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A B S T R A C T   

Climate change will alter the flow availability and expected water allocations in international river treaties, 
many of which were designed using historical flow records. Effective transboundary treaties should anticipate 
these concerns and seek to satisfy the priorities of all riparian countries while being robust to impending changes 
in climate. This task is complicated by the fact that specific objectives associated with each party’s priorities are 
not necessarily common knowledge (framing uncertainty), and the direction, amplitude and effect of long term 
changes in hydro-climatic drivers can be highly uncertain (climate uncertainty). 

We frame the design of a transboundary treaty as a multi-objective optimization problem. We use hierarchical 
clustering to address problem-framing uncertainty by identifying the subset of objectives associated with the 
governing trade-offs imposed by the bio-physical characteristics of the shared river system. We then carry out a 
scenario-neutral climate sensitivity analysis to identify climate-robust Pareto-optimal treaty solutions. We 
illustrate the approach for the Ganges water agreement, which is due to be renewed in 2026. Based on an 
enumerated population of 25,121 feasible treaty solutions, we identify governing objectives and 16 treaty so
lutions that are Pareto optimal under most considered combinations of changes in sea level and dry season flow 
regime. This work provides a path towards improving transboundary allocations for the Ganges water treaty and, 
more broadly, a template to support transboundary cooperation over shared international rivers.   

1. Introduction 

Climate change and increased anthropogenic water use threaten 
water security and pose challenges for water management in many ba
sins around the world. Stronger storms (Chen et al., 2020), more intense 
droughts (Overpeck and Udall, 2020), and greater hydro-meteorological 
uncertainty (Panahi et al., 2020) are expected in many regions of the 
world, where population growth combined with agricultural intensifi
cation will further threaten water security. The consequences of these 
changes include groundwater depletion (Cotterman et al., 2018), 
freshwater and soil salinization (Haque, 2006), loss of livelihoods 
(Muringai et al., 2019) and other environmental crises (Turner et al., 
2020). These issues are particularly evident in several internationally 
shared basins, including the Nile (Beyene et al., 2010), Mekong(Kiem 

et al., 2008), Colorado (Barnett and Pierce, 2009) and Ganges (Rahman 
et al., 2019) rivers. Stable and effective policy instruments to manage 
transboundary waters have become critical for maintaining interna
tional cooperation and preventing economic or political crises (Dinar 
et al., 2016). Over two hundred transboundary river basins have been 
identified, housing 42% of the global population. Water sharing in these 
basins has led to the creation of over six hundred treaties on freshwater 
management since the early nineteenth century (UNEP-DHI, UNEP, 
2016). However, many of these agreements may not perform well under 
an increasingly volatile and uncertain climate (Draper and Kundell, 
2007). New or renegotiated agreements should ideally balance the 
competing needs of each party while striving to support benefits that are 
robust to a changing climate. 

This process can be formulated as a multi-objective optimization 
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problem that riparian countries cooperatively solve. Following the 
framework in Maier et al. (2019), the objectives (i.e. outcomes of in
terest) are to maximize environmental, social and economic benefits and 
to minimize environmental, social and economic costs by selecting 
appropriate transboundary flow allocation rules, which are the decision 
variables. The set of objectives considered in the optimization corre
sponds to the union of the sets of objectives associated with each party. 
This formulation allows us to focus on conflicting objectives in terms of 
tradeoffs between measures of system performance. This notion of 
conflict does not necessarily correspond to conflicting actor incentives 
as treated by non-cooperative game theory [see, e.g., (Müller et al., 
2017; Penny et al., 2021)]. Indeed, the considered tradeoffs between 
measures of system performance can also arise for a single actor with 
conflicting performance objective measures. For example, a given actor 
might want to simultaneously minimize the peak and maximize the 
average of incoming streamflow.The constraints include the available 
water resources, the physical limits on the diversion infrastructure, 
political feasibility and historical legacies (e.g., pre-existing treaties). A 
solution consists of the set of transboundary flow allocation rules that 
form a treaty. Trade-offs associated with the potentially conflicting na
ture of the objectives are captured by the notion of Pareto-optimality [e. 
g., Kasprzyk et al., 2013]. A solution is Pareto-optimal if no change in 
the decision variables could improve any objective without making the 
situation worse for another. In contrast, a solution that is not Pareto 
optimal would miss some of the possible joint gains of cooperation and 
leaves on the table one or more solutions that would make all parties 
better off (Kronaveter and Shamir, 2009). Pareto-optimality is therefore 
a requisite attribute of cooperative bargaining solutions (Nash, 1953; 
Kalai and Smorodinsky, 1975), and a desirable outcome for interna
tional water negotiations (Kronaveter and Shamir, 2009). 

In reality, of course, transboundary water negotiations might not be 
cooperative and problem-framing uncertainties arise from the fact that 
not all relevant optimization objectives are common knowledge across 
the negotiating parties. Our approach relies on the assumption that an 
initial broad set of candidate objectives can generally be constructed 
intuitively based on the bio-physical and socio-political context (see 
discussion in Section 4.1). For example, in the context of the Ganges, 
both parties likely seek to maximize average flow availability during the 
dry season, but minimize salinity and flow variability. These candidate 
objectives might be refined using information available to both parties 
(though not necessarily to the wider public) though appropriate ap
proaches to engage stakeholders in a process of knowledge co- 
production (Wyborn et al., 2019). However, the relative importance of 
each objective for each party (i.e. objectives that matter vs. objectives 
that can be safely removed from the optimization) might ultimately be 
kept private for strategic reasons. In other words, the true set of opti
mization objectives is likely unknown, which prevents the true set of 
Pareto-optimal solutions from being discovered. This issue is well 
known in the negotiation literature, where a variety of protocols have 
been proposed to guide the negotiating parties towards the discovery 
and achievement of Pareto-optimal outcomes [see, e.g., (Ehtamo et al., 
1999; Lai and Sycara, 2009; Kronaveter and Shamir, 2009)]. Here, in 
contrast, we seek to decrease the dimensionality of the set of candidate 
objectives ex ante, based on (known) dynamics of the bio-physical sys
tem, rather than (publicly unknown) preferences of the negotiating 
parties. Doing so does not necessarily reveal the true set of hidden 
stakeholder objectives. Rather, the approach can be seen as a way to 
leverage publicly available information to simplify a many-objective 
optimization problem that is poorly framed due to hidden objectives 
(see Section 4.4) 

Pareto optimality is a non-dominance mathematical partitioning 
rule. As one increases the number of objectives, the partitioning rule 
becomes less discriminatory, resulting in an increase in the size of the 
Pareto optimal set – a phenomenon known as dominance resistance [e. 
g., (Reed et al., 2013)]. An excessively large set of objectives (such as the 
full set of initial candidate objectives) will cause many solutions that are 

non-dominant under the true set of objectives to be included in the 
discriminated solution set. In contrast, considering too few objectives 
can lead to the opposite issue of oversimplifying the problem by missing 
important portions of the objective set that are only non-dominated with 
the addition of more objectives [see examples in (Kollat and Reed, 2007; 
Woodruff et al., 2013)]. Our contribution is to leverage the internal 
physical dynamics of the system to navigate this trade-off. We apply a 
data-based pattern recognition technique (hierarchical clustering) on 
enumerated solutions to reduce the dimensionality of the set of objec
tives and approximate the Pareto-optimal set of solutions, while mini
mizing information loss (see discussion in Section 4.2). In doing so, we 
assume that all feasible treaty solutions can be enumerated, an 
assumption that is discussed in Section 4.3. Our approach relates to the 
literature seeking to reduce the complexity of many-objective optimi
zation problems by exploiting the correlation between certain objectives 
[e.g., (Deb et al., 2006; Brockhoff and Zitzler, 2006; Brockhoff and 
Zitzler, 2009)]. For example, Giuliani et al. (2014) leverages numerical 
correlations between objectives to aggregate them into a reduced 
number of linear combinations of objectives (principal components), 
with respect to which the optimization problem is solved. Here, we 
follow Lindroth et al. (2010), and estimate Pearson correlation co
efficients across enumerated solutions between pairs of objectives. We 
then use a clustering procedure to systematically reduce the number of 
objectives in a manner that is informed by the structure of these corre
lations in the underlying dataset. 

Another type of uncertainty, this time on the future states of the 
world, arises from the fact that it is challenging to determine precisely 
how much and how quickly the relevant climate inputs will change 
(Deser et al., 2012). In that context, it is not sufficient to identify water 
allocations that are Pareto-optimal under current conditions. Rather, the 
analysis must also navigate the trade-off between objectives under a 
range of potential changes in environmental constraints. We incorporate 
a scenario-neutral sensitivity analysis to evaluate the robustness of the 
Pareto-optimal set of solutions to different combinations of climate in
puts. Following Brown et al. (2012), different components of the system 
are considered to create a model with a climate response function. The 
model is then perturbed by stochastically generated climate inputs, in 
order to identify the climate states associated with high risk of systemic 
failure. Despite the caveats discussed in Section 4.5 this type of scenario- 
neutral analysis is commonly used to evaluate the climate vulnerability 
of systems (Brown et al., 2012; Jones, 2001; Wilby and Dessai, 2010) 
(including transboundary river systems (De Boer et al., 2021)) in situ
ations where the change in the relevant climatic drivers is highly un
certain. However, it has not (to our knowledge) been applied to evaluate 
the effect of climate uncertainty on the composition of Pareto-optimal 
solution sets. 

The approach that we propose, which combines hierarchical clus
tering and scenario neutral analysis, falls within the broader category of 
exploratory modelling approaches, in the sense that it addresses both 
types of uncertainty (on framing and on future world states) by using 
numerical simulation to systematically explore their implications on 
enumerated outcomes. It fits within recent frameworks to confront deep 
uncertainty within water management problems through robust multi- 
objective optimization [see, Moallemi et al., 2020 Table 1]. For 
example, Kasprzyk et al. (2012) proposes an iterative framework where 
a pre-processing analysis (Sobol’ variance decomposition) is carried out 

Table 1 
Decision Variables.  

Parameter Current Treaty Feasible Range Enum. Increment 

pQ1 (%) 50 [45, 70] 1 
Q2 (× 1000 cusec) 35 [30, 40] 1 
Qint (× 1000 cusec) 35 [25, 40] 1 

m (periods) 6 [0,10] 2 
n (days) 10 [0,15] 5  
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to reformulate the problem de Novo in a way that seeks to balance 
complexity and effectiveness before the multi-objective optimization. In 
a similar manner, we use hierarchical clustering here to refine an initial 
vector of candidate objectives to update the dimensionality of the 
problem before identifying Pareto-optimal solutions. Kasprzyk et al. 
(2012) continues with a scenario analysis to test the robustness of so
lutions to model assumptions – a step that mirrors our proposed 
scenario-neutral analysis. 

We demonstrate our combined approach using the Ganges Water 
Sharing Agreement (GWSA) between India and Bangladesh as an illus
trative example. The agreement determines the flow of the Ganges into 
Bangladesh during the dry season (January-May) by regulating the 
operation of the Farakka barrage (Fig. 1) in India, approximately 100 km 
upstream of the border. The barrage diverts Ganges river water into the 
Bhagirathi-Hooghly river, a distributary of the Ganges that discharges 
into the Bay of Bengal in India, near the port city of Kolkata. The GWSA 
exemplifies the multi-faceted challenges associated with transboundary 
river management under a changing climate. The treaty was signed in 
1996, with the purpose of balancing flow requirements to de-silt the port 
of Kolkata – one of India’s major cargo ports – with dry season irrigation 
and environmental water needs in Bangladesh (Tanzeema and Faisal, 
2001). Since then, the flow regime of the Ganges and the geo
morphology of the delta have changed substantially under the coupled 
effect of changing rain patterns and upstream water uses (Rahman et al., 
2000). In addition, salt intrusion has become a major concern 
throughout the Ganges delta, due in part to sea level rise and increas
ingly frequent and intense storm surges (Rahman et al., 2019). These 
changes have had particularly damaging economic, public health and 
ecological impact in coastal communities in South-Western Bangladesh 
and the Sundarbans, a unique (and world’s largest) mangrove ecosystem 
(Faisal and Parveen, 2004). Sufficient provision of freshwater inflow 
through the Ganges is paramount to prevent saline intrusions (Rahman 
et al., 2000; Pethick and Orford, 2013; Shammi et al., 2016). These 
rapidly changing conditions might have reduced the effectiveness of 
current treaty allocations (Penny et al., 2020), which were based on 
average flow data collected from 1949 – 1988 and have not been 
updated (Salman and Uprety, 1999). Because the treaty is slated to be 
renewed in 2026, a tractable approach to understand and visualize the 
implicated hydrologic trade-offs is of immediate policy relevance. 

2. Methods 

2.1. Optimization problem and decision variables 

We use the notation in (Kasprzyk et al., 2013) to formulate the new 
GWSA treaty as a multi-objective optimization problem seeking to 
minimize a vector F of P objectives (f1, f2, …, fP) by choosing a vector l of 
decision variables within a decision space Ω: 

min
l∈Ω

F(l) = (f1, f2, …, fP) s.t. ci(l) ≤ 0∀i ∈ [1, q] (1)  

where ci(l) ≤ 0∀i ∈ [1, q] represents q constraints on the vector of deci
sion variables. Feasible solutions are defined as those meeting all the 
imposed constraints. A solution F(a) dominates another solution F(b) if 
fi(a)⪰fi(b)∀i and ∃j|fj(a) ≻ fj(b). The solution is Pareto optimal if it is 
non-dominated with respect to all other feasible solutions (Kasprzyk 
et al., 2013). 

We defined decision variables by parameterizing the current treaty 
under the premise that its structure will serve as a basis for its renewal in 
2026. The current treaty allocates a fixed percentage (pQ1 = 50%) of 
incoming streamflow to Bangladesh (and the remaining flow to India), 
up to a threshold (Q2 = 35, 000 cubic feet per second, or cusec) allocated 
to Bangladesh. This threshold corresponds to a total incoming stream
flow of 70,000 cusec (Q2/ pQ1) upstream of the diversion. Additional 
flow beyond that threshold is allocated to India (with flow to Bangladesh 
maintained at Q2 = 35, 000 cusec), up to another threshold of 40,000 
cusec allocated to India. This latter threshold is determined by the ca
pacity of the canal diverting the flow towards India (Kawser and Samad, 
2016), and is unlikely to be altered in a renewed treaty. Under current 
treaty allocations, this threshold corresponds to a total flow of 
Q2 +40, 000 = 75, 000 cusec upstream of the diversion. The treaty also 
includes special provisions for the driest period of the year (March 11 to 
May 10) during which guaranteed flows are allocated to Bangladesh and 
India in alternating 10-day periods. The current treaty splits this period, 
centered around April 10, into n = 6 intervals of m = 10 days, during 
which a minimum flow of Qint = 35, 000 cusec is alternately guaranteed 
to each country [see Penny et al., 2020].Treaty allocation rules and the 
five parameters that govern them (pQ1, Q2, Qint , m and n) are summarized 
in Fig. 2. These five parameters constitute the decision variable vector l 
of the multi-objective optimization. 

2.2. Constraints and enumeration of solutions 

The five decision variables are bound by a series of constraints 
(summarized in Table 1) associated with the physical flow diversion 
infrastructure and historical legacies. Namely, the feeder canal linking 
the Ganges at Farakka barage with the Hooghly river has a capacity of 
40,000 cusec. Assuming that the physical capacity of the canal will not 
be increased when the treaty is renewed, this sets a hard limit on the 
flow that can be diverted to India. Accordingly, Q2 and Qint are capped at 
40,000 cusec. In addition, the current treaty prescribes emergency ar
rangements if the total flow of the Ganges at Farakka falls below 50,000 
cusec. We assumed that this clause will carry over to the renewed treaty, 
and set a lower limit of Qint at 50,000/2 = 25,000 cusec. This allows each 
party to benefit from intervals of guaranteed flows before emergency 
measures are invoked (i.e., for incoming flows at Farakka equal to or 
higher than 50,000 cusec). Further, the minimum flow for Q2 is set to 

Fig. 1. The Ganges-Brahmaputra–Meghna Rivers (A) and Ganges delta (B).  
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30,000 cusec, so that there generally remains a period of total flow 
above emergency measures (50,000 cusec) that is dictated by pQ1. The 
number and duration of intervals (m and n) are set so that the total 
period governed by interval allocation remains at or below 150 days, 
which corresponds to the entire duration of the annual low flow period 
regulated by the treaty (January 1 to May 31); m must also be an even 
number for both countries to be attributed identical numbers of guar
anteed flow periods. Regarding the percentage of flow allocated to 
Bangladesh under low flow conditions outside of the interval period, we 
arbitrarily set its boundaries at 45% and 70%. The current treaty divides 
these flow conditions equally between the two countries, so deviations 
from the status quo are likely politically challenging. Yet if the param
eter does become altered in the renewed treaty, we assumed it to be 
more likely in the favor of India due to its favorable hydro-strategic 
position. The ensuing constraints ci(l) on the decision variables are 
summarized in Table 1. 

We enumerated 25,121 feasible treaty solutions that span the con
strained decision space at regular intervals. These intervals (displayed 
on Table 1) represent the smallest increment in the decision variables 
that would be practical to implement. For example, the flow increment 
of 1000 cusec (or 2.8 m3/s) corresponds to a height increment of only 
approximately 15 cm across the 11 gates of 12 m span that form the head 
regulation structure of the diversion canal (assuming sluice gates with a 
spillway coefficient of 1). Given these considerations, the intervals in 
Table 1 are sufficiently small for the enumerated solutions to allow for a 
reasonable approximation of the true Pareto-optimal set associated with 
the considered objectives. 

2.3. Initial set of candidate objectives 

Our initial set of candidate objectives relate to flow conditions in 
India and Bangladesh immediately downstream of the diversion, and to 
salinity conditions in the Gorai River in Bangladesh, near the city of 

Khulna. Flow and salinity conditions in the Gorai are critical in terms of 
controlling salinity conditions in southwest Bangladesh, a region that is 
particularly vulnerable and sensitive to saline intrusions from the Bay of 
Bengal (Mirza and Sarker, 2004). Under the premise that both countries 
seek to maximize average flows but minimize flow variability and 
salinity (a strong assumption that is discussed in Section 4.1), we con
structed the initial set of 26 candidate objectives described in Table 2 
with the aim of capturing the central tendency, variability and extremes 

Fig. 2. Flow allocation rules of the 
current Ganges river treaty. A. 
Streamflow allocations to India (y- 
axis, green) and Bangladesh (y-axis, 
pink) as functions of total Ganges flow 
upstream of the diversion (Qin, x-axis). 
Sub-panels represent allocation rules 
outside of intervals periods (left), and 
during intervals periods with guaran
teed flow to Bangladesh (‘B’,middle) 
and India (‘I’, right). Treaty parame
ters Variables pQ1, Q2, Qint , n and m are 
further defined in Table 1. The dashed 
square on the left panel represents the 
flow threshold of Qin = 50, 000 cusec 
below which emergency provisions are 
triggered. B. Illustration of treaty flow 
allocations for the 2005 water year.   

Table 2 
Initial set of objective variables.  

Flow to India Flow to Bangladesh Salinity in Bangladesh 

mean[min(QI)] mean[min(QB)] *mean[max(SB)] 
*cv[mean(QI)] *cv[mean(QB)] *mean(SB,d) 

mean(QI) mean(QB) *mean(SB) 
mean(QI,d) mean(QB,d) *cv(mean(SB)) 

*days(QI < 40k) mean[min4(QB)] *max(SB,d) 
mean[min4(QI)] min(QB) *max(SB) 

min(QI) min(QB,d) *mean[max4(SB)] 
min(QI,d) min[mean(QB] *days(SB >5) 

min[mean(QI)]  *max[mean(SB)] 

Note: Where two statistics are applied, the outermost represents an inter-annual 
statistic, and the innermost an intra-annual statistic. Subscript I refers to India, B 
to Bangladesh. Subscript d refers to the period of typically lowest flow (March 
11–May 10). Subscript 4 indicates that the considered statistic was determined 
over a moving window of four years. For example, ‘mean[max4(SB)]’ is the inter- 
annual mean of the maximum daily salinity for the four years with the highest 
daily salinity. The number of days throughout the 1998–2017 period that flow to 
India was under 40,000 cusec is given by the variable ‘days(QI < 40k)’. The 
number of days throughout the twenty year period that salinity in Bangladesh 
was over 5 ppt is given as ‘days(SB >5)’, reflecting an estimate of days in which 
salinity exceeds suggested levels (Clarke et al., 2015). * indicates variables for 
which optimization indicates minimization.  
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of flow and salinity at intra- and inter-annual time scales. 
We evaluated the 26 candidate objectives for each of the 25,121 

enumerated solutions by applying the corresponding diversion rules to 
historical (1998–2017) Ganges streamflow upstream of Farakka. This 
allowed us to simulate historical downstream conditions in India and 
Bangladesh, had the existing treaty allocations been different. To do so, 
we proceed as follows (see Fig. 3): 

1. Multiple data sources were combined (see Supplementary Informa
tion Section S1) to construct estimates of daily inflow to Farakka 
barrage during the January 1 to May 31 period between 1998 and 
2017. 

2. Daily streamflow allocations to India and Bangladesh were recon
structed using treaty parameters for each of the 25,121 considered 
treaty alternatives.  

3. A simple physically-based salinity model was used to simulate 
salinity in the Ganges delta in Bangladesh (Gorai River at Khulna, 
Fig. 1). The salinity model incorporates advection and first order 
exchange processes and is influenced by the incoming streamflow, 
mixing volume (e.g., channel geometry) and downstream salinity 
conditions; see Section S2 and (Penny et al., 2020). 

The resulting simulations of daily streamflow (India and Bangladesh) 
and salinity (Bangladesh) were then used to compute the statistics cor
responding to each candidate objective. 

2.4. Dimensionality reduction 

Starting with the initial set of candidate objectives, we sought to 

reduce the number of objectives by exploiting the fact that some ob
jectives might be correlated due to underlying bio-physical relationship. 
For example, physical constraints (e.g., mass balance, advection and 
mixing) associate an increased flow to India with a decreased flow and 
increased salinity in Bangladesh. Characterizing how these de
pendencies play out between each combination of objectives in Table 2 
might allow them to be grouped into clusters that best embody the 
governing physical trade-offs of the system and discount the effect of 
potentially redundant objectives. 

We used the procedure of agglomerative hierarchical clustering to 
classify the initial set of candidate objectives according to their simi
larity across the 25,121 solutions (Legendre and Legendre, 1998). To do 
so, we defined a dissimilarity (or distance) matrix 

Dij =
(
1 − Rij

)
∈

[
0, 2

]

where Rij is the Pearson correlation coefficient between the simulated 
value of objectives i and j across the 25,121 enumerated solutions. Prior 
to calculating the Pearson coefficient, statistics associated with salinity 
levels and flow variability (which parties seek to minimize) were 
multiplied by −1. We then implemented complete linkage clustering to 
group the candidate objectives in increasing order of dissimilarity – the 
most correlated pairs of candidate objectives were grouped first – and 
produce a cluster tree, or dendrogram (Fig. 4). Another way to consider 
the problem is to think of the 26 initial candidate objectives as a network 
of 26 nodes with distance matrix given by Dij. Hierarchical clustering 
was used to identify the communities within the obtained graph that 
best represents its structure (Radicchi et al., 2004). 

Clusters of similar candidate objectives were determined by cutting 

Fig. 3. Approach used to generate treaty solutions (grey) and evaluate their sensitivity to changing climate drivers (white). Procedures associated with the 
reconstruction of historic streamflow at Farakka and the calibration and validation of the salinity model are presented in Sections S1 and S2 of Supplementary 
Information. 
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the dendrogram so that all candidate objectives contained by a cut 
branch fall within a single cluster. Although several techniques exist to 
optimally prune hierarchical dendrograms [e.g., (Langfelder et al., 
2008)], a parsimonious approach is to cut the tree at a constant 
dissimilarity threshold D*. An optimal value of D* will maximize both 
the similarity of objectives within clusters and the dissimilarity of objec
tives between clusters. An excessively small D* would produce a large 
number of similar clusters and fail to capture the governing trade-offs of 
the problem. In contrast, an excessively large D* would group dissimilar 
objectives within the same cluster. If the objectives within a cluster are 
too dissimilar, the choice of the particular objective used to represent 
the cluster in the Pareto optimization will strongly influence its result 
(Figure S5). Here we used a dissimilarity threshold D* = 1. This cor
responds to a Pearson correlation coefficient R* = 0, meaning that ob
jectives within clusters are positively correlated across the 25,121 
enumerated solutions, whereas objectives across clusters are negatively 
correlated. In our specific case study, a threshold D* = 1 falls at the limit 
between three and four clusters (Fig. 4A, light green line). We opted for 
four clusters to increase the similarity of objectives within a cluster and 
make the Pareto optimization less sensitive to the particular choice of 
the objectives used to represent each cluster. 

We identified a single representative objective per cluster by 
considering the correlation matrix Rij associated with each cluster (one 
matrix by cluster) as an analog to a graph adjacency matrix, where each 
node represents an objective. For each matrix, we then identified the 
‘node’ (i.e. objective) with the highest measure of degree centrality 
(Golbeck, 2015). The approach indicated the following objectives as 
central to each cluster:  

1. mean[max(SB)], which is the inter-annual mean of the intra-annual 
maximum of daily salinity in Bangladesh (Gorai River at Khulna)  

2. mean[min4(QI)], which is the inter-annual mean of the four lowest 
intra-annual minimum daily flows to India  

3. min[mean(QI)], which is the inter-annual minimum of the intra- 
annual mean flow to India  

4. days(QI < 40k), which is the number of days (in the full 1998–2017 
period) where flow to India is less than 40,000 cusec, which is the 
maximum flow that India can receive 

Although these four objectives have the highest degree of centrality 
within each cluster, the chosen threshold D* < 1 ensures that the ob
jectives were positively correlated within clusters. Three of the four 
objectives pertain to India, but two of these clusters contain variables 
associated with Bangladesh. For instance, min(mean(QI)) and mean 
(min4(QI)) are highly correlated with min(mean(QB)) and mean 
(min4(QB)), respectively. As a result, the specific variable chosen for 
each cluster has little effect on the outcome of the Pareto-optimization, 
as shown in the sensitivity analysis in Section S3. 

2.5. Pareto frontier and scenario-neutral analysis 

The four central objectives (QI < 40k), min[mean(QI)], mean 
[min4(QI)], and mean[max(SB)]) embody the fundamental trade-offs of 
the biophysical system regulated by the Ganges treaty. The corre
sponding Pareto frontier – the set of solutions that are Pareto-optimal – 
can be identified as the convex hull of the enumerated solutions mapped 
in the four dimensional space spanned by the considered objectives. This 
mapping for the 25,121 treaty solutions, and the associated Pareto 
frontier is represented in Fig. 5 and discussed in the Results section 
(Section 3.1). Under the assumption that neither party will settle for a 
treaty that is non-dominant under current climate conditions, the 
Pareto-optimal set contains all treaty solutions that parties might plau
sibly choose from under the considered set of four central objectives. We 
further determined which treaty solutions of the Pareto-optimal set are 
also better than the current treaty according to all four objective vari
ables. These treaty solutions are referred to as POB (Pareto-optimal and 

Fig. 4. Hierarchical clustering. The dendro
gram of the initial set of 26 candidate objec
tives was pruned at different distance values 
D* (Panel A, colored vertical lines). One 
objective was randomly selected for each 
pruned sub-tree (Panel A, colored circles), and 
used to map the 25,121 treaty alternatives 
(Panel B) to visualize the associated trade- 
offs. Pruning the tree at an excessively low 
value of D* (light blue) results in a large 
number of clusters with objectives that are 
strongly correlated across clusters. In contrast 
an excessively high value of D* (dark blue) 
results in a small number of highly anti- 
correlated clusters. The former might fail to 
identify the fundamental trade-offs of the 
problem; the latter might fail to capture its 
relevant complexity. The selected cutoff at 
D* = 0.8 (red) achieves a balance between 
these two extremes with 4 strongly anti- 
correlated clusters. Red rectangles on the 
dendrogram (Panel A) indicate the four clus
ters considered in the subsequent analyses, 
and red circles indicate their central objective 
variable. Corresponding scatterplots of solu
tions (i.e. treaty alternatives) are provided in 
Fig.. 5.   
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better), under the assumption that parties will not settle for treaty so
lutions (whether Pareto-optimal or not) that are worse than the status 
quo with regards to any of the four considered objectives. 

To account for the effect of climate change, we identified the subset 
of solutions that remain in the POB set under the broadest range of 
plausible climate conditions. We used the scenario neutral climate 
vulnerability approach described in Brown et al. (2012) to determine 
which of the treaty solutions that are POB under historical climate 
conditions would remain so under alternative future climates. The effect 
of climate change on Ganges streamflow depends on the combined ef
fects of glacial melt in the Himalayas, changing rainfall patterns during 
the Indian monsoon and changing land and water use in the Gangetic 
plain, all of which are highly uncertain (Wilby and Dessai, 2010; Pervez 
and Henebry, 2014; Immerzeel et al., 2010; Lutz et al., 2014). In 
weighing all scenarios equally, we do not evaluate the risk (likelihood ×
impact) associated with climate change for each treaty allocation. 
Instead, we provide a first order evaluation of the robustness of treaty 
alternatives to specific changes in key climate drivers, without having to 
rely on a fully specified and down-scaled climate model to quantify these 
changes. In situations where climate predictions are readily available, 
the approach can be further refined by using weights to represent the 
predicted probability of each climate scenario (Brown et al., 2012). 

In the context of the Ganges, we consider three sources of hydro
climatic changes.  

1. Changes in flow available at Farakka barrage might be altered by 
changing precipitation patterns and water use upstream (Wilby and 
Dessai, 2010). In particular, precipitation is expected to decrease in 
critical pre-monsoon months (Pervez and Henebry, 2014), despite an 
overall expected increase of annual precipitation (Pervez and 
Henebry, 2014; Immerzeel et al., 2010). As a result, streamflow in 

the upper watershed of the Ganges is expected to increase through 
2050 (Lutz et al., 2014) in part due to greater runoff from melting 
glaciers (Immerzeel et al., 2010; Kumar et al., 2011; Siderius et al., 
2013), but the overall streamflow contribution from the Himalayas is 
expected to decrease with rising temperatures later in the century 
(Nepal et al., 2014). We incorporated these diverging predictions by 
simulating changes in the dry season Ganges streamflow (upstream 
of the Farakka barrage) ranging between −20% and  + 20% of their 
historical value, roughly approximating the range of expected 
changes in the basin [see (Immerzeel et al., 2010; Kumar et al., 
2011)]. We simulated these changes by multiplying daily simulated 
dry season streamflow into Farakka barrage by a constant factor 
ranging between 0.8 and 1.2.  

2. Sea level rise will affect salinity conditions in the delta. The sea level 
in the Bay of Bengal is estimated to rise approximately 0.43 – 0.84 m 
by 2100 (Oppenheimer et al., 2019). We simulated increases in sea 
level of 0, 0.2, 0.4, 0.6 and 0.8 m. These changes were incorporated 
into the boundary conditions of the salinity model as described in 
Section S2 in Supplementary Information.  

3. The geomorphology of the delta might be altered due to natural 
(sediment deposition) and anthropogenic (dredging) alteration. In 
particular, our salinity model focuses on the Gorai river, which is a 
major distributary of the Ganges river (see Fig. 1) that supplies 
freshwater to Southern Bangladesh, a region particularly prone to 
river salinization. The proportion of the Ganges streamflow diverted 
towards the Gorai has diminished subtantially over the past few 
years (Mirza, 1997), but might also increase in a future climate (e.g., 
if dredging operations are conducted Mohiuddin, 2002). To account 
for these possibilities, we considered alternative scenarios where the 
proportion of the Ganges flow diverted towards the Gorai river is 
assumed to be 80%, 100%, 120% and 160% of the current one. This 

Fig. 5. Pareto analysis results under 
historic climate conditions. A. 
Enumerated treaty solutions (N =

25,121) are plotted according to the 
performance measure of the central 
objective corresponding to each of the 
four selected clusters (axes and colors). 
The 2,252 treaty solutions that are on 
the Pareto frontier (i.e. that are Pareto 
optimal according to the four consid
ered objectives) are represented as 
large symbols. The black star indicates 
the performance measures for the four 
objectives applied to the current treaty. 
B. Boxplots of allocation parameters 
associated with the treaty solutions 
that are Pareto-optimal and better than 
the current treaty (N = 421), according 
to the four selected objectives. Param
eters corresponding to the current 
treaty are represented as black stars.   
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change is implemented by multiplying the parameter of the salinity 
model associated with advection (a in Section S2) by a constant 
representing the relative change in the Gorai flow diversion. 

3. Results 

3.1. Pareto-optimal treaty alternatives 

We found that approximately 10% (2,252) of the 25,121 enumerated 
treaty solutions were Pareto-optimal under historical climate condi
tions, when considering the four selected objectives (Fig. 5A). Without 
the dimensionality reduction procedure from Section 2.4 (i.e. consid
ering the full set of original objectives), the Pareto-optimal set of solu
tions would comprise at least 90% (22,566) of all enumerated solutions 
(see Supplementary Text S4). Remarkably, the current treaty is not 
among the Pareto-optimal treaty solutions, meaning that other treaty 
solutions would have (weakly) improved on all four objectives under 
historic conditions. Importantly, the above results are contingent on the 
four considered objectives. These were determined by our cluster anal
ysis to optimally capture the fundamental trade-offs of the biophysical 
system, and therefore conditioned by the initial set of candidate objec
tives that is fed into it, as discussed in Section 4. The current treaty might 
well be Pareto-optimal under another (to us unknown) set of objectives 
that were considered when the treaty was established. 

Of particular relevance are treaty solutions that are both (i) Pareto 
optimal and (ii) better than the current treaty with respect to the four 
considered objectives. These treaties, referred to as ‘Pareto-optimal and 
better’ (POB), make up approximately 19% of the Pareto optimal treaty 
solutions, or 1.7% of the total set of solutions. The distributions of the 
decision variables of POB treaty solutions are displayed in Fig. 5B. For 
most decision variables, the corresponding parameter of the current 
treaty fits within the interquartile range of POB solutions. This suggests 
that the POB treaty solutions are not substantially different from the 
current treaty for most decision variables. An exception arises for the 
parameter representing the guaranteed flow allocation during interval 
periods (Qint). Most (>99%) POB treaty solutions have a Qint smaller 

than the Qint = 35, 000 cusec of the current treaty, with 75% of the POB 
treaty solutions with a Qint value between 25,000 and 30,000 cusec. Our 
results therefore suggest that both parties would benefit from smaller 
guaranteed flows during interval allocation periods, but not from sup
pressing interval flows altogether. 

To interpret this result, consider that interval allocation periods are 
applied during the period of the year when minimum flow conditions are 
most likely to occur. Maximizing the minimum annual flow was iden
tified among the central objective by the clustering analysis. Because 
Qint typically accounts for the majority of total flows available during 
interval periods, minimum flow for one country generally occurs during 
the mandated allocation period for the other country (Rahman et al., 
2019). Under these conditions, a treaty with a lower guaranteed flow 
Qint would increase flow availability during the non-allocation intervals. 
Such a treaty would increase the annual minimal flow of both countries 
and would therefore dominate treaty solutions with a higher guaranteed 
flow. 

3.2. Robustness to changing climate conditions 

Fig. 6A describes the climate-sensitivity of Pareto-optimal solutions 
using two satisficing-based robustness measures (i.e. measures that 
reflect the tendency of decision makers to seek outcomes that meet one 
or more requirements but may not achieve optimal performance Her
man et al., 2015). The first analysis filters out the treaty solutions that 
are not POB under historic condition. It then evaluates the proportion of 
the remaining POB solutions that remain Pareto-approximate for each 
climate scenario.. Results in Fig. 6A (dashed) suggest that the POB treaty 
solutions are comparatively more sensitive to changes in mean dry 
season streamflow than to rises in sea level. Approximately 50% of the 
421 treaty solutions that are POB under current climate conditions 
remain POB for up to 80 cm increases in the mean sea level of the Bay of 
Bengal. In contrast, only 20% of currently POB treaty solutions remain 
so if mean dry season streamflow decreases by 20%. The set of POB 
solutions appears most sensitive to increases in mean dry season flows: a 
20% increase in dry season streamflow decreases the set of POB treaties 

Fig. 6. Robustness of treaty alternatives 
to changing climate drivers. A. Dashed 
circles represent the proportion of 
currently Pareto-optimal and better 
(POB) treaties that will remain POB 
under changing conditions of sea level 
(x-axis) and mean dry season streamflow 
(y-axis). Blue circles represent the pro
portion of treaty solutions that are also 
Pareto-optimal or better for 80% of the 
climate scenarios.The filled blue circle 
represents the proportion of treaty solu
tions that are currently POB and remain 
POB for 80% of the scenarios. B. Fraction 
of the currently POB solution set (x-axis) 
against the fraction of climate scenarios 
for which they remain POB (y-axis). The 
fraction of currently POB solutions 
remain POB in 80% of the considered 
scenarios is represented in blue vertical 
line (approximately 4%) and corre
sponds to the filled blue circle in panel A. 
C: Distributions of decision variables 
associated with treaty solutions that are 
POB for at least 80% of climate scenarios 
(filled blue circle in Panel A). Parameters 
of the current treaty are represented as a 
black star.   
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by 92%. In a second analysis, we determined for each state-of-the-world 
scenario, the subset of treaty alternatives that are also Pareto- 
approximate in most (80%) other scenarios (Fig. 6A, blue circles, an 
approach akin to the domain criterion robustness metric discussed in 
(Herman et al., 2015). The sets of treaty alternatives that remain POB 
under each of the three types of changes (sea level rise, increasing dry 
season flow and decreasing dry season flow) have similarly distributed 
parameters (Fig. 6C). This suggests that there is substantial overlap 
between the three sets. As seen in Fig. 6,B 4% of the treaties that are POB 
under current climate are also POB for 80% or more of the considered 
climate scenarios. These results are robust to uncertainties associated 
with geomorphological changes (dredging and silting) in the Gorai 
distributary, as shown in Figure S4. In describing the proportion of 
treaties that are POB under a given climate scenario, the first analysis 
(Fig. 6A dashed) evaluates how climate change might affect the diffi
culty of the problem. A larger proportion of POB treaties means that the 
solution that gets ultimately selected has a higher chance of being POB, 
i.e. the negotiation space is larger. In contrast, the second analysis 
(Fig. 6A blue) is helpful if there is substantial uncertainty on the likeli
hood of each scenario. It allows identification of the subset of currently 
POB treaty solutions that are robust in that they remain Pareto-optimal 
in most scenarios. Lastly we should note that both analyses pre-filter to 
keep only solutions that are currently Pareto optimal, under the as
sumptions that parties will not select a solution that is not currently 
Pareto-optimal. While intuitive, this assumption can be disputed as it is 
possible that a party prefers a solution that might be Pareto-optimal in 
the future, even if it is not Pareto optimal today. 

We turn our attention to the decision variable values associated with 
robust POB solutions. Climate-robust treaties are a subset of the treaty 
solutions that are POB under current climate conditions and so, unsur
prisingly, have similar distributions of decision variables (Fig. 6C). In 
particular, their interval flow threshold Qint is generally smaller than 
that of the current treaty in order to navigate the trade-off between 
average and minimum dry season flows (see previous Section). How
ever, climate-robust treaties differ from the wider set of POB treaties in 
that they have fewer and shorter intervals (smaller n and m) and a 
significantly larger Q2 threshold than the current treaty. To interpret 
these results, consider that a shorter period regulated by interval flows 
allows for a larger portion of the dry season to be governed by propor
tional flow allocation. We speculate that this, in turn, might decrease the 
total number of days with flow allocations less than 40,000 cusec, which 
was identified as a central objective by the clustering analysis. However, 
a shorter period with guaranteed interval flows might also decrease the 
treaty’s ability to dampen salinity conditions through increased fresh
water flow. Indeed, maximum salinity conditions generally occur to
wards the end of May (a few weeks after minimum flow conditions), 
during a period no longer regulated by interval flows. Under these 
conditions, we speculate that increasing Q2 is Pareto-improving because 
it increases the flow available to Bangladesh to mitigate river salinity 
during this critical period. We note that these results are likely driven by 
the fact that salinity conditions in India would likely be affected by an 
increase in Q2 but were not included in the initial set of candidate ob
jectives variables due to unavailable data, as discussed in Section 4. 

4. Discussion 

The optimization of shared river water is a complex challenge that 
requires reconciling the multiple objectives of numerous stakeholders, 
at times within a complex and not necessarily cooperative negotiation 
process. Problem-framing uncertainty can then emerge from the fact 
that stakeholder preference might be kept private for strategic reasons, 
causing the true vector of combined stakeholder objective to be hidden. 
This uncertainty adds on to uncertainties about future states of the world 
associated with climate change. The exploratory modelling approach 
that we propose combines hierarchical clustering with scenario neutral 
analysis to mitigate both types of uncertainties and facilitate the 

discovery of robust (Pareto) optimal river treaty configuration. It relies 
on a series of important assumptions, namely (i) an initial set of 
candidate objectives must be appropriately enumerated, (ii) these ob
jectives must be clustered in a way that does not lose (too much) in
formation about Pareto dominance, (iii) the Pareto optimal set of 
solutions must be accurately estimated, (iv) Pareto dominance must be 
an effective filter (i.e. the ideal solution must indeed lie within the 
estimated Pareto-optimal set) and (v) future states of the world must be 
properly enumerated. These five assumptions are individually discussed 
in the following paragraphs. 

4.1. Initial set of candidate objectives 

Whether the approach designates a treaty as Pareto-optimal is ulti
mately dependant upon the initial set of objective variables that are fed 
into the clustering algorithm. The 26 streamflow and salinity statistics 
chosen in our illustrative example were based on data availability and 
intuitive assumptions on the broad objectives of each party: maximizing 
streamflow, and minimizing salinity. In particular, we did not have ac
cess to calibrated models of salinity and siltation on the Indian side, both 
of which were stated as minimization objectives by India in their use of 
the Ganges water (Salman and Uprety, 1999). Including these variables 
into the initial set of objectives might have led to a different set of POB 
treaties. More fundamentally, by focusing on a specific set of state-based 
statistics, the approach does not engage with broader classes of objec
tives beyond statistics of flow and salinity (e.g., economic, equity, risk 
mitigation and sectoral priorities) that might be important to policy- 
makers in real transboundary river systems. 

These considerations have two important implications for the prac
tical applicability of our approach. First, the approach relies on appro
priate biophysical models that are able to accurately simulate all 
considered objective variables. The development and calibration of 
these models may require effective data-sharing and joint research effort 
between the countries party to the agreement. Second, the approach 
should be integrated within a broader process of knowledge co- 
production that acknowledges preexisting power dynamics and histor
ical legacies amongst stakeholders, in both the scientific and policy 
realms [see Wyborn et al., 2019]. This context should inform the 
formulation of the initial set of objective variables and the interpretation 
of the resulting Pareto partition. 

4.2. Clustering and information loss 

Reducing the dimensionality of the objective set implies a tension 
between simplifying the optimization problem and losing important 
information. This tradeoff is governed by the cutoff distance D* which 
determines the minimum level of correlation between the objectives 
within the clusters (and therefore the number of clusters and the extent 
of information loss). While some information loss is inevitable, it should 
minimally impact the composition of the ensuing Pareto-optimal set. 
The numerical experiment described in Supplementary Text S3 assesses 
the relationship between the size of the objective set and the relative 
ordering of objective rankings. We evaluated how sensitive the 
composition of the Pareto optimal set is to the two arbitrary parameters 
of the clustering approach, namely the choice of cutoff distance D* and 
the choice of the ’central’ objective to consider for each cluster. We 
found that the composition of the Pareto-optimal set was robust to both 
choices, as long as the objective chosen to represent each cluster has a 
sufficient degree of centrality within the cluster. 

4.3. Accuracy of approximated Pareto-optimal set 

Errors on the Pareto-optimal set can emerge from an incomplete 
enumeration of treaty solutions. As argued in Section 2.2., the bounds on 
the five decision variables represent physical constraints related to 

A. Kryston et al.                                                                                                                                                                                                                                 



Journal of Hydrology 612 (2022) 128004

10

diversion infrastructure or known historic legacies. Similarly, the 
enumeration intervals represent the smallest increment in the decision 
variables that would be practical to implement. Based on these consid
erations, we believe that the enumerated solutions are an accurate 
representation of the true set of solutions within the considered decision 
space. However, a more fundamental assumption concerns the decision 
space itself and its five decision variables which are based on the current 
treaty. The structure of the current treaty is rooted in a long history of 
bilateral interactions between India and Bangladesh over the Ganges 
river, which makes it likely to be carried over to the renewed treaty in 
2026. For example, the 10-day intervals with alternating flow guaran
tees date back to an initial agreement that was finalized days before the 
commission of the Farakka barrage (Salman and Uprety, 1999). The 
initial agreement was signed on April 18, 1975 and regulated with
drawals by India in portions of 10 days during the 41 remaining days of 
that single year’s dry season. However, the 10-day intervals of the 
current treaty have been criticized as propitious to unilateral flow 
withdrawals (Thomas, 2017) and as causing severe water scarcity dur
ing the intervals with non-guaranteed flow (Rahman et al., 2019). These 
considerations point to the potential for also examining treaty solutions 
that do not conform with the current treaty structure. For example, 
simulations by Kilgour and Dinar (2001) found that a flexible allocation 
based on flow forecasts might increase total welfare by up to 10% in dry 
years. 

4.4. Overlap with true set of Pareto-optimal solutions 

Our approach mitigates strategic framing uncertainty by identifying 
governing set of objectives based on (known) physical constraints of the 
systems, rather than the (hidden) preferences of its stakeholders. It 
follows that the ensuing set of objectives unlikely corresponds to the 
’true’ vector of combined stakeholder objectives, which remains hidden. 
Rather, the dimensionality reduction approach can be seen as a way to 
simplify a poorly framed (due to hidden objectives) many-objective 
optimization problem, using information available to all stakeholders. 
Because of this (and assuming all above assumptions hold), we conjec
ture that the ensuing set of Pareto-optimal solutions contains the true set 
of Pareto-optimal solutions. However, without knowledge of the true set 
of stakeholder objectives, this conjecture is challenging to test. At the 
very least, the hierarchical clustering approach that we propose 
(particularly the dendrogram in Fig. 4) can be used as a tool to help 
stakeholders visualize the governing trade-offs of the considered bio- 
physical system. 

4.5. Future states of the world and non-stationary climate 

International river agreements are traditionally based on long-term 
flow statistics computed from historic observation [e.g., Rahman 
et al., 2019]. The underlying assumption of a stationary flow regime is 
unlikely to hold in the context of climate change. The scenario-neutral 
approach that we propose is a first step towards addressing this issue 
by evaluating the sensitivity of treaty solutions to changes in key climate 
drivers, without requiring detailed climate simulations. However, it 
does not address many of the issues associated with changing flow re
gimes in transboundary basins. For example, scenario-neutral analyses 
make implicit assumptions about the range and independence of the 
climate drivers that can render the ensuing visualization misleading 
(Quinn et al., 2020). Changes in climate drivers can be correlated and 
systems might be particularly vulnerable to conditions outside the range 
of historical events (Borgomeo et al., 2015). As Quinn et al. (2020) put 
it: 

These assumptions could influence which factors are found to be 
most important and which policies are most robust, belying their 
neutrality; assuming uniformity and independence could have 
decision-relevant implications. 

More broadly, using long-term statistics in a non stationary context 
means that what is being optimized is a hypothetical value that does not 
exist, i.e. a long term average that may change more rapidly than the 
underlying timeseries it is theoretically calculated on. While adapted for 
situations where detailed climate predictions are unavailable, the 
scenario-neutral analysis can be seen as a temporary patch in the sense 
that it evaluates the climate sensitivity of a decision that is nonetheless 
made under the fundamental assumption of climate stationarity. 

5. Conclusions 

Transboundary water treaties face a variety of challenges due to 
changing climatic and environmental conditions, raising the issue of 
how to appropriately update existing treaties for an uncertain future. 

We develop an approach that addresses three key questions about 
transboundary treaty design: i) how to identify governing trade-offs 
associated with the bio-physical nature of the system; ii) how to visu
alize and determine the effects of the negotiated parameters of the treaty 
(decision variables) on its outcomes (objectives); and iii) how to identify 
agreeable (Pareto-optimal) treaty solution in a way that accounts for a 
changing and uncertain climate. The approach combines hierarchical 
clustering with a scenario-neutral analysis to achieve address these 
questions. 

Applied to the Ganges water agreement as an illustrative example, 
the approach shows promise in its ability to discard sub-optimal treaty 
alternatives. However, the example also shows that the output of the 
approach (i.e., the set of identified POB treaties) depends on the initial 
sets of treaty parameters and objective variables that are fed into the 
approach. Consequently, the location-specific numerical results that we 
present are not intended to serve as a basis to renew the treaty. Instead, 
the approach (rather than the illustrative results that we present) can be 
applied to support decisions in the much richer informational environ
ment available to actual decision makers. Our illustrative case study is 
intended to demonstrate the potential for this data-driven approach to 
support, rather than replace, a broader negotiation process and serve as 
a shared information basis around which stakeholders can coalesce. 
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