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Monitoring is a crucial tool for measuring the progress and success of environmental
policies and management programs. While many studies have evaluated the
effectiveness of biodiversity sampling methods, few have compared their efficiency,
which is crucial given the funding constraints present in all conservation efforts. In this
study we demonstrate how existing analytical tools can be applied to (i) assess the
relationship between sampling effort and resulting confidence in biodiversity metrics,
and (ii) compare the efficiency of different methods for monitoring biodiversity. We
tested this methodology on data from marine fish surveys, including: roving surveys
within permanent areas, randomly placed belt transects, and randomly placed transects
conducted by citizen scientists using a reduced species list. We constructed efficiency
curves describing how increasing effort spent on each method reduced uncertainty
in biodiversity estimates and the associated ability to detect change in diversity. All
programs produced comparable measurements of species diversity for all metrics
despite substantial differences in the species being surveyed by each method. The
uncertainty of diversity estimations fell faster and reached a lower level for the roving
diver method. Strikingly, the transect method conducted by citizen scientists performed
almost identically to the more taxonomically resolved transect method conducted by
professional scientists, suggesting that sampling strategies that recorded only a subset
of species could still be effective, as long as the excluded species were chosen
strategically. The methodology described here can guide decisions about how to
measure biodiversity and optimize the resources available for monitoring, ultimately
improving management outcomes.

Keywords: biodiversity sampling, confidence, sampling effort, underwater visual census, citizen science, hill
numbers, uncertainty

INTRODUCTION

Monitoring is a crucial tool for assessing the state of an ecosystem and measuring the success
of environmental policies and management (Lovett et al., 2007). One key variable for assessing
ecosystem health is biodiversity, and efforts are underway to develop Essential Biodiversity
Variables (EBV) that standardize biodiversity measurements across the globe (Proença et al., 2017).
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Many monitoring programs report indices of species diversity as
a primary indicator because these indices are simple to interpret
and because changes in species abundance and distribution have
critical consequences for ecosystem functions (Tilman et al.,
2012). While a range of species diversity metrics are widely
used, each metric exhibits a different sensitivity to biodiversity
change. The most commonly used metrics (e.g., richness,
Shannon diversity, Simpson’s diversity) have been unified within
a mathematical framework based on Hill numbers (Jost, 2006)
that differ based on the relative importance of rare species.
Low-order biodiversity metrics (e.g., richness, 0D) place a high
importance on the presence of rare species, while higher-order
biodiversity metrics are more sensitive to the relative abundance
of common species. The sampling methodology selected for
a monitoring program should yield biodiversity metrics that
are relevant to conservation and management targets, but if
estimates have high uncertainty (i.e., low confidence), changes
in biodiversity in time or space will be poorly detected and thus
effectiveness of management actions will be difficult to evaluate.

Besides compatibility with the chosen biodiversity metrics,
sampling efficiency, defined as effectiveness for a given
investment of effort (or cost), is one of the key attributes
of a monitoring program. New monitoring methods have
been developed to increase efficiency, reduce costs, or increase
sampling comprehensiveness in space and time, all crucial
attributes of EBV (Proença et al., 2017). For example, satellite
imagery and environmental DNA (eDNA) can contribute to
monitoring programs at various temporal and spatial scales (Gasc
et al., 2013; Luque et al., 2018; Ruppert et al., 2019). Similarly,
soundscape recordings of terrestrial vocalizing organisms such as
birds can be sensitive enough to produce biodiversity estimates
(Celis-Murillo et al., 2009; Farina et al., 2011). In many cases,
these new methods sacrifice taxonomic resolution for speed,
cost, or spatial extent. This could be an acceptable tradeoff for
answering questions relying on higher-order diversity metrics,
but less appropriate for answering questions regarding lower-
order metrics, which are more sensitive to the presence of
rare species. Therefore, a range of biodiversity metrics and
sampling strategies may be appropriate depending on the
questions being asked.

To address cost issues and fill spatial gaps in existing
monitoring, biodiversity sampling has increasingly been
performed by both professionals and amateur observers through
citizen science (CS) programs. CS programs can result in better
efficiency due to lower costs (Schmeller et al., 2008; Gardiner
et al., 2012; Pocock et al., 2018), as well as greater spatial and
temporal coverage (Chandler et al., 2017) as long as the sampling
methodologies are well designed for public participation.
CS programs can provide high-quality data, especially when
participants are trained and professionals review the collected
data (Schmeller et al., 2008). However, citizen scientists with
limited taxonomic expertise can miss rare or cryptic species.
Even the most successful citizen science programs such as the
Audubon Christmas bird program have known limitations in
their capacity to survey hard to identify species (Butcher et al.,
2010). Therefore, CS is often focused only on common species
that are easy to observe and may have limited ability to detect

rare species and changes due to climate-induced ranges shifts,
invasive species, or other anthropogenic impacts. Furthermore,
the varied experience of amateur observers could result in lower
precision. Despite the importance of efficiency for biodiversity
monitoring programs, few examples exist in the literature
evaluating this attribute of CS programs (Goldstein et al., 2014).

Uncertainty in the precision of biodiversity estimates
decreases with increasing sampling effort. However, the shape
of this relationship has rarely been the focus of studies
evaluating methods, even though it is critical for choosing
methods and sampling effort. The degree of uncertainty,
measured here as the width of the confidence interval
(CI), relates directly to the ability to detect changes in
biodiversity over time or space, and the necessary investment
in sampling effort to detect a change or trend with a given
degree of confidence. Previous studies have evaluated the
performance of different sampling methods by comparing
biodiversity estimates (e.g., mean number of taxa) among
methods (Buffington and Redak, 1998; Baker et al., 2016) or
examining how estimates vary with sampling effort (King and
Porter, 2005; Azevedo et al., 2014; Madalozzo et al., 2017).
Such studies typically aim to maximize estimated biodiversity
while minimizing sampling effort, and rarely consider how
the uncertainty of estimates differs between sampling methods
or as a function of effort (Carlson and Schmiegelow, 2002;
Reynolds et al., 2011).

Biodiversity monitoring has a long record in terrestrial
ecosystems; however, marine monitoring has a shorter
history (National Research Council [NRC], 2001), and
correspondingly fewer assessments of sampling strategies
have been performed. Yet underwater data collection can
be exceptionally expensive, so a better understanding of the
relationship between cost or effort and performance of sampling
methods in this context is essential. Previous studies have
analyzed the performance of different underwater sampling
methods to estimate fish biodiversity (e.g., Schmitt et al., 2002;
Colvocoresses and Acosta, 2007; Minte-Vera et al., 2008).
However, fewer works have assessed the efficiency of fish
sampling methodologies and their ability to detect change
(Langlois et al., 2010; Bosch et al., 2017) and none evaluated
precision of biodiversity estimates or included CS programs.
Most previous studies also used one-time sampling campaigns,
instead of long-term monitoring data, which can reveal the
performance of monitoring strategies under a wider range of
ecological conditions.

In this paper, we applied a resampling approach with existing
rarefaction methods to evaluate the efficiency of monitoring
programs. Our aim is to assess how useful this methodology
can be in real-world applications. To this end, we used data
from three different sampling methods for monitoring fish
communities on rocky reefs and assess how effective sampling
was at describing biodiversity. We address two key questions
when considering marginal costs related to sampling strategies:
(1) for a given sampling method, how much effort must
be invested to reach a desired uncertainty (CI/mean) and
ability to detect change?, and (2) when considering alternative
sampling methods, which more efficiently yields information
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about biodiversity? We focus on commonly used diversity
metrics, but the same methodology can be extrapolated to
monitoring programs with different objectives. Our approach can
help in the sampling design of new programs or refine protocols
in existing programs.

MATERIALS AND METHODS

Ecological Data
To demonstrate how useful the methodology can be in
a real-world context, we analyzed data collected by three
monitoring programs with different goals that perform annual
underwater visual fish surveys in both rocky reefs and kelp
forests during summer and fall at the northern Santa Barbara
Channel Islands of San Miguel, Santa Rosa, Santa Cruz,
and Anacapa (Supplementary Monitoring Data 1, Figure 1):
the Channel Islands National Park’s Kelp Forest Monitoring
Program (KFMP), the Partnership for Interdisciplinary Studies
of Coastal Oceans (PISCO), and the CS program Reef Check
California (RC).

KFMP conducts roving diver counts in a 2,000 m2

permanently marked area at sites between 6 and 16 m depth.
Divers perform a timed search throughout the entire water
column along one side of a 100 m long fixed transect (oriented
parallel to shore). For about 15 min divers swim in a zigzag
pattern counting all non-cryptic fish encountered within 10 m
of the transect line. Then, they swim 15 min following a similar
pattern on the other side of the transect. At each sampling event
(i.e., day of sampling at one site; 522 sampling events in 27 sites
between 2000 and 2017), divers perform three to eight of these
roving diver counts (Kushner et al., 2013).

The PISCO program conducts fish surveys using 30 m × 2 m
belt-transects sampled by divers swimming at a constant
speed. Transects are randomly placed within each site, run
parallel to the shoreline, and are stratified by depth (5–
20 m). Divers count all non-cryptic fish within 2 m of the
substrate, the water column and in the kelp canopy and
during each sampling event divers performed 24 transects
at each site (referred as PISCO24), which are spatially
subdivided into subsites. Because the spatial distribution of
replicates is an important aspect of a sampling strategy,
we also analyzed this data by treating all subsites with
eight transects as a site (referred as PISCO8; Supplementary
Figure 1). Between 2000 and 2016 PISCO8 represents 585
sampling events and PISCO24, represents 544 sampling events
across 73 sites.

RC trains volunteer divers to perform randomly placed belt-
transect surveys parallel to shoreline up to 18 m deep with same
dimensions as PISCO. In these, divers swim approximately 35 cm
from the substrate counting fish from a fixed list of 33 species and
perform 18 transects per sampling event (117 sampling events in
17 sites between 2006 and 2017).

We calculated sampling effort for each replicate in terms of
diver-hours, accounting only for the time a dive team spent
sampling. KFMP performed each timed roving count in 30 diver-
min, while RC took 12 diver-min per transect. PISCO8 and

PISCO24 spent 16 diver-min per transect. Our analyses focused
on the marginal cost (in time units) of each additional sample, we
did not account for other time spent diving, preparing, traveling
or any other costs of the programs.

Comparisons between the efficiency of each program will
reflect differences in the field methods used by each program
(professional vs. citizen scientist, roving surveys vs. transects),
but also other differences in sampling strategies, including
differences in the fraction of the water column searched, the
placement of transects (fixed vs. haphazard) and area sampled.
Further details on monitoring data and environmental context
are provided in Supplementary Monitoring Data 1.

Calculating Biodiversity Estimates,
Uncertainty, and Effort in Simulated
Communities and Monitoring Data
To compare diversity across sampling methods we calculated Hill
number-based diversity metrics using rarefaction (Gotelli and
Colwell, 2001). We calculated diversity for each sampling event
using all subsamples (3–8 roving counts for KFMP, 24 Transects
for PISCO24, 8 transects for PISCO8 or18 transects for RC)
and produced individual-based rarefaction curves extrapolated
to 100 individuals (i.e., individual fish; Figure 2A). Biodiversity
estimates and associated uncertainties (CI/mean) were calculated
for the first three Hill numbers (Chao et al., 2014) with the iNext
package (Hsieh et al., 2016) in R. We analyzed the differences in
mean values of 0D, 1D, 2D among the different sampling methods
with Kruskal-Wallis tests followed by post-hoc Dunn tests since
residuals were homoscedastic, but non-normal.

We then subsampled the data, calculating biodiversity
estimates and associated confidence intervals as a function of
sampling effort. To obtain these relationships, we calculated
diversity metrics and uncertainty expected in each sampling
event if fewer replicates had been sampled. For example, for sites
with 12 transects, we created 200 replicate datasets of one transect
each, randomly sampled (without replacement) from the 12, then
200 datasets of two transects and so on. For each replicate dataset,
we produced rarefaction curves for 0D, 1D, 2D. We averaged
over all resampled datasets with a given number of replicates
(diver counts or transects) to yield expected diversity metrics
and confidence intervals for that level of effort (Figure 2B).
As the sampling effort at a site increases, diversity estimates
converge toward values that characterize that site, and confidence
intervals shrink.

In cases where few individual fish were present in a sampling
event, estimates of biodiversity at that site were inferred from
what is known about diversity in the region. We derived
regional estimates from the distribution of biodiversity estimates
across all sites surveyed by each sampling method (or all
simulated sites; Baseline estimates S2). The baseline estimates
were substituted for estimates based on in situ data when
fewer than 50 individuals occurred in a sampling event, because
the rarefaction approach cannot reliably extrapolate diversity
estimates if less than half of the target number of individuals
have been observed (Supplementary Table 1; Chao et al., 2014).
We chose to rarify to 100 individuals to minimize the number of
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FIGURE 1 | Sites sampled in the Channel Islands National Park, California, United States.

FIGURE 2 | (A) Example of an individual-based rarefaction curve for the first three Hill numbers from a PISCO sample. Vertical dashed line indicates the extrapolation
value to 100 individuals. (B) Example of 200 random resamples of data from the same sampling event. 95% confidence intervals shown.

sampling events for which we had to substitute regional baseline
estimates (Supplementary Figure 2).

Comparing Uncertainty and Ability to
Detect Changes in Monitoring Data
Fish density influences the amount of biodiversity information
that each sample provides since observers encounter fish more
rapidly at higher density sites. It has been previously shown
that fish density estimates are not comparable among the
monitoring programs (Rassweiler et al., 2020), therefore we

compared performance of each program at sites where fish
abundance was typical for the program (i.e., within the 40th–
60th percentile). In addition, the list of species counted in
each sampling method differed; KFM and PISCO with an
open list observed 72 species while RC counted a closed
list of 33 species. This contrast offers an opportunity to test
whether sacrifices in taxonomic completeness might result in
reduced or less reliable biodiversity estimates (for any of the
three metrics calculated). Hence, the following analyses were
performed with both the full species list and a shared dataset of
31 overlapping taxa.
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We compared how the uncertainty of biodiversity metrics
differed among the sampling methods and how it changed as
a function of sampling effort. We calculated uncertainty as the
scaled CI of the different biodiversity metrics, normalizing this
value with the mean (CI/mean). The number of transects and
roving counts were converted into number of diver hours for
monitoring data, while replicates were used as a measure of effort
for simulated communities.

Finally, to compare the sampling effort needed to reach
a certain ability to detect change across the different
methodologies, we calculated the ability of each sampling strategy
to detect a change, and how that changed as effort increased
(Milner-Gulland and Shea, 2017). For these calculations, we
included all sampling events and determined the percentage of
those events that yielded a CI small enough that a 25 or 50%
change in the metric would fall outside that interval. Because CI’s
were approximately symmetrical, an interval width of 50% of the
mean (i.e., 25% over and under the mean) indicated that a 25%
change could be reliably detected at the given confidence level
(alpha = 0.05). Similarly, an interval width equal to the mean
indicated that a 50% change could be detected.

RESULTS

We found estimates of biodiversity were comparable across the
different monitoring strategies, despite differences in species
lists (Figure 3A). In fact, the lower-order biodiversity estimates
(0D), which are more sensitive to the presence of rare species,
had very similar distributions in each dataset, with an average
about 10 species (in a sample of 100 fish) for most programs
(PISCO24 was slightly higher). Higher-order diversity estimates
from PISCO24 and RC were similar and slightly higher than
KFMP and PISCO8 (Table 1 and Figure 3A). This result is
possible because fish species that are counted by PISCO and
KFMP but excluded from RC’s species list are rarely observed in
practice. In fact, it was rare for the more taxonomically resolved
programs to observe more than three species not counted by RC
in a single event (<20% of events, Supplementary Figure 3).
When considering only these 31 shared species, estimates of
biodiversity were also similar (Supplementary Figure 4). For 0D,
PISCO8 yielded slightly lower diversity estimates, and for higher
diversity orders KFMP and PISCO8 had slightly lower values
(Table 1 and Supplementary Figure 4).

We found a consistent qualitative relationship between
number of fish per sample, sampling effort and uncertainty
for all monitoring programs and metrics. Uncertainty shrank
as sampling effort increased and was lower when more fish
were present. Indeed, when number of fish per sample was
low, increases in effort yielded little confidence in biodiversity
metrics (Figure 4).

Efficiency curves for the monitoring methods at sites with
typical fish density for each program (40th–60th percentile;
Figure 4) showed similar shapes, but uncertainty declined at
different rates (Figure 3B). We found that the uncertainty in
diversity estimates decreased rapidly over the first hour of diving
for all programs, with more gradual improvements over the next

FIGURE 3 | (A) Distribution of species diversity estimates across sampling
events; (B) confidence interval curves as a function of sampling effort
calculated from sampling events at sites with typical fish density (40–60th
percentile for each program) as a function of sampling effort; (C) probability of
obtaining confidence that biodiversity is within 25% of the estimated value as
a function of sampling effort. All for the first three Hill numbers calculated from
the full sampling events including the full taxa list for each monitoring program.
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TABLE 1 | Results of Kruskall Wallis and post-hoc Dunn test for 0D, 1D, 2D calculated from the monitoring programs both the full taxa list (Full, 72 taxa for KFMP, K, and
PISCO, P, and 33 for Reef Check, RC) and the shared list (Shared, 31 sp., in all programs).

Hill number DF χ 2 P Dunn tests K mean ± SE P8 mean ± SE P24 mean ± SE RC mean ± SE Data

0 3 51.88 <0.001 K = RC = P8 < P24 10.2 ± 0.08 10.09 ± 0.07 10.81 ± 0.08 10.05 ± 0.19 Full data

1 3 60.52 <0.001 K < P8 < P24 = RC 4.62 ± 0.07 4.92 ± 0.06 5.23 ± 0.06 5.33 ± 0.07

2 3 66.58 <0.001 K < P = P24 = RC 3.24 ± 0.05 3.52 ± 0.05 3.69 ± 0.05 3.91 ± 0.13

0 3 78.3 <0.001 P8 < K = P24 = RC 9.58 ± 0.07 9.08 ± 0.07 9.86 ± 0.07 10.05 ± 0.19 Reduced

1 3 57.07 <0.001 K = P8 < P24 < RC 4.45 ± 0.06 4.4 ± 0.05 4.76 ± 0.06 5.33 ± 0.15

2 3 48.93 <0.001 K = P8 < P24 < RC 3.19 ± 0.05 3.18 ± 0.04 3.38 ± 0.04 3.91 ± 0.13

Degrees of freedom (DF), Chi square (χ2), and p-values (P) showed on table. Values in bold indicate statistically significant results.

2 h (Figure 3B). The shape of the relationship was similar across
all methods and metrics, but uncertainty decreased faster and
earlier and reached the lowest level (approximately 10%) for
the KFMP method. Uncertainty in PISCO24 and RC estimates
declined more slowly than PISCO8, needing approximately
1 h more of sampling to shrink the CI to 20% of the mean,
despite their ability to observe fish at the same rate as PISCO8
(Figure 3B). However, PISCO24 ultimately reached a lower
uncertainty than either RC or PISCO8 once accounting for all
24 transects. Uncertainty tended to be higher for 1D, 2D for a
given effort level, as was observed in the simulated community,
and plateaued with confidence intervals 10–30% of the mean
across all methods (Figure 3B and Supplementary Figure 6). We
observed similar results when comparing the programs using the
shared species list (Supplementary Figures 7, 8).

We found that sampling method and effort affected the ability
to detect a 25% change in biodiversity which could represent a
change through time at a site, or a comparison with another site
(Figure 3C). KFMP exhibited the highest ability to detect change,
being more than 95% likely to obtain an estimate with confidence
limits smaller than 25% of the mean after 2 diver hours of effort.
PISCO8 reached its maximum ability to detect change at 74%
after 2 h, while PISCO24 and RC required almost 1 h more of
sampling to reach the same value. PISCO24 reached the second
highest ability to detect change, plateauing after 4 h at 95%, while
RC achieved its maximum ability at 85% after 3.5 h. For PISCO
and RC, ability to detect change was lower for higher-order
diversity metrics (Figure 3C). However, all programs performed
similarly for the probability of obtaining confidence limits within
50% of the mean, reaching 100% likelihood after 3 h of sampling
(2 h for KFMP, Supplementary Figure 9).

DISCUSSION

We show how the relationship between sampling effort and
information gained can be estimated and how to evaluate the
precision and ability to detect changes of alternative strategies
for observing biodiversity. This approach can help managers and
scientists choose whether to adopt new biodiversity sampling
strategies and how to allocate sampling effort. Monitoring
and research programs are frequently constrained by budget
limitations, so managers need innovative, low-cost sampling
strategies such as those employing citizen scientists or novel

technologies. However, CS is often seen as less rigorous due to
simplified sampling methods, and many novel technologies (e.g.,
acoustics) are limited in their taxonomic coverage or resolution.
Our approach of constructing sampling efficiency curves for
comparing expected uncertainty (CI/mean) and ability to detect
changes for a given level of sampling effort can guide the
design of monitoring programs and help managers and scientists
determine how much sampling is necessary to achieve their goals.

We had hypothesized that using a restricted species lists
would result in depressed estimates of biodiversity, particularly
for lower-order diversity metrics that are most sensitive to rare
species. Surprisingly the CS dataset we analyzed did not yield
depressed biodiversity estimates. RC’s diversity estimates closely
agreed with PISCO’s and KFMP’s, even for 0D, despite RC
counting fewer than half the species observed by the other
programs, thus missing rare species by design.

We observed that the species excluded from RC’s sampling
were infrequently encountered and had relatively little effect
on biodiversity estimates. This could be a general feature of
restricted sampling lists, as the excluded taxa are often rare
species that are infrequently encountered and thus provide few
opportunities to train data recorders, whether human or machine
(Willi et al., 2019). We explored the consequences of using a
restricted species list by repeating our analyses with simulated
communities and found that sampling with a reduced species
list resulted in lower diversity estimates and higher uncertainty
for any level of sampling effort. However, the magnitude of this
effect was highly dependent on which species were excluded.
If the rarest 50% of species were excluded from sampling,
instead of excluding species at random, the negative effect on
both biodiversity estimates and uncertainty was reduced (see
Supplementary Methodology applied to simulated community
S3). In RC, only a few of the species ignored are encountered
in a typical sampling event by other programs (Supplementary
Figure 3) and any resulting reduction in biodiversity was small
relative to other sources of systematic variation.

These other sources of variation, including differences in
search strategy and the portion of the water column being
surveyed, complicate any comparison of mean biodiversity
metrics. KFMP’s roving divers mostly stay near the bottom
but are free to search and swim throughout the whole water
column, while RC and PISCO divers swim closer to the substrate,
potentially finding more species usually more difficult to detect
from afar (Schmitt et al., 2002; Bozec et al., 2011). Unlike PISCO,
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FIGURE 4 | Confidence interval width for each diversity metric, plotted as across a gradient of sampling effort (x axis) and as a function of the abundance of fish (of
the species recorded) at the site (data truncated at the 80th percentile). Gray band indicates the 40–60th fish density percentile.

which performs a stratified sampling including water column
and kelp canopy, RC divers only count fish near the substrate
and so are sampling a somewhat different community than the
other two methods.

More generally, we showed that sampling methods capturing
only a subset of target taxa may still effectively monitor
biodiversity for particular applications. This result likely depends
on the particular species missed by the sampling method and on
the structure of the community being observed, but supports the

potential utility of novel methods that offer increases in efficiency
at a cost to accuracy or completeness. Of course, biodiversity
sampling has many potential uses beyond community-level
diversity metrics. Documenting the presence of rare species is
often valuable for conservation and management applications
even when such species have little effect on community-scale
metrics. Rare species can sometimes be invasive or indicators
of ecosystem change since they can be more sensitive to
perturbations than common species as has been pointed out for
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birds, amphibians and corals (Foden et al., 2013). Therefore,
monitoring key rare species and common taxa could still be
a priority for a monitoring program, despite their limited effect
on biodiversity metrics.

Besides revealing the utility of taxonomically limited methods,
this methodology can help researchers determine how much
sampling is necessary to confidently estimate biodiversity
metrics. We found that the three monitoring programs all achieve
low levels of uncertainty, reaching a point of diminishing returns
within the first 1–2 h of sampling. These monitoring programs
are investing 2 h+ of effort per sampling event, so sampling is
more than adequate for this particular objective (Figure 3B).
However, the frequency of sampling will also depend in the goals
of the monitoring program (e.g., rapid detection of changes,
assessing long term trends or resolve seasonal patterns as well).
Our analyses also reveal how much sampling is necessary to
detect temporal or spatial changes in biodiversity. Assessing the
ability to detect changes in diversity over space or time can
guide the design of new monitoring programs or improve the
design of ongoing programs and is crucial for the development of
adaptation and mitigation plans. In the monitoring data assessed
here, KFMP is nearly certain to detect 25% change in biodiversity
with the present levels of effort, while PISCO and RC could
still increase their ability to detect change by investing more
effort (Figure 3C). In our simulated data, sampling strategies
that neglect a large fraction of the species are less able to detect
change, especially when the species are randomly excluded from
sampling rather than when the rarest species are excluded (see
Supplementary Methodology applied to simulated community
S3). In the monitoring programs, the sites where these programs
cannot detect change, however, are likely sites with few fish
(Figure 4), so they may be locations where detecting change in
fish biodiversity is less important. All three research programs
have multiple objectives, so these results alone do not indicate
that the programs should increase or decrease their sampling
effort. But they do set expectations about the utility of existing
sampling and serve as part of a broader decision-making process
about program design. Although the ecosystem we focus on
here is relatively species poor, our analyses of simulated datasets
suggests these methods will apply in more diverse systems, and an
important next step is to test this method across a border array of
ecosystems.

The differences between the three real programs reflect
both the survey methods used and the broader sampling
design. The programs differ in the rate at which they reduce
uncertainty about local biodiversity as sampling effort increases.
KFMP outperformed PISCO and RC in terms of uncertainty
and sensitivity. It takes the latter programs twice as much
sampling effort to achieve a confidence level 25% of the mean
compared to KFMP. Over the whole program, this represents
a substantial sampling time, and even though sampling is a
marginal piece of the cost of a monitoring program, it can
represent an important cost difference (Gardiner et al., 2012).
One advantage of the roving diver method is the higher number
of fish encountered (Supplementary Figure 5). This method
was conceived as a flexible searching method to rapidly sample
fish, and it performed well in this regard. PISCO and RC’s

transect-based methods are almost identical in terms of the
rate at which they encounter fish. However, the three methods
differ fundamentally in the way the reef is sampled. PISCO
and RC scattered their randomly placed transects over the
reef. Thus, each additional transect increases the area covered,
adding variability in habitats sampled and species encountered
permitting inferences about the larger reef area. Meanwhile, the
roving divers with KFMP repeatedly sample a permanent area at
each site, adding information about that fish community without
adding new spatial variability. Additional replicates add inter-
observer variability and sometimes temporal variability in all
three programs. We can examine the role of spatial scale by
examining the differences between PISCO8 and PISCO24. These
use the same methods and data, analyzed at smaller (PISCO8)
and larger (PISCO24) spatial scales (Supplementary Figure 1).
We found that PISCO24 required more effort to get to a similar
confidence to detect change than PISCO8. However, PISCO24
covers three times the area, hence provides information about
a more representative sample of habitats. Therefore, efficiency
differences in each program can be due to the survey method
(roving diver vs. transects), the sampling strategy (fixed vs.
random placement), and the spatial scale.

A surprising outcome of our analysis was the relatively high
performance of CS methods. The most direct comparison is with
PISCO because the two programs share a similar survey method.
In fact, RC protocols were developed from the PISCO protocols
and experience with PISCO surveys was used to strategically
select common and recognizable species to train volunteers
and perform surveys more easily. This might explain why the
sensitivity of both PISCO24 and RC are almost identical. Also,
the RC program includes the participation of many former
PISCO observers and thus represents an excellent way to add
value to the PISCO monitoring, extending coverage of data
collection while making use of PISCO’s expertise both in design
and in training of volunteers. CS programs have emerged as an
increasingly viable way to conduct biodiversity monitoring at a
lower cost (e.g., Pocock et al., 2018) and our results show that
well-planned CS programs, could fill spatial or temporal gaps
and leverage more professional sampling programs while still
collecting accurate data.

Obtaining reliable information with the limited funding
available to invest in biodiversity monitoring calls for the design
and implementation of biodiversity monitoring programs with
high cost-effectiveness. The methodology applied in this study
can be a useful tool for evaluating the best design according to
the objectives of a monitoring program.
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