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Abstract—Concatenating the state-of-the-art codes at moderate
rates with repetition codes has emerged as a practical solution
deployed in various standards for ultra-low-power devices such as
in Internet-of-Things (IoT) networks. In this paper, we propose
a novel concatenation mechanism for such applications which
need to operate at very low signal-to-noise ratio (SNR) regime.
In the proposed scheme, the outer code is a hybrid polar code
constructed in two stages, one with a binary kernel and another
also with a binary kernel but applied over a binary extension
field. The inner code is a non-binary multiplicative repetition
code. This particular structure inherits low-complexity decoding
structures of polar codes while enabling concatenation with an
inner non-binary multiplicative repetition scheme. The decoding
for the proposed scheme is done using cyclic redundancy check
(CRC) aided successive cancellation list (SCL) decoder over
additive white Gaussian noise (AWGN) and Rayleigh fading
channels. Simulation results demonstrate that the proposed
hybrid non-binary repeated polar code provides performance
gain compared to a polar-repetition scheme with comparable
decoding complexity.

Index terms – Polar codes, repetition codes, concatenation
codes, low SNR regime, cyclic redundancy check (CRC) aided
successive cancellation list (SCL) decoder.

I. INTRODUCTION

The Third Generation Partnership Project (3GPP) has re-
cently introduced Narrow-Band Internet-of-Things (NB-IoT)
and enhanced Machine-Type Communications (eMTC) fea-
tures into the cellular standard protocols. These two narrow-
band and complementary technologies expand the cellular
networks to support low-power, wide-area (LPWA) cellular
connectivity for a wide range of IoT use cases [4].

In general, IoT devices need to operate under extreme power
constraints. Consequently, they often communicate at very low
signal-to-noise ratio (SNR), e.g., −13 dB or 0.03 bits per
transmission (translated to capacity) in NB-IoT protocols [4].
Also, they are often not equipped with advanced transceivers
due to cost constraints. Therefore, the solution adopted in the
standard is to use the legacy turbo codes or convolutional
codes at moderate rates, e.g., the turbo code of rate 1/3,
together with many repetitions, e.g., up to 2048 repetitions
in NB-IoT. This implies effective code rates as low as 1.6 ×
10−4 are supported in such protocols. This repetition scheme
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has efficient implementations with computational complexity
and latency effectively reduced to that of the outer code.
However, it is expected that repeating a high-rate code to
enable low-rate communication will result in rate loss and
mediocre performance. As a result, studying ultra-low-rate
error-correcting codes for reliable communications in such
low-capacity regimes becomes necessary [1].

In [1], the authors constructed an efficient repetition scheme
with outer polar codes and showed that the proposed polar-
repetition scheme outperforms the Turbo-repetition code, the
proposed code design in the eMTC and NB-IoT (uplink) stan-
dards, over additive white Gaussian noise (AWGN) channel.
In another related work, low-rate codes for binary symmetric
channels were constructed by concatenating high-rate polar
codes with repetitions [5]. Also, non-binary LDPC codes
concatenated with multiplicative repetition codes were intro-
duced in [6]. By multiplicatively repeating the (2, 3)-regular
non-binary LDPC mother code of rate 1/3, they constructed
rate-compatible codes of lower rates 1/6, 1/9, 1/12, . . . which
outperform the best low-rate binary LDPC codes at the cost
of the increase in decoding complexity. Very recently, weakly-
coded binary LDPC type code combined with polar code has
been introduced in [7], [8] which is shown to outperform
uncoded modulation over high noise memoryless channels.
However, the complexity of the proposed scheme in [7] and
[8] is higher than that of a repetition-based scheme.

In [11], we proposed polar coded repetition to improve
the asymptotic achievable rate of the repetition scheme, while
ensuring that the overall encoding and decoding complexity is
kept almost the same. A slightly modified polar codeword is
transmitted in each repetition block by deviating from Arıkan’s
standard 2 × 2 kernel in a certain number of polarization
recursions at each repetition block. It is shown that the polar
coded repetition outperforms the polar-repetition, in terms
of the asymptotic achievable rate, for any given number of
repetitions over the binary erasure channel (BEC).

In this paper, we propose an alternative mechanism for
polar-repetition schemes, referred to as hybrid non-binary
multiplicative repetition. In this scheme, the outer code is a
hybrid binary and non-binary polar code constructed in two
stages. The first stage of the outer encoder utilizes Arıkan’s
binary polarization kernel applied recursively, as in original
polar codes [2]. The output bits of the first stage are grouped
into t-tuples and are turned into symbols over the extension
binary field GF (2t). Then Arıkan’s kernel is again applied
recursively. Hence, the output of the outer encoder consists
of symbols over GF (2t). The inner code is a non-binary
multiplicative repetition code.

The motivation behind constructing the outer code in two
stages is to improve the decoding performance by capturing
the correlation of the bits within each symbol in the decoding

c⃝ 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.



2

process. The encoded symbols can be either turned into binary
strings for transmission using a binary modulation scheme,
e.g., binary phase shift keying (BPSK) or, alternatively, can be
sent using a higher order modulation. The proposed structure
allows for i) benefiting from the multiplicative repetition over
an extension field as opposed to a simple repetition in a binary
polar-repetition scheme, and ii) keeping the complexity of the
encoder/decoder almost the same as that of the polar-repetition
scheme. The simulation results show that with increasing list
size in the CRC-aided SCL decoder, the proposed hybrid non-
binary repeated polar code provides significant performance
gain compared to a polar-repetition scheme with compara-
ble decoding complexity over AWGN and Rayleigh fading
channels. Alternatively, the proposed scheme results in lower
decoding complexity compared to the polar-repetition scheme
with the same performance.

The rest of this paper is organized as follows. In Section
II, we review some basics of polar codes as well as repetition
codes. In Section III, we discuss the proposed scheme. The
numerical results are discussed in Section IV. Finally, Section
V concludes the paper.

II. BACKGROUND

In this section, a brief background on polar codes, their
successive cancellation (SC) and cyclic redundancy check-
aided successive cancellation list (CRC-aided SCL) decoders,
as well as some background on repetition schemes, a simple
and efficient scheme for low-capacity applications, are dis-
cussed.

A. Polar Codes

An (n, k,F), with n = 2m, polar code based on the 2 ×
2 polarization kernel G2 =

(︂
1 0
1 1

)︂
is a linear block code

generated by k rows of Gn = G⊗m
2 , where .⊗m is the m-th

Kronecker power of a matrix [2]. The set of frozen bits F , with
|F| = n − k, is the set of the indices of sub-channels with
the lowest reliabilities. Arıkan’s polar codes are constructed
by setting entries of the input vector un−1

0
1 indexed by F to

some pre-defined values, e.g. zero, and the remaining k bits
are used to transmit the information. At the decoder side, the
SC decoder, makes the decision on ui, based on the previously
decoded bits, ûi−1

0 , and channel output vector, yn−1
0 , according

to the following log likelihood ratio (LLR) rule:

ûi =

⎧⎪⎪⎨⎪⎪⎩
1, if i ∈ FC &

ln
W (i)

n (ûi−1
0 ,yn−1

0 |ui=0)

W
(i)
n (ûi−1

0 ,yn−1
0 |ui=1)

< 0

the frozen value of ui, if i ∈ F ,
(1)

where W
(i)
n is the i-th bit-channel [2].

In order to improve the error correction performance of the
SC decoder, the successive cancellation list (SCL) decoding
algorithm was proposed by Tal and Vardy in [3]. In SCL
decoding, the L most likely paths ui−1

0 are tracked. When
decoding ui, for i ∈ FC , the decoder extends each path into

1un−1
0 is a row vector (u0, u1, . . . un−1) and ui

0 is its subvector
(u0, u1, . . . ui).

two paths exploring both possibilities ui = 0 and ui = 1. If the
number of obtained paths exceeds L, the decoder picks L most
likely paths as the surviving ones and prunes the rest based on
a certain Path Metric (PM). Let ûi[l] denote the estimate of
ui in the l-th path, for l ∈ {1, 2, . . . , L} and Si[l] denote its
corresponding LLR. Then the corresponding PM is calculated
as follows:

PM
(i)
l =

{︄
PM

(i−1)
l + |Si[l]| if ûi[l] ̸= 1

2 (1− sgn(Si[l]))

PM
(i−1)
l otherwise,

(2)
where PM

(−1)
l is set to 0. Finally, the path with the smallest

PM is selected as the estimated bits ûn−1
0 . As the list size

L grows large, the SCL decoder approaches the maximum-
likelihood (ML) decoding performance. To further improve
the performance of the SCL decoder, p-bits cyclic redundancy
check (CRC) are appended to the information bits as an
outer code. The SCL decoder outputs the decoding path
with the smallest PM among the paths which pass the CRC
[9]. Remarkably, Polar-CRC schemes have been adopted for
control channels in the fifth generation of wireless networks
(5G) due to demonstrating the state-of-the-art performance
for a wide range of code parameters [13]. Polar codes and
polarization phenomenon have been also successfully applied
to a wide range of problems including data compression [14],
[15], broadcast channels [16], [17], multiple access chan-
nels [18], [19], joint detection and decoding [24], physical
layer security [20]–[23], fading channels [25]–[27], and coded
modulation [28], [29].

B. Repetition Schemes

In low-capacity applications, a straightforward way of de-
signing practical low-rate codes, that is also adopted in the
standard, is through repetition schemes. Let r denote the
number of the repetitions and N denote the total length
of the code. For constructing a repetition scheme, first, a
smaller outer code (e.g., a polar code) of length n = N/r is
designed and then each of its coded bits is repeated r times.
The main advantage of repetition schemes is the relatively
low computational complexity of their encoding and decoding
algorithms, especially when r is large. This is because the
encoding/decoding complexity is effectively reduced to that
of the outer code. Once the outer code is constructed, at the
encoder, one just needs to repeat each of the coded bits r
times. At the decoder, the LLR of a coded bit repeated r
times is equal to the sum of the r LLRs of the individual
transmission. While this looks promising, one should note that
the main drawback of repetition schemes is the loss in capacity.
In general, we have C(W r) ≤ rC(W ), where W r is the
channel resulting from repeating r times transmission across
W , and C(·) is the channel capacity. Note also that the ratio
C(W r)/rC(W ) vanishes as r grows large. Consequently,
for very large r, the repetition code might suffer from an
unacceptable rate loss [1].

III. THE PROPOSED SCHEME

As mentioned in Section II-B, the polar-repetition code
is a practical scheme for low-capacity scenarios due to its
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low encoding/decoding complexity. However, from a channel
coding prospective, repeating a high rate polar code to enable
low-rate communication is sub-optimal [1]. To improve the
performance of the polar-repetition scheme in low-capacity
regime, we propose the hybrid non-binary repeated polar code
scheme: the concatenation of a binary polar code with a non-
binary random multiplicative repetition code. In this scheme,
the codewords are not generated by simple repetitions of the
polar code but by random multiplicative repetitions of the
non-binary symbols. Our simulation analysis of the proposed
scheme under SC and CRC-aided SCL decoders shows that
concatenating with random non-binary multiplicative repeti-
tion code improves the polarization rate of the code and
reduces the number of the low-weight codewords (see Sec.
IV).

A potential solution to benefit from the random non-binary
multiplicative code would be to concatenate it with non-binary
polar codes. A similar solution is proposed in the context of
LDPC coding, where gains are observed with multiplicative
random non-binary LDPC codes compared to binary LDPC
codes in the low-rate regime [7]. However, in the context of
polar coding, the decoding complexity of non-binary polar
codes is often very high for practical scenarios such as IoT,
where the devices are required to be low complexity and low
cost. Therefore, in this paper, we consider the binary polar
codes as the outer code. In general, a straightforward way of
concatenating a binary polar code with a non-binary one would
result in a loss of the correlation information between the bits
in a symbol and render the advantage of the non-binary outer
code. However, our proposed scheme overcomes this problem
by splitting the outer code into two stages to capture such
correlation in the decoding process.

Owing to the recursive structure of the polar codes, one
can consider the polarization transform kernel Gn as the
concatenation of Gn/t and Gt, with Gn = Gn/t ⊗Gt, where
t = 2m

′
,m′ = {1, 2, 3, . . . , }, [31]. Figure 1 (a) shows the

block diagram of the encoder of the polar code with this
structure, where xn−1

0 is the output of the transformation Gt.
Figure 1 (c) shows the structure of the polar-repetition. In this
scheme, the outer code is the polar code depicted in Figure 1
(a) and the inner code is the repetition code which repeats the
output of the outer polar code, zn−1

0 , r times and generates
code Cr as follows.

Cr = {crn−1
0 |c(r−1)n+v = zv,

for v = {0, . . . , n− 1}, c
(r−1)n−1
0 ∈ Cr−1}.

(3)

To improve the performance of the polar-repetition, the scheme
depicted in Figure 1 (b) and (d) is proposed. The encoder
and decoder of the proposed hybrid non-binary repeated polar
codes are as follows.

A. Encoding of the Proposed Hybrid Non-Binary Repeated
Polar Codes

For encoding the proposed scheme, in the first stage, the
binary input bits un−1

0 are divided into subsets of bits of size
t. Then, each of these n/t t-tuples are encoded with binary
polarization kernel Gt over GF (2) and the output is xn−1

0 . In

the second stage, each of these outputs are grouped together as
a 2t-bit symbol ai, ai = (xit, xit+1, . . . x(i+1)t−1) ∈ GF (2t),
i = {0, 1, . . . , n/t−1}. Then, the symbols an/t−1

0 are encoded
with the binary polarization kernel Gn/t over GF (2t) and
generate code C1 = {zn/t−1

0 ∈ GF (2t)}. Finally, coefficients
ρ
rn/t−1
n/t are chosen at random from GF (2t) \ {0} and are

multiplied by z
n/t−1
0 to generate the code Cr, r > 1, as

follows.

Cr = {crn/t−1
0 |c(r−1)n/t+v = ρ(r−1)n/t+vzv,

for v = {0, . . . , n/t− 1}, c
(r−1)n/t−1
0 ∈ Cr−1}.

(4)

Note that the coefficients ρ
jn/t−1
(j−1)n/t, j = {2, 3, . . . , r} are

the random multiplication coefficients for the j-th repetition.
Algorithm 1 shows the process of encoding the proposed
scheme. The inputs to this algorithm are binary input bits
un−1
0 , t, n and r. The outputs is the code Cr. The ← symbol

denotes appending an element to a list.

Algorithm 1: Encoding Algorithm of the Proposed
Hybrid Non-binary Repeated Polar Codes

input : un−1
0 , t, n, r

output: Code Cr

1 Divide un−1
0 into sets of t bits, u(i+1)t−1

it ,
i = {0, 1, . . . , n/t− 1}.

2 for i = 0 to n/t− 1 do
3 x

(i+1)t−1
it = Encode each sets of bits, u(i+1)t−1

it , with binary
kernel Gt over GF (2).

4 Group x
(i+1)t−1
it together to make a t-bit symbol ai.

5 end
6 Cr = {zn/t−1

0 } ← Encode a
n/t−1
0 symbols with binary kernel

Gn/t over GF (2t).
7 for j = 2 to r do
8 Cr ← Choose n/t coefficients ρ

jn/t−1
(j−1)n/t

uniformly at random

from GF (2t) \ {0}, multiply them with z
n/t−1
0 .

9 end
10 return Cr

The outer encoding only requires standard binary polar
encoding followed by binary to 2t-ary conversion. In the
decoding process, and in order to capture the correlation of
the bits in a symbol, the conversion from binary to 2t-ary is
done between Stage 1 and Stage 2 of decoding.

Note that the authors in [30] constructed mixed kernels
over alphabets of different sizes and improved the polarization
properties of the kernel Gn. However, in this paper, by using
the structure of the kernel Gn, we group the binary bits into
symbols without modifying the polarization kernel Gn.

Example 1: Figure 2 (a) shows an example for n = 8,
r = 3, and t = 4. The polarization kernels of stage 1 and 2
are G4 = B4G

⊗2
2 and G2, respectively, where B4 is the bit-

reversal permutation matrix. By choosing the primitive α ∈
GF (24) with π(α) = α4 + α + 1 = 0, the output codewords
of this example are c50 = (1, α13, α8, α4, α4, α14).

The encoded symbols ci are turned into binary strings for
transmission over AWGN and Rayleigh fading channels using
the BPSK modulation scheme, with the received signals for
these two channels given by

yi = (ci)M + wi, i = {1, 2, . . . , N}
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Figure 1: (a) Layered factor graph representation of a polar code (b) Layered factor graph representation of the proposed hybrid
non-binary polar code (c) Polar-repetition scheme (d) Hybrid non-binary repeated polar codes scheme.

and
yi = hi(ci)M + wi, i = {1, 2, . . . , N},

respectively, where (ci)M is the modulated codeword, hi is
the channel gain with Rayleigh distribution and wi is a zero
mean Gaussian noise, wi ∼ N (0, σ2). Here, we assume that
hi and wi are independent, the receiver knows the channel
state information (CSI) and the transmitter knows only the
distribution of the CSI.

In the block fading channel model, a transmission frame
of N symbols is affected by 1 ≤ B ≤ N dependent fading
realizations, resulting in a block of τ = N/B symbols being
affected by the same fading realization. Different values B
represents different types of fading, e.g., B = 1 is referred to
fast fading and B = N is referred to slow fading.

B. SCL Decoding of the Proposed Hybrid Non-Binary Re-
peated Polar Codes

For decoding the proposed scheme, we use CRC-aided
LLR-based SCL decoder. Algorithm 3 shows the details of

the process. The SCL decoding of the proposed scheme
involves mainly 4 parts, i.e. the initial LLRs, the LLRs of the
multiplicative repetition, the LLRs of Stage 1 and the LLRs
of Stage 2 of the outer polar code. The details of the LLRs
calculations are as follow.

Initial LLRs: The initial LLRs of the i-th symbol, i ∈
{0, 1, . . . , rn/t − 1}, with symbol value s ∈ GF (2t) for
AWGN and block fading channels are defined as

S
(s)
in,i = ln

W (yi|(ci)M = 0M )

W (yi|(ci)M = sM )
, (5)

and

S
(s)
in,i = ln

W (yi|(ci)M = 0M , hi)

W (yi|(ci)M = sM , hi)
, (6)

respectively. Let us denote Sin,i = {S(s)
in,i}s∈GF (2t), the vector

of the i-th initial LLRs for all possible symbols s over GF (2t).
LLRs of the multiplicative repetition: Since GF (2t) is a

finite field, the non-zero elements can be expressed as powers
of a primitive element α in the field, i.e., 1, α, . . . , α2t−2.
Therefore, multiplication by an arbitrary non-zero symbols



5

Figure 2: Equivalent encoders for the proposed scheme for n = 8, r = 3, t = 4 based on (a) Algorithm 1 and (b) Algorithm
2.

ρj = ατ , j = {n/t, . . . , rn/t − 1}, can be regarded as
a cyclic shift of the field elements by τ . As a result, the
decoder permutes the LLR vector Sin,i and outputs the vector
πρj

(Sin,i).
Finally, the LLR of an r-tuple consisting of r independent

transmissions of symbols is equal to sum of the LLRs of the
individual channel outcomes after the permutations (see lines
2-8 of the Algorithm 3).

LLRs update of Stage 2: In general, the LLR of the i-th
symbol, i ∈ {0, 1, . . . , n−1} , with symbol value s over kernel
Gn, can be calculated according to the following formula, [2]:

S
(s)
i

∆
= ln

∑︁
un−1
i+1

RGn
(ûi−1

0 , 0, un−1
i+1 )∑︁

un−1
t+1

RGn
(ûi−1

0 , s, un−1
i+1 )

, (7)

where RGn(u) = exp(−
∑︁n−1

j=0 S
(xj)
j ) and xj is the j-th index

of the vector xn−1
0 = un−1

0 Gn and s is an element from
GF (2t). One can use the following equation for simplifying
eq. (7).

ln(
∑︂
i

e−fi) ≈ −min
i
(fi).

Now, for our binary kernel G2, consider two input LLR
vectors S+ and S− of size 2t. Then, the output LLR vectors
Ŝ+ and Ŝ− can be derived from (7), as:

Ŝ
(s)

+ ≈ min
u1∈GF (2t)

(S
(s+u1)
+ + S

(u1)
− )

− min
u1∈GF (2t)

(S
(u1)
+ + S

(u1)
− ),

Ŝ
(s)

− ≈ S
(û0+s)
+ + S

(s)
− − S

(û0)
+ − S

(0)
− .

(8)

where S
(i)
+ and S

(j)
− are the i-th and j-th index of the vectors

S+ and S−, respectively and û0 is the previously decoded
symbol, while u1 is the yet to be decoded symbol.

LLRs update of Stage 1: For updating the LLRs of Stage
1, consider the input non-binary LLR vector Ŝ. The output
binary LLRs Ŝbi , i = {1, 2, . . . , t}, derived from eq. (7), are
as follows.

Ŝbi ≈ min
ut−1
i+1

Ŝ
([v(1)]2t ) −min

ut−1
i+1

Ŝ
([v(0)]2t ), (9)
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where [v(β)]2t is the representation of the binary vector v(β) =
(ûi−1

0 , β, ut−1
i+1)Gt as element of GF (2t) for β = {0, 1} and

Ŝ
([vβ ]2t ) is the [v(β)]2t -th index of the vector Ŝ.
In Eq. (9) we show how to calculate the output binary LLRs

Ŝbi given the input non-binary LLR Ŝ in one step. However,
updating the LLRs of Stage 1 can be done recursively as well.
To this end, Stage 1 of the encoder in Figure 1 (b) needs to be
modified. Instead of encoding t bits with binary polarization
kernel Gt over GF (2), G2 is applied recursively on the
inputs symbols over GF (22

k′−1

) in k′ levels (1 ≤ k′ ≤ m′).
Then the obtained symbols are grouped into 2k

′
-bit symbols

a
(n/2k

′
)−1

0 . Finally, the output of the last level, t-bit symbol ai,
i = {0, 1, . . . (n/t)−1}, is fed into Stage 2. Part of Stage 1 for
this modified encoder is demonstrated in Figure 3. The process
of the encoding for this structure is presented in Algorithm 2.

Algorithm 2: Encoding of the Proposed Hybrid Non-
binary Repeated Polar Codes for Stage 1

input : un−1
0 ,m′, t, n, r

output: Code Cr

1 Define List A = {}
2 A← un−1

0 // Init.
3 for k′ = 1 to m′ do
4 for i = 0 to (n/2k

′
)− 1 do

5 x
2(i+1)−1
2i = Encode each sets (A[2i], A[2(i+ 1)− 1])

with binary kernel G2 over GF (22
k′−1

).
6 Group x

2(i+1)−1
2i together to make a 2k

′
-bit symbol ai.

7 end
8 A = {} // empty List A

9 A← a
(n/2k

′
)−1

0
10 end
11 lines 6-9 of Algorithm 1.
12 return Cr

Example 2: Figure 2 (b) demonstrates a encoder structure
for the code discussed in Example 1 based on Algorithm 2.
The polarization kernels of Stage 1 (Layer 1 and Layer 2)
and Stage 2 is G2. The output codewords in this example are
c50 = (1, α7, α8, α13, α4, α8) over GF (16).

Figure 3: Part of Stage 1 of the encoder based on Algorithm
2.

In order to update the LLRs of the layers of Stage 1, based
on Algorithm 2, the following recursive formulas can be used
for calculating Ŝ+ and Ŝ− from Ŝ.

Ŝ
(s)

+ ≈ min
u1∈GF (2t′ )

Ŝ
([v(s)]

2t
′ ) − min

u1∈GF (2t′ )
Ŝ
([v(0)]

2t
′ )

Ŝ
(s)

− ≈ Ŝ
([v̂(s)]

2t
′ ) − Ŝ

([v̂(0)]
2t

′ )
,

(10)

where 0 ≤ j ≤ m′−1, t′ = 2j , [v(β)]2t′ is the representation of
the binary vectors v(β) = (β, u1)G2 as elements of GF (2t

′
),

and [v̂(β)]2t′ is the representation of the binary vectors v̂(β) =
(û0, β)G2 as elements of GF (2t

′
) for β = {0, s}.

The CRC-aided SCL decoder after updating the LLRs and
calculating the PM for different paths based on the values of
the Ŝbi chooses the path with the smallest PM which passes
the CRC.

Algorithm 3: List Decoding Algorithm for the Pro-
posed Hybrid Non-binary Repeated Polar Codes

input : List size L, r, n, t, ρrn/t−1
n/t

and y
rn/t−1
0

output: The estimated bits ûn−1
0

1 Sin,i = Calculate the initial LLRs with eq. (5) or eq. (6) for all
i = {0, 1, . . . , rn/t− 1} by using y

rn/t−1
0 .

2 Sinner,i = Sin,i, i = {0, . . . , n/t− 1} // Init.: Pick the
first n/t elements of Sin,i.

3 for i = n/t to rn/t− 1 do
4 πρi (Sin,i) // Permute the vector Sin,i based on

the random coefficient ρi.
5 end
6 for j = 2 to r do
7 Sinner,i = Sinner,i + πρi (Sin,i)[(j − 1)n/t : jn/t− 1].

// Output LLRs of the inner code
8 end
9 for k′ = 0 to n− 1 by t do

10 Using the LLRs Sinner,i, for i = {0, . . . , n/t− 1}, update the
LLRs for Stage 2 with eq. (8).

11 for j = 1 to t do
12 Using the updated LLRs from Stage 2, update the LLRs

for Stage 1 with eq. (9) and obtain Ŝbj .
13 Calculate the PM for Ŝbj with eq. (2) for each of the L

paths.
14 Update bits for Stage 1.
15 end
16 Update the symbols for Stage 2.
17 end
18 CRC-aided SCL decoder with list size L chooses the path with the

smallest PM which passes the CRC and outputs ûn−1
0 .

19 return ûn−1
0

IV. ANALYSIS AND NUMERICAL RESULTS

In this section, we first provide complexity analysis of the
proposed scheme and compare it with those of the polar-
repetition scheme and the scheme in [7]. Then, we analyze
the numerical result of the proposed scheme given certain
underlying binary field extensions in the construction, i.e., over
GF(4) and GF(16), and compare it with the polar-repetition
scheme and the scheme in [7] over AWGN and Rayleigh
fading channels. Finally, we analyze the performance of the
hybrid non-binary repeated polar code.
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A. Complexity Analysis

In this subsection, we count the exact number of op-
erations needed for calculating the LLRs of the proposed
scheme, polar-repetition, and the scheme in [7] to show the
performance-complexity trade-off in subsection IV-B. Note
that to demonstrate the computational complexity, we used
the total number of the summation and comparison operations
for calculating the LLRs of the outer and inner codes for the
SC decoder. The complexity advantages of the entire system
using CRC-aided SCL decoder will be shown in Sec. IV-B.

Polar-repetition code: To update the LLRs of the polar-
repetition, one needs to compute

• (n−1)r operations for decoding the inner repetition code
of size r.

• (n2 × 4 + n
2 × 1) log n operations for decoding the outer

polar code of size n.
Consequently, the total complexity is nr + 2.5n log n opera-
tions.

Hybrid non-binary repeated polar code: Since the two
methods proposed in Algorithms 1 and 2 have the same
computational complexities, we only count the number of the
operations of the first method as follows.

1) Inner multiplicative repetition code: According to (5)
or (6), the size of the initial LLR vector of the proposed
scheme, Sin,i, is 2t and S

(0)
in,i = 0. Consequently

(2t − 1)rn/t operations are needed for computing lines
6-8 of Algorithm 3 for decoding the inner multiplicative
repetition code.

2) Stage2: For updating the LLRs of Stage 2, one need to
compute Ŝ

(s)

+ and Ŝ
(s)

− given in (8).

To obtain Ŝ
(s)

+ , one should compute

• S
(s+u1)
+ + S

(u1)
− , ∀s, u1 ∈ GF (2t), with (2t − 1)×

(2t − 1) operations. 2

• minu1∈GF (2t)(S
(s+u1)
+ +S

(u1)
− ), ∀s ∈ GF (2t), with

2t × (2t − 1).
• Ŝ

(s)

+ with 2t − 1 operations for s ∈ GF (2t) \ {0}.
Therefore, the total number of the operations for com-
puting Ŝ

(s)

+ is (2t − 1)× 2(t+1).

To obtain Ŝ
(s)

− , one should compute

• S
(û0+s)
+ +S

(s)
− , ∀s ∈ GF (2t), with 2t−2 operations.

• Ŝ
(s)

− with 2t − 1 operations for s ∈ GF (2t) \ {0}.
Therefore, in total 2t+1 − 3 operations are needed for
computing Ŝ

(s)

− .
Finally, for the Arıkan’s kernel of size n/t,
(log n

t )[
n
2t ((2

t− 1)× 2(t+1))+ n
2t (2

t+1− 3)] operations
are needed for updating the LLRs of Stage 2.

3) Stage 1: According to (9), for each bi, i ∈ {1, 2, . . . , t},
one needs to compute

• minut−1
i+1

Ŝ
([v(β)]2t ), β = {0, 1} with 2t−i − 1 oper-

ations.
• Ŝbi with 1 operation.

2Note that S(u1)
+ +S

(u1)
− is a special case of S(s+u1)

+ +S
(u1)
− for s = 0

and Ŝ
(0)
+ = 0, Ŝ

(0)
− = 0.

As a result, in total, n
t

∑︁t
i=1(2(2

t−i−1)+1) operations
are needed to update the LLRs of the n/t kernel Gt of
size t.

Scheme proposed in [7]: This scheme is the concatenation
of the (nl, kl) = (8192, 128) LDPC with (np, kp) = (128, 80)
polar code. In this scheme, one needs 8192(8 log(128)+32) =
720896 operations for decoding the LDPC code and 110469
operations for decoding the polar code under SCL with list
size L = 32. As a result the total number of operations for
this scheme is 831365.

In a nutshell, we conclude that the complexity of the
total decoding process of the polar-repetition and the pro-
posed schemes are O(nr + n log n) and O(2trn/t +
22t(n/t) log(n/t) + 2tn/t), respectively. Here, if t and r be
constants, the complexity of both schemes will be O(n log n).
Moreover, the complexity of the scheme proposed in [7]
is O(nl(log np + L) + Lnp log np). However, for numerical
comparison purposes, we use the aforementioned exact num-
ber of operations for the different schemes. The complexity
comparison of the three discussed schemes is shown in Table
I for N = 8192 and three different values r = 16, 32, 64.

B. Numerical Analysis

In this subsection, we provide numerical results for the
proposed scheme given GF (4) and GF (16) as the underlying
binary field extension in the construction3. The communication
is assumed over AWGN and Rayleigh fading channels with
BPSK modulation, where encoded symbols are turned into
binary strings and then modulated. Also, the decoding is
performed under the SC and CRC-aided SCL decoding al-
gorithms. Then, we compare the performance of the proposed
scheme with those of the polar-repetition scheme as well as
the scheme proposed in [7]. Note that the SCL decoder is
implemented using the randomized order statistic algorithm for
the selection of the L most likely paths in each stage, which
has the complexity O(L), where L is the list size. Moreover,
the construction for the proposed hybrid non-binary repeated
polar code and polar-repetition schemes is based on the Monte-
Carlo simulation at an optimized design SNR, denoted by γ,
to be specified separately for each case.

It is worth noting that in each instance of the simulation,
a different set of the random coefficients ρ

jn/t−1
(j−1)n/t, j =

{2, 3, . . . , r} is used. At the end, the average is taken over all
the instances. An alternative approach is to choose the set of
the coefficients in a certain way and then use them in all the
instances of the simulation. The choice of such coefficients
could be optimized, however, solving such a combinatorial
optimization problem is complex and beyond the scope of this
paper.

Figures 4a, 4c, and 4e compare the performance of the
proposed scheme for N = 8192, k = 80, and over GF (4)
and GF (16) with that of the straightforward polar-repetition
scheme over AWGN channel. To illustrate the trade-off be-
tween the rate of the outer polar code and the number of the
repetitions, we consider three different values r = 16, 32, 64.

3For the simulation, Algorithm 1 is used. Although both Algorithm 1 and
2 show the same performance.
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Table I: Complexity comparison of different schemes

Parameters Repetition Scheme
Inner rep.
n(r − 1)

Outer polar code
2.5× n log n

Total

n = 512, r = 16 7680 11520 19200
n = 256, r = 32 7936 5120 13056
n = 128, r = 64 8064 2240 10304

Parameters Proposed Scheme over GF(4)
Inner rep.

n(r−1)
t (2t − 1)

Stage 2
(22t − 3/2)nt log

n
t

Stage 1
2n

Total

n = 512, r = 16, t = 2 11520 29696 1024 42240
n = 256, r = 32, t = 2 11904 12992 512 25408
n = 128, r = 64, t = 2 12096 5568 256 17920

Parameters Proposed Scheme over GF(16)
Inner rep.

n(r−1)
t (2t − 1)

Stage 2
(22t − 3/2)nt log

n
t

Stage 1
n
t

∑︁t
i=1(2(2

t−i − 1) + 1)
Total

n = 512, r = 16, t = 4 28800 228032 3328 260160
n = 256, r = 32, t = 4 29760 97728 1664 129152
n = 128, r = 64, t = 4 30240 40720 832 71792

The optimized design SNR γ for each simulated case is
specified in the legend of the corresponding plot.

It can be seen that the proposed scheme over GF (16)
outperforms the one over GF (4) and the repetition scheme,
under SC and CRC-aided SCL decoder with the same list
size and 6-bit CRC. For r = 16 under CRC-aided SCL, the
performance of the proposed scheme over GF (16) with L = 8
is almost the same as that of the proposed scheme over GF (4)
with L = 32 and the polar-repetition scheme with L = 128.
For r = 32 under CRC-aided SCL, the proposed scheme over
GF (16) with L = 8 outperforms the proposed scheme over
GF (4) with L = 32 and that one outperforms the repetition
scheme with L = 128. Moreover, the performance of the
proposed scheme over GF (16) with L = 4 is almost the
same as that of the repetition scheme with L = 128. As we
increase the number of the repetitions to 64, due to the loss
in the asymptotic achievable rate, the performance of polar-
repetition scheme degrades. As a result, the performance of
the proposed scheme over GF (4) with L = 8 outperforms
that of the repetition scheme with L = 128.

For comparison, the performance of the scheme proposed in
[7] for low-SNR regime is also considered. It can be seen that
for r = 16, the proposed schemes over GF (4) under CRC-
aided SCL with L = 32 and GF (16) with L = 8 outperform
the scheme in [7]. Moreover, the performance of the scheme
in [7] is the same as that of the proposed scheme over GF (4)
with L = 8 and repetition scheme with L = 32. For r = 32,
the proposed scheme over GF (16) with L = 8 outperforms
the scheme in [7]. On the other hand, the performance of
the proposed scheme over GF (4) with L = 32 is almost the
same as that of [7]. However, for r = 64, the scheme in [7]
outperforms the proposed scheme over GF (16) with L = 32.

Figures 4b, 4d, and 4f compare the performance of the
proposed scheme over GF (4) and GF (16) with that of the
straightforward polar-repetition scheme over AWGN channel
for N = 8192, k = 40. Similarly, the proposed scheme
over GF (16) outperforms the one over GF (4) and repetition

scheme under both SC and CRC-aided SCL decoder. The
scheme in [7] can not be realized for these parameters.

Figures 5a, 6a and 7a present the simulation results of the
hybrid non-binary repeated polar code and the polar repetition
scheme under CRC-aided SCL decoder as a function of L over
AWGN channel at Eb/N0 = 1.5 dB for N = 8192, k = 80
and three different number of repetitions, r = 16, 32, 64,
respectively. It can be seen that the hybrid non-binary repeated
polar code over GF (16) requires significantly lower list size
L to achieve the same performance as the polar-repetition
scheme over GF (4). Moreover, this gap grows with L. For
comparison, the performance of the scheme proposed in [7]
with L = 32 is also provided.

Figure 5b presents the performance of the CRC-aided SCL
decoding of the schemes in Figure 5a in terms of the decoding
complexity. Observe that the proposed scheme over GF (4)
can provide better performance than polar-repetition scheme
with the same decoding complexity for FER ≤ 6 × 10−3

(L > 4 for the proposed scheme over GF (4) and L > 8
for polar-repetition scheme). This is due to the higher slope
of the corresponding curve in Figure 5a, which eventually
enables one to compensate for the relatively high complexity
of the LLR computation presented in Table I. The proposed
scheme over GF (16) has greater processing complexity than
the one over GF (4), so that its curve intersects the polar-
repetition scheme at FER = 2 × 10−3 (L ≥ 4 for the
proposed scheme over GF (16) and L ≥ 64 for polar-repetition
scheme). Moreover, the proposed schemes over GF (4) and
GF (16) have the same FER = 8 × 10−4 for L ≥ 64 and
L > 8, respectively. Similar behaviour is observed for r = 32
repetitions in Figure 6b. However, as we increase r from 16 to
32, the decoding complexity decreases, while the performance
of all the schemes degrades. As a result, the intersections of
the curves happen at lower FER and smaller number of the
operations. For r = 64 repetitions in Figure 7b, a significant
degradation in the performance occurs due to the reduced
achievable rate of the outer polar code due to having a shorter
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(e) N = 8192, n = 128, k = 80, r = 64, t = 2, 4.
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Figure 4: Performance comparison of the proposed scheme with the polar-repetition scheme and the scheme in [7] over AWGN
channel for different values of n, r and k.
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Figure 5: CRC-aided SCL decoding over AWGN channel at Eb/No = 1.5 dB for N = 8192, n = 512, r = 16, k = 80.
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Figure 6: CRC-aided SCL decoding over AWGN channel at Eb/No = 1.5 dB for N = 8192, n = 256, r = 32, k = 80.
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Figure 7: CRC-aided SCL decoding over AWGN channel at Eb/No = 1.5 dB for N = 8192, n = 128, r = 64, k = 80.
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length. For any L, the hybrid non-binary repeated polar code
over GF (16) provides the best performance for the same
decoding complexity.

It can be observed that for r = 16 repetitions (see Figure
5b), the hybrid non-binary repeated polar code and polar-
repetition scheme outperform the scheme in [7] with the same
decoding complexity. For r = 32 repetitions (see Figure 6b),
the scheme in [7] slightly outperforms the polar-repetition, but
not the proposed scheme for the same decoding complexity.
Only for 64 repetitions (see Figure 7b), the scheme in [7]
outperforms the others with the same decoding complexity.

Figure 8 compares the performance of the proposed scheme
for N = 8192, k = 80, r = 16 over GF (4) and GF (16)
with that of the straightforward polar-repetition scheme over
Rayleigh fading channel. For each repetition block, we con-
sider one distinct fading coefficient. As a result, in each frame
of size 8192, there are 16 distinct fading coefficients and
each block of length 512 symbols in each repetition will be
affected by the same fading coefficient. Similar to AWGN

0 1 2 3 4 5

Eb/No(dB)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

F
E

R

Rep.,SC, =3dB

Pro.,SC,GF(4), =3dB

Pro.,SC,GF(16), =0dB

Pro.,CRC6-SCL,L=8, =4.5dB

Pro.,CRC6-SCL,L=8, =2dB

Rep.,CRC6-SCL,L=32, =4.5dB

Pro.,CRC6-SCL,L=32, =3dB

Pro.,CRC6-SCL,L=32, =1.5dB

Rep.,CRC6-SCL,L=128, =0dB

Figure 8: Performance comparison of the proposed scheme
with the polar-repetition over Rayleigh fading channel for N =
8192, n = 512, k = 80, r = 16, t = 2, 4.

channel, it can be seen that the proposed scheme over GF (16)
outperforms the one over GF (4) and the repetition scheme,
under SC and CRC-aided SCL decoder with the same list size
and 6-bit CRC.

C. Performance Analysis
In this subsection, we analyze the performance of the pro-

posed scheme to gain insight into its better performance under
the CRC-aided SCL decoder. Since the SCL decoder with large
list size achieves performance very close to that of the ML
decoder, we study the performance of the proposed scheme
under ML decoding to have better analytical understanding.

The block error probability under ML decoding can be
estimated via the truncated union bound as follows, [33].

PML
e ≤

n∑︂
i=d

AiQ(
√︁

2iREb/No), (11)

where Ai is the number of the codewords of weight i and d is
the minimum distance of the code. At high SNR, upper bound
on PML

e depends primarily on d and Ad. Hence, to obtain a
good performance under ML decoding, one needs to eliminate
low-weight non-zero (LWNZ) codewords from the code.

To enumerate the LWNZ codewords, we transmit the all-
zero codeword in the extremely high SNR regime under SCL
decoder with very large list size, [32]. In this case, it is
expected that the list most likely contains only the codewords
with the least Hamming weights.

Table II compares the number of low-weight codewords
of the proposed scheme with the polar-repetition ones over
AWGN channel for N = 8192, n = 512, r = 16, k = 40. As it
is expected the number of LWNZ codewords for the proposed
scheme over GF (4) is less than that of the polar-repetition
scheme. For GF (16), although the minimum distance is
slightly reduced, the number of low-weight codewords is still
much smaller compared to the polar-repetition scheme.

V. CONCLUSION

In this paper, we proposed a new concatenation scheme to
improve upon the performance of the polar-repetition scheme
in the low-SNR regime. The proposed scheme is the concate-
nation of a hybrid non-binary polar code with a multiplicative
repetition code. Extensive simulation and numerical results
show that the proposed scheme provides a better trade-off
between the decoding complexity and performance compared
with the polar-repetition scheme, under CRC-aided SCL de-
coder over AWGN and Rayleigh fading channels.

There are several directions for the future research. Finding
the best permutation for the inner non-binary multiplicative
repetition code is an interesting problem. Reducing the de-
coding complexity of our proposed constructions by pruning
the decoding trellis and simplifying it [34], and reducing
the latency to become sub-linear [35] are other interesting
directions. Also, analyzing the polarization properties of the
proposed scheme with the optimal permutation in terms of
error exponent, [36], and scaling exponent, [37], [38], and
comparing them with polarization based on kernels con-
structed in [39]–[41], are other interesting open problems.
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