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Abstract—Constructing efficient low-rate error-correcting
codes with low-complexity encoding and decoding has become
increasingly important for applications involving ultra-low-power
devices such as Internet-of-Things (IoT). To this end, schemes
based on concatenating the state-of-the-art codes at moderate
rates with repetition codes have emerged as practical solutions
deployed in various standards. In this paper, we propose a
novel mechanism for concatenating outer polar codes with inner
repetition codes which we refer to as polar coded repetition. More
specifically, we propose to transmit a slightly modified polar
codeword by deviating from Arıkan’s standard 2 × 2 Kernel
in a certain number of polarization recursions at each repetition
block. We show how this modification can improve the asymptotic
achievable rate of the standard polar-repetition scheme, while
ensuring that the overall encoding and decoding complexity
is kept almost the same. The achievable rate is analyzed for
the binary erasure channel (BEC) and additive white Gaussian
noise (AWGN) channel. Moreover, we show that the finite-length
performance of the polar coded repetition scheme under cyclic
redundancy check (CRC) aided successive cancellation list (SCL)
decoder over AWGN channel is better than the uncoded polar-
repetition scheme at the cost of a slight increase in decoding
complexity. We also compare the proposed scheme, in terms of
performance and complexity, with other low-rate solution based
on polar codes in the literature.

I. INTRODUCTION

Recently, the Third Generation Partnership Project (3GPP)
has introduced various features including Narrow-Band Inter-
net of Things (NB-IoT) and enhanced Machine-Type Commu-
nications (eMTC) into the cellular standard in order to address
the diverse requirements of massive IoT networks including
low-power and wide-area (LPWA) cellular connectivity [4].

In general, devices in IoT networks have strict limitations
on their total available power and are not equipped with
advanced transceivers due to cost constraints. Consequently,
they often need to operate at very low signal-to-noise ratio
(SNR) necessitating ultra-low-rate error-correcting codes for
reliable communications. For instance, the SNR of −13 dB
is translated to capacity being 0.03 bits per transmission. The

This paper was presented in part at IEEE Information Theory Workshop
(ITW), Italy, April, 2021, [32].
Fariba Abbasi was with the Department of Electrical and Computer Systems
Engineering (ECSE), Monash University, Melbourne, VIC3800, Australia.
She is now with the Department of Electrical Engineering and Computer
Science (EECS), University of Michigan, Ann Arbor, MI 48104 (E-mail:
fabbasia@umich.edu).
Hessam Mahdavifar is with the Department of Electrical Engineering and
Computer Science (EECS), University of Michigan, Ann Arbor, MI 48104
(E-mail: hessam@umich.edu)
Emanuele Viterbo is with the Department of Electrical and Computer Systems
Engineering (ECSE), Monash University, Melbourne, VIC3800, Australia (E-
mail: emanuele.viterbo@monash.edu).
This work is supported in part by the National Science Foundation un-
der grants CCF–1763348, CCF–1909771, and CCF—1941633, and by the
Australian Research Council through the Discovery Project under Grant
DP200100731.

solution adopted in the 3GPP standard is to use the legacy
turbo codes or convolutional codes at moderate rates, e.g., the
turbo code of rate 1/3, together with up to 2048 repetitions to
support effective code rates as low as 1.6 × 10−4. Although
this repetition leads to efficient implementations with reduced
computational complexity, repeating a high-rate code to enable
low-rate communication will result in rate loss and mediocre
performance. As a result, studying efficient channel coding
strategies for reliable communication in this low SNR regime
is necessary [1].

The fundamental non-asymptotic laws for channel coding
in the low-capacity regimes have been recently studied in [1].
Furthermore, the optimal number of repetitions with negligible
rate loss, in terms of the code block length and the underlying
channel capacity, is characterized in [1]. It is also shown in
[1] that the state-of-the-art polar codes, proposed by Arıkan
[2], naturally invoke this optimal number of repetitions when
constructed for low-capacity channels. In another related work,
low-rate codes for binary symmetric channels are constructed
by concatenating high-rate i.e., rate close to 1, polar codes with
repetitions [5]. Weakly-coded modulation scheme which is the
concatenation of a binary low-density parity-check (LDPC)-
type code with a polar code has been introduced in [6] and
[7]. Tight lower and upper bounds are obtained for the bit error
rate (BER) of this scheme at any SNR and it is shown that
the proposed scheme outperforms uncoded modulation over
high noise memoryless channels at the cost of the increase in
decoding complexity.

In a recent work [8], in parallel to this work, we proposed
hybrid non-binary multiplicative repetition code as an alter-
native mechanism for the repetition concatenation scheme. In
this scheme, the outer code is a hybrid polar code constructed
in two stages, one with a binary kernel and another also
with a binary kernel but applied over a binary extension
field. The inner code is a non-binary multiplicative repetition
code. The proposed scheme benefits from the multiplicative
repetition over an extension field while keeping the complexity
of the encoder/decoder almost the same as that of the polar-
repetition. Simulation results demonstrated that the proposed
scheme outperforms the polar-repetition scheme with com-
parable decoding complexity under cyclic redundancy check
(CRC) aided successive cancellation list (SCL) decoder over
additive white Gaussian noise (AWGN).

In this paper, we propose another alternative mechanism
called coded repetition, for the binary repetition concatenation
scheme. In particular, a slightly modified codeword in each
repetition block is transmitted instead of identical codewords
in all repetition blocks. The goal is to reduce the rate loss due
to the repetition at the cost of a slight increase in the decoding
complexity. In particular, we consider polar codes as the outer
code. In the proposed polar coded repetition scheme, a slightly
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modified polar codeword is transmitted in each repetition
block by deviating from Arıkan’s standard 2 × 2 kernel in
a certain number of polarization recursions at each repetition
block. We show that our proposed scheme outperforms the
standard polar-repetition scheme, in terms of the asymptotic
achievable rate, for any given number of repetitions over
the binary erasure channel (BEC). A similar result is shown
empirically for the additive white Gaussian noise (AWGN)
channel. The proposed polar coded repetition has almost the
same encoding and decoding complexity as the polar-repetition
scheme. Furthermore, simulations results demonstrate that the
finite-length performance of the polar-coded repetition scheme
under cyclic redundancy check (CRC) aided successive can-
cellation list (SCL) decoder over AWGN channel outperforms
the straightforward polar-repetition scheme, also referred to as
uncoded polar-repetition scheme. The overall decoding com-
plexity of both schemes scale similarly with the block length,
assuming the number of repetitions is a constant, but in terms
of the actual number of operations, the polar-coded repetition
scheme has a slightly higher decoding complexity. The main
contributions of the paper are summarized as follows.
• Considering the polar-repetition scheme as our point of

departure in the low-rate regime, we propose to use
a slightly modified codeword in each repetition block
instead of identical codewords in all of them.

• We develop methods to search for and find the best
modified codeword in each repetition scheme. To this end,
we first consider all the possible cases with two and four
repetitions, constructed with regular and irregular polar
coding approaches, over binary erasure channel (BEC).
Then, we calculate the asymptotic achievable rate for all
such cases and pick the one that maximizes this.

• Inspired by solutions to the cases with two and four
repetitions, we propose a certain regular pattern given any
arbitrary repetition r. Then, we prove that the asymptotic
achievable rate of the proposed pattern is better than that
of the straightforward repetition scheme for any given
number of repetitions over BEC and AWGN channel.

• Finally, we demonstrate, through simulations, that the
proposed polar-coded repetition scheme outperforms the
straightforward polar-repetition scheme at the cost of a
slight increase in the decoding complexity. The scheme
is also compared with that of [6] in terms of performance
and complexity.

The rest of this paper is organized as follows. In Section
II, we review the basic concepts of the polarization of the
polar codes along with the repetition codes. In Section III,
we explain the proposed scheme first with some examples for
2 and 4 repetitions, then we generalize it to an arbitrary r
repetitions of power 2. The numerical results for BEC and
AWGN channel are discussed in Section IV. Finaly, Section
V concludes the paper.

II. BACKGROUND

In this section, we provide a brief background about the
channel polarization of the polar codes and repetitions codes
as follow.

A. Channel Polarization of Polar Codes

Consider two copies of a binary discrete memoryless chan-
nel (B-DMC) W : X → Y with binary inputs x1, x2 ∈ X
and outputs y1, y2 ∈ Y . The transformation G2 =

(︂
1 0
1 1

)︂
is

applied on the inputs of these two channels and u1 and u2

are generated. Then, x1 and x2 are transmitted through the
independent copies of W . At the decoder side, u1 is decoded
by using two observations y1, y2 and then u2 is decoded by
using the decoded sequence, û1, and the observations y1, y2.
The transformation G2 along with this successive decoding,
referred to as successive cancellation (SC), transforms the
two copies of the channel W into two synthetic channels
W 0 : W ∗ W : X → Y2 and W 1 : W ∗ W : X → Y2 × X
as follows:

W ∗ W (y1, y2|u1) =
∑︂
u2∈X

1

2
W (y1|u1 + u2)W (y2|u2),

W ∗ W (y1, y2, u1|u2) =
1

2
W (y1|u1 + u2)W (y2|u2).

(1)
Here, the channel W 0 is weaker (i.e., less reliable) compared
to W , while the channel W 1 is stronger (i.e., more reliable)
compared to the channel W . The quality of a channel is
measured by a reliability metric such as the Bhattacharyya
parameter defined as

Z(W )
∆
=

∑︂
y∈Y

√︁
W (y|0)W (y|1), (2)

which is equal to the erasure probability for BECs, i.e., for
BEC(ϵ), Z(W ) = ϵ. The Bathacharyya parameters of the
synthetic channels follow the properties

Z(W 1) = Z(W )2,

Z(W 0) ≤ 2Z(W )− Z(W )2,
(3)

with equality in (3) iff W is a BEC.
If we continue applying the transformation G2 recur-

sively m times, we will obtain n = 2m synthetic
channels {W (i)

m }i∈{0,1,...,n−1}. More specifically, if we let
{i1, i2, ..., im} be the binary expansion of i = {0, 1, ..., n−1}
over m bits, where i1 is the most significant bit and im is
the least significant one, then we define the synthetic channels
{W (i)

m }i∈{0,...,n−1} as

W (i)
m = (((W i1)i2)...)im . (4)

Arıkan in his seminal paper, [2], showed that as m → ∞,
these 2m synthetic channels are either purely noiseless or
purely noisy channels. Thus, on the encoder side, using k
entries of the input vector un−1

0 as the information bits and
setting the remaining entries to zero (frozen bits) will provide
almost error-free communication. Hence, an (n = 2m, k) polar
code is a linear block code generated by k rows of Gn = G⊗m2 ,
which correspond to the best k synthetic channels. Here, .⊗m

is the m-times Kronecker product of a matrix with itself.
Polar codes have attracted the attention from both academia

and industry in the past decade. They have been successfully
applied to a wide range of problems including data compres-
sion [17], [18], broadcast channels [19], [20], multiple access
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channels [21], [22], physical layer security [23] –[26], secret
key agreement [27], and coded modulation [28], [29]. On the
other hand, they were chosen as a channel coding scheme by
the fifth generation (5G) standardization process of the 3rd
generation partnership project (3GPP), only seven years after
the invention of the polar codes [16]. Note that according
to the 3GPP technical report 38.913, there are three main
5G usage scenarios: enhanced mobile broadband (eMBB),
ultra-reliable and low latency communications (URLLC), and
massive machine type communications (mMTC). Polar codes
have been adopted as channel coding for uplink and downlink
control information for the eMBB communication service
which requires codes with short lengths and low rates [16].
Moreover, polar codes are among the possible coding schemes
for two other frameworks of 5G, URLLC and mMTC.

B. Repetition Codes

Repetition coding is a simple way of designing a practical
low-rate code. Let r denote the number of the repetitions and
N , the length of the code. For constructing the repetition
code, first, one needs to design a smaller outer code (e.g.
polar codes) of length n = N/r for channel W r and then
repeat each of its code bits r times. Consequently, the length
of the final code will be n × r = N . This is equivalent to
transmitting an input bit over the r-repetition channel W r

and outputs an r tuple. For example, if W is BEC(ϵ), then
its corresponding r-repetition channel is W r = BEC(ϵr).
The main advantage of this concatenation scheme is that the
decoding complexity is essentially reduced to that of the outer
code making it appealing to low-power applications. This
comes at the expense of loss in the asymptotic achievable rate
especially if the number of the repetitions is large. Suppose
that C(W ) is the capacity of the channel W and NC(W )
is the capacity corresponding to N channel transmissions.
With repetition coding, since we transmit n times over the
channel W r, the capacity will be reduced to nC(W r). Note
that, in general, we have nC(W r) ≤ NC(W ) and the ratio
vanishes with growing r. Let’s consider BEC(ϵ) as an example
with r = 2. If ϵ = 0.5, then 1

2C(W 2) = 0.375 whereas
C(W ) = 0.5. However, when ϵ is close to 1, C(W 2) = 1−ϵ2

is very close to 2C(W ) = 2(1− ϵ).

III. PROPOSED SCHEME

In this section, the proposed polar coded repetition scheme
is discussed. It is shown how to improve the performance
of the polar-repetition scheme in the low-rate regime, while
keeping the computational complexity as low as possible.

Consider an outer polar code with r = 2t repetitions and
let c denote a polar codeword of length n = 2m designed
for transmission over a channel W , r times. Owing to the
recursive structure of the polar codes, one can write the
polarization transform matrix as Gn = G′r′ ⊗ G

⊗(m−t′)
2 ,

where G′r′ is an r′ × r′ binary matrix with r′ = 2t
′
. In

our proposed scheme, we consider a different G′r′ in each
repetition block, while keeping G

⊗(m−t′)
2 the same in all

of them. In other words, the first t′ recursions of Arıkan’s
polarization transform are modified in each repetition while

the rest of m − t′ recursions are kept the same. Note that if
one chooses r′ = n, i.e., the transmission in each block being
different, then the channel capacity C(W ) can be achieved.
However, we choose r′ = r to have a comparable complexity
with the straightforward repetition scheme. The complexity of
the simple polar-repetition and the proposed modified polar-
repetition schemes will be provided in subsection IV-B.

We illustrate the idea through some examples with two and
four repetitions and constructed with regular and irregular
polar coding approaches. Then, we generalize the regular
scheme to accommodate an arbitrary repetition r and we
discuss the encoder and decoder algorithms.

A. Examples for two and four repetitions

In this subsection, we provide three examples for two and
four repetitions as follows.

Example 1 (Two repetitions): Consider an outer polar code
with two repetitions. Hence, the polar codeword c needs to be
designed for W 2 = W ∗ W . The recursive structure of polar
codes implies that codeword c = (c1 ⊕ c2, c2) is constructed
from the generator matrix Gn = G′2⊗G

⊗(m−1)
2 , where G′2 =(︂

1 0
1 1

)︂
and c1 and c2 are polar codewords of length n/2

generated from G
⊗(m−1)
2 .

Now, we consider an alternative scheme where in each
repetition, we transmit different combinations of c1 and c2
by choosing different G′2 in each of them. Let G′

(i)
2 be a

lower triangular matrix1 G′
(i)
2 =

(︂
1 0
e 1

)︂
, where e ∈ F2 and

i = {1, 2} is the index of the transmission (see TABLE. I for
two possible matrices). There are three possible cases for two

Table I: Two possible matrices for two repetitions

Pattern no. G′
(i)
2

P
(0)
2

(︂
1 0
1 1

)︂
P

(1)
2

(︂
1 0
0 1

)︂

transmissions as follows.
1) G′

(1)
2 =

(︂
1 0
1 1

)︂
and G′

(2)
2 =

(︂
1 0
1 1

)︂
: In this case,

(c1⊕c2, c2) and (c1⊕c2, c2) are transmitted in each repe-
tition. By considering both transmissions, one concludes
that codeword c1 is implicitly designed for the effective
channel that the sub-block of length n/2 observes, i.e.,
for W 2 ∗ W 2 and c2 is designed for W 2 ∗ W 2. As a
result, the capacity per channel use per transmission for
this case and specifically for BEC will be

C
(1)
2 = (C(W 2 ∗ W 2) + C(W 2 ∗ W 2))/4

= (1− ϵ2)/2.

2) G′
(1)
2 =

(︂
1 0
1 1

)︂
and G′

(2)
2 =

(︂
1 0
0 1

)︂
: For this case,

(c1 ⊕ c2, c2) and (c1, c2) are transmitted in the first
and second repetitions. Codeword c1 is designed for

1[12] showed that the column permutations and the one-directional row
operations can always transform a non-singular kernel G′(i)

2 to a lower
triangular kernel G′′ with the same polarization behavior.
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Table II: All possible cases for four repetitions

Pattern no. G′
(i)
4R

P
(0)
4R

(︂
1 0
1 1

)︂
⊗

(︂
1 0
1 1

)︂
P

(1)
4R

(︂
1 0
1 1

)︂
⊗

(︂
1 0
0 1

)︂
P

(2)
4R

(︂
1 0
0 1

)︂
⊗

(︂
1 0
1 1

)︂
P

(3)
4R

(︂
1 0
0 1

)︂
⊗

(︂
1 0
0 1

)︂

the effective channel that the sub-block of length n/2
observes, i.e., for (W ∗ W 2) ∗ W , and c2 is designed
for W 2 ∗ W . As a result, the capacity per channel use
per transmission for this case is

C
(2)
2 = (C((W ∗ W 2) ∗ W ) + C(W 2 ∗ W ))/4

= (2− ϵ2 − 2ϵ3 + ϵ4)/4.

3) G′
(1)
2 =

(︂
1 0
0 1

)︂
and G′

(2)
2 =

(︂
1 0
0 1

)︂
: In the first and

second repetitions, (c1, c2) and (c1, c2) are transmitted.
Both Codewords c1 and c2 are designed for the effective
channel that the sub-block of length n/2 observes, i.e.,
for W 2. As a result, the capacity for this case will be

C
(3)
2 = (C(W 2) + C(W 2))/4

= (1− ϵ2)/2.

It can be observed that for 0 < ϵ < 1, the capacity of case 2
is larger than the capacities of both cases 1 and 3, which are
simple repetition schemes. In other words,

C((W ∗ W 2) ∗ W ) + C(W 3) > 2C(W 2), (5)

where the right hand side of (5) is the capacity for the
straightforward repetition scheme and the left hand side of
(5) is the capacity of case 2.

In the proposed modified approach, which we refer to as
coded repetition scheme, we consider case 2. This modified
scheme has the same encoding/decoding complexity compared
to a simple repetition scheme.

Example 2 (Four repetitions with regular polar codes):
Consider an outer polar code with four repetitions. Since we
intend to keep the complexity of the proposed scheme the
same as the complexity of the simple repetition one, let’s
consider all possible Kronecker products of the patterns P

(0)
2

and P
(1)
2 for G′

(i)
4R, i = {1, 2, 3, 4} as the ones depicted in

Table II. We call these patterns regular polar codes. Then,
for four transmissions, we try all 35 multi-subsets of size
4 from the set {P (0)

4R , P
(1)
4R , P

(2)
4R , P

(3)
4R } to find the best one

in terms of the capacity. The channel that each codeword ci
observes follows the recursive structure shown in Fig. 1. With
a simple search among these 35 multi-subsets, it is found that
the pattern (P

(0)
4R , P

(3)
4R , P

(3)
4R , P

(3)
4R ) has the largest capacity.

In this modified repetition scheme, (c1 ⊕ c2 ⊕ c3 ⊕
c4, c2 ⊕ c4, c3 ⊕ c4, c4), (c1, c2, c3, c4), (c1, c2, c3, c4) and
(c1, c2, c3, c4) are transmitted in the first, second, third and
fourth transmissions, respectively. Codeword c1 is constructed
for the effective channel that the first sub-block of length n/4
observes, i.e., for W1 = ((W ∗ W 2) ∗ (W ∗ W 2)2) ∗ W 3, c2

for W2 = (W ∗ W 2)2 ∗ W 3, c3 for W3 = (W 2 ∗ W 4) ∗ W 3

and c4 for W4 = W 4 ∗ W 3. For BEC W , the capacity of the
modified scheme is larger than that of the repetition scheme
for 0 < ϵ < 1:

C4R = C(W1)+C(W2)+C(W3)+C(W4) > 4C(W 4). (6)

Example 3 (Four repetitions with irregular polar
codes2): We consider an alternative type of patterns for 4
repetitions, referred to as irregular polar codes, which have
the same computational complexity as the simple repetition
scheme.

Polar codes can be considered as a special class of gener-
alized concatenated codes (GCCs), proposed in [9] and [10],
with the outer and inner codes of polar codes (see Fig. 2) [31].
GCCs are based on a family of (l,Ki) outer polar codes,
1 ≤ i ≤ r

l with the generator matrix G′l,i, and a family of
nested inner polar codes with generator matrix G′r

l
. The binary

input bits u0, u1, . . . , ur−1 are first encoded with the outer po-
lar codes to generate x0,j , x1,j , . . . , xl−1,j , j = {1, 2, . . . , r

l }.
Then for each i = {0, 1, . . . , r

l − 1}, xi,1, xi,2, . . . , xi, rl
are encoded with the inner polar code to obtain codewords
z0, z1, . . . , zr−1. This results in a (r,

∑︁ r
l
i=1 Ki) linear binary

polar code with generator matrix

G′r =

⎛⎜⎜⎜⎝
G′

r
l
(1, 1)G′

l,1 G′
r
l
(1, 2)G′

l,1 . . . G′
r
l
(1, r

l
)G′

l,1

G′
r
l
(2, 1)G′

l,2 G′
r
l
(2, 2)G′

l,2 . . . G′
r
l
(2, r

l
)G′

l,2

...
... . . .

...
G′

r
l
( r
l
, 1)G′

l, r
l

G′
r
l
( r
l
, 2)G′

l, r
l

. . . G′
r
l
( r
l
, r
l
)G′

l, r
l

⎞⎟⎟⎟⎠ ,

where G′r
l
(i, j) is the (i, j)-th element of the matrix G′r

l
.

In regular polar codes, all matrices G′l,i are the same for
all i = {1, 2, . . . , r

l }. However, in irregular polar codes, one
can choose these matrices different from each other. For 4
repetitions (l = 2, r = 4), there are 8 irregular patterns
G′

(i)
4I , i = {1, 2, . . . , 8} where G′2, G′2,1 and G′2,2 are one

of the patterns P
(j)
2 j = {0, 1} (see Fig. 3). With a simple

search among all 330 multi-subsets of size 4 from the set
{P (k)

4I }7k=0, it is found that the pattern (P
(2)
4I , P

(5)
4I , P

(7)
4I , P

(7)
4I )

has the largest capacity. The channel that each codeword ci
observes follows the recursive structure shown in Fig. 3. In this
scheme, (c1⊕c3⊕c4, c2⊕c4, c3⊕c4, c4), (c1⊕c2, c2, c3, c4),
(c1, c2, c3, c4) and (c1, c2, c3, c4) are transmitted in the first,
second, third and fourth transmissions, respectively. Code-
words c1, c2, c3, c4 are constructed for the effective channels
W1,W2,W3,W4 as follows.

W1 = (W ∗ W 2) ∗ (W ∗ W 2) ∗ W ∗ W,

W2 = (W ∗ W 2) ∗ W 2 ∗ W ∗ W,

W3 = (W 2 ∗ W 4) ∗ W ∗ W ∗ W,

W4 = W 4 ∗ W ∗ W ∗ W.

For BEC W , the capacity of the modified scheme with
irregular polar codes is larger than the one with regular polar
codes for 0 < ϵ < 1. In other words,

C4I = C(W1) + C(W2) + C(W3) + C(W4) > C4R. (7)

2Note that regular scheme is a special case of the irregular scheme.
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Figure 1: The recursive structure of the channels that each codeword ci observes for two and four transmissions.

Figure 2: GCCs based on polar codes

B. General case for regular polar codes

For the general case of r = 2t repetitions with regular polar
codes, we consider all r possible t times Kronecker products
of the patterns P

(0)
2 and P

(1)
2 , as P

(i)
r , i = 0, 1, . . . , r − 1.

In the proposed scheme, we use P
(0)
r = (P

(0)
2 )⊗t for the

first transmission and P
(r−1)
r = (P

(1)
2 )⊗t for the rest r − 1

ones. For BEC W with an erasure probability ϵ, let’s define
Z
P

(i)
r

(W
(k)
r )

∆
= Z(i1,...,it)(W

(k)
r ) as the erasure probabilities

of the channels that each codeword ck, k = {1, 2, . . . , r} for
pattern P

(i)
r observes and {i1, i2, . . . it} as the t-bit binary

expansion of i. Then, the recursive formula for computing

Z
P

(i)
r

(W
(k)
r ) can be written as

Z(i1,...,it)(W
(2j−1)
r ) = Z(i1,...,it−1)(W

(j)
r
2

)×

[1 + Z(i1,...,it−1)(W
(j)
r
2

)− Z2
(i1,...,it−1)

(W
(j)
r
2

)](1−it),

Z(i1,...,it)(W
(2j)
r ) = Z(i1,...,it−1)(W

(j)
r
2

)×

[Z(i1,...,it−1)(W
(j)
r
2

)](1−it),
(8)

where Z(W
(1)
1 ) = ϵ and j = 1, 2, . . . , r

2 . Hence, the capacity
for the proposed scheme will be

CrR =
r −

∑︁r
k=1 ZP

(0)
r

(W
(k)
r )× (Z

P
(r−1)
r

(W
(k)
r ))r−1

r2
.

(9)
Since Z

P
(r−1)
r

(W
(k)
r ) = ϵ, for all k = 1, 2, . . . , r, we will have

CrR =
r −

∑︁r
k=1 ZP

(0)
r

(W
(k)
r )× ϵr−1

r2
. (10)

Next, we show that CrR > C(W r)
r for any r repetitions and

0 < ϵ < 1. In other words,

r∑︂
k=1

Z
P

(0)
r

(W (k)
r ) < rϵ. (11)

To this end, we first prove that
∑︁r

k=1 ZP
(0)
r

(W
(k)
r ) − rϵ has

zeros at ϵ = 0 and ϵ = 1.

Theorem 1. Z
P

(0)
r

(W
(k)
r ) = 0 at ϵ = 0 and Z

P
(0)
r

(W
(k)
r ) = 1

at ϵ = 1 for all k = {1, 2, . . . , r}.

Proof. Let us write the recursive formula for erasure probabil-
ity as Z

P
(0)
r

(W
(k)
r ) = fk1

(fk2
(...fkt

(ϵ)))), where ki = {0, 1},
i = {1, 2, . . . , t} and f0(a) = a + a2 − a3, f1(a) = a2,
∀k = {1, 2, . . . , r}.

Since fki
(a)|a=1 = 1 and fki

(a)|a=0 = 0, by using
recursion, we conclude Z

P
(0)
r

(W
(k)
r ) = 1 at ϵ = 1 and

Z
P

(0)
r

(W
(k)
r ) = 0 at ϵ = 0 ∀k = {1, 2, . . . r}. ■
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Figure 3: All 8 possible irregular kernels G′
(i)
4I for 4 transmissions and the corresponding recursive structure of the channels

that each codeword ci observes.

Then, one can use Sturm algorithm3 [13] to show that∑︁r
k=1 ZP

(0)
r

(W
(k)
r )− rϵ does not have any root in ϵ = (0, 1).

Finally, one can choose an ϵ in the interval (0, 1) and compare
the values of

∑︁r
k=1 ZP

(0)
r

(W
(k)
r ) and rϵ at that point to see

that the capacity of proposed modified scheme is greater than
the repetition one for r number of repetitions. Fig. (4) shows

3Although Sturm’s theorem is a complete solution for finding the number of
the real roots of the polynomials, when the degree of the polynomial increases,
it isn’t efficient in terms of implementation. The algorithm proposed in [14],
[15] is more efficient for higher degrees.

the left and the right sides of eq. (11) for r = 4.

C. Encoder of the polar coded repetition scheme

To encode the polar coded repetition scheme, in the first
transmission, the binary input bits un−1

0 are encoded with the
polarization matrix G⊗m2 = P

(0)
2

⊗t
⊗ G

⊗(m−t)
2 and the code

C1 = {zn−10 } is generated. Then, the input un−1
0 are encoded

with the polarization matrix P
(1)
2

⊗t
⊗G

⊗(m−t)
2 , the codewords
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Figure 4: Comparison between the left and the right hand sides
of eq. (11).

xn−1
0 are generated, and repeated r − 1 times. The resulting

code Cr, r > 1 is:

Cr = {crn−10 |c(r−1)n+v = xv

for v = {0, . . . , n− 1}, c
(r−1)n−1
0 ∈ Cr−1}.

(12)

Figure 5: Encoder of the polar coded repetition scheme.

Algorithm 1 shows the process of encoding. The inputs to
this algorithm are input bits un−1

0 , n and r. The output is the
codeword crn−10 .

D. CRC-aided SCL decoder of the polar coded repetition
scheme

The coded bits ci from Algorithm 1 are transmitted over
AWGN channel using a binary modulation scheme. The re-
ceived signals for this channel is given by

yi = (2ci − 1) + wi, i = 0, 1, . . . , N − 1

where wi is a zero mean Gaussian noise, wi ∼ N (0, σ2).
For decoding the proposed polar coded repetition scheme,

we use the CRC-aided log likelihood ratio (LLR)-based SCL
decoder. The only difference between the algorithm of the
CRC-aided SCL decoder of the polar codes constructed with

Algorithm 1: Encoding of the Proposed Polar Coded
Repetition

input : un−1
0 , n, r

output: Codeword crn−1
0

1 m = log2 n; t = log2r;
2 Define List Z = {}
3 Z← un−1

0 // Init.
4 for i = 0 to m− 1 do
5 B1 = 2(m−i); B2 = 2i;
6 for j = 0 to B2 − 1 do
7 base = jB1;
8 for l = 0 to B1/2− 1 do
9 x(base+ l) =

mod(Z[base+ l] + Z[base+B1/2 + l], 2);
10 x(base+B1/2 + l) = Z[base+B1/2 + l];
11 end
12 end
13 if i == m− t− 1 then
14 crn−1

n ← repeat xn−1
0 for r − 1 times (r > 1)

// Encoding matrix P
(1)
2

⊗t
⊗G

⊗(m−t)
2

15 end
16 Z = {} // empty List Z

17 Z ← xn−1
0

18 end
19 cn−1

0 ← Z // Encoding matrix P
(0)
2

⊗t
⊗G

⊗(m−t)
2

20 return crn−1
0

Arıkan’s kernel and the polar coded repetition scheme is in
updating the LLRs. Algorithm 2 shows the details of the
process. This algorithm is the same as the SCL Algorithms
of [30] with the differences highlighted in red.

In the implementation of CRC-aided SCL decoder, one
needs to calculate the following LLRs.

Initial LLRs: The initial LLRs of the i-th bit, i =
0, 1, . . . , rn− 1, for AWGN channel is defined as

Sin[i] = ln
W (yi| − 1)

W (yi|1)
, (13)

Intermediate LLRs: For updating the intermediate LLRs
of the matrix G2 at each decoding stage, the following f -
function and g-function are used.

f(L1, L2) = ln

(︃
1 + exp(−L1 − L2)

exp(−L1) + exp(−L2)

)︃
,

g(L1, L2, b0) = L2 + (−1)b0L1,

(14)

where L1 and L2 are the input LLRs and b0 is the partial sum
calculated with the bits that have been previously decoded.
One can use the LogSumExp approximation, ln(

∑︁
i e
−fi) ≈

−mini(fi), to simplify (14) as follows:

f(L1, L2) = min(L1, L2)−min(0, L1 + L2),

g(L1, L2, b0) = L2 + (−1)b0L1,
(15)

Note that the output LLRs of the P
(1)
2

⊗t
matrix is the same

as its input LLRs (lines 27-29 and 32-34 of Algorithm 2).
Example: Figure 6 shows an example of decoding û1 for

n = 8 and r = 4. Here, LLR1[3][0 : 7] = Sin[0 : 7],
LLR2[1][0] = Sin[9] + Sin[17] + Sin[25] and LLR2[1][1] =
Sin[13] + Sin[21] + Sin[29].
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Figure 6: Example: LLR updates of decoding û1 for m = 3,
r = 4.

IV. ANALYSIS AND NUMERICAL RESULTS

In this section, we first analyze the numerical result of
the proposed scheme over BEC and AWGN channel and
compare it with the polar-repetition scheme. Then, we provide
complexity analysis of both of these schemes.

A. Numerical Analysis

Here, we first provide the asymptotic achievable rate com-
parison. Then we compare the finite-length performance of the
aforementioned schemes.

1) Asymptotic Achievable Rate: In this subsection, we
provide numerical results for the achievable rate of the pro-
posed polar coded repetition scheme for different numbers
of repetitions over BEC and AWGN channel and compare
them with the capacity of the simple repetition scheme and
the Shannon bound.

Fig. (7) illustrates the capacities of the proposed schemes
for 2, 4 and 8 repetitions over BEC. It can be observed that
the proposed scheme outperforms the simple repetition scheme
for all of these repetitions. The irregular scheme also slightly
outperforms the regular one for 4 repetitions. On the other
hand, as the number of repetitions increases, the gap to the
Shannon bound increases as expected.

Fig. (8) compares the capacity of the proposed scheme for
2, 4 and 8 repetitions with that of the repetition scheme over
AWGN channel. It can be observed that the proposed scheme
outperforms the repetition scheme for all of these repetitions.
To calculate the capacity, the method proposed in [30] is used.

2) Finite-Length Performance: We provide numerical re-
sults for the proposed polar coded repetition scheme. The
communication is assumed over an AWGN channel with
binary modulation. The decoding is performed under the SC
and CRC-aided SCL decoding algorithms. Then, we compare
the performance of the proposed polar coded repetition scheme
with that of the uncoded polar-repetition scheme, where the

Algorithm 2: List Decoding Algorithm for the Pro-
posed Polar Coded Repetition Scheme

input : List size L, n, r and yrn−1
0

output: The estimated bits ûn−1
0

1 m = log2 n; t = log2r;
2 LLR1[0:m][0:n-1]=zeros[0:m][0:n-1]; LLR2[0:m][0:n-1]=zeros[0:m][0:n-1];

Sr−1=zeros[0:n-1]; B[0:m-1][0:n-1]=zeros[0:m-1][0:n-1]; // Init.
3 Sin = Calculate the initial LLRs with eq. (13) by using yrn−1

0 .
4 LLR1[m][0:n-1]← Sin[0 : n− 1] // Init.: Pick the first

n elements of Sin.
5 for j = 2 to r do
6 Sr−1 = Sr−1 + Sin,i[(j − 1)n : jn− 1]. // LLRs of r − 1

rep. sch. with P
(1)
2

⊗t
⊗G

⊗(m−t)
2 .

7 end
8 LLR2[m][0:n-1] ← Sr−1;
9 for k = 0 to n− 1 do

10 LLR1[0][0] ← UpdateLLR (k,m, t, B, LLR1, LLR2)
11 Calculate the PM for LLR1[0][0] according to [30] for each of the L

paths.
12 B ← Update bits according to [2].
13 end
14 CRC-aided SCL decoder with list size L chooses the path with the smallest

PM which passes the CRC and outputs ûn−1
0 .

15 return ûn−1
0

16 subroutine UpdateLLR(k,m, t, B, LLR1, LLR2):
17 i=BitReverse[k]; // Finding the bit-reverse of i
18 if i==0 then

// Finding the last stage to update i
19 LastStage=m;
20 else
21 LastStage=index of the first ′1′ from MSB(i);
22 end
23 for l =LastStage-1 to 0 by −1 do

// Updating the intermidiate LLRs of
Stage l

24 for indx = 0 to 2l − 1 do
25 if l ==LastStage-1 && k ̸= 0 then
26 LLR1[l][indx] ← g (B[l][indx], LLR1[l + 1][2× indx],

LLR1[l + 1][2× indx+1]);
27 if l ≥ m− t then

// Updating the LLRs of the

matrix P
(1)
2

⊗t

28 LLR2[l][indx] ← LLR2[l + 1][2× indx+1];
29 end
30 else
31 LLR1[l][indx] ← f (LLR1[l + 1][2× indx],

LLR1[l + 1][2× indx+1]);
32 if l ≥ m− t then
33 LLR2[l][indx] ← LLR2[l + 1][2× indx];
34 end
35 end
36 end
37 if l == m− t then
38 for indx = 0 to 2l − 1 do
39 LLR1[l][indx] = LLR1[l][indx]+LLR2[l][indx];
40 end
41 end
42 end
43 return LLR1[0][0]

generator matrix in all the transmissions is P (1)
2

⊗t
⊗G
⊗(m−t)
2 ,4

as well as the scheme proposed in [6]. Note that the SCL
decoder is implemented using the randomized order statistic
algorithm for the selection of the L most likely paths in each
stage [33], which has the complexity O(L), where L is the list
size. Moreover, the construction for the schemes is based on
Monte-Carlo simulation at an optimized design SNR, denoted
by γ, to be specified separately for each case.

4In the uncoded polar-repetition scheme P
(i)
r = (P

(1)
2 )⊗t, i =

0, 1, . . . , r − 1, is considered for all r transmissions, while for the polar-
coded repetition scheme P

(0)
r = (P

(0)
2 )⊗t is used for the first transmission

and P
(r−1)
r = (P

(1)
2 )⊗t for the remaining r − 1 ones.



9

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

c
a

p
a

c
it

y
 (

b
it

 p
e

r 
c

h
a

n
n

e
l 

u
s

e
 p

e
r 

tr
a

n
s

m
is

s
io

n
)

Shannon bound

Repetition scheme (r=2)

Proposed scheme (r=2)

Repetition scheme (r=4)

Proposed scheme-regular (r=4)

Proposed scheme-irregular (r=4)

Repetition scheme (r=8)

Proposed scheme-regular (r=8)

Figure 7: Capacity of the proposed scheme compared with the
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Figure 8: Capacity of the proposed scheme compared with the
capacity of the repetition scheme for r = 2, 4 and 8 repetitions
over AWGN channel.

Figures 9 and 10 compare the performance of the proposed
polar coded repetition scheme for N = 8192, k = 80 with that
of the uncoded polar-repetition scheme over AWGN channel
for two different values r = 2, 4. Here, R = k/N = 0.0098
is the rate of the code. The optimized design SNR γ for each
simulated case is specified in the legend of the corresponding
plot. It can be seen that the proposed polar coded repetition
scheme outperforms the uncoded polar-repetition scheme, un-
der SC and CRC-aided SCL decoder with the same list size
and 6-bit CRC.

For comparison, the performance of the scheme proposed
in [6] for low-SNR regime is also considered. It can be seen
that for r = 2, the proposed scheme under CRC-aided SCL
with L = 32 outperforms the scheme in [6].

Finally, for the purpose of comparison in the figures, we
use the finite-length analysis of [35] to demonstrate the ap-
proximation of the limit in the finite block-length regime (up
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Figure 9: Performance comparison of the polar coded repe-
tition scheme with the uncoded polar-repetition scheme and
the scheme in [6] over AWGN channel for m = 12, r = 2,
k = 80, R = 0.0098
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Figure 10: Performance comparison of the polar coded repe-
tition scheme with the uncoded polar-repetition scheme over
AWGN channel for m = 11, r = 4, k = 80, R = 0.0098.

to the third order) on the required SNR for each block error
probability in the range of interest.

B. Complexity Analysis

In this subsection, we count the exact number of the
operations needed for calculating the LLRs of the polar coded
repetition scheme, uncoded polar-repetition, and the scheme
in [6] to show the performance-complexity trade-off. For this
purpose, we used the total number of the summation and
comparison operations for calculating the LLRs of the SC
decoder, eq. (15).

Uncoded polar-repetition scheme: To update the LLRs of
the uncoded polar-repetition code, one needs to compute
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• n(r − 1) operations for decoding the repetition code of
size r = 2t;

• (n2 × 4 + n
2 × 1) × (m − t) operations for decoding the

matrix G
⊗(m−t)
2 .

Polar coded repetition scheme: The complexity of the pro-
posed polar coded repetition scheme consists of the complexity
of the three stages.
• (n2 × 4 + n

2 × 1)× t for decoding the matrix G′r of size
r = 2t;

• n(r − 1) operations for decoding the repetition code of
size r;

• (n2 × 4 + n
2 × 1) × (m − t) operations for decoding the

matrix G
⊗(m−t)
2 .

Scheme proposed in [6]: This scheme is the concatenation
of the (nl, kl) = (8192, 128) LDPC with (np, kp) = (128, 80)
polar code. In this scheme, one needs 8192(8 log(128)+32) =
720896 operations for decoding the LDPC code and 110469
operations for decoding the polar code under SCL decoder
with list size L = 32. As a result the total number of operations
for this scheme is 831365.

The complexity comparison of the three discussed schemes
is shown in Table III for N = 8192, m = 11, 12 and two
different values r = 4, 2. It can be observed that with the
same list size L, the complexity of the polar coded repetition
scheme is slightly greater than the complexity of the uncoded
polar-repetition.

We conclude that the complexity order of the total decoding
process of the uncoded polar-repetition scheme and polar
coded repetition are O(nr + n log n

r ) and O(nr + n log r +
n log n

r ) = O(nr + n log n), respectively. If r is a constant,
then the complexity of the both of the schemes is O(n log n).
Moreover, the complexity of the scheme proposed in [6] is
O(nl(log np + L) + Lnp log np).
Remark. Note that one could use the simplification method
proposed in [34] to reduce the decoding complexity of our
proposed scheme. Since the underlying polar code is low
rate, the binary tree representation of the decoder structure is
very sparse. Hence, one expects that the resulting complexity
reduction will be significant without affecting the performance.
Furthermore, when compared with the scheme proposed in [6],
our scheme is using only one decoder core, while the scheme
in [6], concatenation of the polar and LDPC codes, needs
to use two different decoder cores adding to the associated
hardware complexity and costs making it less favorable for
low-cost low-complexity IoT devices as one of the main
applications of low-rate codes. Note that such an argument
could be further expanded and elaborated using a space com-
plexity analysis tied with actual considerations in the hardware
implementation, which is beyond the scope of our work.

V. CONCLUSION

In this paper, we proposed a modified approach for the
repetition scheme. In this scheme, we used polar codes as
the outer code and proposed to transmit slightly modified
codeword in each repetition. We showed that the proposed
scheme outperforms the polar-repetition scheme, in terms of
the asymptotic achievable rate, over BEC and AWGN channel

while it keeps the decoding complexity almost the same as the
polar-repetition scheme. Moreover, it was demonstrated that
the polar-coded repetition scheme has better performance than
the uncoded polar-repetition under CRC-aided SCL decoder
over AWGN channel in the finite-length regime at the cost of
the slightly increase in the decoding complexity.

In this paper, we used computer search to find the best pat-
tern in terms of the asymptotic achievable rate for repetitions
r = 2, 4, 8. Then, we generalized the pattern to an arbitrary
number of repetitions r and proved that the proposed scheme
with this pattern is performing better than the uncoded polar-
repetition scheme. Future research will focus on exploring
a low-complexity method to find the best pattern for each
repetition. Moreover, generalizing the irregular polar coded
repetition scheme to an arbitrary r repetitions is another
direction. Another interesting direction for future work is to
study similar problems when other families of codes, other
than polar codes, are concatenated with repetition and to study
methods on how to improve their performance while keeping
the decoder core and its complexity almost the same.

REFERENCES

[1] M. Fereydounian, M. V. Jamali, H. Hassani, and H. Mahdavifar, ”Channel
coding at low capacity,” Available at https://arxiv.org/abs/1811.04322,
March 2020.

[2] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.

[3] I. Tal, and A. Vardy, ”List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213-2226, 2015.

[4] R. Ratasuk, N. Mangalvedhe, Y. Zhang, M. Robert, and J.-P. Koskinen,
”Overview of narrowband IoT in LTE Rel-13,” in Proc. IEEE Conf.
Standard Commun. Netw. (CSCN), Berlin, Germany, Oct./Nov. 2016, pp.
1–7.

[5] I. Dumer, ”Polar codes with a stepped boundary,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jun. 2017, pp. 2613–2617.

[6] I. Dumer and N. Gharavi, ”Codes for high-noise memoryless chan-
nels,” in Proc. International Symposium on Information Theory
and Its Applications (ISITA), 2020, (Long version is available at
https://www.researchgate.net/publication/340726241).

[7] I. Dumer and N. Gharavi, ”Codes approaching the Shannon limit with
polynomial complexity per information bit,” in Proc. IEEE International
Symposium on Information Theory (ISIT), 2021, pp. 238-243 , (Long
version is available at https://arxiv.org/pdf/2101.10145.pdf).

[8] F. Abbasi, H. Mahdavifar, and E. Viterbo, ”Hybrid Non-binary Polar
Codes For Low-SNR Regime”, in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Melbourne, Australia, July 2021. (Extended version is available
at https://arxiv.org/abs/)

[9] E. Blokh and V. Zyablov, ”Coding of generalized concatenated codes,”
Problems of Information Transmission, vol. 10, no. 3, pp. 45–50, 1974.

[10] V. Zyablov, S. Shavgulidze, and M. Bossert, ”An introduction to general-
ized concatenated codes,” European transactions on telecommunications,
vol. 10, no. 6, pp. 609–622, 1999.

[11] H. Mahdavifar, M. El-Khamy, J. Lee, and I. Kang, ”Fast multidimen-
sional polar encoding and decoding,” in Proc. Inf. Theory Appl. Workshop,
San Diego, CA, USA, Feb. 2014, pp. 1–5.

[12] A. Fazeli and A. Vardy, ”On the scaling exponent of binary polarization
kernels,” in Proc. of 52nd Annual Allerton Conference on Communication,
Control and Computing, 2014, pp. 797 – 804.

[13] G.E. Collins and R. Loos. Real zeros of polynomials. In B. Buchberger,
G. E. Collins and R. Loos, editors, Computer Algebra, pages 83–94.
Springer-Verlag, 2nd edition, 1983.

[14] Vincent, Alexandre Joseph Hidulphe, ”Mémoire sur la résolution des
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