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Abstract
We investigate the doubling inequality and upper bounds of nodal sets for Robin and Neu-
mann eigenfunctions on the boundary and in the interior of the domain. Most efforts are
devoted to the sharp boundary doubling inequality with new and novel quantitative global
Carleman estimates. We are able to obtain the sharp upper bounds for boundary nodal sets
of Neumann eigenfunctions.

Keywords Nodal sets · Doubling inequality · Carleman estimates · Robin eigenfunctions

Mathematics Subject Classification (2010) 35J05 · 58J50 · 35P15 · 35P20

1 Introduction

Problem statement: In this paper, we consider the Robin eigenfunctions with a possible
large parameter |α| { −�u = λu in �,

∂u
∂ν

+ αu = 0 on ∂�
(1.1)

on a smooth and compact domain � ⊂ R
n with n ≥ 2, where ν is a unit outer normal and

n is the dimension of the space. In the case of α = 0, the Eq. 1.1 is called the Neumann
eigenvalue problem { −�u = λu in �,

∂u
∂ν

= 0 on ∂�.
(1.2)

In the case of α = ∞, it can be considered as the Dirichlet eigenvalue problem{ −�u = λu in �,

u = 0 on ∂�.
(1.3)
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For any fixed constant α, there exists a sequence of eigenvalues λ1 < λ2 ≤ · · · → ∞. If
α is negative, the first finite number of eigenvalues can be negative. Moreover, λk → −∞
as α → −∞ for any fixed k ≥ 1. If one considers the Robin eigenvalue problem (1.1) as
an elliptic problem in a special case λ = 0, the Eq. 1.1 is reduced to the Steklov eigenvalue
problem { �u = 0 in �,

∂u
∂ν

+ αu = 0 on ∂�.
(1.4)

One may regard −α as the eigenvalue for the Steklov eigenvalue problem (1.4). Hence, the
model (1.1) includes general kind of Laplacian eigenvalue problems.

Discussion of existing results: We are mainly interested in the doubling inequality and
nodal sets of eigenfunctions in Eqs. 1.1 and 1.2 on the boundary ∂�. Doubling inequalities
are inequalities with norms in a ball controlling the norms in a double ball. They are quanti-
tative properties to control the growth of functions and quantitatively characterize the strong
unique continuation property. Doubling inequalities imply the vanishing order of functions.
Moreover, they are important tools to prove the measure of nodal sets. Nodal sets are the
zero level sets of eigenfunctions. Due to the rich literature on nodal sets of eigenfunctions,
let us first briefly review the history of this topic. For the eigenfunctions of Laplacian

�u + λu = 0 (1.5)

on a compact smooth Riemannian manifold M, Yau [43] conjectured that the Hausdorff
measure of nodal sets can be controlled above and below by eigenvalues as

c
√

λ ≤ Hn−1({x ∈ M|u(x) = 0}) ≤ C
√

λ, (1.6)

where c, C depend on the manifoldM. For the real analytic manifolds, the conjecture was
answered by Donnelly-Fefferman in their seminal paper [10]. A relatively simpler proof for
the upper bound of general second order elliptic equations on the analytic domain was given
by Lin [27] by a different approach.

For the smooth manifolds with n = 2, Donnelly-Fefferman [11] and Dong [9] inde-

pendently showed the upper bound H 1({x ∈ M|u(x) = 0}) ≤ Cλ
3
4 by using different

arguments. A slight improvement with upper bound Cλ
3
4−ε was given by Logunov and

Malinnikova [31]. For higher dimensions n ≥ 3, Hardt and Simon [19] derived an expo-
nential upper bound. Logunov in [29] obtained a polynomial upper bound Hn−1({x ∈
M|u(x) = 0}) ≤ Cλβ for some β > 1

2 . Very recently, Logunov, Malinnikova, Nadi-
rashvili and Nazarov obtained the sharp upper bounds of nodal sets for analytical domains
with C1 boundary [33]. For the lower bound, Logunov [30] completely answered the Yau’s
conjecture and obtained the sharp lower bound for smooth manifolds in any dimensions.
For n = 2, such sharp lower bound was obtained earlier by Brüning [6]. This breakthrough
improved a polynomial lower bound obtained early by Colding and Minicozzi [7], Sogge
and Zelditch [40]. See also other polynomial lower bounds by different methods, e.g. [20,
35, 41] and other related results on nodal geometry of eigenfunctions, e.g. [18, 34]. The
recent breakthrough on nodal sets of eigenfunctions in [29, 31] and [30] is based on sem-
inal work on new combinatorial arguments for doubling index and further exploration of
frequency functions in [15] and [17].

The main goal of the paper is devoted to deriving doubling inequalities. As a con-
sequence, we are able to obtain the upper bound of nodal sets on the boundary and in
the interior. In order to prove the Yau’s conjecture (1.6) for eigenfunctions in Eq. 1.5 on
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compact manifolds without boundary, the following sharp doubling inequality plays an
essential role in [10]

‖u‖L2(B2r (x)) ≤ eC
√

λ‖u‖L2(Br (x)) (1.7)

for any Br (x) ⊂ M. In most aforementioned literature on the study of nodal sets, the dou-
bling inequality (1.7) is important. To derive the results on the measure of nodal sets on
the boundary, our main efforts are also devoted to obtaining the doubling inequalities for
Neumann and Robin eigenfunctions on the boundary ∂�. It is also challenging to obtain
boundary doubling inequalities since there is only a derivative for the solutions on the
boundary. Some partial results are only obtained for Steklov eigenfunctions, see e.g. [5, 38,
46]. The boundary doubling inequality relates to the quantitative boundary unique continu-
ation property discussed in [1, 14] except the rough boundary regularity. Since the doubling
inequality implies the vanishing order of solutions, it is also related to the local version of
Landis’ conjecture in [23] and [32].

Statement of new results: The following boundary doubling inequality seems to be new
and sharp. It characterizes the growth of Robin eigenfunctions on the boundary with
possible large values |α| and |λ|.

Theorem 1 Let u be the Robin eigenfunction in Eq. 1.1. There exist positive constants C

and r0 depending only on the smooth domain � such that

‖u‖L2(B2r (x)) ≤ eC(|α|+√|λ|)‖u‖L2(Br (x)) (1.8)

for any 0 < r < r0 and any B2r (x) ⊂ ∂�.

For the Neumann and Robin eigenfunctions, it is likely that the nodal sets of eigenfunc-
tions in � intersect the boundary ∂�. More intuitively, the boundary nodal sets are where
interior nodal sets touch the boundary. Thus, it is interesting to find out how large the upper
bound of the measure of boundary nodal sets is and how the measure depends on α and λ.
The nodal sets on the boundary are of co-dimension one. For the Neumann eigenfunctions,
we can show that

Theorem 2 Let u be the Neumann eigenfunction in Eq. 1.2 in the real analytic domain �.
There exists a positive constant C that depends only on the domain � such that

Hn−2({x ∈ ∂�|u(x) = 0}) ≤ C
√

λ. (1.9)

The upper bound of boundary nodal sets for Neumann eigenfunctions in the theorem
is optimal. See the Remark 3 in Section 3. Among other interesting results in [42], Toth
and Zelditch showed such upper bound for boundary nodal sets of Neumann eigenfunctions
in planar analytic domains using a different method. Theorem 2 improves such result to
general dimensions.

We are also interested in the measure of nodal sets in � for general eigenvalue prob-
lems of Laplacian (1.1). Especially, we want to find out how the upper bound of nodal sets
depends on possible large parameter |α| on the boundary. Using the similar idea, we further
study the upper bounds for the boundary nodal sets of Robin eigenfunctions.
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Corollary 1 Let u be the Robin eigenfunction in Eq. 1.1 in the real analytic domain �.
There exists a positive constant C depending only on the domain � such that

Hn−2({x ∈ ∂�|u(x) = 0}) ≤ C(|α| + √|λ|). (1.10)

Since the model (1.1) includes the Steklov eigenvalue problem (1.4) as the special case
with λ = 0, the upper bound in the corollary includes the sharp results for boundary nodal
sets obtained by Zelditch [45] for Steklov eigenfunctions.

Furthermore, we want to know the role of α in the upper bound of interior nodal sets.
For the interior nodal sets of Robin eigenfunctions in analytic domains, we can show that

Theorem 3 Let u be the Robin eigenfunction in Eq. 1.1. There exists a positive constant C
depending only on the real analytic domain � such that

Hn−1({x ∈ �|u(x) = 0}) ≤ C(|α| + √|λ|). (1.11)

Let us give some comments on those aforementioned results.

Remark 1 The results in Theorem 1, 3 and Corollary 1 actually hold for either |α| or
|λ| large. The general eigenvalue problem (1.1) includes Steklov eigenvalue problem as
the special case. Thus, the results in Theorem 1, Corollary 1 and Theorem 3 hold for
Steklov eigenfunctions. For the study of nodal sets and doubling estimates of Steklov eigen-
functions, see e.g. [5, 16, 37–39, 44–48], etc. Steklov eigenfunctions can be regarded as
eigenfunctions of the Dirichlet-to-Neumann map on the boundary. Thus, global Fourier
analysis techniques can be applied. However, those global analysis arguments seem not be
used directly for the eigenvalue problem (1.1). Some new and novel global Carleman esti-
mates are developed to obtain boundary doubling inequalities and boundary nodal sets. The
conclusions in Theorem 1, 2, 3 also hold for Robin eigenfunctions of Laplace-Beltrami
operator on any compact Riemannian manifolds.

Remark 2 For Robin eigenvalue problems, the eigenvalue λ depends on the parameter α. It
is interesting to study the asymptotic estimates of λ with respect to α. If α < 0, it has been
shown in [8] that

lim
α→−∞

λk

−α2
= 1

for every k ≥ 1. Thus, the eigenvalue |λk| and α2 grow at the same rate. In this case with
|α| sufficiently large, we can replace the term |α| by √|λ| in Theorem 1, 3 and Corollary
1. Furthermore, the growth rate of |λk| and α2 seems to be sharp, because |α| is related
to the first order differential operator on the boundary and λ is related to the second order
differential operator. Thus, the quantities |α| and √|λ| are the right quantities in Theorem
1, 3 and Corollary 1.

Discussions of interior nodal sets in the smooth setting: The interior nodal sets esti-
mates for Dirichlet eigenvalue problem (1.3) and Neumann eigenvalue problem (1.2) in real
analytic domains have been shown by Donnelly and Fefferman in [12] to be

Hn−1({x ∈ �|u(x) = 0}) ≤ C
√

λ.

For the smooth manifold, one can obtain the polynomial upper bounds for the nodal sets
of Robin eigenfunctions. One can construct a double manifold �̃ = � ∪ � to get ride of
boundary. Then one can do an even extension for the Neumann eigenvalue problem or an
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odd extension for the Dirichlet eigenvalue problem on the domain to have second order
elliptic equations with Lipschitz metrics. The following sharp doubling inequality on the
double manifold

‖u‖L2(B2r (x)) ≤ eC
√

λ‖u‖L2(Br (x)) (1.12)

can be deduced as [12] for the second order elliptic equations with Lipschitz coefficients.
Applying the new combinatorial arguments in [29] for the aforementioned second order
elliptic equations with Lipschitz coefficients (i.e. Equation 2.9) and doubling inequality
(1.14), one can obtain the polynomial upper bound. For the interior nodal sets, one can show
that

Hn−1({x ∈ �|u(x) = 0}) ≤ C(|α| + √|λ|)β, (1.13)

where β > 1 depending only on the dimension n ≥ 3. Note that Eq. 1.13 holds for Robin
eigenfunctions on any compact Riemannian manifolds.

Outline of the proof: Let us we briefly sketch the proof of these Theorems. We first need
to derive the sharp doubling inequality

‖u‖L2(B2r (x)) ≤ eC(|α|+√|λ|)‖u‖L2(Br (x)) (1.14)

on the double manifold �̃ = � ∪ �. We introduce an auxiliary function involving the
distance to the boundary, then transform the Robin eigenvalue problem into second order
elliptic equations with Neumann boundary conditions. We do an even reflection and obtain
some quantitative Carleman estimates to show (1.14) on the double manifold. To obtain the
boundary doubling inequality (1.8) in Theorem 1, we prove a new quantitative propagation
of smallness lemma (i.e. Lemma 1) with possible large |α| or |λ|, which is based on a new
and novel global quantitative Carleman estimates with boundary terms (i.e. Proposition 2).
To obtain the upper bound for boundary nodal sets in Theorem 2, we combine the boundary
doubling inequality (1.8) and a complex zero growth lemma (i.e. Lemma 2). To prove The-
orem 3, we first find out the upper bounds for nodal sets for the regions in the neighborhood
of the boundary, then obtain the nodal sets estimates for regions away from the boundary.
The combination of the estimates in the two regions gives Theorem 3.

Organization of the paper: Section 2 is devoted to the transformation of the Robin eigen-
value problem to elliptic equations on the double manifold. The doubling inequalities in
balls and half-balls are presented. Section 3 is devoted to the proof of the boundary dou-
bling inequalities and nodal sets estimates on the boundary. In the Section 4, we show the
upper bounds of interior nodal sets for Robin eigenfunctions. In Section 5, we derive a new
type of global quantitative Carleman estimates with boundary terms. In the Appendix, we
include the construction of polar coordinates for Lipschitz metrics and the proof of doubling
inequalities in balls. The letters C, Ci and Ĉ denote generic positive constants that do not
depend on u, and may vary from line to line. In the paper, since we study the asymptotic
properties for eigenfunctions, we assume that either |α| or |λ| is sufficiently large.

2 Preliminary

In this section, we transform the Robin eigenvalue problem to elliptic equations with Neu-
mann boundary conditions. We want to move the parameter α on the boundary into the
coefficients in a second order elliptic equation. At first, we will transform the Robin eigen-
value problem to a Neumann boundary problem. Considering a small ρ-neighborhood of
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smooth ∂�, let
�ρ = {x ∈ �| dist(x, ∂�) < ρ},

where dist(x, ∂�) = d(x) is the distance function to the boundary ∂�. Since the domain �

is smooth, there exists some small ρ0 depending only on � such that the distance function
d(x) ∈ C∞ in �ρ for 0 < ρ < ρ0. If x ∈ ∂�, it is known that

∇d(x) = −ν(x), (2.1)

where ν(x) is a unit outer normal at x. Inspired by the construction in [5] for Steklov
eigenfunctions, we introduce the following auxiliary function

ū(x) = e−αd(x)u(x) for x ∈ �ρ ∪ ∂�. (2.2)

It is easy to check that ū(x) satisfies the following second order elliptic equations in a
neighborhood of �{ �ū + 2α∇d(x) · ∇ū + (α�d(x) + α2|∇d(x)|2 + λ)ū = 0 in �ρ,

∂ū
∂ν

= 0 on ∂�.
(2.3)

We use Fermi coordinates near the boundary to flatten the boundary. Let 0 ∈ ∂�. We can
find a small constant ρ > 0 so that there exists a map (x′, xn) ∈ ∂�×[0, ρ) → � sending
(x′, xn) to the endpoint, x ∈ �, with length xn, which starts at x′ ∈ ∂� and is perpendicular
to ∂�. Such map is a local diffeomorphism. Note that d(x) = xn in the coordinates and x′
is the geodesic normal coordinates of ∂�. The metric takes the form

n∑
i,j=1

gij dxidxj = dx2
n +

n−1∑
i,j=1

g′
ij (x

′, xn)dxidxj ,

where g′
ij (x

′, xn) is a Riemannian metric on ∂� depending smooth on xn ∈ [0, ρ). In a
neighborhood of the boundary, the Laplace can be written as

� =
n∑

i,j=1

gij ∂2

∂xi∂xj

+
n∑

i=1

qi(x)
∂

∂xi

(2.4)

using local coordinates for ∂�, where gij is the matrix with entries (gij )1<i≤j<n−1 =
(g′

ij )
−1 and gnn = 1 and gnk = gkn = 0 for k �= n, and qi(x) ∈ C∞.

In the local coordinates, we identify ∂� locally as {xn = 0}. The Fermi distance function
from 0 on a relatively open neighborhood 0 in � is defined by

r̃ =
√

x2
1 + · · · + x2

n−1 + x2
n .

The Fermi exponential map at 0, exp0, which gives the Fermi coordinate system, is defined
on a half space of Rn+. We choose a Fermi half-ball B̃+

δ (0) centered at origin at {xn = 0}
for 0 < δ < 10ρ0. It is known that Bδ/2(0) ∩ � ⊂ B̃

+
δ (0) ⊂ B2δ(0) ∩ �, where Bδ(0) is

the ball centered at origin with radius δ in the Euclidean space. See e.g. the Appendix A in
[26]. For ease of notation, we still write B̃+

δ (0) as B+
δ (0) . Then it follows from Eq. 2.3 that

ū satisfies the following equation in a neighborhood of the boundary{ �gū + b̄(x) · ∇ū + c̄(x)ū = 0 in B
+
δ (0),

∂ū
∂ν

= 0 on B
+
δ (0) ∩ {xn = 0}, (2.5)

where g = (gij )n×n is smooth in B
+
δ , and b̄(x) and c̄(x) satisfy{ ‖b̄‖C∞(B+

δ ) ≤ C(|α| + 1),

‖c̄‖C∞(B+
δ ) ≤ C(α2 + |λ|) (2.6)
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with C depending only on ∂�.
We also want to consider the eigenfunction globally on �. As it is discussed that the

distance function d(x) = dist (x, ∂�) is smooth to the boundary ∂� in a small neighbor-
hood �ρ for some small ρ, we make a smooth extension for d(x) in the whole �. Then we
introduce a smooth function l(x) such that �(x) defined as

�(x) =
{

d(x) x ∈ �ρ,

l(x) x ∈ �\�ρ

is a smooth function in the whole �. Performing the similar procedure as before, we first
transform the Robin eigenvalue problem to a Neumann boundary problem. Let

ū(x) = e−α�(x)u(x) for x ∈ �. (2.7)

Then ū(x) satisfies the following Neumann boundary problem{ �ū + 2α∇�(x) · ∇ū + (α��(x) + α2|∇�(x)|2 + λ)ū = 0 in �,
∂ū
∂ν

= 0 on ∂�.
(2.8)

We want to get rid of the boundary ∂� as well. We define a global double manifold
�̃ = � ∪ �. To extend ū to be on the double manifold �̃, we consider an even extension,
that is

ū ◦ π = ū,

where π : �̃ → �̃ is a cononical involutive isometry which interchanges the two copies
of �̃. Near the boundary ∂�, the new metric g̃ on the double manifold �̃ is Lipschitz
continuous. To explain the metric g̃ is only Lipschitz near the boundary, we use Fermi
coordinates with respect to the boundary as before. The differential structure of �̃ near ∂�

uses the Fermi coordinates in gij . So xn > 0 and xn < 0 define the two copies of �. In
these coordinates, gnk = 0 for k �= n, there are no cross terms between ∂n and ∂xi

. The
metric gij (x

′, |xn|) is symmetric under xn → −xn. Thus, it is Lipschitz continuous across
∂�. Under the new metric g̃ on the double manifold, from the Eq. 2.8, the new solution ū

satisfies second order elliptic equations

�g̃ ū + b̃(x) · ∇ū + c̃(x)ū = 0 in �̃, (2.9)

where b̃ and c̃ satisfy { ‖b̃‖W 1,∞ ≤ C(|α| + 1),
‖c̃‖W 1,∞ ≤ C(α2 + |λ|). (2.10)

Now we deal with the second order elliptic equations with Lipschitz continuous coef-
ficients. In order to apply Carleman estimates which are efficient tools to prove doubling
inequalities, we want to use polar coordinates. Following the strategy on the regularization
for Lipschitz metric in [3] by Aronszajn, Krzywicki and Szarski, we are still able to intro-
duce a suitable geodesic normal coordinates with a conformal metric. For completeness of
presentations, we construct such conformal metric in the Appendix. We are able to prove
the doubling inequality for ū on the double manifold. We include the proof in the Appendix
as well.

Proposition 1 Let ū be the solution of Eq. 2.9 satisfying the conditions (2.10). There exists
a positive constant C depending only on �̃ such that the doubling inequality holds

‖ū‖L2(B2r (x)) ≤ eC(|α|+√|λ|)‖ū‖L2(Br (x)) (2.11)

for any x ∈ �̃.
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For the latter sections on the study of nodal sets and the doubling inequality on the
boundary, we want to show the doubling inequality in the half ball B+

r (0). Since we did an
even extension across the boundary {xn = 0}, the estimates (2.11) also holds in the half
balls. Thus, there exist positive constants C, r0 depending only on � such that the doubling
inequality holds

‖ū‖L2(B+
2r )

≤ eC(|α|+√|λ|)‖ū‖L2(B+
r ) (2.12)

for 0 < r < r0.

3 Boundary doubling inequality and nodal sets

In this section, we prove new quantitative propagation smallness results for the second
order elliptic (2.5) in the half ball. By rescaling, we may consider the equations in B

+
1/2. To

present the results in a general setting, we may consider the second order uniformly elliptic
equations

− aijDiju + bi(y)Diu + c(y)u = 0 in B
+
1/2, (3.1)

where aij is C1, and b(y) and c(y) satisfy{ ‖b‖W 1,∞(B+
1/2)

≤ C(|α| + 1),

‖c‖W 1,∞(B+
1/2)

≤ C(α2 + |λ|). (3.2)

We are able to show the following quantitative two half-ball and one lower dimensional
ball type result.

Lemma 1 Let u ∈ C∞
0 (B+

1/2) be a solution of Eq. 3.1. Denote the lower dimensional ball

B1/3 = {(y′, 0) ∈ R
n|y′ ∈ R

n−1, |y′| <
1

3
}.

Assume that

‖u‖H 1(B1/3)
+ ‖∂u

∂ν
‖L2(B1/3)

≤ ε << 1 (3.3)

and ‖u‖L2(B+
1/2)

≤ 1. There exist positive constants C and β such that

‖u‖
L2( 1

256B
+
1 )

≤ eC(|α|+√|λ|)εβ . (3.4)

More precisely, we can show that there exists 0 < κ < 1 such that

‖u‖
L2( 1

256B
+
1 )

≤ eC(|α|+√|λ|)‖u‖κ

L2(B+
1/2)

(‖u‖H 1(B1/3)
+ ‖∂u

∂ν
‖L2(B1/3)

)1−κ . (3.5)

Such estimates without considering the quantitative behavior of α and λ have been estab-
lished in [27]. To show the quantitative three-ball inequality in the lemma, we develop some
novel quantitative global Carleman estimates involving the boundary. The weight function
in Carleman estimates (3.6) is somewhat inspired by [24] and [21]. Such results play an
important role not only in characterizing the doubling index in a cube in [29], but also in
inverse problems, see [2].

The quantitative global Carleman estimates with boundary are stated in Proposition 2.
We choose a weight function

ψ(y) = esh(y),
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where

h(y) = −|y′|2
4

+ y2
n

2
− yn

and s is a large parameter that will be determined later.

Proposition 2 Let s be a fixed large constant. There exist positive constants Cs and C0
depending on s such that for any v ∈ C∞(B+

1/2), and

τ > Cs(|α| + √|λ|),
one has

‖eτψ (−aijDij v + biDiv + cv)‖L2(B+
1/2)

+ τ
3
2 s2‖ψ 3

2 eτψv‖L2(∂B+
1/2)

+ τ
1
2 s‖ψ 1

2 eτψ∇v‖L2(∂B+
1/2)

≥ C0τ
3
2 s2‖ψ 3

2 eτψv‖L2(B+
1/2)

+ C0τ
1
2 s‖ψ 1

2 eτψ∇v‖L2(B+
1/2)

. (3.6)

Since the proof of Proposition 2 is lengthy, we postpone the proof in Section 4. Thanks
to the Carleman estimates (3.6), we first show the proof of Lemma 1

Proof of Lemma 1 Notice that the constant s is fixed independent of α and λ. We also know
ψ is bounded below and above by some constant C. We obtain that

‖eτψ(−aijDij v + biDiv + cv)‖L2(B+
1/2)

+ τ
3
2 ‖eτψv‖L2(∂B+

1/2)
+ τ

1
2 ‖eτψ∇v‖L2(∂B+

1/2)

≥ Cτ
3
2 ‖eτψv‖L2(B+

1/2)
+ Cτ

1
2 ‖eτψ∇v‖L2(B+

1/2)
. (3.7)

The following Caccioppolli inequality holds for the solutions of Eq. 3.1 in B
+
1/2,

‖∇u‖L2(B+
r ) ≤ C(|α| + √|λ|)

r

(‖u‖L2(B+
2r )

+ ‖∇u‖L2(B2r )
+ ‖u‖L2(B2r )

)
. (3.8)

We select a smooth cut-off function η such that η(x) = 1 in B
+
1/8 and η(x) = 0 outside

B
+
1/4. Since u ∈ C∞

0 (B+
1/2), substituting v by ηu in the Carleman estimates (3.7) and then

using the Eq. 3.1 yields that

‖eτψ(−aijDij ηu − 2aijDiηDju + biDiηu)‖L2(B+
1/2)

+τ
3
2 ‖eτψηu‖L2(B1/4)

+τ
1
2 ‖eτψη∇u‖L2(B1/4)

≥ Cτ
3
2 ‖eτψηu‖L2(B+

1/2)
. (3.9)

We want to find the maximum of ψ in the first term on the left hand side of Eq. 3.9.
Since h(y) is negative in B+

1/2, then

max
{ 18≤|y|≤ 1

4 }∩{yn≥0}
h(y) = max

{ 18≤|y|≤ 1
4 }

− |y′|2
4

= − 1

256
.

We also need to find a lower bound of ψ for the term on the right hand side of Eq. 3.9 such
that

− min|y|<a
h(y) − 1

256
< 0
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for some 0 < a < 1
2 . Since h(y) decreases with respect to y′ and yn, then the minimum of

h(y) is ĥ(a) for |y| < a, where

ĥ(a) = −a2

4
+ a2

2
− a = a2

4
− a.

Solving the inequality −ĥ(a) < 1
256 , we have one solution a = 1

256 . Set

ψ0 = e− s
256 − esĥ( 1

256 ),

then ψ0 < 0. Define

ψ1 = 1 − esĥ( 1
256 ).

Since ĥ( 1
256 ) < 0, then ψ1 > 0.

Applying the Caccioppolli inequality (3.8), we arrive at

exp{τe
−s
256 }‖u‖L2(B+

1/2)
+ eτ‖u‖L2(B1/3)

+ eτ‖∇u‖L2(B1/3)

≥ Cτ exp{τesĥ( 1
256 )}‖u‖L2(B+

1/256)
. (3.10)

Let
B1 = ‖u‖L2(B+

1/2)
,

B2 = ‖u‖L2(B1/3)
+ ‖∇u‖L2(B1/3)

,

B3 = ‖u‖L2(B+
1/256)

.

Multiplying both sides of the last inequality with exp{−τesĥ( 1
256 )} leads to

eτψ0B1 + eτψ1B2 ≥ CB3. (3.11)

We want to incorporate the first term on the left hand side of Eq. 3.11 into the right hand
side. Let

eτψ0B1 ≤ 1

2
CB3.

Thus, we need to have

τ ≥ 1

ψ0
ln

CB3

2B1
.

Therefore, for such τ ,

eτψ1B2 ≥ C

2
B3. (3.12)

Recall that the assumption
τ ≥ C(|α| + √|λ|)

in Proposition 2. We assume that

τ = C(|α| + √|λ|) + 1

ψ0
ln

CB3

2B1
. (3.13)

Note that ψ0 and ψ1 are constants. Substituting such τ in Eq. 3.12 yields that

eC(|α|+√|λ|)B
ψ1

ψ1−ψ0
1 B

−ψ0
ψ1−ψ0
2 ≥ CB3. (3.14)

Let κ = ψ1
ψ1−ψ0

. Then the following three-ball type inequality follows as

‖u‖
L2( 1

256B
+
1 )

≤ eC(|α|+√|λ|)‖u‖κ

L2(B+
1/2)

(‖u‖L2(B1/3)
+ ‖∇u‖L2(B1/3)

)1−κ . (3.15)
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Since u ∈ C2(B+
1/2) and ∇u = ∇′u + ∂u

∂ν
on the boundary B

+
1/2 ∩ {yn = 0}, the inequality

(3.15) implies the desired estimates (3.5). The estimate (3.4) is a consequence of Eq. 3.5.
Therefore, the lemma is finished.

We are in the position to prove the boundary doubling inequality in Theorem 1 with some
inspirations from [27].

Proof of Theorem 1 We consider the solution ū in the Eq. 2.5 with conditions (2.6). We
argue on scale of order one. We may normalize ū as

‖ū‖L2(B+
1/2)

= 1. (3.16)

We claim that there exists a positive constant C > 0 such that the following lower bound
holds on the boundary

‖ū‖H 1(B1/6)
≥ e−C(|α|+√|λ|). (3.17)

We will need to use the quantitative three-ball inequality (3.5) on the half balls. Note that
∂ū
∂ν

= 0 on the boundary {xn = 0}. We may normalize the inequality (3.5) as

‖ū‖L2(B+
1/512)

≤ eC(|α|+√|λ|)‖ū‖κ

L2(B+
1/4)

‖ū‖1−κ

H 1(B1/6)
. (3.18)

We prove the claim by contradiction. If the claim is not true, from Eq. 3.18, for any constant
Ĉ > 0, we have

‖ū‖L2(B+
1/512)

≤ Ce−Ĉ(|α|+√|λ|). (3.19)

Since the doubling estimate on the half ball has been shown in Eq. 2.12, using the doubling
inequality finitely many times, we obtain that

‖ū‖L2(B+
1/512)

≥ e−C(|α|+√|λ|)‖ū‖L2(B+
1/2)

≥ e−C(|α|+√|λ|), (3.20)

which contradicts the condition (3.19) since Ĉ is an arbitrary constant that can be chosen to
be sufficiently large. Thus, the condition (3.17) holds.

Next we claim that there exists a constant C such that

‖ū‖L2(B1/5)
≥ e−C(|α|+√|λ|). (3.21)

We recall the following interpolation inequality in [38] or [5]. For any small constant 0 <

ε < 1, there holds

‖∇′w‖L2(Rn−1) ≤ ε
3
2 (‖∇∇′w‖L2(Rn+) + ‖w‖L2(Rn+)) + ε− 1

3 ‖w‖L2(Rn−1), (3.22)

where ∇′ is the derivative for first n−1 variables. We choose w to be ūη, where η is a radial
cut-off function such that η = 1 in B

+
1/6 and vanishes outside B+

1/5. Substituting w = ūη in
the interpolation inequality (3.22) gives that

‖∇′(ūη)‖L2(Rn−1) ≤ ε
3
2
(‖∇∇′(ūη)‖L2(B+

1/5)
+ ‖ūη‖L2(B+

1/5)

) + ε− 1
3 ‖ūη‖L2(B1/5)

.(3.23)

Using the fact that gin = 0 for i �= n and ∂ū
∂ν

= 0 on {xn = 0}, the following Caccioppolli
inequality holds,

‖∇ū‖L2(B+
r ) ≤ C(|α| + √|λ|)

r
‖ū‖L2(B+

2r )
. (3.24)
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By the elliptic estimates, it is true that

‖∇∇′ū‖L2(B+
1/5)

≤ C(|α| + √|λ|)2‖ū‖L2(B+
1/2)

. (3.25)

Applying the estimates (3.24) and (3.25) for ū in Eq. 3.23, we derive that

‖∇′ū‖L2(B1/6)
≤ C0ε

3
2 (|α| + √|λ|)2 + ε− 1

3 ‖ū‖L2(B1/5)
, (3.26)

where we have used Eq. 3.16. Adding ‖ū‖L2(B1/6)
to both sides of the last inequality yields

that

‖ū‖H 1(B1/6)
≤ C0ε

3
2 (|α| + √|λ|)2 + 2ε− 1

3 ‖ū‖L2(B1/5)
. (3.27)

To incorporate the first term on the right hand side of the last inequality into the left hand
side, we choose ε such that

C0ε
3
2 (|α| + √|λ|)2 = 1

2
‖ū‖H 1(B1/6)

. (3.28)

That is,

ε = (
‖ū‖H 1(B1/6)

2C0(|α| + √|λ|)2 )2/3.

Therefore, (3.27) turns into

‖ū‖11/9
H 1(B1/6)

≤ C(|α| + √|λ|)4/9‖ū‖L2(B1/5)
. (3.29)

Because of Eq. 3.17, we infer that

‖ū‖H 1(B1/6)
≤ eC(|α|+√|λ|)‖ū‖L2(B1/5)

. (3.30)

From (3.17) again, it also follows that

‖ū‖L2(B1/5)
≥ e−C(|α|+√|λ|), (3.31)

which verifies the claim (3.21).
Let η̄ be a cut-off function such that η̄(y) = 1 for |y| ≤ 1

4 and vanishes for |y| ≥ 1
3 . By

the Hardy trace inequality and elliptic estimates (3.24), it follows that

‖ū‖L2(B1/4)
≤ ‖η̄ū‖L2(B1/4)

≤ ‖∇(η̄ū)‖L2(Rn+)

≤ C‖∇ū‖L2(B+
1/3)

+ C‖ū‖L2(B+
1/3)

≤ C(|α| + √|λ|)‖ū‖L2(B+
1/2)

≤ C(|α| + √|λ|). (3.32)

Combining the established estimates (3.31) and (3.32), we have

‖ū‖L2(B1/4)
≤ eC(|α|+√|λ|)‖ū‖L2(B1/5)

. (3.33)

Notice that u = ū on B1/2. By rescaling and diffeomorphism of Fermi exponential map, we
arrive at

‖u‖L2(B2r (x0))
≤ eC(|α|+√|λ|)‖u‖L2(Br (x0))

(3.34)

for any x0 ∈ ∂�, B2r (x0) ⊂ ∂�, and r < r0 for some r0 depending only on ∂�. This
completes the proof of Theorem 1.

We will show the upper bounds of nodal sets for Neumann and Robin eigenfunction on
the analytic boundary. To achieve it, we need a quantitative inequality on the relation of
L2 norm of eigenfunctions on the boundary and on the half balls. We argue on scale with
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δ = 1 for Eq. 2.5 with the conditions (2.6). Applying quantitative two half-ball and one
lower dimensional ball in Eq. 3.5 by replacing u by ū, and the doubling inequalities in the
half ball in Eq. 2.12 finitely many times, we have

‖ū‖L2(B+
1/2)

≤ eC(|α|+√|λ|)‖ū‖κ

L2(B+
1/2)

‖ū‖1−κ

H 1(B1/3)
. (3.35)

Thus, we obtain that

‖ū‖L2(B+
1/8)

≤ eC(|α|+√|λ|)‖ū‖H 1(B1/3)
. (3.36)

By the arguments in deriving the estimates (3.30), we can improve (3.36) as

‖ū‖L2(B+
1/8)

≤ eC(|α|+√|λ|)‖ū‖L2(B2/5)
. (3.37)

For the upper bounds of nodal sets, we need a lemma concerning the growth of a complex
analytic function with the number of zeros, see [10] or Lemma 2.3.2 in [17].

Lemma 2 Suppose f : B1(0) ⊂ C → C is an analytic function satisfying

f (0) = 1 and sup
B1(0)

|f | ≤ 2N

for some positive constant N . Then for any r ∈ (0, 1), there holds

�{z ∈ Br (0) : f (z) = 0} ≤ cN

where c depends on r . Especially, for r = 1
2 , there holds

�{z ∈ B1/2(0) : f (z) = 0} ≤ N .

We are ready to provide the proof of upper bounds for the boundary nodal sets. See
the pioneering work in [10] and [27] for interior nodal sets. For conveniences of the
presentations, we first show the proof of Neumann eigenfunctions.

Proof of theorem 2 To get the measure estimates of nodal sets of Neumann eigenfunctions
on the boundary, we perform a standard lifting argument. Let

ŵ(x, t) = e
√

λtu(x). (3.38)

Then ŵ(x, t) satisfies the following equation{ −�̂ŵ = 0 in � × (−∞, ∞),
∂ŵ
∂ν

= 0 on ∂� × (−∞, ∞)
(3.39)

with �̂ = � + ∂2t . By straightening the boundary ∂� locally, rescaling and translation. we
may assume that (p, 0, t) ∈ (

∂B+
1/16 ∩{xn = 0})× (− 1

16 ,
1
16 ) with p ∈ R

n−1. From elliptic
estimates in Lemma 2.3 in [36], we obtain that

|∇
′ᾱŵ(p, 0, 0)

ᾱ! | ≤ CĈk‖ŵ‖
L∞

(
B

+
1/8×(− 1

8 , 18 )
), (3.40)

where |ᾱ| = k, the derivative is taken with respect to x′ on ∂B+
1/16 ∩ {xn = 0}, and Ĉ > 1

depends on �. By the definition of ŵ, we have that

|∇
′ᾱu(p, 0)

ᾱ! | ≤ CĈkeC
√

λ‖u‖L∞(B+
1/8)

. (3.41)
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Then u(p, 0) is real analytic for any (p, 0) ∈ ∂B+
1/16 ∩ {xn = 0}. We may consider p as the

origin in R
n−1. Summing up a geometric series gives a holomorphic extension of u with

sup
|z|≤ 1

2(n−1)Ĉ

|u(z)| ≤ eC
√

λ‖u‖L∞(B+
1/8)

, (3.42)

where 1
2(n−1)Ĉ

< 1
8 and z ∈ C

n−1. The estimates (3.37) also hold for Neumann boundary

conditions with α = 0. Hence, it follows that

‖u‖L2(B+
1/8)

≤ eC
√

λ‖u‖L2(B2/5)
. (3.43)

Note that Br is denoted as the ball in R
n−1 with radius r . Taking the boundary doubling

inequality (3.33) with α = 0, Eq. 3.42 and elliptic estimates into consideration, by finite
steps of iterations, we conclude that

sup
|z|≤ 1

2(n−1)Ĉ

|u(z)| ≤ eC
√

λ sup
x∈B 1

4(n−1)Ĉ

|u(x)|. (3.44)

By rescaling arguments, we derive that

sup
|z|≤2r

|u(z)| ≤ eC
√

λ sup
x∈Br

|u(x)|, (3.45)

where 0 < r < r̂0 and r̂0, C depends on �.
Thanks to the doubling inequality (3.45) and the growth control lemma for zeros, i.e.

Lemma 2, we are ready to give the proof of Theorem 2. Since r does not depend on λ, we
can argue on scales of r = 1. Let p ∈ B1/4 ⊂ R

n−1 be the point where the supremum of |u|
is achieved. After rescaling, we assume that |u(p)| = 1. By the doubling inequality (3.45),
we have

sup
|z|≤1

|u(z)| ≤ eC
√

λ sup
|x|≤ 1

4

|u(x)|

≤ eC
√

λ. (3.46)

Applying (3.45) to the translation of u, we obtain that

sup
|z−p|≤1

|u(z)| ≤ eC
√

λ sup
|x−p|≤ 1

4

|u(x)|

≤ eC
√

λ sup
|x|≤ 1

2

|u(x)|

≤ eC
√

λ. (3.47)

For each direction ω ∈ Sn−2, we consider the function

uω(z) = u(p + zω), z ∈ B1(0) ⊂ C.

Denote N(ω) = �{z ∈ B1/2(0) ⊂ C|eω(z) = 0}. By the doubling inequality (3.45) and
Lemma 2, we obtain that

�{x ∈ B1/2(p) ⊂ R
n−1|x − p is parallel to ω and u(x) = 0}

≤ �{z ∈ B1/2(0) ⊂ C|uω(z) = 0}
= N(ω)

≤ C
√

λ. (3.48)
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By the integral geometry estimates, we further derive that

Hn−2{x ∈ B1/2(p)|u(x) = 0} ≤ c(n)

∫
Sn−2

N(ω)dω

≤
∫

Sn−2
C

√
λ dω

≤ C
√

λ. (3.49)

Thus, we show the upper bound of nodal sets

Hn−2{x ∈ B1/4(0)|u(x) = 0} ≤ C
√

λ. (3.50)

By rescaling, it also implies that

Hn−2{Br0(p) ⊂ ∂�|u(x) = 0} ≤ C
√

λ (3.51)

for some r0 depending only on � and for any p ∈ �. Since the boundary ∂� is compact,
by finite number of coverings, the theorem is arrived.

By the strategy in the proof of Theorem 2, we consider the boundary nodal sets of Robin
eigenfunctions (1.1).

Proof of Corollary 1 To get rid of α on the boundary, we introduce the following lifting
argument. Let

v̂(x, t) = eαtu(x).

Then v̂(x, t) satisfies the equation{ �v̂ + ∂2t v̂ − α2v̂ + λv̂ = 0 in � × (−∞, −∞),
∂v̂
∂ν

+ ∂v̂
∂t

= 0 on ∂� × (−∞, −∞).
(3.52)

Using the lifting arguments, we get rid of λ and α. Let

ŵ(x, t, s) = e(|α|i+√
λ)s v̂(x, t).

If λ < 0, then
√

λ is considered as the imaginary number. Then we have{ �ŵ + ∂2t ŵ + ∂2s ŵ = 0 in � × (−∞, −∞) × (−∞, −∞),
∂ŵ
∂ν

+ ∂ŵ
∂t

= 0 on ∂� × (−∞, −∞) × (−∞, −∞).
(3.53)

Note that Eq. 3.53 is a uniformly elliptic equation with oblique boundary conditions. The
similar lifting argument has been used in [28]. We introduce the cube with unequal radius as

�R,δ = {(x, t, s) ∈ R
n+2||xi | < R when i < n, |xn| < δR, |t | < R, |s| < R}

and half-cube

�+
R,δ = {(x, t, s) ∈ R

n+2||xi | < R when i < n, 0 ≤ xn < δR, |t | < R, |s| < R}.
By rescaling, we may consider the function ŵ(x, t, s) locally in the cube with the flatten
boundary using the Fermi coordinates in Section 2. Thus, ŵ(x, t, s) satisfies{

�ŵ + ∂2t ŵ + ∂2s ŵ = 0 in �+
2,1,

∂ŵ
∂xn

+ ∂ŵ
∂t

= 0 on �+
2,1 ∩ {xn = 0}. (3.54)

By the analytical results in [36], we can extend ŵ(x, t, s) to the region �1,δ , where δ

depends only on ∂�. Moreover, we have

‖ŵ‖L∞(�1,δ) ≤ C2(�)‖ŵ‖L∞(�+
2,1)

. (3.55)
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Let us assume 0 < δ < 1
24 . Choose any point (p, 0) ∈ ∂B+

1
16

∩ {xn = 0} with p ∈ R
n−1. By

elliptic estimates in �1,δ , we have

|∇
′ᾱŵ(p, 0, 0, 0)

ᾱ! | ≤ CĈk‖ŵ‖
L∞

(
Bδ(p,0)×(−δ,δ)×(−δ,δ)

)
≤ CĈk‖ŵ‖

L∞
(
B

+
1
8
(p,0)×(− 1

8 , 18 )×(− 1
8 , 18 )

), (3.56)

where |ᾱ| = k, the derivative is taken with respect to x′ in ∂B+
1/16 ∩ {xn = 0}, and Ĉ > 1

depends on �. In the second inequality of Eq. 3.56, we applied the growth control estimate
(3.55). From the definition of ŵ(x, t, s), it holds that

|∇
′ᾱu(p, 0)

ᾱ! | ≤ CĈkeC(|α|+√|λ|)‖u‖L∞(B+
1
8
(p,0)). (3.57)

The estimate (3.57) is the same as Eq. 3.41 in the proof of Theorem 2. The rest of the proof
follows from Theorem 2 by using the boundary doubling inequality (3.33), and (3.37), and
Lemma 2. Thus, we can show the upper bounds of boundary nodal sets in the Corollary.

At last, we show the sharpness of the upper bounds of boundary nodal sets for Neumann
eigenfunctions.

Remark 3 The upper bound for boundary nodal sets of Neumann eigenfunctions in Eq. 1.9
is sharp.

For n = 2, the sharp example was already constructed in [42] in a disc with radius one
in R

2.
For n ≥ 3, we consider the Neumann eigenvalue problem in a ball with radius one. By

separation of variables, let u(x) = R(r)�(ω), Then R(r) satisfies the equations

R′′(r) + n − 1

r
R′(r) + (λ − γ

r2
)R(r) = 0 (3.58)

and
− �ω� = γ� on Sn−1, (3.59)

where γ = k(k+n−2) is the eigenvalue for the spherical harmonics on Sn−1. By a standard

scaling, let W(r) = r
n−2
2 R(r). Equation 3.58 is reduced to the equation

W ′′(r) + 1

r
W(r) + (

λ − (γ + (n − 2)2

4
)/r2

)
W(r) = 0. (3.60)

We can write the solutions as

W(r) = J√
γ+ (n−2)2

4

(
√

λr),

where J√
γ+ (n−2)2

4

(y) is the Bessel function. Recall that the k-th Bessel function Jk(y) is the

solution for
y2J ′′(y) + yJ ′(y) + (y2 − k2)J (y) = 0. (3.61)

That is,

R(r) =
J√

γ+ (n−2)2
4

(
√

λr)

r
n−2
2

.
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The Neumann boundary condition

∂u

∂ν
= ∂(R(r)�(ω))

∂r
= 0

on r = 1 implies that

− n − 2

2
J√

γ+ (n−2)2
4

(
√

λ) + J ′√
γ+ (n−2)2

4

(
√

λ)
√

λ = 0. (3.62)

The measure of nodal sets for spherical harmonics �(ω) is known in [10] as

c
√

γ ≤ Hn−2{ω ∈ Sn−1|�(ω) = 0} ≤ C
√

γ . (3.63)

LetC√
γ+ (n−2)2

4 , k
be the kth positive zeros of the solution in Eq. 3.62, it is shown in Theorem

2.1 and Theorem 2.3 in [13] that

C2√
γ+ (n−2)2

4 , 1
≈ γ

as γ is large. Let
√

λ = C√
γ+ (n−2)2

4 , 1
. It follows from Eq. 3.63 that the conclusion in the

Theorem 2 is optimal for n ≥ 3.

4 Interior nodal sets on real analytic domains

In this section, we prove the upper bounds for interior nodal sets of Robin eigenfunctions
using again the doubling inequality and complex zero growth lemma. Assume that � is
a real analytic domain. If λ = 0, the Robin eigenvalues problem can be reduced to the
Steklov eigenvalue problem as discussed in Remark 1. The measure of interior nodal sets
for analytic domains has been obtained in [48]. Hence, we assume λ �= 0 in the section.
We first show the upper bounds of nodal sets in the neighborhood close to boundary, then
show the upper bounds of nodal sets away from the boundary ∂�. To deal with the nodal
sets close to the boundary, we do an analytical extension across the boundary using lifting
arguments and analyticity results.

Proof of Theorem 3 By the lifting argument, we introduce

ŵ(x, t, s) = e(|α|i+√
λ)seαtu(x) (4.1)

as in the proof of Corollary 1. Then ŵ satisfies (3.53) and ŵ can be analytically extended
to the region �1,δ whose definition is given in the proof of Corollary 1. Choose any point
p ∈ ∂B+

1/16(0) ∩ {xn = 0} with p ∈ R
n. By the elliptic estimates in [36], we have

|∇
ᾱ
x ŵ(p, 0, 0)

ᾱ! | ≤ CĈk‖ŵ‖
L∞

(
Bδ(p)×(−δ,δ)×(−δ,δ)

)
≤ CĈk‖ŵ‖

L∞
(
B

+
1
8
(p)×(− 1

8 , 18 )×(− 1
8 , 18 )

), (4.2)

where |ᾱ| = k, the derivative ∇ ᾱ
x is taken with respect to x ∈ R

n and Ĉ > 1 depends on �.
From the definition of ŵ(x, t, s), we obtain that

|∇
ᾱ
x u(p)

ᾱ! | ≤ CĈkeC(|α|+√|λ|)‖u‖L∞(B+
1
8
(p)). (4.3)
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By the uniqueness of the analytic continuation, it also holds that

− �u = λu in �̂1, (4.4)

where �̂1 = {x ∈ R
n| dist{x,�} ≤ δ}. We may regard p as the origin. If summing up

a geometric series, we can extend u(x) to be a holomorphic function u(z) with z ∈ C
n.

Moreover, we derive that

sup
|z|≤ 1

2nĈ

|u(z)| ≤ eC(|α|+√|λ|)‖u‖L∞(B+
1
8
) (4.5)

with C > 1. From the relations of ū and u, the doubling inequality (2.12) also holds for u as

‖u‖L2(B+
2r )

≤ eC(|α|+√|λ|)‖u‖L2(B+
r ) (4.6)

for 0 < r < r0. Applying the doubling inequality (4.6) in L∞ norm finitely many times in
the half balls, we have

sup
|z|≤ 1

2nĈ

|u(z)| ≤ eC(|α|+√|λ|)‖u‖L∞(B+
1

4nĈ

)

≤ eC(|α|+√|λ|)‖u‖L∞(B 1
4nĈ

). (4.7)

From the rescaling argument, we conclude that

sup
|z|≤2r

|u(z)| ≤ eC(|α|+√|λ|) sup
|x|≤r

|u(x)| (4.8)

for 0 < r < r0 with r0 depending on � and C depends on �.
In the first step, we prove the nodal sets in a neighborhood � δ

8
. Since ∂� is compact, we

can choose a sequence of finite number of balls centered on ∂� such that those balls cover
� δ

8
. By rescaling and translation, we can argue on scales of order one and choose balls

centered at origin. Let p ∈ B1/4 be the point where the maximum of |u| in B1/4 is attained.
After a rescaling, we may assume that u(p) = 1. By the doubling inequality (4.8), we have

sup
|z|≤1

|u(z)| ≤ eC(|α|+√|λ|) sup
|x|≤ 1

4

|u(x)|

≤ eC(|α|+√|λ|). (4.9)

Applying (4.8) to the translation of u, we obtain that

sup
|z−p|≤1

|u(z)| ≤ eC(|α|+√|λ|) sup
|x−p|≤ 1

4

|u(x)|

≤ eC(|α|+√|λ|) sup
|x|≤ 1

2

|u(x)|

≤ eC(|α|+√|λ|). (4.10)

For each direction ω ∈ Sn−1, set uω(z) = u(p + zω) in z ∈ B1(0) ⊂ C. By the doubling
property (4.10) and Lemma 2, we can show that

�{x ∈ B1/2(p) | x − p is parallel to ω and u(x) = 0}
≤ �{z ∈ B1/2(0) ⊂ C|uω(z) = 0}
≤ C(|α| + √|λ|). (4.11)
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Recall that N(ω) = �{z ∈ B1/2(0) ⊂ C|uω(z) = 0}. With aid of integral geometry
estimates, it yields that

Hn−1{x ∈ B1/2(p)|u(x) = 0} ≤ c(n)

∫
Sn−1

N(ω) dω

≤
∫

Sn−1
C(|α| + √|λ|) dω

= C(|α| + √
λ). (4.12)

Since B1/4(0) ⊂ B1/2(p), we obtain the upper bound estimates

Hn−1{x ∈ B1/4(0)|u(x) = 0} ≤ C(|α| + √
λ). (4.13)

Covering the domain � δ
8

⊂ �̂1 with a finite number of balls centered at ∂�, we obtain that

Hn−1{x ∈ � δ
8
|u(x) = 0} ≤ C(|α| + √|λ|). (4.14)

In the second step, we deal with the measure of nodal sets in �\� δ
8
. Recall that we have

obtained the doubling inequality in the interior of the domain in Proposition 1, i.e.

‖ū‖L∞(B2r (p)) ≤ eC(|α|+√|λ|)‖ū‖L∞(Br (p)).

Since ū(x) = u(x) exp{−α�(x)} and −C0 < �(x) ≤ C0 for some constant C0 depending
on � in Eq. 2.7, it follows that

‖u‖L∞(B2r (p)) ≤ eC(|α|+√
λ)‖u‖L∞(Br (p)) (4.15)

holds for p ∈ �\� δ
8
and 0 < r ≤ r0 ≤ δ

8 . We can similarly extend u(x) locally as a

holomorphic function in C
n. Choose any point p ∈ �\� δ

8
. By the elliptic estimates, we

have

|∇
ᾱ
x ŵ(p, 0, 0)

ᾱ! | ≤ CĈk‖ŵ‖
L∞

(
B δ

24
(p)×(−δ,δ)×(−δ,δ)

)
≤ CĈk‖ŵ‖

L∞
(
B δ

16 (p)
×(− 1

8 , 18 )×(− 1
8 , 18 )

), (4.16)

where |ᾱ| = k, the derivative ∇ ᾱ
x is taken with respect to x ∈ R

n and Ĉ > 1 depends on �.
From the definition of ŵ(x, t, s), we obtain that

|∇
ᾱ
x u(p)

ᾱ! | ≤ CĈkeC(α+√|λ|)‖u‖L∞(B δ
16

). (4.17)

Summing up a geometric series, we can extend u(x) to be a holomorphic function u(z) with
z ∈ C

n. Moreover, we derive that

sup
|z|≤ 1

2nĈ

|u(z)| ≤ eC(α+√|λ|)‖u‖L∞(B δ
16

) (4.18)

with C > 1. By iterating the doubling inequality (4.15) finite number steps and rescaling
arguments, we arrive at

sup
|z|≤2r

|u(z)| ≤ eC(|α|+√|λ|) sup
|x|≤r

|u(x)| (4.19)

for 0 < r < r0 with r0 depending on � and C independent of λ and r .
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Following the same procedure in the neighborhood of the boundary, and making use of
Lemma 2 and the doubling inequality (4.19), we can obtain the upper bounds of the interior
nodal sets

Hn−1{x ∈ B1/2(p)|u(x) = 0} ≤ C(|α| + √|λ|). (4.20)

Covering the domain �\� δ
8
using finite number of balls gives that

Hn−1{x ∈ �\� δ
8
|u(x) = 0} ≤ C(|α| + √|λ|). (4.21)

Combining the results in (4.14) and (4.21), we arrive at the conclusion in Theorem 3.

5 Global Carleman estimates

In this section, we prove the quantitative global Carleman estimates in Proposition 2. Inter-
ested readers may refer to the survey [22] and [25] for more exhaustive literature for local
and global Carleman estimates. We will use the integration by parts arguments repeatedly
to get the desired estimates. Recall that the weight function

ψ(y) = esh(y)

with

h(y) = −|y′|2
4

+ y2
n

2
− yn.

Actually, the weight function can be chosen as any h ∈ C2 such that |∇h| �= 0 in B
+
1/2 to

have the Carleman estimates in Proposition 2. Recall the assumptions about b(y) and c(y)

are { ‖b‖W 1,∞(B+
1/2)

≤ C(|α| + 1),

‖c‖W 1,∞(B+
1/2)

≤ C(α2 + |λ|). (5.1)

Proof of Proposition 2 Choose

w(y) = eτψ(y)v(y). (5.2)

Since v(y) ∈ C∞(B+
1/2), then w(y) ∈ C∞(B+

1/2). We introduce a second order elliptic
operator

P0 = −aijDij + bi(y)Di + c(y).

Define the conjugate operator as

Pτw = eτψ(y)P0(e
−τψ(y)w).

Direct calculations show that

Pτw = −aijDijw + 2τaijDiψDjw + τaijDijψw

−τ 2aijDiψDjψw − τbi(y)Diψw + bi(y)Diw + c(y)w

= −aijDijw + 2τsψaijDihDjw − τ 2s2ψ2β(y)w + τψa(y, s)w

−τsψbi(y)Dihw + bi(y)Diw + c(y)w, (5.3)

where
β(y) = aijDihDjh,

a(y, s) = s2β(y) + saijDijh. (5.4)
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Note that β(y) ≥ C for some positive constant C on B
+
1/2 by the uniform ellipticity. We

split the expression Pτw into the sum of two expressions P1w and P2w, where

P1w = −aijDijw − τ 2s2ψ2β(y)w − τsψbi(y)Dihw + c(y)w,

P2w = 2τsψaijDihDjw + bi(y)Diw.

Then

Pτw = P1w + P2w + τψa(y, s)w. (5.5)

We compute the L2 norm of Pτw. By the triangle inequality, we have

‖Pτw‖2 = ‖P1w + P2w + τψa(y, s)w‖2
≥ ‖P1w‖2 + ‖P2w‖2 + 2〈P1w, P2w〉 − ‖τψa(y, s)w‖2. (5.6)

Later on, we will absorb the term ‖τψa(y, s)w‖2. Now we are going to derive a lower
bound for the inner product in Eq. 5.6. Let’s write

〈P1w, P2w〉 =
4∑

k=1

Ik +
4∑

k=1

Jk, (5.7)

where

I1 = 〈−aijDijw, 2τsψaijDihDjw〉,
I2 = 〈−τ 2s2ψ2β(y)w, 2τsψaijDihDjw〉,
I3 = 〈−τsψbi(y)Dihw, 2τsψaijDihDjw〉,
I4 = 〈c(y)w, 2τsψaijDihDjw〉,
J1 = 〈−aijDijw, bi(y)Diw〉,
J2 = 〈−τ 2s2ψ2β(y)w, bi(y)Diw〉,
J3 = 〈−τsψbi(y)Dihw, bi(y)Diw〉,
J4 = 〈c(y)w, bi(y)Diw〉. (5.8)

We will estimate each term on the right hand side of (5.7). Performing the integration by
parts shows that

I1 = 2τs2
∫
B

+
1/2

ψaijDiwDjhaklDkhDlw dy + 2τs

∫
B

+
1/2

Dj(aij aklDkh)ψDiwDlw dy

+2τs

∫
B

+
1/2

ψaijDiwaklDkhDljw dy − 2τs

∫
∂B+

1/2

ψaklDkhDlwaijDiwνj dS

= I 11 + I 21 + I 31 + I 41 . (5.9)

The first term I 11 can be controlled as

I 11 = 2τs2
∫
B

+
1/2

ψ |aijDiwDjh|2 dy

≥ 0. (5.10)



J. Zhu

Applying the integration by parts argument, the third term I 31 can be computed as

I 31 = τs

∫
B

+
1/2

ψaij aklDkhDl(DiwDjw) dy

= −τs

∫
B

+
1/2

ψDl(aij aklDkh)DiwDjw dy − τs2
∫
B

+
1/2

ψβ(y)aijDiwDjw dy

+τs

∫
∂B+

1/2

ψaijDiwDjwaklDkhνldS. (5.11)

Combining (5.9), (5.10) and (5.11), and using the fact that ‖aij‖C1 is bounded, we can
estimate I1 from below

I1 ≥ 2τs2
∫
B

+
1/2

ψ |aijDiwDjh|2 dy − τs2
∫
B

+
1/2

ψβ(y)aijDiwDjw dy

−Cτs

∫
B

+
1/2

ψ |∇w|2 dy − Cτs

∫
∂B+

1/2

ψ |∇w|2 dy. (5.12)

Thus,

I1≥−τs2
∫
B

+
1/2

ψβaijDiwDjw dy−Cτs

∫
B

+
1/2

ψ |∇w|2 dy−Cτs

∫
∂B+

1/2

ψ |∇w|2 dy. (5.13)

Now we compute the term I2 using integration by parts argument,

I2 = −τ 3s3
∫
B

+
1/2

ψ3β(y)aijDihDjw
2 dy

= 3τ 3s4
∫
B

+
1/2

ψ3β(y)aijDihDjhw2 dy + τ 3s3
∫
B

+
1/2

ψ3Dj (βaijDih)w2 dy

−τ 3s3
∫

∂B+
1/2

ψ3β(y)w2aijDihνj dS

≥ 3τ 3s4
∫
B

+
1/2

ψ3β2(y)w2 dy − Cτ 3s3
∫
B

+
1/2

ψ3w2 dy − Cτ 3s3
∫

∂B+
1/2

ψ3w2 dS. (5.14)

Choosing s large enough and noting that β(y) ≥ C, we deduce that

I2 ≥ 17

6
τ 3s4

∫
B

+
1/2

ψ3β2w2 dy − Cτ 3s3
∫

∂B+
1/2

ψ3w2 dS. (5.15)

For the term I3, using the integration by parts argument leads to

I3 = −τ 2s2
∫
B

+
1/2

ψ2bk(y)Dkhaij DihDj w
2 dy

= τ 2s2
∫
B

+
1/2

Dj (ψ
2bk(y)Dkhaij Dih)w2 dy − τ 2s2

∫
∂B+

1/2

ψ2w2bk(y)Dkhaij Dihνj dS. (5.16)

Making use of the assumption of Eq. 5.1 gives that

I3 ≥ −C(|α| + 1)τ 2s3
∫
B

+
1/2

ψ2w2 dy − C(|α| + 1)τ 2s2
∫

∂B+
1/2

ψ2w2 dS. (5.17)
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We proceed to estimate the term I4. Using integration by parts shows that

I4 = τs

∫
B

+
1/2

c(y)ψaijDihDjw
2 dy

= τs

∫
B

+
1/2

ψaijDj c(y)Dihw2 dy − τs2
∫
B

+
1/2

c(y)ψaijDjhDihw2 dy

−τs

∫
B

+
1/2

c(y)ψDj (aijDih)w2 dy + τs

∫
∂B+

1/2

c(y)ψw2aijDihνj dS. (5.18)

Again, the assumptions of Eq. 5.1 leads to

I4 ≥ −Cτs2(α2 + |λ|)
∫
B

+
1/2

ψw2 dy − Cτs(α2 + |λ|)
∫

∂B+
1/2

ψw2 dy. (5.19)

Together with the estimates on each Ik from Eqs. 5.13-5.19, using the assumption that
τ > Cs(|α| + √|λ|) for some Cs depending on s, we arrive at

4∑
k=1

Ik ≥ 14

5
τ 3s4

∫
B

+
1/2

ψ3β2w2 dy − Cτ 3s3
∫

∂B+
1/2

ψ3w2 dS − Cτs

∫
∂B+

1/2

ψ |∇w|2 dS

−τs2
∫
B

+
1/2

ψβaijDiwDjw dy − Cτs

∫
B

+
1/2

ψ |∇w|2 dy. (5.20)

Next we continue to estimate the integration about Jk using the strategy of integration by
parts. Direct computations show that

J1 =
∫
B

+
1/2

Dj(aij bk)DiwDkw dy + 1

2

∫
B

+
1/2

aij bkDk(DiwDjw) dy

−
∫

∂B+
1/2

bkDkwaijDiwνj dS

=
∫
B

+
1/2

Dj(aij bk)DiwDkw dy − 1

2

∫
B

+
1/2

Dk(aij bk)DiwDjw dy

+1

2

∫
∂B+

1/2

aijDiwDjwbkνk dS −
∫

∂B+
1/2

bkDkwaijDiwνj dS. (5.21)

Thus, from the assumption of bi ,

J1 ≥ −C(|α| + 1)
∫
B

+
1/2

|∇w|2 dy − C(|α| + 1)
∫

∂B+
1/2

|∇w|2 dS. (5.22)

For the term J2, integration by parts argument yields that

J2 = −1

2
τ 2s2

∫
B

+
1/2

ψβ(y)bi(y)Diw
2 dy

= τ 2s3

2

∫
B

+
1/2

ψβ(y)biDihw2 dy + τ 2s2

2

∫
B

+
1/2

ψDiβ(y)bi(y)w2 dy

+τ 2s2

2

∫
B

+
1/2

ψβ(y)Dibi(y)w2 dy − τ 2s2

2

∫
∂B+

1/2

ψβ(y)w2bi(y)νj dS. (5.23)
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Therefore, we can show that

J2 ≥ −Cτ 2s3(|α| + 1)
∫
B

+
1/2

βψw2 dy − Cτ 2s2(|α| + 1)
∫

∂B+
1/2

ψw2 dS. (5.24)

In the same way, we can show that

J3 = −τs

2

∫
B

+
1/2

ψbkDkhbiDiw
2 dy

= τs

2

∫
B

+
1/2

Di(ψbkDkhbi)w
2 dy − τs

2

∫
∂B+

1/2

ψw2bkDkhbiνj dS. (5.25)

We can control J3 below as

J3 ≥ −Cτs2(|α| + 1)2
∫
B

+
1/2

ψw2 dy − Cτs(|α| + 1)2
∫

∂B+
1/2

ψw2 dS. (5.26)

Similarly, applying the integration by parts leads to

J4 = 1

2

∫
B

+
1/2

c(y)biDiw
2 dy

= −1

2

∫
B

+
1/2

Dic(y)biw
2 dy − 1

2

∫
B

+
1/2

c(y)Dibiw
2 dy

+1

2

∫
∂B+

1/2

c(y)w2biνi dS. (5.27)

Then we can obtain that

J4 ≥ −C(α2 + |λ|)(|α| + 1)
∫
B

+
1/2

w2 dy − C(α2 + |λ|)(|α| + 1)
∫

∂B+
1/2

w2 dS. (5.28)

Using the fact that τ > Cs(|α| + √|λ|) for Cs depending on s, and summing up the
estimates from Eqs. 5.22-5.28 gives that

4∑
k=1

Jk ≥ −C(|α| + 1)
∫
B

+
1/2

ψ |∇w|2 dy − Cτ 2(|α| + 1)s3
∫
B

+
1/2

ψw2 dy

−Cτ 2s2(|α| + 1)
∫

∂B+
1/2

ψw2 dS − C(|α| + 1)
∫

∂B+
1/2

|∇w|2 dS. (5.29)

Recall the inner product (5.7). Combining (5.20), and (5.29) and using the the assumption
τ > Cs(|α| + √|λ|) again, we derive that

〈P1w, P2w〉 ≥ 11

4
τ 3s4

∫
B

+
1/2

ψ3β2w2 dy − 5

4
τs2

∫
B

+
1/2

ψaijDiwDjw dy

−Cτ 3s3
∫

∂B+
1/2

ψ3w2 dS − Cτs

∫
∂B+

1/2

ψ |∇w|2 dS. (5.30)

We want to control the gradient term on the second term on the right hand side of
Eq. 5.30. To this end, we consider the following inner product

〈P1w, τs2ψβ(y)w〉 =
4∑

k=1

Lk, (5.31)
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where

L1 = 〈−aijDijw, τs2ψβw〉,
L2 = 〈−τ 2s2ψ2βw, τs2ψβw〉 = −τ 3s4

∫
B

+
1/2

ψ3β2w2 dy, (5.32)

L3 = 〈−τsψbiDihw, τs2ψβw〉
= −τ 2s3

∫
B

+
1/2

ψ2βbiDihw2 dy

= −Cτ 2s3(|α| + 1)
∫
B

+
1/2

ψ2w2 dy, (5.33)

and

L4 = 〈c(y)w, τs2ψβw〉
= τs2

∫
B

+
1/2

c(y)ψβw2 dy

≥ −Cτs2(α2 + |λ|)
∫
B

+
1/2

ψβw2 dy. (5.34)

We want to find out a lower estimate for L1 to include the gradient terms. It follows from
integration by parts and Cauchy-Schwartz inequality that

L1 = τs2
∫
B

+
1/2

ψβaijDiwDjw dy + τs2
∫
B

+
1/2

Di(aijψβ)wDjw dy

−τs2
∫

∂B+
1/2

ψβwaijDiwνj dS

≥ τs2
∫
B

+
1/2

ψβ|aijDiwDjw| dy − Cτs3
∫
B

+
1/2

ψ |∇w||w| dy

−τs

∫
∂B+

1/2

ψβwaijDjwνj dS

≥ 9

10
τs2

∫
B

+
1/2

ψβaijDiwDjw dy − Cτs10
∫
B

+
1/2

ψ2w2 dy − Cτs2
∫

∂B+
1/2

ψw2 dS

−Cτs2
∫

∂B+
1/2

ψ |∇w|2 dS. (5.35)

Taking (5.31), (5.32), (5.33), (5.34), and (5.35), and τ > Cs(|α| + √|λ|) into account gives
that

〈P1w,
5τs2

2
ψβ(y)w〉 ≥ 9τs2

4

∫
B

+
1/2

ψβaijDiwDjw dy − 5τ 3s4

2

∫
B

+
1/2

ψ3β2w2 dy

−Cτs2
∫

∂B+
1/2

ψw2 dS − Cτs2
∫

∂B+
1/2

ψ |∇w|2 dS. (5.36)

Since

‖P1w‖2 + 25

4
‖τs2ψβw‖2 ≥ 2〈P1w,

5τs2

2
ψβw〉, (5.37)
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from Eq. 5.6, we obtain that

‖Pτw‖2 + 25

4
‖τs2ψβw‖2 ≥ 2〈P1w,

5τs2

2
τs2ψβw〉 + 2〈P1w,P2w〉

−‖τψa(y, s)w‖2. (5.38)

From the expression of a(y, s) in Eq. 5.4, we can absorb ‖τψa(y, s)w‖2 into the inner
product 〈P1w, P2w〉 by the dominating term τ 3s4

∫
B

+
1/2

ψ3β2w2 dy in Eq. 5.30. We can

absorb ‖τs2ψβw‖2 into the inner product 〈P1w, P2w〉 as well. Thanks to Eqs. 5.6, 5.30
and 5.36, using the assumption that τ > Cs(|α| + √|λ|) and s is a fixed large constant, we
arrive at

‖Pτw‖2 + τ 3s3
∫

∂B+
1/2

ψ3w2 dS + τs2
∫

∂B+
1/2

ψ |∇w|2 dS

≥ Cτ 3s4
∫
B

+
1/2

ψ3w2 dy + Cτs2
∫
B

+
1/2

ψ |∇w|2 dy. (5.39)

Recall (5.2) and the operator P0. We derive the following Carleman estimates for v as

‖eτψP0v‖2 + τ 3s3
∫

∂B+
1/2

ψ3e2τψv2 dS + τs2
∫

∂B+
1/2

ψe2τψ |∇v|2 dS

≥ Cτ 3s4
∫
B

+
1/2

ψ3e2τψv2 dy + Cτs2
∫
B

+
1/2

ψe2τψ |∇v|2 dy. (5.40)

Thus, we arrive at the conclusion in the proposition.

Appendix

In the Appendix, we first construct polar coordinates for equations with Lipschitz metrics
in Eq. 2.9, then we obtain the doubling inequalities on the double manifold. Most of the
arguments in the Appendix are kind of known and scattered in the literature. We present
the details for the conveniences of the readers. Without loss of generality, we consider the
construction of normal coordinates at origin. Starting from a ball Bδ in local coordinates,
for the metric g̃ij in Eq. 2.9, we introduce a “radial” coordinate and a conformal change
metric ĝij . Let

r = r(x) = (g̃ij (0)xixj )
1
2 (5.41)

and

ĝij (x) = g̃ij (x)ψ̂(x), (5.42)

where

ψ̂(x) = g̃kl(x)
∂r

∂xk

∂r

∂xl
(5.43)

for x �= 0 and (g̃ij ) = (g̃ij )
−1 is the inverse matrix. In the whole paper, we adopt the Ein-

stein notation. The summation over index is understood. We assume the uniform ellipticity
condition holds in Bδ for

�1‖ξ‖2 ≤
n∑

i,j=1

g̃ij (x)ξiξj ≤ �2‖ξ‖2
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for some positive constant �1 and �2 depending only on �. Then ψ̂ is bounded above and
below satisfying

�1

�2
≤ ψ̂ ≤ �2

�1
. (5.44)

We can also see that ψ̂ is Lipschitz continuous.With these auxiliary quantities, the following
replacement of geodesic polar coordinates are constructed in [3]. In the geodesic ball B̂r̂0 =
{x ∈ �̃|r(x) ≤ r̂0}, the following properties hold:

(i) ĝij (x) is Lipschitz continuous;

(ii) ĝij (x) is uniformly elliptic with
�2

1
�2

‖ξ‖2 ≤ ĝij (x)ξiξj ≤ �2
2

�1
‖ξ‖2.

(iii) Let � = ∂B̂r̂0 . We can parametrize B̂r̂0\{0} by the polar coordinate r and θ , with r

defined by Eq. 5.41 and θ = (θ1, · · · θn−1) be the local coordinates on �. In these
polar coordinates, the metric can be written as

ĝij (x)dxidxj = dr2 + r2γ̂ij dθ idθj (5.45)

with γ̂ij = 1
r2

ĝkl(x) ∂xk

∂θi
∂xl

∂θj .
(iv) There exists a positive constant M depending on g̃ij such that for any tangent vector

ξj ∈ Tθ (�),

|∂γ̂ij (r, θ)

∂r
ξ iξ j | ≤ M|γ̂ij (r, θ)ξ iξ j |. (5.46)

Let γ̂ = det (γ̂ij ). Then Eq. 5.46 implies that

|∂ ln
√

γ̂

∂r
| ≤ CM . (5.47)

The existence of the coordinates (r, θ) allows us to pass to “geodesic polar coordinates”.

In particular, r(x) = (g̃ij (0)xixj )
1
2 is the geodesic distance to the origin in the metric ĝij .

In the new metric ĝij , the Laplace-Beltrami operator is

�ĝ = 1√
ĝ

∂

∂xi

(ĝij
√

ĝ
∂

∂xj

),

where ĝ = det(ĝij ). If ū is a solution of Eq. 2.9, then ū is locally the solution of the equation

�ĝ ū + b̂(x) · ∇ū + ĉ(x)ū = 0 in B̂r̂0 , (5.48)

where ⎧⎨
⎩

b̂i = 2−n

2ψ̂2 g̃ij ∂ψ̂
∂xj

+ 1
ψ̂

b̃i ,

ĉ(x) = c̃(x)

ψ̂
.

(5.49)

By the properties of ψ̂ , we can see ĉ(x) is Lipschitz continuous. Since the term 2−n

2ψ̂2 g̃ij ∂ψ̂
∂xj

in b̂i is only continuous and does not depend on either α or λ, it can be ignored in the future
quantitative estimates for doubling inequality or nodal sets. The major term 1

ψ̂
b̃i is Lipschitz

continuous. From the conditions in Eq. 2.10, we still write the conditions for b̂ and ĉ as{ ‖b̂‖
W 1,∞(B̂r̂0

)
≤ C(|α| + 1),

‖ĉ‖
W 1,∞(B̂r̂0

)
≤ C(α2 + |λ|). (5.50)

For simplicity, we may write �ĝ or �g as � if the metric is understood. Since the geodesic
balls or half balls under different metrics are comparable, we write all as Br (x) or B+

r (x)
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centered at x with radius r . The rest of section is to show the doubling inequality on the
double manifold. Let r = r(y) be the Riemannian distance from origin to y. Our major
tools to get the three-ball theorem and doubling inequality are the quantitative Carleman
estimates. Carleman estimates are weighted integral inequalities with a weight function eτψ ,
where ψ usually satisfies some convex condition. We construct the weight function ψ as
follows. Set

ψ(y) = −g(ln r(y)),

where g(t) = t + log t2 for −∞ < t < T0, and T0 is negative with |T0| large enough. One
can check that

lim
t→−∞ −e−t g′′(t) = ∞ and lim

t→−∞ g′(t) = 1. (5.51)

Define

ψτ (y) = eτψ(y). (5.52)

We state the following quantitative Carleman estimates. The similar Carleman estimates
with lower bound of the parameter τ have been obtained in e.g. [4, 10, 48]. Interested readers
may refer to them for the proof of the following proposition.

Proposition 3 There exist positive constants C1, C0 and small r0, such that for v ∈
C∞
0 (Br0\Bρ), and

τ > C1(1 + |α| + √|λ|),
one has

C0‖r2ψτ

(�v + b̂(y) · ∇v + ĉ(y)v
)‖2 ≥ τ 3‖ψτ (log r)−1v‖2 + τ‖rψτ (log r)−1∇v‖2

+τρ‖r− 1
2 ψτv‖2. (5.53)

The ‖·‖r or ‖·‖ norm in the whole paper denotes the L2 norm over Br (0) if not explicitly
stated. Specifically, ‖ · ‖Br (y)) for short denotes the L2 norm on the ball Br (y). Thanks to
the quantitative Carleman estimates, it is a standard way to derive a quantitative three-ball
theorem. Let ū be the solutions of the second order elliptic (5.48). We apply such Carleman
estimates with v = ηū, where η is an appropriate smooth cut-off function, and then select an
appropriate choice of the parameter τ . The statement of the quantitative three-ball theorem
is as follows.

Lemma 3 There exist positive constants r̄0, C which depend only on � and 0 < β < 1
such that, for any 0 < R < r̄0, the solutions ū of Eq. 5.48 satisfy

‖ū‖B2R(x0) ≤ eC(|α|+√|λ|)‖ū‖β

BR(x0)
‖ū‖1−β

B3R(x0)
(5.54)

for any x0 ∈ �̃.

Since the proof of three-ball theorem is kind of standard by the applications of quan-
titative Carleman estimates (5.53). We skip the details. The readers may also refer to
Proposition 1 for similar proofs.
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Let ‖u‖L2(�) = 1. Because of the even extension, we may write

‖ū‖L2(�̃) = 2.

Set x̄ be the point where

‖ū‖L2(Br̂0
(x̄)) = max

x∈�̃

‖ū‖L2(Br̂0
(x))

for some 0 < r̂0 <
r̄0
8 . The compactness of �̃ implies that

‖ū‖L2(Br̂0
(x̄)) ≥ Cr̂0

for some Cr̂0 depending on �̃ and r̂0. From the quantitative three-ball inequality (5.54), at
any point x ∈ �, one has

‖ū‖L2(Br̂0/2(x)) ≥ e−C(|α|+√|λ|)‖ū‖
1
β

L2(Br̂0
(x))

. (5.55)

Let l be a geodesic curve between x̂ and x̄, where x̂ is any point in �̃. Define x0 =
x̂, · · · , xm = x̄ such that xi ∈ l and B r̂0

2
(xi+1) ⊂ Br̂0(xi) for i from 0 to m − 1. The num-

ber of m depends only on diam(�̃) and r̂0. The properties of (xi)1≤i≤m and the inequality
(5.55) imply that

‖ū‖L2(Br̂0/2(xi ))
≥ e−C(|α|+√|λ|)‖ū‖

1
β

L2(Br̂0/2(xi+1))
. (5.56)

Iterating the argument to get to x̄, we obtain that

‖ū‖L2(Br̂0/2(x̂)) ≥ e
−Cr̂0

(|α|+√|λ|)
C

1
βm

r̂0

≥ e
−Cr̂0

(|α|+√|λ|)‖ū‖L2(�̃). (5.57)

Let AR, 2R = (B2R(x0)\BR(x0)) for any x0 ∈ �̃. Then there exists Br̂0/2(x̂) ⊂ Ar̂0, 2r̂0 for
some x̂ ∈ A2r̂0, r̂0 . Thus, by Eq. 5.57,

‖ū‖L2(Ar̂0, 2r̂0
) ≥ e

−Cr̂0
(|α|+√|λ|)‖ū‖L2(�̃). (5.58)

With aid of the quantitative Carleman estimates (5.53) and the inequality (5.58), using
the argument as the proof of Lemma 3, we are ready to derive the doubling inequality as
follows.

Proof of Proposition 1 Let R = r̄0
8 , where r̄0 is the fixed constant in the three-ball inequal-

ity in Eq. 5.54. Choose 0 < ρ < R
24 , which can be chosen to be arbitrarily small. Define a

smooth cut-off function 0 < η < 1 as follows,

• η(r) = 0 if r(x) < ρ or r(x) > 2R,
• η(r) = 1 if 3ρ

2 < r(x) < R,
• |∇η| ≤ C

ρ
if ρ < r(x) <

3ρ
2 ,

• |∇2η| ≤ C if R < r(x) < 2R.
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We substitute v = ηū into the Carleman estimates (5.53) and consider the elliptic (5.48).
It follows that

τ
3
2 ‖(log r)−1eτψηū‖ + τ

1
2 ρ

1
2 ‖r− 1

2 eτψηū‖ ≤ C‖r2eτψ (�ĝ (ηū) + b̂(x) · ∇(ηū) + ĉ(x)ηū)‖
≤ C‖r2eτψ (�ηū + 2∇η · ∇v + b̂ · ∇ηū)‖.

Thanks to the properties of η and the fact that τ > 1, we get that

‖(log r)−1eτψ ū‖ R
2 , 2R3

+ ‖eτψ ū‖ 3ρ
2 ,4ρ ≤ C(‖eτψ ū‖

ρ,
3ρ
2

+ ‖eτψ ū‖R,2R)

+C(ρ‖eτψ∇ū‖
ρ,

3ρ
2

+ R‖eτψ∇ū‖R,2R)

+C(|α| + 1)(ρ‖eτψ ū‖
ρ,

3ρ
2

+ R‖eτψ ū‖R,2R).

Since R < 1 is a fixed constant and ρ < 1, we get that

‖eτψ ū‖ R
2 , 2R3

+ ‖eτψ ū‖ 3ρ
2 ,4ρ ≤ C(|α| + 1)(‖eτψ ū‖

ρ,
3ρ
2

+ ‖eτψ ū‖R,2R)

+C(δ‖eτψ∇ū‖
ρ,

3ρ
2

+ R‖eτψ∇ū‖R,2R).

Using the radial and decreasing property of ψ yields that

eτψ( 2R3 )‖ū‖ R
2 , 2R3

+ eτψ(4ρ)‖ū‖ 3ρ
2 ,4ρ ≤ C(|α| + 1)(eτψ(ρ)‖ū‖

ρ,
3ρ
2

+ eτψ(R)‖ū‖R,2R)

+C(ρeτψ(ρ)‖∇ū‖
ρ,

3ρ
2

+ Reτψ(R)‖∇ū‖R,2R).

For the Eq. 5.48, it is known that the Caccioppoli type inequality

‖∇ū‖(1−a)r ≤ C(|α| + √|λ|)
r

‖ū‖r (5.59)

holds with any 0 < a < 1. With the help of the Caccioppoli type inequality (5.59), we have

eτψ( 2R3 )‖ū‖ R
2 , 2R3

+ eτψ(4ρ)‖ū‖ 3ρ
2 ,4ρ ≤ C(|α| + √|λ|)(eτψ(ρ)‖ū‖2ρ + eτψ(R)‖ū‖3R). (5.60)

Adding the term eτψ(4ρ)‖ū‖ 3ρ
2
to both sides of last inequality and taking ψ(ρ) > ψ(4ρ)

into account yields that

eτψ( 2R3 )‖ū‖ R
2 , 2R3

+ eτψ(4ρ)‖ū‖4ρ ≤ C(|α| + √|λ|)(eτψ(ρ)‖ū‖2ρ + eτψ(R)‖ū‖3R). (5.61)

We choose τ such that

C(|α| + √|λ|)eτψ(R)‖ū‖3R ≤ 1

2
eτψ( 2R3 )‖ū‖ R

2 , 2R3
.

To achieve it, we need to have

τ ≥ 1

ψ( 2R3 ) − ψ(R)
ln

2C(|α| + √|λ|)‖ū‖3R
‖ū‖ R

2 , 3R2

.

Then, we can absorb the second term on the right hand side of Eq. 5.60 into the left hand
side,

eτψ( 2R3 )‖ū‖ R
2 , 2R3

+ eτψ(4ρ)‖ū‖4ρ ≤ C(|α| + √|λ|)eτψ(ρ)‖ū‖2ρ . (5.62)
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To apply the Carleman estimates (5.53), we have assumed that τ ≥ C(|α| + √|λ|).
Therefore, to have such τ , we select

τ = C(|α| + √|λ|) + 1

ψ( 2R3 ) − ψ(R)
ln

2C(|α| + √|λ|)‖ū‖3R
‖ū‖ R

2 , 3R2

.

Dropping the first term in (5.62), we get that

‖ū‖4ρ ≤ C(|α| + √|λ|) exp{( 1

ψ( 2R3 ) − ψ(R)
ln

2C(|α| + √|λ|)‖ū‖3R
‖ū‖ R

2 , 3R2

)(
ψ(ρ) − ψ(4ρ)

)

+ C(|α| + √|λ|)}‖ū‖2ρ
≤ eC(|α|+√|λ|)( ‖ū‖3R

‖ū‖ R
2 , 3R2

)C‖ū‖2ρ, (5.63)

where we have used the condition that

β−1
1 < ψ(

2R

3
) − ψ(R) < β1,

β−1
2 < ψ(ρ) − ψ(4ρ) < β2

for some positive constants β1 and β2 independent on R or ρ.
Let r̂0 = R

2 be fixed in Eq. 5.58. With aid of Eq. 5.58, we derive that

‖ū‖L2(B3R)

‖ū‖L2(A R
2 , 3R

2
)

≤ eC(|α|+√|λ|).

Therefore, it follows from Eq. 5.63 that

‖ū‖L2(B4ρ) ≤ eC(|α|+√|λ|)‖ū‖L2(B2ρ).

Choosing ρ = r
2 , we get the doubling inequality

‖ū‖L2(B2r )
≤ eC(|α|+√|λ|)‖ū‖L2(Br )

(5.64)

for r ≤ R
12 . If r ≥ R

12 , from Eq. 5.57,

‖ū‖L2(Br )
≥ ‖ū‖L2(B R

12
)

≥ e−CR(|α|+√|λ|)‖ū‖L2(�)

≥ e−CR(|α|+√|λ|)‖ū‖L2(B2r )
. (5.65)

Together with Eqs. 5.64 and 5.65, we obtain the doubling estimates

‖ū‖L2(B2r )
≤ eC(|α|+√|λ|)‖ū‖L2(Br )

(5.66)

for any r > 0, where C only depends on the double manifold �̃. By the translation invariant
of the arguments, the proof of Eq. 2.11 is derived.

Acknowledgements The author thanks Professor Steve Zelditch for bringing the reference [42] to our atten-
tions and helpful discussions. The author is also indebted to anonymous referees for useful comments which
help improve the presentation of the paper.

Data Availability Statements All data generated or analysed during this study are included in this published
article.



J. Zhu

References

1. Adolfsson, V., Escauriaza, L., Kenig, C.: Convex domains and unique continuation at the boundary. Rev.
Mat. Iberoamer. 11(3), 513–526 (1995)

2. Alessandrini, G., Rondi, L., Rosset, E., Vessella, S.: The stability for the Cauchy problem for elliptic
equations. Inverse Probl. 25(12), 123004, 47 (2009)

3. Aronszajn, N., Krzywicki, A., Szarski, J.: A unique continuation theorem for exterior differential forms
on Riemannian manifolds. Ark Mat. 4, 417–453 (1962)

4. Bakri, L., Casteras, J.B.: Quantitative uniqueness for schrödinger operator with regular potentials. Math.
Methods Appl. Sci. 37, 1992–2008 (2014)

5. Bellova, K., Lin, F.-H.: Nodal sets of Steklov eigenfunctions, Calc. Var. PDE 54, 2239–2268 (2015)
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