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Climate change will alter the flow availability and expected water allocations in international river treaties,
many of which were designed using historical flow records. Effective transboundary treaties should anticipate
these concerns and seek to satisfy the priorities of all riparian countries while being robust to impending changes
in climate. This task is complicated by the fact that specific objectives associated with each party’s priorities are

Keyw, Ordg_" R L not necessarily common knowledge (framing uncertainty), and the direction, amplitude and effect of long term
Multi-objective optimization . . . . . 5 . .
Ganges changes in hydro-climatic drivers can be highly uncertain (climate uncertainty).

We frame the design of a transboundary treaty as a multi-objective optimization problem. We use hierarchical

Climate change
clustering to address problem-framing uncertainty by identifying the subset of objectives associated with the

India-Bangladesh

Salinity governing trade-offs imposed by the bio-physical characteristics of the shared river system. We then carry out a
2000 MSC: scenario-neutral climate sensitivity analysis to identify climate-robust Pareto-optimal treaty solutions. We
0000 illustrate the approach for the Ganges water agreement, which is due to be renewed in 2026. Based on an
1111 enumerated population of 25,121 feasible treaty solutions, we identify governing objectives and 16 treaty so-

lutions that are Pareto optimal under most considered combinations of changes in sea level and dry season flow
regime. This work provides a path towards improving transboundary allocations for the Ganges water treaty and,
more broadly, a template to support transboundary cooperation over shared international rivers.

1. Introduction

Climate change and increased anthropogenic water use threaten
water security and pose challenges for water management in many ba-
sins around the world. Stronger storms (Chen et al., 2020), more intense
droughts (Overpeck and Udall, 2020), and greater hydro-meteorological
uncertainty (Panahi et al., 2020) are expected in many regions of the
world, where population growth combined with agricultural intensifi-
cation will further threaten water security. The consequences of these
changes include groundwater depletion (Cotterman et al., 2018),
freshwater and soil salinization (Haque, 2006), loss of livelihoods
(Muringai et al., 2019) and other environmental crises (Turner et al.,
2020). These issues are particularly evident in several internationally
shared basins, including the Nile (Beyene et al., 2010), Mekong(Kiem
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et al., 2008), Colorado (Barnett and Pierce, 2009) and Ganges (Rahman
et al., 2019) rivers. Stable and effective policy instruments to manage
transboundary waters have become critical for maintaining interna-
tional cooperation and preventing economic or political crises (Dinar
et al., 2016). Over two hundred transboundary river basins have been
identified, housing 42% of the global population. Water sharing in these
basins has led to the creation of over six hundred treaties on freshwater
management since the early nineteenth century (UNEP-DHI, UNEP,
2016). However, many of these agreements may not perform well under
an increasingly volatile and uncertain climate (Draper and Kundell,
2007). New or renegotiated agreements should ideally balance the
competing needs of each party while striving to support benefits that are
robust to a changing climate.

This process can be formulated as a multi-objective optimization
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problem that riparian countries cooperatively solve. Following the
framework in Maier et al. (2019), the objectives (i.e. outcomes of in-
terest) are to maximize environmental, social and economic benefits and
to minimize environmental, social and economic costs by selecting
appropriate transboundary flow allocation rules, which are the decision
variables. The set of objectives considered in the optimization corre-
sponds to the union of the sets of objectives associated with each party.
This formulation allows us to focus on conflicting objectives in terms of
tradeoffs between measures of system performance. This notion of
conflict does not necessarily correspond to conflicting actor incentives
as treated by non-cooperative game theory [see, e.g., (Miiller et al.,
2017; Penny et al., 2021)]. Indeed, the considered tradeoffs between
measures of system performance can also arise for a single actor with
conflicting performance objective measures. For example, a given actor
might want to simultaneously minimize the peak and maximize the
average of incoming streamflow.The constraints include the available
water resources, the physical limits on the diversion infrastructure,
political feasibility and historical legacies (e.g., pre-existing treaties). A
solution consists of the set of transboundary flow allocation rules that
form a treaty. Trade-offs associated with the potentially conflicting na-
ture of the objectives are captured by the notion of Pareto-optimality [e.
g., Kasprzyk et al., 2013]. A solution is Pareto-optimal if no change in
the decision variables could improve any objective without making the
situation worse for another. In contrast, a solution that is not Pareto
optimal would miss some of the possible joint gains of cooperation and
leaves on the table one or more solutions that would make all parties
better off (Kronaveter and Shamir, 2009). Pareto-optimality is therefore
a requisite attribute of cooperative bargaining solutions (Nash, 1953;
Kalai and Smorodinsky, 1975), and a desirable outcome for interna-
tional water negotiations (Kronaveter and Shamir, 2009).

In reality, of course, transboundary water negotiations might not be
cooperative and problem-framing uncertainties arise from the fact that
not all relevant optimization objectives are common knowledge across
the negotiating parties. Our approach relies on the assumption that an
initial broad set of candidate objectives can generally be constructed
intuitively based on the bio-physical and socio-political context (see
discussion in Section 4.1). For example, in the context of the Ganges,
both parties likely seek to maximize average flow availability during the
dry season, but minimize salinity and flow variability. These candidate
objectives might be refined using information available to both parties
(though not necessarily to the wider public) though appropriate ap-
proaches to engage stakeholders in a process of knowledge co-
production (Wyborn et al., 2019). However, the relative importance of
each objective for each party (i.e. objectives that matter vs. objectives
that can be safely removed from the optimization) might ultimately be
kept private for strategic reasons. In other words, the true set of opti-
mization objectives is likely unknown, which prevents the true set of
Pareto-optimal solutions from being discovered. This issue is well
known in the negotiation literature, where a variety of protocols have
been proposed to guide the negotiating parties towards the discovery
and achievement of Pareto-optimal outcomes [see, e.g., (Ehtamo et al.,
1999; Lai and Sycara, 2009; Kronaveter and Shamir, 2009)]. Here, in
contrast, we seek to decrease the dimensionality of the set of candidate
objectives ex ante, based on (known) dynamics of the bio-physical sys-
tem, rather than (publicly unknown) preferences of the negotiating
parties. Doing so does not necessarily reveal the true set of hidden
stakeholder objectives. Rather, the approach can be seen as a way to
leverage publicly available information to simplify a many-objective
optimization problem that is poorly framed due to hidden objectives
(see Section 4.4)

Pareto optimality is a non-dominance mathematical partitioning
rule. As one increases the number of objectives, the partitioning rule
becomes less discriminatory, resulting in an increase in the size of the
Pareto optimal set — a phenomenon known as dominance resistance [e.
g., (Reed et al., 2013)]. An excessively large set of objectives (such as the
full set of initial candidate objectives) will cause many solutions that are
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non-dominant under the true set of objectives to be included in the
discriminated solution set. In contrast, considering too few objectives
can lead to the opposite issue of oversimplifying the problem by missing
important portions of the objective set that are only non-dominated with
the addition of more objectives [see examples in (Kollat and Reed, 2007;
Woodruff et al., 2013)]. Our contribution is to leverage the internal
physical dynamics of the system to navigate this trade-off. We apply a
data-based pattern recognition technique (hierarchical clustering) on
enumerated solutions to reduce the dimensionality of the set of objec-
tives and approximate the Pareto-optimal set of solutions, while mini-
mizing information loss (see discussion in Section 4.2). In doing so, we
assume that all feasible treaty solutions can be enumerated, an
assumption that is discussed in Section 4.3. Our approach relates to the
literature seeking to reduce the complexity of many-objective optimi-
zation problems by exploiting the correlation between certain objectives
[e.g., (Deb et al., 2006; Brockhoff and Zitzler, 2006; Brockhoff and
Zitzler, 2009)]. For example, Giuliani et al. (2014) leverages numerical
correlations between objectives to aggregate them into a reduced
number of linear combinations of objectives (principal components),
with respect to which the optimization problem is solved. Here, we
follow Lindroth et al. (2010), and estimate Pearson correlation co-
efficients across enumerated solutions between pairs of objectives. We
then use a clustering procedure to systematically reduce the number of
objectives in a manner that is informed by the structure of these corre-
lations in the underlying dataset.

Another type of uncertainty, this time on the future states of the
world, arises from the fact that it is challenging to determine precisely
how much and how quickly the relevant climate inputs will change
(Deser et al., 2012). In that context, it is not sufficient to identify water
allocations that are Pareto-optimal under current conditions. Rather, the
analysis must also navigate the trade-off between objectives under a
range of potential changes in environmental constraints. We incorporate
a scenario-neutral sensitivity analysis to evaluate the robustness of the
Pareto-optimal set of solutions to different combinations of climate in-
puts. Following Brown et al. (2012), different components of the system
are considered to create a model with a climate response function. The
model is then perturbed by stochastically generated climate inputs, in
order to identify the climate states associated with high risk of systemic
failure. Despite the caveats discussed in Section 4.5 this type of scenario-
neutral analysis is commonly used to evaluate the climate vulnerability
of systems (Brown et al., 2012; Jones, 2001; Wilby and Dessai, 2010)
(including transboundary river systems (De Boer et al., 2021)) in situ-
ations where the change in the relevant climatic drivers is highly un-
certain. However, it has not (to our knowledge) been applied to evaluate
the effect of climate uncertainty on the composition of Pareto-optimal
solution sets.

The approach that we propose, which combines hierarchical clus-
tering and scenario neutral analysis, falls within the broader category of
exploratory modelling approaches, in the sense that it addresses both
types of uncertainty (on framing and on future world states) by using
numerical simulation to systematically explore their implications on
enumerated outcomes. It fits within recent frameworks to confront deep
uncertainty within water management problems through robust multi-
objective optimization [see, Moallemi et al., 2020 Table 1]. For
example, Kasprzyk et al. (2012) proposes an iterative framework where
a pre-processing analysis (Sobol” variance decomposition) is carried out

Table 1
Decision Variables.

Parameter Current Treaty Feasible Range Enum. Increment
P (%) 50 45,70 1
Q> (x 1000 cusec) 35 [30,40] 1
Qine (x 1000 cusec) 35 [25,40] 1
m (periods) 6 [0,10] 2
n (days) 10 [0,15] 5
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to reformulate the problem de Novo in a way that seeks to balance
complexity and effectiveness before the multi-objective optimization. In
a similar manner, we use hierarchical clustering here to refine an initial
vector of candidate objectives to update the dimensionality of the
problem before identifying Pareto-optimal solutions. Kasprzyk et al.
(2012) continues with a scenario analysis to test the robustness of so-
lutions to model assumptions — a step that mirrors our proposed
scenario-neutral analysis.

We demonstrate our combined approach using the Ganges Water
Sharing Agreement (GWSA) between India and Bangladesh as an illus-
trative example. The agreement determines the flow of the Ganges into
Bangladesh during the dry season (January-May) by regulating the
operation of the Farakka barrage (Fig. 1) in India, approximately 100 km
upstream of the border. The barrage diverts Ganges river water into the
Bhagirathi-Hooghly river, a distributary of the Ganges that discharges
into the Bay of Bengal in India, near the port city of Kolkata. The GWSA
exemplifies the multi-faceted challenges associated with transboundary
river management under a changing climate. The treaty was signed in
1996, with the purpose of balancing flow requirements to de-silt the port
of Kolkata — one of India’s major cargo ports — with dry season irrigation
and environmental water needs in Bangladesh (Tanzeema and Faisal,
2001). Since then, the flow regime of the Ganges and the geo-
morphology of the delta have changed substantially under the coupled
effect of changing rain patterns and upstream water uses (Rahman et al.,
2000). In addition, salt intrusion has become a major concern
throughout the Ganges delta, due in part to sea level rise and increas-
ingly frequent and intense storm surges (Rahman et al., 2019). These
changes have had particularly damaging economic, public health and
ecological impact in coastal communities in South-Western Bangladesh
and the Sundarbans, a unique (and world’s largest) mangrove ecosystem
(Faisal and Parveen, 2004). Sufficient provision of freshwater inflow
through the Ganges is paramount to prevent saline intrusions (Rahman
et al., 2000; Pethick and Orford, 2013; Shammi et al., 2016). These
rapidly changing conditions might have reduced the effectiveness of
current treaty allocations (Penny et al., 2020), which were based on
average flow data collected from 1949 — 1988 and have not been
updated (Salman and Uprety, 1999). Because the treaty is slated to be
renewed in 2026, a tractable approach to understand and visualize the
implicated hydrologic trade-offs is of immediate policy relevance.

2. Methods
2.1. Optimization problem and decision variables

We use the notation in (Kasprzyk et al., 2013) to formulate the new
GWSA treaty as a multi-objective optimization problem seeking to

minimize a vector F of P objectives (f1, f2, ..., fr) by choosing a vector I of
decision variables within a decision space Q:
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where c;(I) < OVi € [1,q] represents q constraints on the vector of deci-
sion variables. Feasible solutions are defined as those meeting all the
imposed constraints. A solution F(a) dominates another solution F(b) if
fi(a)=f;(b)¥i and Jj|f;(a) > fj(b). The solution is Pareto optimal if it is
non-dominated with respect to all other feasible solutions (Kasprzyk
et al., 2013).

We defined decision variables by parameterizing the current treaty
under the premise that its structure will serve as a basis for its renewal in
2026. The current treaty allocates a fixed percentage (po1 = 50%) of
incoming streamflow to Bangladesh (and the remaining flow to India),
up to a threshold (Q; = 35, 000 cubic feet per second, or cusec) allocated
to Bangladesh. This threshold corresponds to a total incoming stream-
flow of 70,000 cusec (Q2/ pqi1) upstream of the diversion. Additional
flow beyond that threshold is allocated to India (with flow to Bangladesh
maintained at Q; = 35,000 cusec), up to another threshold of 40,000
cusec allocated to India. This latter threshold is determined by the ca-
pacity of the canal diverting the flow towards India (Kawser and Samad,
2016), and is unlikely to be altered in a renewed treaty. Under current
treaty allocations, this threshold corresponds to a total flow of
Q> +40,000 = 75,000 cusec upstream of the diversion. The treaty also
includes special provisions for the driest period of the year (March 11 to
May 10) during which guaranteed flows are allocated to Bangladesh and
India in alternating 10-day periods. The current treaty splits this period,
centered around April 10, into n = 6 intervals of m = 10 days, during
which a minimum flow of Qi = 35,000 cusec is alternately guaranteed
to each country [see Penny et al., 2020].Treaty allocation rules and the
five parameters that govern them (pq1, Q2, Qine, m and n) are summarized
in Fig. 2. These five parameters constitute the decision variable vector 1
of the multi-objective optimization.

2.2. Constraints and enumeration of solutions

The five decision variables are bound by a series of constraints
(summarized in Table 1) associated with the physical flow diversion
infrastructure and historical legacies. Namely, the feeder canal linking
the Ganges at Farakka barage with the Hooghly river has a capacity of
40,000 cusec. Assuming that the physical capacity of the canal will not
be increased when the treaty is renewed, this sets a hard limit on the
flow that can be diverted to India. Accordingly, Q2 and Qi are capped at
40,000 cusec. In addition, the current treaty prescribes emergency ar-
rangements if the total flow of the Ganges at Farakka falls below 50,000
cusec. We assumed that this clause will carry over to the renewed treaty,
and set a lower limit of Qi at 50,000/2 = 25,000 cusec. This allows each
party to benefit from intervals of guaranteed flows before emergency
measures are invoked (i.e., for incoming flows at Farakka equal to or
higher than 50,000 cusec). Further, the minimum flow for Q is set to
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Fig. 1. The Ganges-Brahmaputra-Meghna Rivers (A) and Ganges delta (B).
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Fig. 2. Flow allocation rules of the

current Ganges river treaty. A.

Streamflow allocations to India (y-
out axis, green) and Bangladesh (y-axis,
pink) as functions of total Ganges flow
upstream of the diversion (Q;,, x-axis).
Sub-panels represent allocation rules
outside of intervals periods (left), and
during intervals periods with guaran-
teed flow to Bangladesh (‘B’,middle)
and India (‘I’, right). Treaty parame-
ters Variables pg1, Q2, Qine,n and m are
| further defined in Table 1. The dashed
i square on the left panel represents the
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30,000 cusec, so that there generally remains a period of total flow
above emergency measures (50,000 cusec) that is dictated by po:. The
number and duration of intervals (m and n) are set so that the total
period governed by interval allocation remains at or below 150 days,
which corresponds to the entire duration of the annual low flow period
regulated by the treaty (January 1 to May 31); m must also be an even
number for both countries to be attributed identical numbers of guar-
anteed flow periods. Regarding the percentage of flow allocated to
Bangladesh under low flow conditions outside of the interval period, we
arbitrarily set its boundaries at 45% and 70%. The current treaty divides
these flow conditions equally between the two countries, so deviations
from the status quo are likely politically challenging. Yet if the param-
eter does become altered in the renewed treaty, we assumed it to be
more likely in the favor of India due to its favorable hydro-strategic
position. The ensuing constraints c;(1) on the decision variables are
summarized in Table 1.

We enumerated 25,121 feasible treaty solutions that span the con-
strained decision space at regular intervals. These intervals (displayed
on Table 1) represent the smallest increment in the decision variables
that would be practical to implement. For example, the flow increment
of 1000 cusec (or 2.8 m®/s) corresponds to a height increment of only
approximately 15 cm across the 11 gates of 12 m span that form the head
regulation structure of the diversion canal (assuming sluice gates with a
spillway coefficient of 1). Given these considerations, the intervals in
Table 1 are sufficiently small for the enumerated solutions to allow for a
reasonable approximation of the true Pareto-optimal set associated with
the considered objectives.

2.3. Initial set of candidate objectives

Our initial set of candidate objectives relate to flow conditions in
India and Bangladesh immediately downstream of the diversion, and to
salinity conditions in the Gorai River in Bangladesh, near the city of

Khulna. Flow and salinity conditions in the Gorai are critical in terms of
controlling salinity conditions in southwest Bangladesh, a region that is
particularly vulnerable and sensitive to saline intrusions from the Bay of
Bengal (Mirza and Sarker, 2004). Under the premise that both countries
seek to maximize average flows but minimize flow variability and
salinity (a strong assumption that is discussed in Section 4.1), we con-
structed the initial set of 26 candidate objectives described in Table 2
with the aim of capturing the central tendency, variability and extremes

Table 2
Initial set of objective variables.

Flow to India Flow to Bangladesh Salinity in Bangladesh

mean[min(Q;)] mean[min(Qp)] *mean[max(Sg)]
*cv[mean(Q;)] *cv[mean(Qz)] *mean(Sg )
mean(Qy) mean(Qp) *mean(Sg)
mean(Q;q) mean(Qp q) *cv(mean(Sp))
*days(Q; < 40k) mean[ming(Qg)] *max(Sp q)
mean [ming (Q;)] min(Qg) *max(Sg)
min(Qy) min(Qgq) *mean[max4(Sp)]
min(Qq) min[mean(Qz] *days(Sg >5)
min[mean(Q;)] *max[mean(Sp)]

Note: Where two statistics are applied, the outermost represents an inter-annual
statistic, and the innermost an intra-annual statistic. Subscript I refers to India, B
to Bangladesh. Subscript d refers to the period of typically lowest flow (March
11-May 10). Subscript 4 indicates that the considered statistic was determined
over a moving window of four years. For example, ‘mean[max4(Sg)]’ is the inter-
annual mean of the maximum daily salinity for the four years with the highest
daily salinity. The number of days throughout the 1998-2017 period that flow to
India was under 40,000 cusec is given by the variable ‘days(Q; < 40k)’. The
number of days throughout the twenty year period that salinity in Bangladesh
was over 5 ppt is given as ‘days(Sg >5)’, reflecting an estimate of days in which
salinity exceeds suggested levels (Clarke et al., 2015). * indicates variables for
which optimization indicates minimization.
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of flow and salinity at intra- and inter-annual time scales.

We evaluated the 26 candidate objectives for each of the 25,121
enumerated solutions by applying the corresponding diversion rules to
historical (1998-2017) Ganges streamflow upstream of Farakka. This
allowed us to simulate historical downstream conditions in India and
Bangladesh, had the existing treaty allocations been different. To do so,
we proceed as follows (see Fig. 3):

1. Multiple data sources were combined (see Supplementary Informa-
tion Section S1) to construct estimates of daily inflow to Farakka
barrage during the January 1 to May 31 period between 1998 and
2017.

2. Daily streamflow allocations to India and Bangladesh were recon-
structed using treaty parameters for each of the 25,121 considered
treaty alternatives.

3. A simple physically-based salinity model was used to simulate
salinity in the Ganges delta in Bangladesh (Gorai River at Khulna,
Fig. 1). The salinity model incorporates advection and first order
exchange processes and is influenced by the incoming streamflow,
mixing volume (e.g., channel geometry) and downstream salinity
conditions; see Section S2 and (Penny et al., 2020).

The resulting simulations of daily streamflow (India and Bangladesh)

and salinity (Bangladesh) were then used to compute the statistics cor-
responding to each candidate objective.

2.4. Dimensionality reduction

Starting with the initial set of candidate objectives, we sought to

Flow Observations
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reduce the number of objectives by exploiting the fact that some ob-
jectives might be correlated due to underlying bio-physical relationship.
For example, physical constraints (e.g., mass balance, advection and
mixing) associate an increased flow to India with a decreased flow and
increased salinity in Bangladesh. Characterizing how these de-
pendencies play out between each combination of objectives in Table 2
might allow them to be grouped into clusters that best embody the
governing physical trade-offs of the system and discount the effect of
potentially redundant objectives.

We used the procedure of agglomerative hierarchical clustering to
classify the initial set of candidate objectives according to their simi-
larity across the 25,121 solutions (Legendre and Legendre, 1998). To do
so, we defined a dissimilarity (or distance) matrix

D= (1-R)) € 0.2

where R;; is the Pearson correlation coefficient between the simulated
value of objectives i and j across the 25,121 enumerated solutions. Prior
to calculating the Pearson coefficient, statistics associated with salinity
levels and flow variability (which parties seek to minimize) were
multiplied by —1. We then implemented complete linkage clustering to
group the candidate objectives in increasing order of dissimilarity — the
most correlated pairs of candidate objectives were grouped first — and
produce a cluster tree, or dendrogram (Fig. 4). Another way to consider
the problem is to think of the 26 initial candidate objectives as a network
of 26 nodes with distance matrix given by D;. Hierarchical clustering
was used to identify the communities within the obtained graph that
best represents its structure (Radicchi et al., 2004).

Clusters of similar candidate objectives were determined by cutting

100 Climate Scenarios

v
Daily flow estimates|
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————— — dry season
at Farakka Barrage Ganges flow
25,121 treaty alternatives
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Fig. 3. Approach used to generate treaty solutions (grey) and evaluate their sensitivity to changing climate drivers (white). Procedures associated with the
reconstruction of historic streamflow at Farakka and the calibration and validation of the salinity model are presented in Sections S1 and S2 of Supplementary

Information.
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Fig. 4. Hierarchical clustering. The dendro-
gram of the initial set of 26 candidate objec-
tives was pruned at different distance values
D" (Panel A, colored vertical lines). One
objective was randomly selected for each
pruned sub-tree (Panel A, colored circles), and
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number of clusters with objectives that are
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an excessively high value of D" (dark blue)
results in a small number of highly anti-
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the dendrogram so that all candidate objectives contained by a cut
branch fall within a single cluster. Although several techniques exist to
optimally prune hierarchical dendrograms [e.g., (Langfelder et al.,
2008)], a parsimonious approach is to cut the tree at a constant
dissimilarity threshold D". An optimal value of D" will maximize both
the similarity of objectives within clusters and the dissimilarity of objec-
tives between clusters. An excessively small D* would produce a large
number of similar clusters and fail to capture the governing trade-offs of
the problem. In contrast, an excessively large D" would group dissimilar
objectives within the same cluster. If the objectives within a cluster are
too dissimilar, the choice of the particular objective used to represent
the cluster in the Pareto optimization will strongly influence its result
(Figure S5). Here we used a dissimilarity threshold D" = 1. This cor-
responds to a Pearson correlation coefficient R* = 0, meaning that ob-
jectives within clusters are positively correlated across the 25,121
enumerated solutions, whereas objectives across clusters are negatively
correlated. In our specific case study, a threshold D" = 1 falls at the limit
between three and four clusters (Fig. 4A, light green line). We opted for
four clusters to increase the similarity of objectives within a cluster and
make the Pareto optimization less sensitive to the particular choice of
the objectives used to represent each cluster.

We identified a single representative objective per cluster by
considering the correlation matrix R; associated with each cluster (one
matrix by cluster) as an analog to a graph adjacency matrix, where each
node represents an objective. For each matrix, we then identified the
‘node’ (i.e. objective) with the highest measure of degree centrality
(Golbeck, 2015). The approach indicated the following objectives as
central to each cluster:

1. mean[max(Sg)], which is the inter-annual mean of the intra-annual
maximum of daily salinity in Bangladesh (Gorai River at Khulna)

2. mean[min4(Q;)], which is the inter-annual mean of the four lowest
intra-annual minimum daily flows to India

6000 5000
max[mean(Sg)] (ppm)

4000 3000

3. min[mean(Q;)], which is the inter-annual minimum of the intra-
annual mean flow to India

4. days(Q; < 40k), which is the number of days (in the full 1998-2017
period) where flow to India is less than 40,000 cusec, which is the
maximum flow that India can receive

Although these four objectives have the highest degree of centrality
within each cluster, the chosen threshold D" < 1 ensures that the ob-
jectives were positively correlated within clusters. Three of the four
objectives pertain to India, but two of these clusters contain variables
associated with Bangladesh. For instance, min(mean(Q;)) and mean
(ming(Q)) are highly correlated with min(mean(Qg)) and mean
(min4(Qg)), respectively. As a result, the specific variable chosen for
each cluster has little effect on the outcome of the Pareto-optimization,
as shown in the sensitivity analysis in Section S3.

2.5. Pareto frontier and scenario-neutral analysis

The four central objectives (Q; < 40k), min[mean(Q;)], mean
[min4(Qp)], and mean[max(Sg)]) embody the fundamental trade-offs of
the biophysical system regulated by the Ganges treaty. The corre-
sponding Pareto frontier — the set of solutions that are Pareto-optimal —
can be identified as the convex hull of the enumerated solutions mapped
in the four dimensional space spanned by the considered objectives. This
mapping for the 25,121 treaty solutions, and the associated Pareto
frontier is represented in Fig. 5 and discussed in the Results section
(Section 3.1). Under the assumption that neither party will settle for a
treaty that is non-dominant under current climate conditions, the
Pareto-optimal set contains all treaty solutions that parties might plau-
sibly choose from under the considered set of four central objectives. We
further determined which treaty solutions of the Pareto-optimal set are
also better than the current treaty according to all four objective vari-
ables. These treaty solutions are referred to as POB (Pareto-optimal and
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Fig. 5. Pareto analysis results under
historic  climate  conditions.  A.

Enumerated treaty solutions (N =
25,121) are plotted according to the
performance measure of the central
objective corresponding to each of the
four selected clusters (axes and colors).
The 2,252 treaty solutions that are on
the Pareto frontier (i.e. that are Pareto
optimal according to the four consid-
ered objectives) are represented as
large symbols. The black star indicates
the performance measures for the four
. objectives applied to the current treaty.
o B. Boxplots of allocation parameters
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better), under the assumption that parties will not settle for treaty so-
lutions (whether Pareto-optimal or not) that are worse than the status
quo with regards to any of the four considered objectives.

To account for the effect of climate change, we identified the subset
of solutions that remain in the POB set under the broadest range of
plausible climate conditions. We used the scenario neutral climate
vulnerability approach described in Brown et al. (2012) to determine
which of the treaty solutions that are POB under historical climate
conditions would remain so under alternative future climates. The effect
of climate change on Ganges streamflow depends on the combined ef-
fects of glacial melt in the Himalayas, changing rainfall patterns during
the Indian monsoon and changing land and water use in the Gangetic
plain, all of which are highly uncertain (Wilby and Dessai, 2010; Pervez
and Henebry, 2014; Immerzeel et al., 2010; Lutz et al., 2014). In
weighing all scenarios equally, we do not evaluate the risk (likelihood x
impact) associated with climate change for each treaty allocation.
Instead, we provide a first order evaluation of the robustness of treaty
alternatives to specific changes in key climate drivers, without having to
rely on a fully specified and down-scaled climate model to quantify these
changes. In situations where climate predictions are readily available,
the approach can be further refined by using weights to represent the
predicted probability of each climate scenario (Brown et al., 2012).

In the context of the Ganges, we consider three sources of hydro-
climatic changes.

1. Changes in flow available at Farakka barrage might be altered by
changing precipitation patterns and water use upstream (Wilby and
Dessai, 2010). In particular, precipitation is expected to decrease in
critical pre-monsoon months (Pervez and Henebry, 2014), despite an
overall expected increase of annual precipitation (Pervez and
Henebry, 2014; Immerzeel et al., 2010). As a result, streamflow in
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the upper watershed of the Ganges is expected to increase through
2050 (Lutz et al., 2014) in part due to greater runoff from melting
glaciers (Immerzeel et al., 2010; Kumar et al., 2011; Siderius et al.,
2013), but the overall streamflow contribution from the Himalayas is
expected to decrease with rising temperatures later in the century
(Nepal et al., 2014). We incorporated these diverging predictions by
simulating changes in the dry season Ganges streamflow (upstream
of the Farakka barrage) ranging between —20% and + 20% of their
historical value, roughly approximating the range of expected
changes in the basin [see (Immerzeel et al., 2010; Kumar et al.,
2011)]. We simulated these changes by multiplying daily simulated
dry season streamflow into Farakka barrage by a constant factor
ranging between 0.8 and 1.2.

2. Sea level rise will affect salinity conditions in the delta. The sea level
in the Bay of Bengal is estimated to rise approximately 0.43 — 0.84 m
by 2100 (Oppenheimer et al., 2019). We simulated increases in sea
level of 0, 0.2, 0.4, 0.6 and 0.8 m. These changes were incorporated
into the boundary conditions of the salinity model as described in
Section S2 in Supplementary Information.

3. The geomorphology of the delta might be altered due to natural
(sediment deposition) and anthropogenic (dredging) alteration. In
particular, our salinity model focuses on the Gorai river, which is a
major distributary of the Ganges river (see Fig. 1) that supplies
freshwater to Southern Bangladesh, a region particularly prone to
river salinization. The proportion of the Ganges streamflow diverted
towards the Gorai has diminished subtantially over the past few
years (Mirza, 1997), but might also increase in a future climate (e.g.,
if dredging operations are conducted Mohiuddin, 2002). To account
for these possibilities, we considered alternative scenarios where the
proportion of the Ganges flow diverted towards the Gorai river is
assumed to be 80%, 100%, 120% and 160% of the current one. This



A. Kryston et al.

change is implemented by multiplying the parameter of the salinity
model associated with advection (a in Section S2) by a constant
representing the relative change in the Gorai flow diversion.

3. Results
3.1. Pareto-optimal treaty alternatives

We found that approximately 10% (2,252) of the 25,121 enumerated
treaty solutions were Pareto-optimal under historical climate condi-
tions, when considering the four selected objectives (Fig. 5A). Without
the dimensionality reduction procedure from Section 2.4 (i.e. consid-
ering the full set of original objectives), the Pareto-optimal set of solu-
tions would comprise at least 90% (22,566) of all enumerated solutions
(see Supplementary Text S4). Remarkably, the current treaty is not
among the Pareto-optimal treaty solutions, meaning that other treaty
solutions would have (weakly) improved on all four objectives under
historic conditions. Importantly, the above results are contingent on the
four considered objectives. These were determined by our cluster anal-
ysis to optimally capture the fundamental trade-offs of the biophysical
system, and therefore conditioned by the initial set of candidate objec-
tives that is fed into it, as discussed in Section 4. The current treaty might
well be Pareto-optimal under another (to us unknown) set of objectives
that were considered when the treaty was established.

Of particular relevance are treaty solutions that are both (i) Pareto
optimal and (ii) better than the current treaty with respect to the four
considered objectives. These treaties, referred to as ‘Pareto-optimal and
better’ (POB), make up approximately 19% of the Pareto optimal treaty
solutions, or 1.7% of the total set of solutions. The distributions of the
decision variables of POB treaty solutions are displayed in Fig. 5B. For
most decision variables, the corresponding parameter of the current
treaty fits within the interquartile range of POB solutions. This suggests
that the POB treaty solutions are not substantially different from the
current treaty for most decision variables. An exception arises for the
parameter representing the guaranteed flow allocation during interval
periods (Qint). Most (>99%) POB treaty solutions have a Q;,; smaller
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than the Qi = 35,000 cusec of the current treaty, with 75% of the POB
treaty solutions with a Qs value between 25,000 and 30,000 cusec. Our
results therefore suggest that both parties would benefit from smaller
guaranteed flows during interval allocation periods, but not from sup-
pressing interval flows altogether.

To interpret this result, consider that interval allocation periods are
applied during the period of the year when minimum flow conditions are
most likely to occur. Maximizing the minimum annual flow was iden-
tified among the central objective by the clustering analysis. Because
Qint typically accounts for the majority of total flows available during
interval periods, minimum flow for one country generally occurs during
the mandated allocation period for the other country (Rahman et al.,
2019). Under these conditions, a treaty with a lower guaranteed flow
Qint would increase flow availability during the non-allocation intervals.
Such a treaty would increase the annual minimal flow of both countries
and would therefore dominate treaty solutions with a higher guaranteed
flow.

3.2. Robustness to changing climate conditions

Fig. 6A describes the climate-sensitivity of Pareto-optimal solutions
using two satisficing-based robustness measures (i.e. measures that
reflect the tendency of decision makers to seek outcomes that meet one
or more requirements but may not achieve optimal performance Her-
man et al., 2015). The first analysis filters out the treaty solutions that
are not POB under historic condition. It then evaluates the proportion of
the remaining POB solutions that remain Pareto-approximate for each
climate scenario.. Results in Fig. 6A (dashed) suggest that the POB treaty
solutions are comparatively more sensitive to changes in mean dry
season streamflow than to rises in sea level. Approximately 50% of the
421 treaty solutions that are POB under current climate conditions
remain POB for up to 80 cm increases in the mean sea level of the Bay of
Bengal. In contrast, only 20% of currently POB treaty solutions remain
so if mean dry season streamflow decreases by 20%. The set of POB
solutions appears most sensitive to increases in mean dry season flows: a
20% increase in dry season streamflow decreases the set of POB treaties

Fig. 6. Robustness of treaty alternatives
to changing climate drivers. A. Dashed

circles represent the proportion of
currently Pareto-optimal and better
(POB) treaties that will remain POB
under changing conditions of sea level
(x-axis) and mean dry season streamflow
(y-axis). Blue circles represent the pro-
portion of treaty solutions that are also
Pareto-optimal or better for 80% of the
climate scenarios.The filled blue circle
represents the proportion of treaty solu-
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by 92%. In a second analysis, we determined for each state-of-the-world
scenario, the subset of treaty alternatives that are also Pareto-
approximate in most (80%) other scenarios (Fig. 6A, blue circles, an
approach akin to the domain criterion robustness metric discussed in
(Herman et al., 2015). The sets of treaty alternatives that remain POB
under each of the three types of changes (sea level rise, increasing dry
season flow and decreasing dry season flow) have similarly distributed
parameters (Fig. 6C). This suggests that there is substantial overlap
between the three sets. As seen in Fig. 6,B 4% of the treaties that are POB
under current climate are also POB for 80% or more of the considered
climate scenarios. These results are robust to uncertainties associated
with geomorphological changes (dredging and silting) in the Gorai
distributary, as shown in Figure S4. In describing the proportion of
treaties that are POB under a given climate scenario, the first analysis
(Fig. 6A dashed) evaluates how climate change might affect the diffi-
culty of the problem. A larger proportion of POB treaties means that the
solution that gets ultimately selected has a higher chance of being POB,
i.e. the negotiation space is larger. In contrast, the second analysis
(Fig. 6A blue) is helpful if there is substantial uncertainty on the likeli-
hood of each scenario. It allows identification of the subset of currently
POB treaty solutions that are robust in that they remain Pareto-optimal
in most scenarios. Lastly we should note that both analyses pre-filter to
keep only solutions that are currently Pareto optimal, under the as-
sumptions that parties will not select a solution that is not currently
Pareto-optimal. While intuitive, this assumption can be disputed as it is
possible that a party prefers a solution that might be Pareto-optimal in
the future, even if it is not Pareto optimal today.

We turn our attention to the decision variable values associated with
robust POB solutions. Climate-robust treaties are a subset of the treaty
solutions that are POB under current climate conditions and so, unsur-
prisingly, have similar distributions of decision variables (Fig. 6C). In
particular, their interval flow threshold Q;, is generally smaller than
that of the current treaty in order to navigate the trade-off between
average and minimum dry season flows (see previous Section). How-
ever, climate-robust treaties differ from the wider set of POB treaties in
that they have fewer and shorter intervals (smaller n and m) and a
significantly larger Q, threshold than the current treaty. To interpret
these results, consider that a shorter period regulated by interval flows
allows for a larger portion of the dry season to be governed by propor-
tional flow allocation. We speculate that this, in turn, might decrease the
total number of days with flow allocations less than 40,000 cusec, which
was identified as a central objective by the clustering analysis. However,
a shorter period with guaranteed interval flows might also decrease the
treaty’s ability to dampen salinity conditions through increased fresh-
water flow. Indeed, maximum salinity conditions generally occur to-
wards the end of May (a few weeks after minimum flow conditions),
during a period no longer regulated by interval flows. Under these
conditions, we speculate that increasing Q is Pareto-improving because
it increases the flow available to Bangladesh to mitigate river salinity
during this critical period. We note that these results are likely driven by
the fact that salinity conditions in India would likely be affected by an
increase in Q, but were not included in the initial set of candidate ob-
jectives variables due to unavailable data, as discussed in Section 4.

4. Discussion

The optimization of shared river water is a complex challenge that
requires reconciling the multiple objectives of numerous stakeholders,
at times within a complex and not necessarily cooperative negotiation
process. Problem-framing uncertainty can then emerge from the fact
that stakeholder preference might be kept private for strategic reasons,
causing the true vector of combined stakeholder objective to be hidden.
This uncertainty adds on to uncertainties about future states of the world
associated with climate change. The exploratory modelling approach
that we propose combines hierarchical clustering with scenario neutral
analysis to mitigate both types of uncertainties and facilitate the
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discovery of robust (Pareto) optimal river treaty configuration. It relies
on a series of important assumptions, namely (i) an initial set of
candidate objectives must be appropriately enumerated, (ii) these ob-
jectives must be clustered in a way that does not lose (too much) in-
formation about Pareto dominance, (iii) the Pareto optimal set of
solutions must be accurately estimated, (iv) Pareto dominance must be
an effective filter (i.e. the ideal solution must indeed lie within the
estimated Pareto-optimal set) and (v) future states of the world must be
properly enumerated. These five assumptions are individually discussed
in the following paragraphs.

4.1. Initial set of candidate objectives

Whether the approach designates a treaty as Pareto-optimal is ulti-
mately dependant upon the initial set of objective variables that are fed
into the clustering algorithm. The 26 streamflow and salinity statistics
chosen in our illustrative example were based on data availability and
intuitive assumptions on the broad objectives of each party: maximizing
streamflow, and minimizing salinity. In particular, we did not have ac-
cess to calibrated models of salinity and siltation on the Indian side, both
of which were stated as minimization objectives by India in their use of
the Ganges water (Salman and Uprety, 1999). Including these variables
into the initial set of objectives might have led to a different set of POB
treaties. More fundamentally, by focusing on a specific set of state-based
statistics, the approach does not engage with broader classes of objec-
tives beyond statistics of flow and salinity (e.g., economic, equity, risk
mitigation and sectoral priorities) that might be important to policy-
makers in real transboundary river systems.

These considerations have two important implications for the prac-
tical applicability of our approach. First, the approach relies on appro-
priate biophysical models that are able to accurately simulate all
considered objective variables. The development and calibration of
these models may require effective data-sharing and joint research effort
between the countries party to the agreement. Second, the approach
should be integrated within a broader process of knowledge co-
production that acknowledges preexisting power dynamics and histor-
ical legacies amongst stakeholders, in both the scientific and policy
realms [see Wyborn et al., 2019]. This context should inform the
formulation of the initial set of objective variables and the interpretation
of the resulting Pareto partition.

4.2. Clustering and information loss

Reducing the dimensionality of the objective set implies a tension
between simplifying the optimization problem and losing important
information. This tradeoff is governed by the cutoff distance D" which
determines the minimum level of correlation between the objectives
within the clusters (and therefore the number of clusters and the extent
of information loss). While some information loss is inevitable, it should
minimally impact the composition of the ensuing Pareto-optimal set.
The numerical experiment described in Supplementary Text S3 assesses
the relationship between the size of the objective set and the relative
ordering of objective rankings. We evaluated how sensitive the
composition of the Pareto optimal set is to the two arbitrary parameters
of the clustering approach, namely the choice of cutoff distance D* and
the choice of the ’central’ objective to consider for each cluster. We
found that the composition of the Pareto-optimal set was robust to both
choices, as long as the objective chosen to represent each cluster has a
sufficient degree of centrality within the cluster.

4.3. Accuracy of approximated Pareto-optimal set

Errors on the Pareto-optimal set can emerge from an incomplete
enumeration of treaty solutions. As argued in Section 2.2., the bounds on
the five decision variables represent physical constraints related to
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diversion infrastructure or known historic legacies. Similarly, the
enumeration intervals represent the smallest increment in the decision
variables that would be practical to implement. Based on these consid-
erations, we believe that the enumerated solutions are an accurate
representation of the true set of solutions within the considered decision
space. However, a more fundamental assumption concerns the decision
space itself and its five decision variables which are based on the current
treaty. The structure of the current treaty is rooted in a long history of
bilateral interactions between India and Bangladesh over the Ganges
river, which makes it likely to be carried over to the renewed treaty in
2026. For example, the 10-day intervals with alternating flow guaran-
tees date back to an initial agreement that was finalized days before the
commission of the Farakka barrage (Salman and Uprety, 1999). The
initial agreement was signed on April 18, 1975 and regulated with-
drawals by India in portions of 10 days during the 41 remaining days of
that single year’s dry season. However, the 10-day intervals of the
current treaty have been criticized as propitious to unilateral flow
withdrawals (Thomas, 2017) and as causing severe water scarcity dur-
ing the intervals with non-guaranteed flow (Rahman et al., 2019). These
considerations point to the potential for also examining treaty solutions
that do not conform with the current treaty structure. For example,
simulations by Kilgour and Dinar (2001) found that a flexible allocation
based on flow forecasts might increase total welfare by up to 10% in dry
years.

4.4. Overlap with true set of Pareto-optimal solutions

Our approach mitigates strategic framing uncertainty by identifying
governing set of objectives based on (known) physical constraints of the
systems, rather than the (hidden) preferences of its stakeholders. It
follows that the ensuing set of objectives unlikely corresponds to the
*true’ vector of combined stakeholder objectives, which remains hidden.
Rather, the dimensionality reduction approach can be seen as a way to
simplify a poorly framed (due to hidden objectives) many-objective
optimization problem, using information available to all stakeholders.
Because of this (and assuming all above assumptions hold), we conjec-
ture that the ensuing set of Pareto-optimal solutions contains the true set
of Pareto-optimal solutions. However, without knowledge of the true set
of stakeholder objectives, this conjecture is challenging to test. At the
very least, the hierarchical clustering approach that we propose
(particularly the dendrogram in Fig. 4) can be used as a tool to help
stakeholders visualize the governing trade-offs of the considered bio-
physical system.

4.5. Future states of the world and non-stationary climate

International river agreements are traditionally based on long-term
flow statistics computed from historic observation [e.g., Rahman
et al., 2019]. The underlying assumption of a stationary flow regime is
unlikely to hold in the context of climate change. The scenario-neutral
approach that we propose is a first step towards addressing this issue
by evaluating the sensitivity of treaty solutions to changes in key climate
drivers, without requiring detailed climate simulations. However, it
does not address many of the issues associated with changing flow re-
gimes in transboundary basins. For example, scenario-neutral analyses
make implicit assumptions about the range and independence of the
climate drivers that can render the ensuing visualization misleading
(Quinn et al., 2020). Changes in climate drivers can be correlated and
systems might be particularly vulnerable to conditions outside the range
of historical events (Borgomeo et al., 2015). As Quinn et al. (2020) put
it:

These assumptions could influence which factors are found to be
most important and which policies are most robust, belying their
neutrality; assuming uniformity and independence could have
decision-relevant implications.
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More broadly, using long-term statistics in a non stationary context
means that what is being optimized is a hypothetical value that does not
exist, i.e. a long term average that may change more rapidly than the
underlying timeseries it is theoretically calculated on. While adapted for
situations where detailed climate predictions are unavailable, the
scenario-neutral analysis can be seen as a temporary patch in the sense
that it evaluates the climate sensitivity of a decision that is nonetheless
made under the fundamental assumption of climate stationarity.

5. Conclusions

Transboundary water treaties face a variety of challenges due to
changing climatic and environmental conditions, raising the issue of
how to appropriately update existing treaties for an uncertain future.

We develop an approach that addresses three key questions about
transboundary treaty design: i) how to identify governing trade-offs
associated with the bio-physical nature of the system; ii) how to visu-
alize and determine the effects of the negotiated parameters of the treaty
(decision variables) on its outcomes (objectives); and iii) how to identify
agreeable (Pareto-optimal) treaty solution in a way that accounts for a
changing and uncertain climate. The approach combines hierarchical
clustering with a scenario-neutral analysis to achieve address these
questions.

Applied to the Ganges water agreement as an illustrative example,
the approach shows promise in its ability to discard sub-optimal treaty
alternatives. However, the example also shows that the output of the
approach (i.e., the set of identified POB treaties) depends on the initial
sets of treaty parameters and objective variables that are fed into the
approach. Consequently, the location-specific numerical results that we
present are not intended to serve as a basis to renew the treaty. Instead,
the approach (rather than the illustrative results that we present) can be
applied to support decisions in the much richer informational environ-
ment available to actual decision makers. Our illustrative case study is
intended to demonstrate the potential for this data-driven approach to
support, rather than replace, a broader negotiation process and serve as
a shared information basis around which stakeholders can coalesce.
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