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Generation of Verification Artifacts from
Natural Language Descriptions
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3.1 Introduction

The integrated circuit (IC) design process has evolved greatly, from the manual
layout of a small number of components to the automated design of ICs containing
billions of transistors. To accommodate the dramatic increases in design complexity,
the field of electronic design automation (EDA) was born, starting with simple
schematic capture tools and culminating in the complex automation tools available
today. EDA tools depend on the existence of a well-defined behavioral model, or
model of computation, which can be used by EDA tools to perform synthesis and
verification tasks. Over time, the abstraction level of the behavioral models in use
has risen to efficiently capture more complex behaviors. EDA tools have proven
effective in supporting synthesis and verification tasks, but the initial behavioral
model must be generated manually by human experts. The process of manually
creating an accurate and complete behavioral description has always been a central
bottleneck in the design process which EDA tools seek to alleviate. Manually
generating a behavioral description is expensive, requiring significant time and a
large number of well-trained design and verification engineers. A large part of the
verification process is devoted to detecting and fixing design errors created during
the processes of creating a behavioral description.

Developing a natural language specification of design behavior is a well-
accepted precondition for generating a formal behavioral model. Natural language
specifications are the first concrete behavioral description which is the basis for the
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manually generated formal behavioral model. Natural language is preferred as the
initial description method mainly because it is much simpler for a designer to use
than existing hardware description languages. Natural language specifications also
have the advantage that they can be used to communicate behavioral information
with non-technical stakeholders, such as a client for whom the design is being made,
or a high-level manager. Design and verification engineers use the specification
as the main source of behavioral information, to generate a formal behavioral
description and to identify corner cases and expected responses for verification.
The task of interpreting natural language specifications has been exclusively manual
because, generally speaking, only humans with expert design knowledge have the
ability to properly interpret specification documents.

3.1.1 Verification Artifacts

Simulation-based verification involves applying test vectors to a system under test
and verifying the correctness of the responses. An enormous number of test results
must be evaluated when verifying complex systems, so the task of evaluating test
results must be automated. The evaluation of test responses is typically automated
using one of two approaches.

• Assertion-Based Verification An assertion is a program invariant which is eval-
uated automatically during hardware simulation to perform response evaluation.
Assertion-based verification is a well-used hardware verification approach [14].

• Transaction-Level Modeling Transaction-level modeling is a high-level behav-
ioral modeling approach which separated computation from communication [6].
The high level of abstraction enables simulation models to be created more
efficiently than models at lower abstraction levels such as register-transfer level.

Both result evaluation approaches require a tedious and error-prone manual
step to generate assertions or generate simulatable transaction models. The task of
formally specifying the behavior in terms of assertions or transaction models can be
nearly as difficult as the design task itself.

3.1.2 Verification from Natural Language

We present approaches to generate assertions and transactor models directly from
natural language descriptions of the system behavior. The benefit of our work is to
simplify the verification process by reducing the amount of manual effort required,
as well as the time required to debug the assertion framework itself.

It is common for a specification to contain sentences which express constraints on
the legal behavior of a system. We present an approach to generate SystemVerilog
assertions directly from constraint sentences such as these. An example of the
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Fig. 3.1 Generation of an assertion

Fig. 3.2 Generation of a
transactor

goal of this project is seen in Fig. 3.1 which shows an English assertion statement
together with the equivalent SystemVerilog assertion which our approach generates.

Specifications often describe event sequences which implement features of the
behavior. These event sequences are often named (i.e., “write transaction”) and
may be expressed over multiple sentences. Formally capturing event sequences
is essential in order to create a transaction model which will provide a “golden
model” of the transaction for response checking. Capturing sequences has the
additional complexity that information contained in multiple related sentences must
be combined to create a complete model. An example of transaction generation is
shown in Fig. 3.2 which shows two English sentences which are part of a larger
sequence description and the corresponding portion of the transactor written in
Verilog.

3.1.3 Chapter Organization

The remainder of the chapter is organized as follows. Related work in the application
of natural language processing is presented in Sect. 3.2. Section 3.3 outlines some
of the key issues that must be considered when generating a formal description
from natural language. Our use of semantic parsing to address issues related to
linguistic variation is described in Sect. 3.4. Sections 3.5 and 3.6 describe our work
in assertion generation and transactor generation, respectively. Section 3.7 presents
conclusions from our results and suggests future work.
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3.2 Related Work

Tasks related to the processing of natural language documents traditionally fall
into the NLP field [26]. NLP includes information extraction as well as many
related subproblems such as part-of-speech tagging and syntactic parsing. An
information extraction approach which we will leverage for understanding hardware
specifications is semantic parsing which maps natural language sentences to formal
meaning representations using syntactic parsing [37]. Existing semantic parsing
approaches can be categorized based on the restrictions on the text which they
process and the meaning representation used. In all previous work, the structure of
the text is restricted in some way. Restrictions may be very strict, such as insisting
on a subject, verb, direct object, and indirect object pattern in each sentence
[9, 34] or restricting verb tense and the number of independent clauses in a sentence
[29]. Several semantic parsers accept spoken dialog but restrict the conversation
domain [4, 24]. Research in processing software requirements frequently accepts
semi-structured use case textual descriptions [9, 29, 34, 42]. Semantic parsing
systems are domain-specific, so the meaning representation must be appropriate to
contain information in the chosen domain. Several earlier semantic parsers relied on
semantic frames [36], which are similar to structures which contain a set of fields
to describe the attributes of each structure instantiation[4, 24]. Message sequence
charts are often used as meaning representations for systems which process software
specifications [19, 29, 42]. Other meaning representations used include hidden
understanding models [35] and abstract state machines [30].

An alternative approach for information extraction is the use of machine learning
techniques in the form of text mining [12, 22]. Machine learning approaches
use statistical techniques to extract association rules involving words groups.
Machine learning has several applications in NLP including document retrieval, text
summarization [47], and semantic role labeling [18, 44].

3.2.1 NLP for Hardware and Software Design

Natural language processing has been applied to several different hardware design
problems in the past [10]. Researchers have developed a natural language interface
to search through circuit simulation results [40, 41]. The simulation process pro-
duces a results file containing a set of triples of the form (signal, voltage, time),
and natural language queries are used to specify constraints on each parameter.

Researchers have generated partial hardware designs from natural language
specifications [20, 21] by identifying a set of concepts expressed, together with a
textual pattern for each concept. Any sentence which matches a textual pattern can
be mapped to a structures in a design data structure defined by the authors. The
approach taken in [7] defines a grammar to parse natural language expressions and
generates VHDL snippets. More recent efforts have improved on the sophistication
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of the analysis by relying on the semi-formal structure of test scenarios described
by acceptance tests [43]. A UML class diagram is generated based on the entities
referred to in the scenario, and a UML sequence diagram is generated from the
sequence of operations described.

NLP has been applied in the software engineering field to support various
problems related to program comprehension. Information has been extracted from
software artifacts including source code and code comments [15, 45, 48] and
development emails [2]. Program comprehension tasks which have been addressed
include concern location, aspect mining [15], traceability, artifact summarization
[2], program rule extraction, and code search [45, 46]. The work presented in
[45] on program rule extraction is most related to our work since program rules
are essentially the same as assertions. The work in [45, 48] extracts information
from comments, while our work extracts information from hardware specifications.
iComment uses “rule templates” to match pattern in sentences, while our approach
uses an attribute grammar approach.

3.3 Issues in Formalizing Natural Language for Hardware

When developing approaches to formalize natural language descriptions of hard-
ware, there are several overarching concerns which fundamentally impact the
process and must be considered at the outset. We describe two of the most important
concerns in order to motivate and justify our approaches.

3.3.1 Computational Models

The information extracted from a specification document must be represented using
a formal, unambiguous computational model. Several types of computational
models may be used since the most efficient representation for each type of
information may be different. We broadly classify the types of information into
three classes, structural information which describes the physical objects referred
to in the text, behavioral information which defines constraints on events occurring
on objects in the ontology, and behavioral constraints which express general limits
on legal behavior.

3.3.1.1 Structural Representation

In a hardware specification, the most basic objects which will be part of the
structural description are wires, state elements, and hierarchical combinations of
the two. Hardware specifications will also refer to structural blocks in the design
which have associated behaviors. Events occurring on wires and state elements
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define the behavior of the system, and the purpose of a specification is to define
allowable relationships between these events. It is possible to define a specification
by referring to only the input and output wires, without explicitly defining any
internal state elements. However, it is common for hardware specifications to
reference some key state elements, and sometimes internal wires, which are assumed
to exist in the design.

The most appropriate method to represent a structure, and the most commonly
used method in previous work in software requirements analysis [28, 31], is the use
of a class hierarchy. Each type of object defined in the structure can be represented
as a class with attributes which indicate the basic wires and other classes which
are aggregated together. A structural example can be seen in the following sentence
from the IEEE 1500 standard specification document [23], “The WPP terminals
consist of the wrapper parallel input (WPI) terminal(s), wrapper parallel output
(WPO) terminal(s), and wrapper parallel control (WPC) terminals.” This sentence
defines a class called WPP with the attributes WPO, WPI, and WPC. Both WPO
and WPI are simple wires, but WPC is a grouping of wires defined elsewhere in the
specification document, so WPC would be defined as another class.

3.3.1.2 Behavior Representation

There are many well-accepted formal models for hardware behavior [16, 25, 32, 33].
Process-based models represent behavior as a set of concurrent processes which
are internally described in an imperative form using a sequential programming
model. Each concurrent process can be represented by a control-dataflow graph
model. State-based models describe system behavior by defining a set of states and
transitions between states.

The type of model chosen to capture meaning in a natural language specification
depends on the style in which the behavior is described. We demonstrate the
relationship between the writing style and the behavioral model used by comparing
the following two descriptions of a generic data transfer operation.

Description 1: A data transfer is initiated when the sender asserts the REQ signal.
The sender then waits until the ACK signal is asserted before transmitting the
data byte.

Description 2: When in the READY state, the sender asserts the REQ signal and
transitions to the WAIT state. The sender remains in the WAIT state until the
ACK signal is asserted, which causes it to enter the SEND state. In the SEND
state, the sender transmits the data byte.

Both of the specifications above describe the same behavior in different styles.
The first description clearly outlines a sequence of events and could most naturally
be captured with a process-based model as shown in Fig. 3.3a, using a single process
and a sequential program to implement the behavior. The second description is
explicitly written in terms of states and transitions, so it could be easily represented
using a state-based model as shown in Fig. 3.3b.



3 Generation of Verification Artifacts from Natural Language Descriptions 43

Fig. 3.3 Models of behavior, (a) process-based, (b) state-based

Representing the meaning of natural language specifications requires the features
of both process-based and state-based models, so the best model would incorporate
both. There are several appropriate models to choose from including SpecCharts
[38] and SpecC [17].

3.3.1.3 Behavioral Constraints

In addition to explicit descriptions of individual features, hardware specifications
also contain behavioral constraints which limit particular aspects of behavior more
generally. The following statement taken from the I2C bus protocol specification
document [39] is an example, “The data on the SDA line must be stable during the
HIGH period of the clock.” This statement does not describe a sequence of events
associated with a particular behavioral feature. Instead, it is a general constraint
on almost all explicit behaviors, including read and write transactions. As a result,
the statement is not easily represented using either a process-based or state-based
representation. Behavioral constraints are a common part of hardware specifications
and are often used to express properties for model checking and assertions for
checking during simulation.

To accommodate the representation of behavioral constraints, it is convenient
to use models which are already accepted for specifying properties and assertions.
Different forms of first-order predicate calculus, such as CTL and LTL, are effective
for specifying boolean and temporal relationships between events. Constraint satis-
faction programming (CSP) [8] can express arithmetic constraints as well. Efficient
solvers exist for CTL properties and CSP formulations. Hardware verification
languages, such as SystemVerilog and E, allow assertions to be expressed with
additional flexibility including hierarchy and timing precision. The complexity of
assertions makes them unsuitable for automatic theorem proving, but they are useful
for result checking during simulation.

3.3.2 Linguistic Variation

Linguistic variation describes the aspect of a language which enables a single
concept to be expressed in multiple ways in the language.
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Morphological – Morphological variation is employed when two homonyms,
words with the same meaning, are used in two different sentences.

I hate cats.
I detest felines.

These two sentences display morphological variation because they have the same
meaning but vary only in the choice of homonym used in each position in the
sentence. The words “hate” and “cats” in the first sentence are replaced with
their homonyms “detest” and “felines,” respectively.

Syntactic – Syntactic variation describes the use of different sentence structures
to express a single concept.

Joe hates cats.
Cats are hated by Joe.

The two sentences use largely the same words but the word order is changed from
an active voice in the first sentence to a passive voice in the second sentence.

Pragmatic – Pragmatic variation describes two sentences with different literal
meanings, but the same connotation.

Your breath stinks.
You might want to try using this toothbrush.

These two sentences have different literal meanings, but they both convey the
same meaning to most listeners: your breath stinks. The first sentence is direct,
while the second is suggestive, allowing the listener to infer the true meaning.

The chief problem associated with linguistic variation is to ensure that the
computational models generated from two semantically equivalent sentences are
themselves equivalent, independent of any linguistic variation present.

3.3.2.1 Linguistic Variation in Hardware Descriptions

Morphological Variation Morphological variation does occur in hardware
descriptions. For example, the verbs “set” and “assign” are often used
interchangeably. This type of variation can be modeled in a straightforward
way using a thesaurus to identify words with the same meaning. Each word is
associated with some object in the computational model, and a thesaurus enables
all words with the same meaning to be associated with the same model. The
modeling of morphological variation is shown in Fig. 3.4 which shows possible
models generated from the sentences “I hate cats” and “I hate felines.”

The entity-relationship diagram (ERD) in Fig. 3.4a relates the words “cat”
and “feline” to a single object “cat_type” using the IS-A relation. The logic
expression in Fig. 3.4b contains a predicate “cat_type” which is used to describe
both cats and felines. By using a thesaurus to define the scope of the nodes in
the ERD of Fig. 3.4a and the domain of the “cat_like” predicate in Fig. 3.4b,
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Fig. 3.4 Modeling morphological variation, (a) entity-relationship diagram, (b) predicate calculus

we can ensure that the two sentences with the same meaning have identical
computational models.

Syntactic Variation English grammar has a rich syntax providing for many ways
to express a single idea. This is true in the domain of hardware specifications,
for example, the sentences “Assign X to one” and “Signal X is asserted,”
which both describe the same signal assignment. In order to generate equivalent
computational models from sentences exhibiting syntactic variation, the meaning
of the sentence must be extracted in a way which is robust in the presence of
different word orderings.

Central to the meaning of any sentence is the verb (or verbs) which it contains.
Each declarative sentence contains actions or states involving one or more
participants, and the verbs in the sentence describe the action/state. Declarative
sentences describe events, as in “Signal X is asserted,” and states, such as “Signal
Y is low.” In order to use information in a sentence, it is essential to detect the
event or state, as well as the participants in the event or state. The verb (or verbs)
is a sentence describing the type of action or state. Each participant is said to have
a semantic role in the sentence, with respect to the action as usually described by
the verb. A simple example can be seen in the sentence, “Joe loves cats” where
loves describes the action, “Joe” has the role of the loving thing, and “cats” has
the role of the loved thing. Each sentence is assumed to match a semantic frame
[13] which is a template to describe the action of a sentence and the semantic
roles involved in the action. The sentence “Ian loves cats” can be described with
a semantic frame which describes the act of loving and contains two participants,
the loving thing and the loved thing.

The use of semantic frames to represent information in a way which is syntac-
tically neutral is a well-accepted approach in artificial intelligence research. We
perform parsing to fill a semantic frame for each English sentence, allowing the
identification of key words which fill each semantic role.

Pragmatic Variation – Pragmatic variation exists when context indicates that
the intended meaning of a sentence is different from the apparent meaning. For
example, if two people are at a store buying a toothbrush and one person says,
“You might want to try using this toothbrush,” then the meaning should be taken
literally. However, if the same sentence is spoken by a person who is forced to be
in close physical proximity with another person, then the meaning of the sentence
is likely to be an insult about the breath of the listener.



46 I. G. Harris and C. B. Harris

Although pragmatic variation can occur in English, it would never be expected
in a hardware description. We expect that a hardware description is always stated
in a direct manner for a single purpose, specifying system behavior.

3.4 Semantic Parsing

One technique that we will use to extract important elements from a sentence is
semantic parsing which uses a syntactic parser to process each sentence according
to the rules defined by a context-free grammar (CFG). Each sentence is associated
with one or more semantic frames, and the key words in the sentence which perform
each semantic role defined by the frame are easily located in the resulting parse
tree. Although natural languages are not context-free languages, the use of syntactic
parsers is well-accepted in the NLP community due to the existence of efficient
parsing algorithms. A CFG is defined to capture the English subset of interest, and
the parser generates a parse tree representation of the sentence in which each node
represents a production used in the parse. An example of a syntactic parse is shown
using the example sentence “Set P to one” and the CFG shown in Fig. 3.5. The
symbols used in the productions of Fig. 3.5 describe standard constituents in English
grammar which include sentence (S), verb phrase (VP), and noun phrase (NP). The
parse tree resulting from using this grammar is shown in Fig. 3.6a.

Semantic parsing uses a CFG containing symbols which are associated with
well-defined semantic interpretations. To demonstrate the semantic parsing process,
Fig. 3.6b shows the parse tree generated for the example sentence using the grammar

Fig. 3.5 Simple context-free
grammar for English

S → V P

V P → V B NN PP

V B → “set”
PP → IN NN

IN → “to”
NN → “P”
NN → “one”

Fig. 3.6 Parse trees
generated from (a) an English
syntactic grammar, (b) a
semantic grammar
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Fig. 3.7 Semantic grammar ASGN → “set” SIG “to” V AL

SIG → “P”
V AL → “one”

in Fig. 3.7. The semantic grammar includes the SIG symbol indicating a signal
name, the VAL symbol indicating a signal value, and the ASGN signal indicating a
signal assignment.

The key observation of semantic parsing is that it performs semantic role labeling
by highlighting relevant domain-specific information in the parse tree. For example,
in order to find the name of the signal being assigned, the parse tree can be searched
for the SIG symbol, and the signal name is its child. This signal assignment can now
be represented using a process-based representation as an assignment statement of
the form, SIG = VAL;, where the SIG role is the signal being assigned and the VAL
role is the value to which it is assigned.

We have developed semantic grammars to perform semantic role labeling for
all behavioral concepts which we consider. We accommodate the wide range of
linguistic variation by extending the grammar to capture all variations which are
common in hardware descriptions.

3.5 Generating Assertions

We present an approach to generate SystemVerilog assertions from behavioral
constraints expressed in English. This work depends only on the English text and
does not require the existence of a simulatable model of the design. Our approach is
based on the use of an attribute grammar to define the formal semantics of a subset
of assertion descriptions in English. Attribute grammars were originally developed
by Knuth [27] as a simple yet powerful formalism for expressing the semantics
of programming languages. We define an attribute grammar which associates
key natural language structures with semantically equivalent SystemVerilog code.
We use a parser to recognize important natural language structures in assertion
descriptions. The evaluation rules which are part of the attribute grammar are used
to generate SystemVerilog code for each structure.

3.5.1 Attribute Grammars

An attribute grammar is a context-free grammar enhanced with attribute values
and evaluation rules to compute the attribute values as a function of the attributes of
adjacent nodes in the parse tree. They were originally developed by Knuth [27]
for expressing the semantics of programming languages. We define an attribute
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Fig. 3.8 Attribute grammar ASGN → “set” SIG “to” V AL

[ASGN.v = SIG.v + “=” + V AL.v + “;”]
SIG → “P”

[SIG.v = “P”]
V AL → “one”

[V AL.v = “1”]

Fig. 3.9 Extension to an
attribute grammar

ASGN → SIG “must be assigned to” V AL

[ASGN.v = SIG.v + “=” + V AL.v + “;”]

grammar to capture the semantics of English assertions as the attribute values of
the symbols. The attribute value of each symbol of our grammar is a string of
SystemVerilog assertion code.

Attribute values can be passed from a node to its parent using a synthesized
attribute or from a node to its child using an inherited attribute. The grammar
that we define in this paper is said to be S-attributed because it only uses
synthesized attributes. Each production is associated with an evaluation function
which computes the attribute value of the symbol on the left-hand-side of the
production. The attribute value of the root node of the parse tree is the semantic
meaning of the parsed string. In our notation, each production is followed by its
attribute evaluation rule in square brackets. We also use the “+” symbol to represent
the string concatenation operation.

As a demonstrative example, we modify the semantic grammar in Fig. 3.7 to
produce an attribute grammar shown in Fig. 3.8. The attribute values in this grammar
are equivalent strings of C code. When the attribute grammar is used to parse the
sentence, “Set P to one,” the attribute value of the ASGN symbol is “P = 1;” which
is the C code equivalent to the sentence.

An important property of attribute grammars is the fact that they can be easily
extended to consider linguistic variation. As an example, consider an English
statement which declares that signal P should be assigned to the value 1. The
grammar shown in Fig. 3.8 will parse the sentence “Set P to one,” but it will not
parse, “P must be assigned to one” which uses the passive voice. However, by
including the production shown in Fig. 3.9 the sentence written in the passive voice
can be parsed as well. The attribute grammar can be constructed in a general way to
accommodate all of the linguistic variation required.

3.5.2 System Overview

Figure 3.10 shows the structure of our system and the flow of data between its
components. The system starts with the English Assertion at the top left. The
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Fig. 3.10 System structure

first processing step uses the Recursive Descent Parser to generate a Parse
Tree. The second processing step performs Attribute Evaluation to generate the
SystemVerilog Assertion, which is the attribute of the root node of the parse tree.
Both processing steps use the Attribute Grammar which we present in this paper.
The recursive descent parser uses Backus-Naur Form (BNF) productions of the
grammar to perform parsing. The attribute grammar includes evaluation rules,
associated with each production, which are evaluated to generate semantically
equivalent SystemVerilog assertions.

The recursive descent parser which we use is an off-the-shelf component taken
from the open source Natural Language Toolkit [3]. Attribute evaluation is well
understood, and we implement an existing technique using a left-to-right depth-first
traversal of the parse tree [11].

3.5.3 Attribute Grammar

We present an attribute grammar which parses a class of assertions descriptions
written in English and produces SystemVerilog assertions which are semantically
equivalent to the English descriptions. The following subsections present the
productions of the grammar grouped based on the hardware description concepts
which the productions recognize. Linguistic variation in English ensures that there
are several ways to express each concept. In each subsection we describe a set of
ways in which each concept is described in English, and we describe the features of
our grammar which captures each method of expression.

Productions in the grammar are associated with an attribute value, labeled with
the suffix .sv, which is a string of equivalent SystemVerilog code. The attribute value
of the root node of each parse tree is the SystemVerilog assertion which is equivalent
to the parsed sentence.
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Fig. 3.11 Productions for
constants

CST → “0”
[CST.sv = “0”]

CTR → CST

[CTR.sv = CST.sv]
CTR → DET“value” “of”CST

[CTR.sv = CST.sv]
DET → “a”|“an”|“the”

[DET.sv = ∅]

3.5.3.1 Constants

Constants may be referred to directly by their names or indirectly by referencing
their value. An example of a direct reference to the constant “1” would be “V is
assigned to 1” and an indirect reference example would be “V is assigned to the
value of 1.” In Fig. 3.11, the productions for the CST symbol define all constant
names, although only the definition of the constant “0” is shown. The symbol CTR
captures indirect constant references.

3.5.3.2 Signals and Storage Elements

The SN symbol captures all valid signal names in the system. It is common practice
to provide a list of all key signals and storage elements in any hardware specification,
so we assume that such a list is provided and we generate productions for the SN

signal to recognize signal names. Although all signals and storage elements are
described by SN productions, only one is shown in Fig. 3.12 for the “awvalid.” The
attribute value of each SN production is the name of the signal or storage element.

References to signals and storage elements can be either direct or indirect. A
direct reference may use only the signal name, such as OPCODE in the sentence,
“OPCODE must be reset.” A direct reference may also include a determiner and
a label specifying what type of storage element is being referred to, such as “The
OPCODE register must be reset.” The SL symbol describes the possible labels, the
SLR symbol describes direct references with labels, and the SDI symbol captures
all direct signal references.

Indirect signal references indicate the value of the signal rather than the signal
itself, such as “The value of the OPCODE register must be reset.” The IND symbol
describes the “the value of” string used to identify indirect signal references. The
SDE symbol captures all indirect signal references, and the SR symbol captures all
signal references, both direct and indirect.
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Fig. 3.12 Productions for
signals and storage elements

SN → “awvalid”
[SN.sv = “awvalid”]

SL → “signal”|“wire”|“register”|“bus”
[SL.sv = ∅]

SLR → “the” SN SL

[SLR.sv = SN.sv]
SDI → SN

[SDI.sv = SN.sv]
SDI → SLR

[SDI.sv = SLR.sv]
IND → “the” “value” “of”

[IND.sv = ∅]
SDE → IND SN

[SDE.sv = SN.sv]
SDE → IND SLR

[SDE.sv = SLR.sv]
SR → SDE

[SR.sv = SDE.sv]
SR → SDI

[SR.sv = SDI.sv]

3.5.3.3 Events

Hardware descriptions refer to events on signals in order to place constraints on
those events. We allow two types of event references, transition references and
assignment references. A transition reference can indicate either a rising edge, a
falling edge, or a transition of any kind. These transitions are captured by the
symbols T U , TD, and T A in Fig. 3.13. The attribute values for each transition
use the SystemVerilog functions for transition detection, $rise, $f ell, and $stable.

An assignment reference uses a signal assignment as a noun phrase in a sentence.
One type of assignment reference refers to a constant and uses a prepositional
phrase to indicate the signal being assigned. An example is “a value of 1 on v,”
where the prepositional phrase “on v” indicates the signal being assigned. The other
type of assignment reference is the use of a gerund phrase to indicate the signal
being assigned. An example is “assigning v to 1” where the subject of the gerund
“assigning” is the signal name and the prepositional phrase “to 1” indicates the value
to which the signal is assigned. The symbol AR captures both types of assignment
references, and the ER symbol captures both assignment and transition references.
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Fig. 3.13 Productions for
events

TU → “a” “rising” “edge” “on”SN
[TU.sv = “$rise(” + SN.sv + “)”]

TD → “a” “falling” “edge” “on”SN
[TD.sv = “$fell(” + SN.sv + “)”]

TA → “a” “transition” “on”SN
[TA.sv = “!$stable(” + SN.sv + “)”]

TR → TU

[TR.sv = TU.sv]
TR → TD

[TR.sv = TD.sv]
TR → TA

[TR.sv = TA.sv]
AG → “assigning”|“setting”

[AG.sv = ∅]
AR → AG SDI “to” CST

[AR.sv = SDI.sv + “ == ” + CST.sv]
AR → CTR “on” SN

[AR.sv = SN.sv + “ == ” + CTR.sv]
ER → TR

[ER.sv = TR.sv]
ER → AR

[ER.sv = AR.sv]

3.5.3.4 Comparison Operations

Constraints in hardware descriptions are frequently specified using comparison
operations. We accept the following comparisons and their complements: equal,
greater than, and less than. Examples include “v is greater than 1” and “v must
be equal to w.” A comparative relation is typically indicated in text by the use of
a form of the verb “to be” sometimes together with a modal verb such as “must”
or “can.” The productions for comparisons are shown in Fig. 3.14 which capture
equality statements, Fig. 3.15 which capture inequality statements, and Fig. 3.16
which capture magnitude comparison statements. The RL symbol describes all of
the verbs which indicate a comparative relation, and RN describes their negations.
The symbols EQ (EN ), GR (GN ), and LS (LN ) capture the comparisons of the
type equal (not equal), greater than (not greater than), and less than (not less than),
respectively. The attribute values of comparison productions use the appropriate
comparison operators built into SystemVerilog.
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Fig. 3.14 Productions for
equality statements

RL → “is”|“must” “be”|“remains”
RL → “must” “remain”

[RL.sv = ∅]
RN → “is” “not”|“must” “not” “be”
RN → “cannot” “be”|“must” “not” “remain”

[RN.sv = ∅]
EQ → SR RL CST

[EQ.sv = SR.sv + “ == ” + CST.sv]
EQ → SR “equals” CST

[EQ.sv = SR.sv + “ == ” + CST.sv]
EQ → SR RL “equal” “to” CST

[EQ.sv = SR.sv + “ == ” + CST.sv]
EQ → CST RL SDE

[EQ.sv = SDE.sv + “ == ” + CST.sv]
EQ → CST RL “equal” “to” SDE

[EQ.sv = SDE.sv + “ == ” + CST.sv]

Fig. 3.15 Productions for
inequality statements

EQN → SR RN CST

[EQN.sv = SR.sv + “ != ” + CST.sv]
EQN → SR RN “equal” “to” CST

[EQN.sv = SR.sv + “ != ” + CST.sv]
EQN → SR RL “does” “not” “equal” CST

[EQN.sv = SR.sv + “ != ” + CST.sv]
EQN → CST RN SDE

[EQN.sv = SDE.sv + “ != ” + CST.sv]
EQN → CST RN “equal” “to” SDE

[EQN.sv = SDE.sv + “ != ” + CST.sv]

3.5.3.5 Event Constraints

Hardware descriptions can constrain the possible events which can occur, both
transition events and assignment events. We accept event constraints which are
exclusionary, indicating that an event cannot occur. Transition events can be
constrained in a positive sense by stating that a signal must remain stable, such as “V
must be stable.” Figure 3.17 shows the productions for the symbol ST which is used
to capture statements of stability and the symbol EX which captures exclusionary
event constraints.
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Fig. 3.16 Productions for
magnitude comparison
statements

GR → SRRL “greater” “than” CST

[GR.sv = SR.sv + “ > “ + CST.sv]
GR → SR1 RL “greater” “than” SR2

[GR.sv = SR1.sv + “ > ” + SR2.sv]
GN → SR RN “greater” “than” CST

[GN.sv = SR.sv + “ leq ” + CST.sv]
GN → SR1 RN “greater” “than” SR2

[GN.sv = SR1.sv + “ leq ” + SR2.sv]
LS → SR RL “less” “than” CONST

[LS.sv = SR.sv + “ < ” + CST.sv]
LS → SR1 RL “less” “than” SR2

[LS.sv = SR1.sv + “ < ” + SR2.sv]
LN → SR RN “less” “than” CST

[LN.sv = SR.sv + “ ≥ ” + CST.sv]
LN → SR1 RN “less” “than” SR2

[LN.sv = SR1.sv + “ ≥ ” + SR2.sv]

Fig. 3.17 Productions for
event constraints

SW → “stable”|“constant”|“fixed”
ST → SR RL SW

[ST.sv = “$stable(” + SR.sv + “)”]
EX → ER “is” “not” “permitted”

[EX.sv = “!(” +ER.sv + “)”]
EX → ER “is” “not” “allowed”

[EX.sv = “!(” + ER.sv + “)”]

3.5.3.6 Boolean Logic

Constraints can be combined using boolean constructs such as “V is greater than 1
and w is equal to 1.” We allow the use of the words “and” and “or” to indicate the
boolean combination of constraints. The symbol CB captures all basic constraints
which do not include boolean constructs. Figure 3.18 presents productions for CB
which match all arithmetic comparison and event constraints. The CA (CO) symbol
describes the conjunction (disjunction) of any set of basic constraints. The CL

symbol captures all boolean combinations of basic constraints involving “and” and
“or” operations.
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Fig. 3.18 Productions for
boolean logic

CB → EQ

[CB.sv = EQ.sv]
CB → EQN

[CB.sv = EQN.sv]
CB → GR

[CB.sv = GR.sv]
CB → GN

[CB.sv = GN.sv]
CB → LS

[CB.sv = LS.sv]
CB → LN

[CB.sv = LN.sv]
CL → CB

[CL.sv = CB.sv]
CL → CA

[CL.sv = CA.sv]
CL → CO

[CL.sv = CO.sv]
CA → CB“and”CL

[CA.sv = CB.sv + “ && ” + CL.sv]
CO → CB“or”CL

[CO.sv = CB.sv + “ ‖ ” + CL.sv]

3.5.3.7 Implication

Implication is a concept commonly expressed in hardware descriptions. There are
several ways in which implication is expressed in English, using the key words
“if,” “then,” and “when.” Examples of implications include “V must be equal to
1 when W is asserted” or “If W is asserted then V must be equal to 1.” The
productions for the symbols for the antecedent (AN ) and consequent (CN ) of an
implication are shown in Fig. 3.19. Both antecedents and consequents match any
boolean combination of basic constraints. The productions for symbol CI which
captures implication constraints are also shown in Fig. 3.19.



56 I. G. Harris and C. B. Harris

AN → CL

[AN.sv = CL.sv]
CN → CL

[CN.sv = CL.sv]
CI → “if” AN“then” CN

[CI.sv = “!(” +AN.sv + “) ‖ (” + CN.sv + “)”]
CI → “when” AN“,” CN

[CI.sv = “!(” +AN.sv + “) ‖ (” + CN.sv + “)”]
CI → CN “when” AN

[CI.sv = “!(” +AN.sv + “) ‖ (” + CN.sv + “)”]

Fig. 3.19 Productions for implications

Fig. 3.20 Productions for
assertion sentences

S → CL

[S.sv = “assert property (” + CL.sv + “);”]
S → CI

[S.sv = “assert property (” + CI.sv + “);”]

3.5.3.8 Assertion Sentences

Each assertion is assumed to be expressed in a single sentence. A sentence is the
basic unit of text which is parsed, and the sentence symbol S is the root node of
any parse tree. We assume that each sentence being parsed is the expression of
a constraint on system signals and storage elements. A sentence can be either a
boolean combination of basic constraints or an implication. Figure 3.20 shows the
productions for the S symbol.

3.5.4 Experimental Results

The system was implemented in Python using the API provided in the Natural
Language Tool Kit [3] to create a recursive descent syntactic parser. All results were
generated on an Intel Core i5 processor, 3.2 GHz, with 8 GB RAM.

3.5.4.1 Benchmark Set

To evaluate our system it was necessary to identify a set of assertions for a
real system, specified in English. As a benchmark set of assertions, we have
used the assertions developed by ARM Inc. for the verification of AXI protocol
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assert property (!(awvalid == 1) ||
(!(awburst == 2b’11)));

Fig. 3.21 SystemVerilog assertion created from an AXI assertion

Fig. 3.22 Parse tree created from an AXI assertion

implementations [1]. We evaluated all assertions checking the write and read
channels including write/read address channel checks, write/read data channel
checks, and write response channel checks. The benchmark set of assertions consists
of 117 individual assertions, expressed in English.

3.5.4.2 Results on Benchmarks

Our tool successfully generated SystemVerilog assertions for 52 out of 117, 44% of
all assertions. The total CPU time required to generate all SystemVerilog assertions
was 199 s, which is 3.82 s per assertion, on average.

Figure 3.22 shows the parse tree resulting from the AXI assertion, “A value of
2’b11 on awburst is not permitted when awvalid is high” [1]. The SystemVerilog
assertion generated from this English assertion is shown in Fig. 3.21. Near the top
of the parse tree the CI symbol indicates that an implication was recognized, of
the form CONSEQUENT “when” ANTECEDENT. The consequent and antecedent
are the subtrees under the CN and AN symbols, respectively. The antecedent is the
phrase “awvalid is high” which is the subtree under the EQ symbol, indicating that
it represents an equality constraint. The antecedent and consequent appear in the
SystemVerilog assertion as the terms “awvalid == 1” and “!(awburst == 2b’11).”
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3.5.4.3 Limitations of Assertion Generation

The range of English expression which our system can process is limited by the
attribute grammar which we have defined. In order to better understand the practical
limits of the grammar, we have examined the English assertions in our benchmark
set which our grammar failed to parse. We have identified the three features of the
unparsed assertions which caused our system to fail.

Sequential Constraints: Our system cannot parse sequential constraints which
describe properties spanning multiple clock cycles. An example of such a
constraint in our benchmark set is, “Recommended that wready is asserted within
MAXWAITS cycles of WVALID being asserted.”

Object Hierarchy: Our system only accepts constraints directly on the values
of signals and storage elements. However assertions may constrain a more
abstract object or event. An example in our benchmark set is, “The size of a
read transaction must not exceed the width of the data interface.” This assertion
refers to the abstract “read transaction” event which is defined elsewhere in the
specification, and it constrains the “size” property of this event.

Multiple Sentences: Our system assumes that each assertion is expressed in a
single sentence, but this is sometimes not convenient in practice. A sample asser-
tion in our benchmark set which requires multiple sentences is, “The number of
write data items matches awlen for the corresponding address. This is triggered
when any of the following occurs: . . . .” Accepting assertions expressed across
multiple sentences introduces several referencing issues including anaphora
resolution which enables the word “This” in the second sentence to be related
to the constraint defined in the first sentence. Although we did not address them
here, reference problems, including anaphora resolution, have been well studied
in the field of natural language processing.

In order to address these limitations, it was necessary to expand our work from
processing assertions describing an instant in time to entire transactions which
model sequences of events over a span of time. Considering transactions is the topic
of the following section.

3.6 Generating Transactors

We present an approach to automatically generate simulatable bus transactions
directly from natural language bus protocol specifications. Our technique employs
semantic parsing to produce Verilog transactors with high timing fidelity [5];
all significant events of the protocol are modeled explicitly. We identify a set
of transaction concepts which are ideas commonly used in natural language
description of bus protocols to express different aspects of a transaction. Each
transaction concept is recognized in the natural language description using a set
of context-free grammar (CFG) productions which we define. The resulting parse
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Fig. 3.23 Transaction graph
representation, shifting ‘01’
into a shift register

trees are scanned to locate each transaction concept and generate appropriate Verilog
code. Automating the generation of bus transactors reduces design and verification
time, eliminating the need to manually design and verify each transactor.

3.6.1 Transactions and Transactors

We describe a transaction as a hierarchical sequence of events on a set of signals.
Each event may write a value to a signal and read a value from one or more signals.
Figure 3.23 shows the transaction graph representation of a transaction to shift
the value ‘01’ into a two bit shift register. We assume that the shift register has two
single bit inputs Din, the data input, and Clk, the clock input. A bit is shifted into
the register by assigning Din to the appropriate value and causing a rising edge on
the Clk input. The transaction, referred to as Trans01, is described hierarchically
and drawn as a directed acyclic graph in Fig. 3.23. The leaf nodes in the graph are
assignments to input signals of the shift register. Each non-leaf node is a transaction
which is defined by the sequence of its successor nodes. For example, the ClockEdge
transaction is defined by the sequential execution of the assignments Clk=0 and
Clk=1.

3.6.1.1 Bus Transactors

A bus transactor implements a transaction defined in a protocol, acting as the link
between a transaction generator and a bus. The generic transactor interface which
we assume is shown in Fig. 3.24. In the figure, the transactor is shown to interface
with the bus signals on the right. The transactor is implemented as a Verilog task, so
a transaction generator invokes the transactor task with a set of arguments defined
by the transactor interface. The interface includes the three signals shown in bold
on the left side of Fig. 3.24. Many bus protocols include a unique address for each
device on the bus, so the Address signal is defined to hold the address of the receiver.
Tx contains the data to be transmitted during a write transaction, and Rx contains the
data received during a read transaction. The width of the Address, Tx, and Rx signals
must be declared in the specification document.

References to the Address (Ad), Tx, and Rx signals in the specification document
are considered differently than normal signal references. We assume that the Ad and
Tx data will be transmitted on the bus and that the Rx data is read from the bus. We
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Fig. 3.24 Transactor
interface

Fig. 3.25 Structure of the natural language transactor generation system

assume that Ad and Tx are stored in transmit queues, so when data is read from them
the data is removed from the queue. We also assume that Rx is stored in a receive
queue so that when data is written to Rx, it does not overwrite existing data in the
queue.

3.6.2 System Overview

Figure 3.25 depicts the structure of the proposed system for transactor generation
from a natural language description. The natural language description is processed
using a Semantic Parser to generate a parse tree. The semantic parser is built using
an off-the-shelf syntactic parser, the Natural Language Toolkit [3], and a semantic
grammar which we define for this application. Information Extraction is applied
to the resulting parse tree to generate a semantic representation which contains all
behavioral information about each transaction. The semantic representation is used
to perform Transactor Generation and generate a set of Verilog transactors which
accurately model the behavior of the specified transactions.

3.6.3 Transaction Concepts

We have defined a semantic grammar to identify the expression of transaction
concepts in natural language descriptions of bus transaction protocols. The grammar
which we present is not sufficient to parse all legal descriptions; however, it is
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broad enough to parse a useful subclass of all descriptions. In this section we
define the subclass of descriptions which can be parsed by our grammar. We present
the syntactic patterns which are recognized by our grammar and a subset of the
production rules used to parse each pattern. The productions we use to recognize
standard English grammatical constructs (i.e., noun phrase, verb phrase, etc.) are a
subset of those presented in [26].

We present a set of transaction concepts which are ideas used in the natural
language description to express different aspects of a transaction. The transaction
concepts are expressed in the natural language specification to describe the protocol,
and each transaction concept can be mapped directly to Verilog constructs. Each
transaction concept is recognized in the natural language description using a set of
CFG productions which we define.

• Signal Definitions – All input and output signals must be declared in the natural
language document. The SIGDEF grammatical symbol captures each signal
declaration.

• Transaction References – Each transaction must be referred to in the text using
some noun phrase as an unique identifier. The symbol TRANSREF is used to
capture transaction references.

• Sequence Descriptions – Each transaction is composed of a sequence of other
transactions which are lower in the transaction hierarchy. The three symbols
FULLSEQUENCE, PREFIXSEQUENCE, and SUFFIXSEQUENCE are used to
capture sequence descriptions.

• Signal Reading/Writing – Transactions at the lowest hierarchical level must
directly interact with signals. The symbols ASSIGNDIRECT, ASSIGNSTRUCT,
and ASSIGNIMPL are used to capture signal reading and writing.

The transaction concepts and their associated CFG productions are described in the
following sections.

3.6.3.1 Signal Definitions

We assume that all input and output signals are declared in the document. The top
production used to capture signal definitions is shown in Fig. 3.26.

The symbol SIGNAME matches any string and is assumed to be a proper noun
which is used to reference the signal. The DIRECTION symbol matches one of the
following values: “input,” “output,” and “input/output.” The WIDTH symbol is a
numeral indicating the bitwidth of the signal.

Fig. 3.26 Productions to
recognize signal definitions

SIGDEF → SIGNAME “is an” DIRECTION
“signal,” WIDTH “bit(s) wide”
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Fig. 3.27 Productions to
recognize transaction
references

TRANSREF → SNP | GNP
GNP → VG NP
VG → “sending” | “transmitting” |

“receiving”
SNP → NP

3.6.3.2 Transaction References

We assume that transactions are referred to in one of two ways in the document,
either as a simple noun phrase (SNP) or a gerundive noun phrase (GNP). A simple
noun phase is a noun phrase which contains a head noun, a set of modifiers for
the noun, and a determiner. An example of a simple noun phrase references is
“a write transaction,” with the head noun “transaction,” the modifier “write,” and
the indefinite article “a” which acts as a determiner. A gerundive noun phrase
uses a verb (i.e., “send”) in gerund form (i.e., “sending”) as the first modifier for
the head noun. For example, “sending a data byte” refers to a transaction which
transmits a byte of data. The gerund used in a gerund noun phrase describes the
movement of information, so we assume that it is either “sending,” “transmitting,”
or “receiving.” The gerund indicates the direction of data flow with respect to the bus
master. Figure 3.27 shows a subset of the productions used to recognize transaction
references and to identify their head noun and modifiers. In the figure, the symbol
TRANSREF represents a transaction reference, and the symbol NP represents a
noun phrase.

In a gerundive noun phrase, the head noun may be plural to indicate iterative
execution. For example, in the sentence “Sending a byte is performed by sending 8
bits,” the transaction “sending bits” is plural and describes the sending of a single bit
eight times. Recognition of plurals is well understood in natural language processing
research. We add productions to identify plural head nouns and to identify the
numeral representing the number of iterations.

3.6.3.3 Sequence Descriptions

The relationship between a transaction and the sequence of sub-transactions which
compose it can be expressed with several syntactic patterns. In order to recognize
sequence descriptions we define a set of cues, multiword substrings which we expect
to find in a sequence description. Cues are included in the production rules of our
grammar to allow us to identify the elements of a sequence. We define three different
syntactic patterns which indicate that a sentence contains sequence information.

The full sequence pattern matches sentences which define the entire sequence of
sub-transactions composing a transaction. An example of a sentence which matches
the full sequence pattern is the following: “Sending a byte is performed by sending
8 bits and receiving an acknowledge bit.” In this sentence, “Sending a byte” is the
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Fig. 3.28 Productions to
recognize the full sequence
pattern

S → FULLSEQUENCE
FULLSEQUENCE → TRANSHEAD

CUE FULL SEQ TRANSLIST
TRANSHEAD → TRANSREF
TRANSLIST → TRANSREF
TRANSLIST → TRANSREF “and” TRANSREF
TRANSLIST → TRANSREF “,” TRANSLIST
CUE FULL SEQ → “is performed by” |

“is transmitted by” | “is executed by” |
“is sent by”

Fig. 3.29 Productions to
recognize the prefix and
suffix patterns

S → PREFIXSEQUENCE
S → SUFFIXSEQUENCE
PREFIXSEQUENCE → TRANSHEAD

CUE PREFIX TRANSLIST
SUFFIXSEQUENCE → TRANSHEAD

CUE SUFFIX TRANSLIST
CUE PREFIX → “begins with” | “starts with”
CUE SUFFIX → “ends with”

head transaction, “is performed by” is the cue substring, “sending 8 bits” is the first
sub-transaction, and “receiving an acknowledge bit” is the second sub-transaction.

Figure 3.28 lists the productions added to our grammar to recognize the full
sequence pattern and its components. The TRANSHEAD symbol is a reference to
the transaction being defined in the sentence. The TRANSLIST symbol represents
an unbounded sequence of transaction references. CUE_FULL_SEQ matches the
set of substrings which identify the full sequence pattern. CUE_FULL_SEQ is
defined as the following set of substrings: “is performed by,” “is transmitted by,”
“is executed by,” and “is sent by.”

The second and third syntactic patterns to describe sequence are the prefix pattern
and the suffix pattern. The only difference between the three sequence syntactic
patterns is the cues used. The cues used for the prefix pattern are “begins with” and
“starts with.” The cue for the suffix pattern is “ends with.” The productions added to
recognize the prefix and suffix patterns are shown in Fig. 3.29.

3.6.3.4 Reading and Writing Signals

Each transaction is a hierarchical sequence of events on a set of signals. We
define three types of signal assignment descriptions, a direct signal assignment, a
structured signal assignment, and an implicit signal assignment.

A direct signal assignment is expressed with a gerundive noun phrase as in the
sentence, “Transmitting a bit is performed by setting X to 1.” In this sentence, the
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Fig. 3.30 Direct signal
assignment production

ASSIGNDIRECT → CUE DIRECT SIGNAME
“to” SIGVALUE

ASSIGNSTRUCT → CUE STRUCT “on” SIGNAME

Fig. 3.31 Structured signal assignment production

Fig. 3.32 Implicit signal
assignment production

ASSIGNIMPL → SIGASSIGN “while” SIGCOND

gerundive noun phrase “setting X to 1” indicates the direct signal assignment. The
top production for a direct signal assignment is shown in Fig. 3.30.

In Fig. 3.30, CUE_DIRECT is the set of direct assignment cues which we
recognize: “setting” and “assigning.” SIGNAME matches any string and should
match the name of a signal defined in another sentence. SIGVALUE matches the set
of values to which a signal can be assigned. For single-bit signals, the SIGVALUE
set includes “0,” “1,” and “Z.”

We also allow the description to apply the gerund “releasing” to a signal to
indicate that it should be assigned to the value Z. In this case, the form of the signal
assignment is “releasing” SIGNAME, and no SIGVALUE is required.

The description can also specify a structured signal assignment which is a
predefined sequence of assignments on a signal. Structured signal assignments
are assignments which would be commonly understood by any designer without
having to be explicitly defined in the specification. We define three structured signal
assignments, generating a pulse, generating a rising edge, and generating a falling
edge. The top production for a structured signal assignment is shown in Fig. 3.31.
In Fig. 3.31, CUE_STRUCT matches the following multiword strings: “generating
a pulse,” “generating a rising edge,” and “generating a falling edge.”

The transaction description may require a signal assignment to be performed
without explicitly declaring the assignment. This type of implicit signal assignment
can occur when the word “while” is used to specify a condition on a signal. An
example of an implicit signal assignment can be seen in the following sentence:
“Sending a bit is performed by setting SDA to 1 while SCL is low.” In this sentence,
the gerundive noun phrase “setting SDA to 1” indicates an assignment to signal
SDA. The phrase “while SCL is low” implies that the SCL signal must be assigned
to 0 before the SDA signal assignment occurs. The production for an implicit signal
assignment is shown in Fig. 3.32. SIGASSIGN matches either a direct or structured
signal assignment, as shown in Figs. 3.30 and 3.31. SIGCOND is a condition on a
signal which is assumed to be in the following form, SIGNAME “is” SIGVALUE.
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3.6.4 Information Extraction

The information extraction stage analyzes the parse tree to find all information
needed to generate a simulatable bus transactor. The output of this stage is a
computational model containing all extracted information. We present a set of
classes which define the model. Information extraction instantiates these classes to
generate a set of objects which contain the extracted information.

3.6.4.1 Class Structure

We define two main classes to store information, the Signal class and the Transac-
tion class. The Signal class contains three attributes: SignalName, the name of the
signal; Width, the bit width of the signal; and Direction, the input/output direction
of the signal.

The Transaction class has two subclasses, TerminalTransaction and Non-
TerminalTransaction. The TerminalTransaction class defines transactions which
directly writes or reads signals. Objects of the TerminalTransaction class represent
one event, either a signal read event or a signal write event. A TerminalTransaction
does not describe a sequence of transactions. The TerminalTransaction class has the
following attributes:

• R/W – This indicates whether the transaction is a read event or a write event.
• Signal – This a reference to the signal which is being read (read transaction) or

written (write transaction).
• Value – This attribute only has meaning for a write transaction. This attribute is

either the value being assigned to a signal {0, 1, Z} or the name of the input
queue being read from, {Address, Tx}.

The NonTerminalTransaction class defines transactions which are defined as a
sequence of other transactions. A NonTerminalTransaction does not directly assign
values to signals. The NonTerminalTransaction class has the following attributes:

• TransID – This is the unique name of the transaction.
• TransList – This is an ordered list of transactions.

Each element of the TransList is a member of the TransListElt class which has the
following attributes:

• Transaction – This is a reference to a single transaction object.
• Iterations – This indicates the number of times the associated transaction must

be repeated. This attribute is used when a transaction is modified by a numeral
in the specification document. For example, the phrase “sending 8 bits” indicates
that the transaction to send a bit should be repeated 8 times.
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3.6.4.2 Extraction Process

Information extraction is performed by scanning the parse trees of each sentence to
find symbols which have well-defined semantic meanings. When such a symbol is
found an object is added to the semantic representation to capture the meaning of
the symbol. The attributes of the object are defined by examining the subtree of the
parse tree whose head is the semantic symbol.

A Signal object is created for each SIGDEF symbol found. The SIGNAME,
DIRECTION, and WIDTH symbols, which are children of the SIGDEF symbol,
are used to define the attributes of the Signal object.

A Transaction object is created when any of the sequence description symbols
are found: FULLSEQUENCE, PREFIXSEQUENCE, and SUFFIXSEQUENCE.
The TransID attribute of the transaction object is generated from the transaction
reference associated with the TRANSHEAD symbol of the sequence description.
The TransList is created from the TRANSLIST symbol of the sequence description.
A TransListElt object is created for each TRANSREF symbol in the TRANSLIST.
A TRANSLIST may also contain signal read/write events. A TransListElt object
is created for each signal read/write also.

The result of information extraction is a hierarchy of transaction objects whose
TransList attributes refer to the objects in the next lower level of the hierarchy.

3.6.5 Transactor Generation

The transaction graph generated by information extraction is used to create a
Verilog description of a simulatable bus transactor. Transactor generation involves a
depth-first traversal of the transaction graph, starting at the top-level node. When
a leaf node is reached, Verilog code is added to the transactor which performs
the operation corresponding to the leaf node. Each leaf node is an assignment
involving constants, signals, and the input/output queues Tx, Rx, and Ad. If the
signal assignment does not involve a queue then an appropriate Verilog dataflow
assignment statement is generated to perform the assignment. If the assignment
involves a queue, special-purpose Verilog tasks are used to access queues. We have
defined the q_extract task to extract a number of bits of a queue, and the q_insert
task to add bits to a queue. These two tasks maintain the read and write pointers
associated with the queue.

Information about iterative execution is contained in each element of the
TransList of each Transaction object. Iterative execution is modeled using the
repeat construct in Verilog. When a TransListElt which has I terations > 1, a
repeat construct is generated. The scope of the repeat construct includes the entire
subgraph.



3 Generation of Verification Artifacts from Natural Language Descriptions 67

1. Sending a write transaction is performed by sending a start condition, sending a write header byte,
sending a data byte, and sending a stop condition.

2. Sending a start condition is performed by setting SDA to 0 and setting SCL to 0.
3. Sending a write header byte is performed by sending an address, sending a bit whose value is 0, and

receiving an acknowledge bit.
4. Transmitting an address is performed by sending 7 address bits.
5. Sending an address bit is performed by setting SDA to a bit from Ad while SCL is low and generating

a pulse on SCL.
6. Sending a bit is performed by setting SDA to a value while SCL is low and generating a pulse on

SCL.
7. Receiving an acknowledge bit is performed by releasing SDA and generating a pulse on SCL.
8. Sending a data byte is performed by sending 8 data bits and receiving an acknowledge bit.
9. Sending a data bit is performed by setting SDA to a bit from Tx while SCL is low and generating

a pulse on SCL.
10. Sending a stop condition is performed by setting SDA to 0, setting SCL to 1, and generating a rising

edge on SDA.

Fig. 3.33 Natural language specification, I2C write transaction

3.6.6 Experimental Results

The transactor generation system was implemented in Python using the API
provided in the Natural Language Tool Kit [3] to create a recursive descent syntactic
parser. All results were generated on a 2 GHz Intel Core 2 Duo processor.

To evaluate our system we have generated a bus transactor for the I2C serial
protocol developed by Philips [39] to support onboard communication. The protocol
uses two wires, the data line SDA and the clock line SCL whose rising edges
synchronize data transmission. We have explored a subset of the protocol involving
a single Master node, 7-bit addressing, and no use of the repeated start condition.
We use the 10 sentence natural language specification of the write transaction shown
in Fig. 3.33. To focus on the more interesting part of the example, we have omitted
the sentences defining the signals.

An unique Transaction object is created to capture the information in each
sentence of the natural language description, forming an object hierarchy with the
Write transaction as the top-level object. Figure 3.34a shows the partial object
hierarchy representing the Transmitting an address transaction generated from
sentence 4 in Fig. 3.33. Figure 3.34a includes the Sending an address bit transaction
from sentence 5 which is annotated with the number 7 to represent the number of
iterations as specified in sentence 4. The q_extract task call removes a bit from
the Ad queue and assigns SDA to the bit value. The resulting Verilog code for
Transmitting an address is shown in Fig. 3.34b.

The bus transactor generation process was performed in 61.5 s of CPU time.
The resulting transactor, named i2c_write, is composed of 32 lines of Verilog code.
The first portion of the simulation result of invoking i2c_write to write to address
7’0011001 is shown in Fig. 3.35. The portions of the write transaction shown
include the Start condition from sentence 2 (START), Transmitting an address from
sentence 4, and the 0 bit (R/W) referred to in sentence 3.
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Fig. 3.34 “Transmitting an
address” transaction, (a)
transaction graph, (b) Verilog
code

Fig. 3.35 Simulation waveform from i2c_write

3.7 Conclusions

We have presented approaches to generate verification artifacts, assertions, and
transactors, directly from natural language text found in a hardware description. The
assertions are generated in SystemVerilog and can be used for response checking
as part of a standard verification flow. The transactors are simulatable Verilog and
can also be used with any Verilog simulator. Our approaches are based on the use
of semantic context-free grammars which can be easily extended to accept any
desired degree of linguistic variation which might be present in the English hardware
description. In its present form, our work can significantly reduce the amount of
manual labor which is traditionally devoted to creating and debugging a hardware
verification environment.
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