger so that h�mr > CN5e: If N is bounded by some absolute constant, then Step 2 is not
needed. Since r > CeN

s
2, for sufficiently large N, m satisfies

m � 6 lnN
� ln h

: (4.9)

Because of (4.8), we have ð
Bh�mr

u2e � 8N3
ð
Bh�mþ1r

u2e : (4.10)

Let M0 ¼ 8N3 and Mj be the constant such thatð
Bh�mþjr

u2e � Mj

ð
Bh�mþjþ1r

u2e : (4.11)

The goal is to estimate Mm with m comparable to the bound in (4.9).
Thanks to Corollary 4.2, and by rescaling, we know that for a given a1 > 0 with h

small enough, we have

Mj ¼ CM1þa1
j�1 : (4.12)

Note that the left-end restriction r > Ce lnMj is needed in order to apply Corollary 4.2,
due to (4.2). This can be guaranteed if we eventually show Mj � Mm < C exp N

s
2ð Þ:

We now proceed to estimate Mj. Using the initial condition M0 ¼ 8N3, one can
show explicitly that

Mj ¼ exp ð� lnC=a1Þ exp ð1þ a1Þjð3 lnN þ ln ð8C1=a1ÞÞ
h i

: (4.13)

It follows from (4.9) that
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Mm � C exp exp ð ln ð1þ a1Þð� ln hÞ�16 lnNÞ � ð3 lnN þ ln ð8C1=a1ÞÞ
h i

: (4.14)

Note that s is any given positive constant. Then, we may choose a1 small enough (hence
h is also small), so that

s
3
� 6 ln ð1þ a1Þð� ln hÞ�1: (4.15)

Thus, if N is large enough,

Mm � C exp N
1
2sð Þ: (4.16)

This implies that for any CN
1
2se < r < CN5e, we haveð

Br

u2e � C exp N
1
2sð Þ
ð
Bhr

u2e : (4.17)

Case 2: d¼ 2 and Ce < r < CN5e: From (4.8) with h ¼ K
2 in Step 1, for R ’ CeN5,ð

BR

u2e � 8N3
ð
BK
2R

u2e :

By the L1 norm estimates, it follows that

jjuejjL1ðBRÞ � CN
3
2jjuejjL1 BR

2ð Þ: (4.18)

We would like to to apply Lemma 4.3 to ue: From the relation (4.6) of quasi-balls Br̂

and the standard balls, as well as the iteration of the doubling inequality (4.18), we have

jjuejjL1ðBRÞ
jjuejjL1 BR

4

� � � jjuejjL1ðBRÞ
jjuejjL1 B

Rð4CÞ�1
a

� � � CNk, (4.19)

where k depends only on K. Thus, (4.7) implies that for any 0 < r̂ < R

jjuejjL1ðBr̂ Þ
jjuejjL1 Br̂

2

� � � CNk: (4.20)

In order to establish a doubling inequality at small scale on standard Euclidean balls,
we iterate the above doubling inequality m times to obtain

jjuejjL1ðBr̂
Þ � ðCNkÞmjjuejjL1 B r̂

2m

� �: (4.21)

By the relation (4.6),

jjuejjL1 B
Rð r̂
CRÞ

1
a

� � � ðCNkÞmjjuejjL1 B
Rð Cr̂
2mR

Þa
� �:

We choose m> 0 to be the smallest integer so that

R
Cr̂
2mR

� �a

� 1
2
Rð r̂
CR

Þ1a: (4.22)

Consequently,
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jjuejjL1 B
Rð r̂
CRÞ

1
a

� � � ðCNkÞmjjuejjL1 B
1
2Rð

r̂
CRÞ

1
a

� �: (4.23)

Note that r̂ , satisfying 0 < r̂ < R ’ CeN5, is arbitrary and m is chosen depending on r̂:
We now assume r̂ � CeaR1�a ’ CeN5ð1�aÞ: Hence, r :¼ Rð r̂

CRÞ
1
a � Ce: Moreover, from

(4.22), we have m � C lnN, where C depends only on K. Thus, it follows from (4.23)
that

jjuejjL1ðBrÞ � CNC lnN jjuejjL1 Br
2ð Þ (4.24)

for all Ce < r < R ’ CeN5: Since L1 norm can be replaced by L2 norm in the above
inequality, we derive the desired estimate for the case d¼ 2.
Step 3: For r < CeN

1
2s (or r < Ce for d¼ 2), by rescaling, the equation may be

reduced to the case in which the Lipschitz constant of coefficients is bounded by CN
s
2

(bounded by C for d¼ 2). It follows from (3.27) and (4.17) that for d � 3 and any
0 < r < CeN

1
2s,

Ð
Br
u2e � C exp N

1
2sð Þ

h iC exp N
1
2sð ÞÐ

Bhr
u2e

� exp ð exp ðCNsÞÞÐBhr
u2e :

For d¼ 2, it follows from (3.27) and (4.24) that for any 0 < r < Ce,ð
Br

u2e � C NC lnN½ 
C
ð
Br
2

u2e � CNC lnN
ð
Br
2

u2e : (4.25)

Note that NC lnN ¼ exp ðCð lnNÞ2Þ: This completes the Proof of Theorem 1.1. w

Remark 4.5. It was shown in [6] that the exponential tail in (4.1) is sharp (up to the
end point ŝ ¼ 1

2), without any smoothness assumption on the coefficients. If the critical
ŝ ¼ 1=2 in (4.1) can also be achieved (which seems like a very difficult task), then
Corollary 4.2 with a1 ¼ 0 would follow. By the argument in Step 2, this would yield the
estimate ð

Br

u2e � CNk
ð
Bhr

u2e (4.26)

for Ce lnN � r � CeN5: If we then apply (3.27) as in Step 3, with Lipschitz constant
C lnN, we would obtain the bound CðNÞ ¼ exp ðCNCÞ for 0 < r � 1

2 (for the range 0 <

r < Ce, (3.27) does give the optimal bound). On the other hand, the estimate (3.27) in
term of the large Lipschitz constant L may not be sharp. This is a well-known difficult
issue in quantitative unique continuation, for which none of the currently known meth-
ods apply. Any improvement here would have many consequences. Alternatively, in the
range Ce � r � Ce lnN, one could try to use a method taking advantage of both peri-
odicity and smoothness. No such method is available at the moment.

Remark 4.6. If we consider, when d¼ 2, elliptic operators with Lipschitz coefficients,
with Lipschitz constant L> 1 (and no periodicity assumption), we can obtain the
improved bound MC1 ln L in Lemma 3.2. To show this, we break down the scales into
1
L � r < 1 and 0 < r < 1

L : For the case 1
L � r < 1, we use Lemma 4.3, (4.6) and the
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argument from (4.19) to (4.23). For the case 0 < r < 1
L , we scale to reduce to the case

L¼ 1 and then apply Lemma 3.2 as it stands. This may suggest that the bound in
Lemma 3.2 is not optimal, also for d � 3:

Remark 4.7. The disadvantage of Theorem 4.1 for d � 3 is that h may be very small.
If we do not apply Theorem 4.1 to improve the exponent s, Step 1 and 3 in the Proof
of Theorem 1.1 allows h to be any number in ð0,K=2
: In particular, under (1.5), for
any b 2 3

4 , 1
� �

, we have ð
Br

u2e � exp

�
exp CN

1
b�3

4

� ��ð
BKr=2

u2e : (4.27)

For convenience, we will use this doubling inequality (4.27), instead of (1.8), in estimat-
ing the upper bound of nodal sets in the next section. The price is that a has to be
larger than 8 in (1.14).

5. Upper bounds of nodal sets

In this section, we study of the upper bounds of nodal sets for ue, where ue is a non-
zero solution of LeðueÞ ¼ 0 satisfying (1.5). We will focus on the general treatment for
all dimensions d � 2 and with an eye toward d¼ 2 in the end. Throughout this section,
up to a change of variable, we assume L0 ¼ �D: Note that in this case, Er’s are just
balls, and in view of Theorem 2.1, the assumption (1.5) can be replaced byð

B2

u2e � N
ð
B1

u2e , (5.1)

and (4.27) holds with K¼ 1.

5.1. Small scales

We first show that a doubling inequality centered at 0 implies the doubling inequality
with shifted centers.

Lemma 5.1. Let ue be a weak solution of LeðueÞ ¼ 0 in B2 satisfying (5.1). Then for any
x 2 B1=3 and B2rðxÞ � B2, we haveð

B2rðxÞ
u2e � exp ð exp CN

2
b�3

4

� �
Þ
ð
BrðxÞ

u2e : (5.2)

Proof. Let us first assume CeN
1

b�3
4 < 1 for some large C. In this case, by Theorem 2.1

with h ¼ 1=2, we have ð
B2

u2e � N
ð
B1

u2e � 2N2
ð
B1=2

u2e : (5.3)

Now, for any x 2 B1=3, note that B1=2 � B5=6ðxÞ and B5=3ðxÞ � B2: It follows from (5.3)
that
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ð
B5=3ðxÞ

u2e �
ð
B2

u2e � 2N2
ð
B1=2

u2e � 2N2
ð
B5=6ðxÞ

u2e : (5.4)

Since Theorem 2.1 and (4.27) are invariant under translation, we can apply them in
B5=3ðxÞ with N replaced by 2N2: Thus, for all r 2 ð0, 5=6Þ,ð

B2rðxÞ
u2e � exp ð exp CN

2
b�3

4

� �
Þ
ð
BrðxÞ

u2e :

To handle the case CeN
1

b�3
4 � 1, we use (4.27) directly and obtainð

B2

u2e � N
ð
B1

u2e � exp ð exp CN
1

b�3
4

� �
Þ
ð
B1=2

u2e :

Then the desired estimate follows from the same idea as the first case and a blow up
argument as in Step 3 in the Proof of Theorem 1.1. w

Let us define the nodal sets as

ZðueÞ ¼ fx 2 B2jue ¼ 0g (5.5)

and the density function of nodal sets as

Eeðy, rÞ ¼ Hd�1ðZðueÞ \ BrðyÞÞ
rd�1

: (5.6)

Based on Lemma 5.1 and a blow up argument, we can estimate the Hausdoff measure
of the nodal set of ue in small balls.

Lemma 5.2. For any 0 < r < 1=3 and x0 2 B1=3 such that Brðx0Þ � B1=3,

Eeðx0, rÞ � 1þ r
e

� �
exp CN

2
b�3

4

� �
, (5.7)

where C depends on d,K, b and c.

Proof. First of all, we consider the case 0 < r � e and Brðx0Þ � B1=3: Let vðxÞ ¼
ueðx0 þ rxÞ and Ae, r

x0 ðxÞ ¼ Aðe�1ðx0 þ rxÞÞ: Then
rðAe, r

x0 ðxÞrvðxÞÞ ¼ 0: (5.8)

By (1.4),

jAe, r
x0 ðxÞ � Ae, r

x0 ðyÞj � cre�1jx � yj � cjx� yj (5.9)

for x, y 2 B2: Therefore, in this case, the coefficient matrix has a uniform Lipschitz con-
stant independent of e and N. Then, a change of variable and the doubling inequality in
Lemma 5.1 give that
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=

ð
B2

v2 dx ¼ =

ð
B2rðx0Þ

u2e dx

� exp ð exp CN
2

b�3
4

� �
Þ =

ð
Brðx0Þ

u2e dx

� exp ð exp CN
2

b�3
4

� �
Þ =

ð
B1

v2 dx:

(5.10)

By the upper bound of nodal sets in [14], there exists a constant b0 >
1
2 so that

Hd�1ðZðvÞ \ B1Þ � exp CN
2

b�3
4

� �	 
b0
� exp C1N

2
b�3

4

� �
, (5.11)

which implies, by rescaling,

Hd�1ðZðueÞ \ Brðx0ÞÞ � exp C1N
2

b�3
4

� �
rd�1

for any r 2 ð0, e
 and Brðx0Þ � B1=3:

Next, to deal with the case r > e, we simply use a covering argument. Let x0 2 B1=3

and r > e: There there exists a family of balls BeðxiÞ, i ¼ 1, 2, :::,M, that covers Brðx0Þ
with a finite number of overlaps depending only on d. Note that M 	 ðr=eÞd:
Consequently,

Hd�1ðZðueÞ \ Brðx0ÞÞ �
XM
i¼1

Hd�1ðZðueÞ \ BeðxiÞÞ

� M exp C1N
2

b�3
4

� �
ed�1

� Crde�1 exp C1N
2

b�3
4

� �
:

We obtain the desired estimate by enlarging the constant C1. w

Remark 5.3. The above lemma does not rely on the periodicity of the coefficients.
Actually, its proof also gives how the estimate depends on the Lipschitz constant of the
coefficients. Precisely, if v is a solution of r � ðAðxÞrvÞ ¼ 0 in B2. In addition to the
ellipticity condition (1.2), we assume

jðAðxÞ � ðAðyÞj � Ljx� yj: (5.12)

Then

Eeðx0, rÞ � Cð1þ LrÞNðv,QÞb0 ,
for Brðx0Þ � Q, where the definition of N(v, Q) is given below in (5.27).

5.2. Large scales

To deal with the nodal sets at large scales, we need to use the homogenization theory.
Precisely, in the following, we find an approximate solution u0, close to ue under L1

norm, and satisfying a doubling inequality.
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Lemma 5.4. Suppose r > 3C
ffiffiffiffi
N

p
e for some large C. Let ue be a solution of LeðueÞ ¼ 0 in

B2r satisfying ð
B2r

u2e � N
ð
Br

u2e : (5.13)

Then there exists u0 satisfying L0ðu0Þ ¼ 0 in B7r
4
such that

jjue � u0jjL1 B3r
2ð Þ �

Ce
r
jjuejjL 2ðB2rÞ, (5.14)

and ð
Br

u20 � 16N2
ð
Br=2

u20, (5.15)

where C depends on d,K and c.

Proof. By rescaling, we may assume r¼ 1. The construction of such locally homogenized
solution u0 and the estimate (5.14) can be found in [5, Theorem 2.3]. Note that it is not
necessary that ue ¼ u0 on @B7

4
: Then, it suffices to show (5.15). By (5.13) and (5.14), we

have

jjue � u0jj2L1 B3
2ð Þ � Ce2

ð
B2

u2e � Ce2N
ð
B1

u2e : (5.16)

We now establish estimates to compare the norms of ue and u0. Thanks to (5.16),

jju0jjL2 B3
2ð Þ � jjuejjL2ðB2Þ þ jjue � u0jjL2 B3

2ð Þ
�

ffiffiffiffi
N

p
jjuejjL2ðB1Þ þ C

ffiffiffiffi
N

p
ejjuejjL2ðB1Þ

¼
ffiffiffiffi
N

p
ð1þ CeÞjjuejjL2ðB1Þ:

(5.17)

By the same strategy, using (5.16), we obtain that

jjuejjL2ðB1Þ � jjue � u0jjL2ðB1Þ þ jju0jjL2ðB1Þ

� C
ffiffiffiffi
N

p
ejjuejjL2ðB1Þ þ jju0jjL2ðB1Þ:

(5.18)

Since C
ffiffiffiffi
N

p
e � 1

3 , the above estimate yields

jjuejjL2ðB1Þ � 1þ C
ffiffiffiffi
N

p
e

� �
jju0jjL2ðB1Þ: (5.19)

Combining (5.17) and (5.19) together yields that

jju0jjL2 B3
2ð Þ �

ffiffiffiffi
N

p
1þ C

ffiffiffiffi
N

p
e

� �
jju0jjL2ðB1Þ

� 2
ffiffiffiffi
N

p jju0jjL2ðB1Þ:
(5.20)

Now, we use the fact that

uðsÞ ¼ log 2
=

ð
B2s

u20 (5.21)

is a convex function with respect to s. Then f ðsÞ ¼ uðsÞ � uðs� cÞ is nondecreasing for
any c> 0. This implies
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jju0jjL2ðB1Þ � 2
ffiffiffiffi
N

p
jju0jjL2 B2

3ð Þ
� 4Njju0jjL2 B4

9ð Þ
� 4Njju0jjL2 B1

2ð Þ:
(5.22)

This proves (5.15) and the lemma. w

Remark 5.5. We would like to point out that the advantage of Lemma 5.4, compared to
(2.2), is that it provides an L1 (or pointwise) error estimate which is much stronger
than the L2 error estimate in ð2:2Þ: This L1 estimate will play an essential role in the
estimation of nodal sets.

Let B be a ball and u0 be a C1 function in 2B. In order to show some quantitative
stratification results for u0 and ru0, we introduce the doubling index:

Nðu0,BÞ ¼ log 2
sup2B ju0j
supB ju0j

(5.23)

and

Nðru0,BÞ ¼ log 2
sup2B jru0j
supB jru0j : (5.24)

If u0 is a weak solution of the equation L0ðu0Þ ¼ 0, the doubling index for ju0j and
jru0j are monotonic in the sense that

Nðu0, tBÞ � CNðu0,BÞ (5.25)

and

Nðru0, tBÞ � CNðru0,BÞ, (5.26)

for t � 1
2 and C depending only on d. This follows from (2.8) and the line after it.

We also define a variant of the above doubling index for cubes. For a cube Q, denote
by s(Q) the side length of Q. Define the doubling index in the cube Q by

Nðu0,QÞ ¼ sup
x2Q, r�sðQÞ

Nðu0,BrðxÞÞ (5.27)

and

Nðru0,QÞ ¼ sup
x2Q, r�sðQÞ

Nðu0,BrðxÞÞ: (5.28)

The doubling index defined in cubes is convenient in the sense that if a cube q is a sub-
set of Q, then Nðu0, qÞ � Nðu0,QÞ: Let q be a subcube of Q and K ¼ sðQÞ

sðqÞ � 2: Then

sup
q

ju0j � K�CNðu0,QÞ sup
Q

ju0j, (5.29)

where C depends only on d. Similarly, it also holds

sup
q

jru0j � K�CNðru0,QÞ sup
Q

jru0j: (5.30)
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The following quantitative stratification for ru0 is the key ingredient of this section.
The idea of the proof originates from Lemmas 3.5 and 5.2 in [24].

Lemma 5.6. Assume that u0 is harmonic in 5Q. Suppose Nðru0,QÞ � N̂ 0. If 0 < d̂ �
e�CN̂

3
0 for some C> 0 depending on d, there exists a finite sequence of balls fBt̂jðxjÞgj¼1m̂

such that

Ĝd̂ ¼
�
x 2 1

2
Q : jru0ðxÞj < d̂ sup

Q
jru0ðxÞj

�
�

[̂m
j¼1

Bt̂jðxjÞ (5.31)

and

X̂m
j¼1

t̂
d�1
j � 1

4

�
sðQÞ
4

�d�1

: (5.32)

Proof. In the following proof, all the constants C,Cd,C1,C2, :::, depend only on d, and
N̂ 0 is a large constant. We divide the cube 1

2Q into Kd
1 subcubes with side length sðQÞ

2K1
:

The size of K1, depending on d̂, will be chosen later. The cube qj is called bad if

inf
qj

jru0j � c sup
2qj

jru0j (5.33)

for some small c depending only on d. We claim that the number of bad cubes qj is not
greater than eCdN̂

2
0Kd�2

1 , where Cd depends on d.
To show the above claim, we need to use [17, Theorem 1.1]. Recall the effective crit-

ical set is defined as

Crðu0Þ ¼
�
x 2 Q : inf

BrðxÞ
r2jru0j2 � d

16
=

ð
@B2rðxÞ

ðu� uðxÞÞ2
�
:

Let BrðCrðu0ÞÞ be the r-neighborhood of Crðu0Þ, namely, BrðCrðu0ÞÞ ¼ fx 2 Q :
distðx, Crðu0ÞÞ < rg: Then [17, Theorem 1.1] implies

jBrðCrðu0ÞÞ \ Bsj � Cð~N ðu0,B2sÞÞ2
�
r
s

�2

jBsj, (5.34)

where Bs,B2s are concentric balls such that B4s � Q and ~N is the modified frequency
function defined by

~Nðu0,B2sÞ :¼
2s
Ð
B2s
jru0j2Ð

@B2s
ðu0 � u0ðzÞÞ2

,

where z is the center of Bs. By [10, Corollary 2.2.6] and the mean value property of har-
monic functions, we have

~Nðu0,B2sÞ � C log 2

Ð
B4s
ðu0 � u0ðzÞÞ2Ð

B2s
ðu0 � u0ðzÞÞ2

� C log 2
supB4s

jru0j
supBs

jru0j � CNðru0,QÞ � CN̂ 0,

where we have also used a gradient estimate for harmonic functions in the second
inequality. Hence, (5.34) implies
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jBrðCrðu0ÞÞ \ Bsj � CN̂
2
0

�
r
s

�2

jBsj: (5.35)

Next, we show that if qj is a bad cube with sufficiently small c, then qj \ Crðu0Þ 6¼ ;:
Actually if qj is bad and xj is the point in qj so that jru0ðxjÞj ¼ infqj jru0j, then

inf
BrðxjÞ

jru0j � jru0ðxjÞj ¼ inf
qj

jru0j � c sup
2qj

jru0j,

where we used the condition (5.33) in the last inequality. Fix r ¼ 2
ffiffiffi
d

p
sðqjÞ: Then 2qj �

BrðxjÞ: It follows from the gradient estimate and the Caccioppoli inequality that

infBrðxjÞ rjru0j � cr supBrðxjÞ jru0j � cCdrð =
Ð
B3
2r
ðxjÞjru0j2Þ1=2

� cC2
dð =
Ð
B2rðxjÞju0 � u0ðxjÞj2Þ1=2:

In view of [10, Corollary 2.2.7], we have

infBrðxjÞ rjru0j � cC2
d

d

�
=

ð
@B2rðxjÞ

ju0 � u0ðxjÞj2
�1=2

�
ffiffiffiffiffi
d
16

r �
=

ð
@B2rðxjÞ

ju0 � u0ðxjÞj2
�1=2

,

where in the last inequality, we choose c small so that cC2
d=d <

ffiffiffiffiffiffiffiffiffiffi
d=16

p
: This implies

that xj 2 Crðu0Þ and qj \ Crðu0Þ 6¼ ;: Because r ¼ 2
ffiffiffi
d

p
sðqjÞ, we have qj � BrðCrðu0ÞÞ:

This means that all the bad cubes qj are contained in BrðCrðu0ÞÞ: Finally, let s be com-
parable to s(Q) and note that 1

2Q can be covered by finitely many, depending only on d,
Bs with B4s � Q: Then, by (5.35), the total volume of bad cubes in 1

2Q is bounded by
CN̂

2
0ðsðqjÞ=sðQÞÞ2jQj � CN̂

2
0K�2

1 jQj: Hence, the number of bad cubes is not greater than
CN̂

2
0Kd�2

1 : The claim has been proved.
Now, for any qj, the monotonicity of the doubling index of ru0 in cubes in (5.30)

shows that

sup
qj

jru0j � C2K
�C1N̂ 0
1 sup

Q
jru0j: (5.36)

If qj is not bad, the reverse inequality of (5.33) yields

inf
qj

jru0j > C3K
�C1N̂ 0
1 sup

Q
jru0j: (5.37)

Given d̂, small enough (to be quantified later), we want to estimate the set Ĝd̂
defined in (5.31). If qj is not bad and we choose K1 to be the smallest integer such that

C3ðK1 þ 1Þ�C1N̂ 0 < d̂, (5.38)

then (5.37) gives

inf
qj

jru0j � C3K
�C1N̂ 0
1 sup

Q
jru0j > d̂ sup

Q
jru0j:

This implies that qj does not intersect Ĝd: It also shows that K1 	 d̂
�1

C10N̂ 0 : Thus, the set

Ĝd̂ is covered by the union of bad cubes of size sðQÞ
2K1

: Again, we may now replace bad qj
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by Bt̂jðxjÞ with the same center and t̂ j ¼ sðqjÞ
ffiffi
d

p
2 : Let m̂ be the number of bad cubes and

recall that eCdN̂
2
0Kd�2

1 � m̂: It follows that

X
j¼1m̂

t̂
d�1
j ¼ Cm̂ � sðqjÞd�1 � CeCdN̂

2
0Kd�2

1

�
sðQÞ
2K1

�d�1

�
�
1
2

�d�1

sd�1ðQÞCeCdN̂
2
0K�1

1

�
�
1
2

�d�1

sd�1ðQÞCeCdN̂
2
0 d̂

1
C4N̂ 0

�
�
1
4

�d

sd�1ðQÞ

(5.39)

where we have chosen d̂ � e�CN̂
3
0 in the last inequality for some C> 0 depending only

on d. This completes the proof. w

Next we estimate the density function Eeðy, rÞ of nodal sets, which is the initial step
for an iterative argument to obtain Theorem 1.2. The following lemma is a quantitative
version of [5, Lemma 4.5]. Without loss of generality, we may identify Q in Lemma 5.6
by B1

8
:

Lemma 5.7. Let b 2 3
4 , 1
� �

and (5.1) hold. If e � exp ð�Cð lnNÞ3Þ, then there exists a
finite sequence of balls fBt̂jðyjÞ : j ¼ 1 � � � , m̂g such that yj 2 B 1

16
, t̂ j 2 0, 1

128

� �
and

Ee 0,
1
16

� �
� exp CN

2
b�3

4

� �
þ 1
4

sup
1�j�m̂

Eeðyj, t̂ jÞ, (5.40)

where c and C depend on d, K and c.

Proof. We assume Ee 0, 1
16

� �
> 0: Otherwise, (5.40) is trivial. By normalization, we may

assume that
Ð
B2
u2e ¼ 1: We will make use of the approximation estimate by a harmonic

function in Lemma 5.4. Using (5.14) with r¼ 1, we have

jjue � u0jjL1 B1
8ð Þ � ĈejjuejjL2ðB2Þ ¼ Ĉe: (5.41)

We would like to estimate the doubling indices for u0 and ru0: From (5.20) and
convexity of u in (5.21), we have

jju0jjL2 B3t
2ð Þ � 2

ffiffiffiffi
N

p
jju0jjL2ðBtÞ (5.42)

for all 0 < t < 1: By elliptic estimates and using (5.42) twice,

jju0jjL1ðB1Þ þ jjru0jjL1ðB1Þ � C

�ð
B9
8

u20

�1
2

� C
ffiffiffiffi
N

p �ð
B3
4

u20

�1
2

� CN

�ð
B1
2

u20

�1
2

� CNjju0jjL1 B1
2ð Þ:

(5.43)

The above estimate includes

576 C. E. KENIG ET AL.



jju0jjL1ðB1Þ � CNjju0jjL1 B1
2ð Þ: (5.44)

Thus, N u0,B1
2

� � � log 2ðCNÞ: Similarly to the frequency function in Section 3, one can
define the frequency function introduced for the harmonic function u0 as

Nðx, rÞ ¼
r
Ð
BrðxÞjru0j2Ð
@BrðxÞu

2
0

:

It is known that the doubling index and the frequency function are comparable. Indeed,
it follows from [14, Lemma 7.1] that

N 0,
1
2

� �
� CN u0,B1

2

� � � C log 2ðCNÞ, (5.45)

where C depends on d. By Theorem 2.2.8 in [10], it holds that

N
�
x,

1
2

1
2
� R

� ��
� CN 0,

1
2

� �
(5.46)

for any x 2 BR and 0 < R < 1
2 : From (5.46) and (5.45), let R ¼ 1

8 , we obtain that

N x,
3
16

� �
� C log 2ðCNÞ:

Using [14, Lemma 7.1] again, we see that

Nðu0,BrðxÞÞ � CN x,
3
16

� �
� C log 2ðCNÞ (5.47)

for any 0 < r � 1
8 and x 2 B1

8
:

Next, we claim that there are zeros for u0 in B1
8
: In fact, from (5.41) and Theorem 2.1

with h ¼ 1=2, we have

jjue � u0jjL2 B1
8ð Þ � CN2ejjuejjL2 B1

8ð Þ: (5.48)

Then

jju0jjL2 B1
8ð Þ � ð1� CN2eÞjjuejjL2 B1

8ð Þ

� ð1� CN2eÞ
CN2

jjuejjL2ðB2Þ: (5.49)

It follows that jju0jjL2 B1
8ð Þ �

1
CN2 if e < cN�2: Hence, (5.15) implies

1
CN2

� jju0jjL2 B1
8ð Þ � CNjju0jjL2 B 1

16ð Þ: (5.50)

Now, let us assume that u0 has no zeros in B1
8
and therefore does not change signs in

B1
8
: Without loss of generality, we may assume that u0 is positive. By the Harnack

inequality and (5.50),

inf
B 1
16

ju0j � C sup
B 1
16

ju0j � 1
CN3

: (5.51)

From (5.41), for x 2 B 1
16
, we get
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1
CN3

� Ĉe � ueðxÞ: (5.52)

Since e < CN�3, then ueðxÞ > 0 for x 2 B 1
16
: This contradicts our assumption that

Ee 0, 1
16

� �
> 0: Thus, the claim has been shown.

Now, since u0 has zeros in B1
8
(and hence in B1

2
), we obtain from (5.43) and the mean

value theorem that

sup
B1

jru0j � CN sup
B1
2

jru0j: (5.53)

Again, by the relation of the frequency function for ru0 (namely, the frequency func-
tion with u� uð0Þ) and the doubling index, we can argue as the derivation of (5.47)
that (5.53) implies that

Nðru0,BrðxÞÞ � C log 2ðCNÞ (5.54)

for any 0 < r � 1
8 and any x 2 B1

8
:

From the definition of Nðru0,QÞ and (5.54), we know that Nðru0,QÞ � N̂ 0 :¼
C logN for Q � B1

8
and N>C. Since we may choose sequence of Q � B1

8
, comparable

to B 1
16
, to cover B 1

16
, in the following argument, we will work on B 1

16
for convenience. In

order to apply Lemma 5.6, we assume that d̂
2 	 1

2 e
�Cð logNÞ3 : With the aid of (5.41), we

have

ZðueÞ \ B 1
16
� ZðueÞ \

�
x 2 B 1

16
: ju0ðxÞj � Ĉe

�

� ZðueÞ \
�
x 2 B 1

16
: ju0ðxÞj � Ĉe and jru0ðxÞj � d̂

2
sup
B1
8

jru0j
�

[ ZðueÞ \
�
x 2 B 1

16
: ju0ðxÞj � Ĉe and jru0ðxÞj � d̂

2
sup
B1
8

jru0j
�

� ðZðueÞ \ GÞ [ ð[m̂
j¼1ZðueÞ \ Bt̂jðyjÞÞ,

(5.55)

where

G ¼
�
x 2 B1

8
j ju0ðxÞj � Ĉe and jru0ðxÞj � d̂

2
sup
B1
8

jru0j
�
, (5.56)

and Bt̂jðyjÞ are given by Lemma 5.6. Thus, it follows from Lemma 5.6 that

Hd�1ðZðueÞ \ B 1
16
Þ � Hd�1ðZðueÞ \ GÞ þ

X̂m
j¼1

Hd�1ðZðueÞ \ Bt̂jðyjÞÞ

� Hd�1ðZðueÞ \ GÞ þ sup
j
Eeðyj, t̂ jÞ

X̂m
j¼1

t̂
d�1
j

� Hd�1ðZðueÞ \ GÞ þ 1
4

�
1
16

�d�1

sup
j
Eeðyj, t̂ jÞ:

(5.57)

Since N is large, by the decomposition in Lemma 5.6, we may assume 0 < t̂ j < 1
128 :
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Next we estimate the upper bound for Hd�1ðZðueÞ \ GÞ: We will cover G by balls
with radius comparable to e and estimate the number of these balls so that Lemma 5.2
can apply. First, note that (5.50), the fact that u0 has zeros in B1

8
and the definition of G

imply

jru0ðxÞj � d̂~C
2N2

, and ju0ðxÞj � Ĉe (5.58)

for any point x 2 G: For k ¼ 1, 2, :::, d, define

F6
k ¼

�
x 2 Gj ju0ðxÞj � Ĉe,6

@u0
@xk

ðxÞ � d̂c
2dN2

�
:

Then (5.58) implies that G is contained in [d
k¼1ðFþk [ F�

k Þ: Without loss of generality, it
suffices to estimate Fþk : By the C2 regularity of u0, for any x0 2 Fþk , there exists a cylin-
der Cðx0Þ centered at x0, whose base is a square perpendicular to ek with side length
Ce, such that the height of Cðx0Þ is d̂c1

2dN2 and

@u0
@xk

ðxÞ � d̂c1
2dN2

, for any x 2 Cðx0Þ, (5.59)

where c1 > 0 is a constant smaller than c.

We would like to show that Cðx0Þ \ Fþk can be covered by m1 balls with radius Ce,
where m1 � C22dN2d̂: Let Sðx0Þ be the cross section containing x0 of the cylinder Cðx0Þ
which is perpendicular to ek. Since jru0j � C and ju0ðx0Þj � Ĉe, we see that ju0ðyÞj �
C1e for any y 2 Sðx0Þ: Next, because of (5.59), for any y 2 Sðx0Þ and t> 0,

u0ðyþ tekÞ � t
d̂c1
2dN2

� C1e:

This implies that yþ tek 62 Fþ
k if t > ðC1þĈÞe2dN2

d̂c1
: Similarly, y þ tek 62 Fþk if t <

� ðC1þĈÞe2dN2

d̂c1
: This implies that

Fþk \ Cðx0Þ �
�
y þ tekj y 2 Sðx0Þ, jtj � ðC1 þ ĈÞe2dN2

d̂c1

�
:

Consequently, Fþ
k \ Cðx0Þ can be covered by m1 balls with radius Ce and m1 � C22dN2

d̂
:

Now, because Fþ
k � G can be covered by m2 cylinders, with m2 ¼ CdN2

ed�1d̂
, such that the

Cðx0Þ’s have finite overlaps, then Fþk can be covered by m balls with radius Ce (denoted
by fBCeðzþk, ‘Þ : ‘ ¼ 1, 2, :::,mg), where

Figure 1. The cylinder Cðx0Þ:
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m ¼ m1m2 � Cd2N4

ed�1d̂
2 :

Note that the same estimate holds for F�k as well for each k ¼ 1, 2, :::, d:
Hence, by Lemma 5.2, we derive that

Hd�1ðZðueÞ \ GÞ �
Xd
k¼1

Xm
l¼1

Hd�1ðZðueÞ \ BCeðz6k, lÞÞ

� C exp CN
2

b�3
4

� �
med�1

� CN4d̂
�2

exp CN
2

b�3
4

� �

� exp CN
2

b�3
4

� �
,

(5.60)

where in the last inequality, we have used the fact d̂
�1 	 exp ðCð lnNÞ3Þ and enlarged

the constant C. Note that here b 2 3
4 , 1
� �

can be arbitrary. Thus, (5.60) and (5.57)
together lead to the conclusion (5.40). w

5.3. Proof of Theorem 1.2

Thanks to Lemma 5.7, we are able to show the upper bound of the nodal sets of ue in
the interior domain.

Proof of Theorem 1.2 (d � 3). We first consider the case e � exp ð�Cð lnNÞ3Þ: Recall
from (5.4) that ð

B5=3ðxÞ
u2e � 2N2

ð
B5=6ðxÞ

u2e (5.61)

for any x 2 B1=3: By Theorem 2.1, it follows thatð
B2rðxÞ

u2e � 4N2
ð
BrðxÞ

u2e (5.62)

for CN
1

b�3
4e < r < 5

6 and any x 2 B1=3: By (5.62) and Lemma 5.4, we derive thatð
BrðxÞ

u20 � CN4
ð
Br
2
ðxÞ
u20 , (5.63)

as in (5.15) for x 2 B1
3
and CN

1
b�3

4e < r < 5
6 : By examining the proof of Lemma 5.7, the

estimates (5.62) and (5.63) guarantee that the arguments in the Lemma 5.7 hold for
Eðx0, sÞ for x0 2 B1

8
and Ce exp ðCð lnNÞ3Þ < s � r

16 :

Let vðxÞ ¼ ueðx0 þ txÞ for any t satisfying CN
1

b�3
4e � Ce exp ðCð lnNÞ3Þ < t < 5

6 and
x0 2 B1=8: Then v(x) satisfies

r � ðAe, t
x0 ðxÞrvðxÞÞ ¼ 0 in B2, (5.64)

where Ae, t
x0 ðxÞ ¼ Aðe�1ðx0 þ txÞÞ: By Lemma 5.7, we have

Hd�1ðZðvÞ \ B 1
16
ð0ÞÞ

ð 116Þd�1 � exp CN
2

b�3
4

� �
þ 1
4
sup
j

Hd�1ðZðvÞ \ B~sjðyjÞÞ
ð~sjÞd�1 , (5.65)
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where ~sj 2 0, 1
16�8

� �
and yj 2 B 1

16
ð0Þ: By rescaling, we reduce the estimate to ue and

obtain that

Hd�1ðZðueÞ \ B t
16
ðx0ÞÞ

ð t
16Þd�1 � exp CN

2
b�3

4

� �
þ 1
4
sup
j

Hd�1ðZðueÞ \ Bt~sjðx0 þ tyjÞÞ
ðt~sjÞd�1 : (5.66)

Let s ¼ t
16 , then Ce exp ðCð lnNÞ3Þ < s < 5

96 : Thus,

Eeðx0, sÞ � exp CN
2

b�3
4

� �
þ 1
4
sup
j
Eeðŷj, ŝjÞ: (5.67)

where ŷj ¼ x0 þ tyj 2 Bsðx0Þ, ŝj ¼ t~sj 2 0, s
8

� �
: Note that BŝjðŷjÞ may not be fully con-

tained in Bsðx0Þ, since ŷj may be the centers of subcubes which intersect the boundary
of Bsðx0Þ (we identify the ball Bsðx0Þ as a cube when we perform the subcubes decom-
position). However, BŝjðŷjÞ � Bsþs

8
ðx0Þ since ŝj 2 0, s

8

� �
: If we iterate (5.67), BŝjðŷjÞ still

stays close to Bsðx0Þ: Actually, BŝjðyjÞ � Bŝðx0Þ for any large j, where ŝ ¼ P1
j¼1

s
8j�1 ¼ 8s

7 :
Now, we iterate (5.67) to obtain the desired estimate. The estimate (5.40) yields the

initial step of the iteration,

Ee 0,
1
16

� �
� exp CN

2
b�3

4

� �
þ 1
4

sup
1�j�m̂

Eeðyj, t̂ jÞ: (5.68)

Assume that sup1�j�m̂ Eeðyj, t̂ jÞ is achieved at some Eeðyj0 , t̂ j0Þ with jyj0 j < 1
16 and ĵt j0 j <

1
128 : Let x0 ¼ yj0 and t̂ j0 ¼ s: Since ŝj < s

8 , we apply (5.67) to Eeðyj0 , t̂ j0Þ to get to the
estimates of nodal sets at a smaller scale, that is,

Ee 0,
1
16

� �
� 1þ 1

4

� �
exp CN

2
b�3

4

� �
þ 1
4
sup
j
Eeðŷj, ŝjÞ: (5.69)

We apply (5.67) repeatedly down to the case r 	 Ĉe exp ðCð lnNÞ3Þ or the case that
Eeðy, rÞ is empty. Note that BŝjðŷjÞ � B 1

16þ 8
7�128

ð0Þ � B 1
12
ð0Þ: Thus, we derive that

Ee 0,
1
16

� �
�

X1
i¼0

4�i exp CN
2

b�3
4

� �
þ sup

y2B 1
12
ð0Þ
fEeðy, rÞ : 0 < r � Ĉe exp ðCð lnNÞ3Þg

� exp CN
2

b�3
4

� �
þ ð1þ Ĉ exp ðCð lnNÞ3ÞÞ exp CN

2
b�3

4

� �

� exp CN
2

b�3
4

� �
,

(5.70)

where we have used (5.7) in the second inequality. This proves the desired estimate for
the case e � exp ð�Cð lnNÞ3Þ:
Finally, for the case e � exp ð�Cð lnNÞ3Þ, the desired estimate follows directly from

(5.7). Since b 2 3
4 , 1
� �

is arbitrary, so (1.14) holds for any a > 8: This ends the proof of
the theorem. w

Following the above Proof of Theorem 1.2 for d � 3, we sketch the proof of upper
bounds of nodal sets in d¼ 2.

Proof of Theorem 1. 3 (d¼ 2). Since the proof is parallel to d � 3, we only present the
changes for d¼ 2. Thus, we only present the changes for d¼ 2. By the argument in
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Lemma 5.2 and the doubling inequality (1.10), we can obtain for 0 < r < 1=3,

Eeðx0, rÞ � C 1þ r
e

� �
ð lnNÞ2: (5.71)

On the other hand, the statements of (5.31) and (5.32) still hold for u0 with a better
bound for d̂ for d¼ 2. Precisely, [17, Theorem B.1] implies

jBrðCrðu0ÞÞ \ Bsj � Cð~N ðu0,B2sÞÞ
�
r
s

�2

jBsj: (5.72)

By mimicking the argument of Lemma 5.6, we can show (5.31) and (5.32) with 0 < d̂ <

e�CN̂
2
0 : Following the proof of Lemma 5.7, we may show that if 0 < e <

exp ð�Cð lnNÞ2Þ, then

Ee 0,
1
16

� �
� exp ðCð lnNÞ2Þ þ 1

4
sup

1�j�m̂
Eeðyj, t̂ jÞ, (5.73)

with yj 2 B 1
16
, t̂ j 2 0, 1

128

� �
: Observe that the quantitative stratification of critical sets

ru0, instead of the doubling inequality, plays the dominant role in the estimate (5.73).
We iterate (5.73), as in the proof for d � 3, to get

Ee 0,
1
16

� �
�

X1
i¼0

4�i exp ðCð lnNÞ2Þ þ sup
y2B 1

12
ð0Þ
fEeðy, rÞ : 0 < r � Ĉe exp ðCð lnNÞ2Þg

� exp ðCð lnNÞ2Þ þ Cð1þ Ĉ exp ðCð lnNÞ2ÞÞð lnNÞ2
� exp ðCð lnNÞ2Þ:

This provides the desired estimate (1.15) for 0 < e < exp ð�Cð lnNÞ2Þ: For e �
exp ð�Cð lnNÞ2Þ, (5.71) yields the desired estimate directly. This ends the proof. w
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