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Abstract—In this paper, we investigate covert communication
over millimeter-wave (mmWave) frequencies. In particular, a
mmWave transmitter, referred to as Alice, attempts to reliably
communicate to a receiver, referred to as Bob, while hiding the
existence of communication from a warden, referred to as Willie.
In this regard, operating over the mmWave bands not only
increases the covertness thanks to directional beams, but also
increases the transmission data rates given much more available
bandwidths and enables ultra-low form factor transceivers due to
the lower wavelengths used compared to the conventional radio
frequency (RF) counterpart. We first assume that the transmitter
Alice employs two independent antenna arrays in which one of
the arrays is to form a directive beam for data transmission
to Bob. The other antenna array is used by Alice to generate
another beam toward Willie as a jamming signal while changing
the transmit power independently across the transmission blocks
in order to achieve the desired covertness. For this dual-beam
setup, we characterize Willie’s detection error rate with the
optimal detector and the closed-form of its expected value from
Alice’s perspective. We then derive the closed-form expression
for the outage probability of the Alice-Bob link, which enables
characterizing the optimal covert rate that can be achieved
using the proposed setup. We further obtain tractable forms for
the ergodic capacity of the Alice-Bob link involving only one-
dimensional integrals that can be computed in closed forms for
most ranges of the channel parameters. Finally, we highlight
how the results can be extended to more practical scenarios,
particularly to the cases where perfect information about the
location of the passive warden is not available. Our results
demonstrate the advantages of covert mmWave communication
compared to the RF counterpart. The research in this paper is
the first analytical attempt in exploring covert communication
using mmWave systems.

Index Terms—Covert communication, mmWave communica-
tion, communication with low probability of detection, detection
error rate, effective covert rate, ergodic capacity, Nakagami
fading channels.

I. INTRODUCTION

RApid growth of wireless networks and the emergence of
variety of applications, including the Internet of Things

(IoT), massive machine-type communication (mMTC), and
critical controls, necessitate sophisticated solutions to secure
data transmission. Traditionally, the main objective of security
schemes, using either cryptographic or information-theoretic
approaches, is to secure data in the presence of adversary
eavesdroppers. However, a stronger level of security can be ob-
tained in wireless networks if the existence of communication
is hidden from the adversaries. To this end, recently, there has
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been increasing attention to investigate covert communication,
also referred to as communication with low probability of
detection (LPD), in various scenarios with the goal of hiding
the existence of communication [2]–[9]. Generally speaking,
covert communication refers to the problem of reliable com-
munication between a transmitter Alice and a receiver Bob
while maintaining a low probability of detecting the existence
of communication from the perspective of a warden Willie [3].

In contrast to traditional cryptographic schemes and simi-
lar to physical-layer security schemes, covert communication
exploits the physical layer of a communication network to
provide security. The most important difference in the setting
of physical-layer security and covert communication is the
functionality of the illegitimate parties, i.e., the eavesdropper
Eve and the warden Willie. In fact, while covert communica-
tion attempts to hide the existence of the communication from
the warden, physical-layer security schemes aim at minimizing
the information obtained by the eavesdroppers through exploit-
ing the dynamic characteristics of the wireless medium [10].
Therefore, as opposed to covert communication, physical-layer
security does not provide protection against the detection of
a transmission. Hence, covert communication can provide a
stronger level of security while also achieving privacy of the
transmitter by guaranteeing a negligible detection probability
of the transmission at a warden.

The information-theoretic limits on the rate of covert com-
munication have been presented in [2] for additive white Gaus-
sian noise (AWGN) channels. More specifically, assuming
the communication blocklength to be n, it has been proved
in [2] that O(

√
n) bits of information can be transmitted

to Bob, reliably and covertly, in n uses of the channel, as
n → ∞. The same square root law has been developed
for binary symmetric channels (BSCs) in [4] and discrete
memoryless channels (DMCs) in [5]. Moreover, the principle
of channel resolvability has been used in [6] to develop a
coding scheme that can reduce the number of required shared
key bits. Also, the first- and second-order asymptotics of covert
communication over binary-input DMCs have been studied in
[7]. The covert communication setup has also been extended
to broadcast channels [8] and to multiple-access channels [9]
from an information-theoretic perspective.

The achievable covert rate (i.e., the ratio of the number
of information bits to the number of channel uses) in the
aforementioned framework is zero as n grows large since
limn→∞ O(

√
n)/n = 0. However, it is demonstrated that

positive covert rates can be achieved by introducing additional
uncertainty, from Willie’s perspective, into the system. For
instance, it is shown in [11], [12] that Willie’s uncertainty
about his noise power helps achieving positive covert rates.
Moreover, by considering slotted AWGN channels, it is proved
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in [13] that positive covert rates are achievable if the warden
does not know when the transmission is taking place. The
possibility of achieving positive-rate covert communication
is further demonstrated for several other scenarios such as
amplify-and-forward (AF) relaying networks with a greedy
relay attempting to transmit its own information to the des-
tination on top of forwarding the source’s information [14],
dual-hop relaying systems with channel uncertainty [15], a
downlink scenario under channel uncertainty and with a le-
gitimate user as the cover [16], and a single-hop setup with
a full-duplex receiver acting as a jammer [17]. Additionally,
covert communication in the presence of a multi-antenna
adversary, under delay constraints, and for the case of quasi-
static wireless fading channels is considered in [18]. In [19],
channel inversion power control is adopted to achieve covert
communication with the aid of a full-duplex receiver. Covert
communication in the context of unmanned aerial vehicle
(UAV) networks is considered in [20]. Physical-layer security
has been investigated in [21], [22] for visible light communi-
cation (VLC) and can be extended to covert communication.
Very recently, the problem of joint covert communication
and secure transmission in untrusted relaying networks in
the presence of multiple wardens has been considered in
[23]. Moreover, the benefits of beamforming in improving the
performance of covert communication in the presence of a
jammer has been studied in [24].

Prior studies on covert communication in wireless networks
mostly consider omni-directional transmission over conven-
tional radio frequency (RF) wireless links. However, a superior
performance can be potentially attained when performing the
covert communication over the millimeter-wave (mmWave)
bands. In particular, operating over the mmWave bands not
only increases the covertness thanks to directional beams,
but also increases the transmission data rates given much
more available bandwidths and enables ultra-low form factor
transceivers due to the lower wavelengths used compared to
the conventional RF counterpart. This makes the mmWave
band a suitable option for covert communication to increase
the security level of wireless applications involving critical
data. Also, with the advancement in mmWave communications
and rapid development of mmWave cellular networks in the
fifth generation of wireless networks (5G) and beyond that,
mmWave systems will serve as major components for a
wide range of emerging wireless networking applications and
use cases. This necessitates secure transmission schemes for
mmWave systems and further highlights the importance of
covert mmWave communication.

The channel model and system architecture of mmWave
communication systems significantly differ from those of
RF communication. In particular, communication over the
mmWave bands can exploit directive beams, thanks to the
deployment of massive antenna arrays, to compensate for the
significant path loss over this range of frequency1. Meanwhile,

1Directive beams can also be exploited over RF systems through beamform-
ing technology. However, given much smaller wavelengths at the mmWave
bands compared to the RF bands, it is much easier to realize large antenna
arrays and (narrow) directive beams, especially at mobile users, over mmWave
systems.

the significant susceptibility of directive mmWave links to
blockage results in a nearly bimodal channel depending on
whether a line-of-sight (LOS) link exists between the transmit-
ter and receiver [25]. Furthermore, the properties of mmWave
and RF channels, including path loss and statistical distribution
of fading, are often modeled very differently. Therefore, the
existing results on covert communication cannot immediately
be extended to covert communication over the mmWave bands.

In this paper, we study covert communication over mmWave
channels from a communication theory perspective. More
specifically, we analyze the performance of the system in the
limit as the blocklength n grows large. In order to achieve
a positive-rate covert communication, the transmitter Alice is
equipped with two antenna arrays each pointed to a different
direction and carrying independent data streams. The first an-
tenna array forms a directive beam for covert data transmission
to Bob. The second array is used to generate another beam
toward Willie as a jamming signal while the transmit power is
changed independently across the transmission blocks in order
to achieve desired covertness. The research in this paper is the
first attempt in analytical studies of covert communication over
mmWave systems. It is worth mentioning that a conceptual
framework for covert mmWave communication was envisioned
in [26] without providing analytical studies. To the best of the
authors’ knowledge, no analytical characterization for covert
mmWave system has been carried out in prior works. Very
recently, after the appearance of the initial version of this
work [1], Zhang et al. [27] studied joint beam training and
data transmission for covert mmWave communication. More
specifically, the authors of [27] aimed at jointly optimizing the
beam training duration (to establish a directional link between
Alice and Bob), the training power, and the data transmission
power to maximize the effective covert rate while satisfying
the covertness constraint on Willie.

The main contributions of the paper are summarized as
follows.

• We characterize Willie’s optimal detection performance
in terms of the overall (minimum) detection error rate,
and derive the closed form for the expected value of the
detection error rate from Alice’s perspective.

• To characterize the performance of the desired link,
we obtain the closed-form expression for the outage
probability of the Alice-Bob link, and then formulate the
optimal covert rate that is achievable in our proposed
setup.

• We further obtain tractable forms for the ergodic capacity
of the Alice-Bob link involving only one-dimensional
integrals that can be computed in closed forms for most
ranges of the channel parameters.

• We highlight how the results of the paper can be extended
to more practical scenarios, particularly to the cases
where perfect information about Willie’s location is not
available to Alice. We also provide several important
directions for future research on covert mmWave com-
munication.

• We present extensive numerical analysis to study the
system performance in various aspects.
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TABLE I
PROBABILITY MASS FUNCTION (PMF) OF THE DIRECTIVITY GAIN OF A

NODE q WITH BEAMSTEERING ERROR [29].
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The rest of the paper is organized as follows. In Section
II, we briefly summarize the mmWave channel model and
describe the proposed covert mmWave communication setup.
In Section III, we analyze Willie’s overall error rate with
an optimal radiometer detector, and then obtain its expected
value from Alice’s perspective. Section IV is devoted to
studying the performance of the Alice-Bob link, in terms of
the outage probability, effective covert rate, and ergodic ca-
pacity. Discussions about various realistic scenarios, including
imperfect knowledge about Willie’s location, as well as some
future research directions are provided in Section V. Finally,
extensive numerical results are presented in Section VI, and
the paper is concluded in Section VII.

II. CHANNEL AND SYSTEM MODELS

In this section, we first briefly characterize mmWave chan-
nels and describe their distinct properties to enable explaining
the system model presented afterwards.

A. MmWave Channel Model

Recent experimental studies have demonstrated that
mmWave links are highly sensitive to blocking effects [25],
[28]. In order to model this characteristic, a proper channel
model should differentiate between the LOS and non-LOS
(NLOS) channel models. Therefore, two different sets of
parameters are considered for the LOS and NLOS mmWave
links, and a deterministic function PLOS(dij) ∈ [0, 1], that is
a non-increasing function of the link length dij (in meters)
between the nodes i and j, is defined to characterize the
probability of an arbitrary link of length dij being LOS. In this
paper, we consider a generic function PLOS(dij) throughout
our analysis and use the model PLOS(dij) = e−dij/200,
suggested in [25], for our numerical analysis.

Next, we briefly describe how the LOS and NLOS chan-
nels can be characterized. Similar to [25], we express the
channel coefficient for an arbitrary mmWave link between
the transmitter i and receiver j as hij = h̃ij

√︁
GijLij , where

h̃ij , Gij , and Lij are the channel fading coefficient, the total
directivity gain (including both the transmitter and the receiver
beamforming gains), and the path loss of the i-j mmWave
link, respectively. This model is widely used in the literature
for analytical tractability purposes. The reader is referred to
[25] and the references therein for more details on mmWave
channel modeling and also the validity of this model.

To characterize the path loss Lij of the i-j link with
the length dij , we consider different path loss exponents
(αL, αN) and intercepts (CL, CN) for the LOS and NLOS
links, respectively. Let L(L)

ij and L
(N)
ij denote the path losses of

the LOS and NLOS links, respectively. Then the path loss Lij

is either equal to L
(L)
ij = CLd

−αL
ij with probability PLOS(dij)

or equal to L
(N)
ij = CNd

−αN
ij with probability 1− PLOS(dij).

Note that the path loss in the NLOS links can be much higher
than that of the LOS path due to the weak diffractions in the
mmWave bands [28].

To ascertain the total directivity gain Gij , we use the
common sectored-pattern antenna model [29], [30] which
approximates the actual array beam pattern by a step function,
i.e., with a constant main lobe gain M

(q)
X over the beamwidth

θ
(q)
X and a constant side lobe gain m

(q)
X otherwise, where

X ∈ {TX,RX} and q ∈ {i, j}. Then, for a given link,
if the spatial arrangement of the beams of the transmitter
and receiver are known, the total directivity gain can be
obtained from the product of the gains of the transmitter and
receiver. If the main lobe of a node q (either transmitter or
receiver) is pointed to another node, we assume that an additive
beamsteering error exists, denoted by a symmetric random
variable (RV) E(q)

X , in the vicinity of the transmitter-receiver
direction. Same as in [29], it is assumed that node q has a
gain equal to M

(q)
X if |E(q)

X | < θ
(q)
X /2, which occurs with

probability F|E(q)
X |(θ

(q)
X /2) with FX(x) being the cumulative

distribution function (CDF) of the RV X . Otherwise, it has a
gain equal to m

(q)
X . Then the probability mass function (PMF)

of the directivity gain of a node q with beamsteering error can
be expressed as a RV taking the values g

(q)
k with probabilities

b
(q)
k , k ∈ {1, 2}, as summarized in Table I.

Finally, it is common in the literature to model the fad-
ing amplitude of mmWave links as independent Nakagami-
distributed RVs with shape parameter ν ⩾ 1/2 and scale
parameter Ω = E[|h̃ij |2] = 1, and consider different Nakagami
parameters for the LOS and NLOS links as νL and νN,
respectively [25], [30]. In the case of Nakagami-m fading with
parameters νB, B ∈ {L,N}, and Ω = 1, |h̃ij |2 has a normal-
ized gamma distribution with shape and scale parameters of
νB and 1/νB, respectively. Therefore, the probability density
function (PDF) of |h̃ij |2 is given by [31]

f|h̃ij |2(y) =
νB

νByνB−1

Γ(νB)
exp (−νBy) . (1)

As it will be clarified later, in order to derive tractable closed-
form expressions, we will often assume in this paper that the
shape parameter νB is an integer.

Note that, from an information-theoretic perspective,
mmWave communications, and in general wideband communi-
cations under power constraints, can be viewed as low-capacity
scenarios [32]–[34] suggesting a natural framework for covert
mmWave communication.

B. System Model

We consider the well-known setup for covert communica-
tion comprised of three parties: a transmitter Alice is intending
to covertly communicate to a receiver Bob over the mmWave
bands when a warden Willie is attempting to detect the
existence of this communication. Alice employs a dual-beam
mmWave transmitter consisting of two antenna arrays. The
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first antenna array is used for the transmission to Bob while the
second array is exploited as a jammer to enable positive-rate
covert mmWave communication. Note that, although the num-
ber of antenna elements in mmWave arrays is typically large
to compensate for the significant propagation loss through
beamforming (directionality gain), the wavelengths are much
smaller than that of the RF communication (e.g., 5 mm at
60 GHz versus 60 mm at 5 GHz). Therefore, it is feasible
to realize large mmWave antenna arrays in a small package
thanks to the recent advancements in antenna circuit design
[25], [35]. Additionally, it is practical to consider two separate
antenna arrays in a given mmWave transmitter. In particular,
a first-of-the-kind mmWave antenna system prototype has
been presented in [35] that integrated two separate mmWave
antenna arrays, each of size 1 × 16, inside a Samsung cell
phone (one at the top and the other at the bottom of the cell
phone). Moreover, the authors in [36] proposed incorporating
several mmWave antenna arrays throughout a mobile device to
provide path diversity from blockage by human obstructions.

Given the above transmission model, when Bob is not in the
main lobe of the Alice-Willie link, he receives the jamming
signal gained with the side lobe of the second array in addition
to receiving the desired signal from Alice with the main lobe of
the first array. Similarly, when Willie is not in the main lobe of
the Alice-Bob link, he receives the desired signal gained with
the side lobe of the first array in addition to receiving the
jamming signal from Alice with the main lobe of the second
array. On the other hand, when Bob is in the main lobe of
the Alice-Willie link (or equivalently, Willie is in the main
lobe of the Alice-Bob link), both of the received signals by
Bob and Willie are gained with main lobes2. Throughout our
analysis in Sections III and IV, we assume that Alice, Bob, and
Willie are in some fixed locations (hence, having some given
directivity gains). And we leave the discussion about various
realistic scenarios, such as imperfect knowledge of Willie’s
location, to Section V.

Let the channel coefficients between Alice’s first and second
arrays and the node j ∈ {b, w} (representing Bob and
Willie) be denoted by haj,f and haj,s, respectively. Then it
can be observed that the path loss gains are the same, i.e.,
Laj,f = Laj,s ≜ Laj , while the fading gains |h̃aj,f |2 and
|h̃aj,s|2 are independent normalized gamma RVs3. We assume
quasi-static fading channels meaning that fading coefficients
remain constant over a block of n channel uses. We further
assume that Alice transmits the desired signal with a publicly-
known power Pa while the jamming transmit power PJ of
the second array is not known and is changed independently
across transmission blocks. In this paper, we assume that PJ is

2In such extreme cases, both Bob and Willie receive the desired signal with
the same gain from Alice. Given the small wavelengths at the mmWave bands,
one can exploit relatively large antenna arrays to realize three-dimensional
(3D) beamforming [24], [37] at Alice’s first array to further focus the beam
(in three dimensions) toward Bob and reduce the chance of Willie receiving
the desired signal with the (large) main lobe gain. Further investigation on
this direction is left for future work.

3Note that the fading coefficients can be considered uncorrelated if the
antenna arrays are spaced more than half a wavelength [38]. Given that the
wavelengths are very small at the mmWave bands, e.g., 5 mm at 60 GHz,
it is easy to realize tens of wavelengths of spacing between the arrays and
ensure independence between the fading coefficients.

drawn from a uniform distribution over the interval [0, Pmax
J ]

while the results can be extended to other distributions using
a similar approach. Let Gaj,f and Gaj,s denote the total
directivity gains of the links between Alice’s first and second
arrays and the node j ∈ {b, w}, respectively. Then, the
received signals by Bob and Willie at each channel use i,
for i = 1, 2, ..., n, are given by

yb(i) =
√︁
PaGab,fLab h̃ab,fxa(i)

+
√︁

PJGab,sLab h̃ab,sxJ(i) + nb(i), (2)

yw(i) =
√︁
PaGaw,fLaw h̃aw,fxa(i)

+
√︁
PJGaw,sLaw h̃aw,sxJ(i) + nw(i), (3)

respectively, where xa and xJ are the desired signal and the
jamming signal, respectively, each having a zero-mean Gaus-
sian distribution satisfying E[|xa(i)|2] = E[|xJ(i)|2] = 1.
Moreover, nb and nw are zero-mean Gaussian noise compo-
nents at Bob and Willie’s receivers with variances σ2

b and σ2
w,

respectively.
Finally, note that the results derived in this paper can be

applied to a similar system model, though with Rayleigh
fading channels, by substituting νB = 1. This is because the
normalized gamma distribution simplifies to the exponential
distribution with mean one in the special case of νB = 1.

III. WILLIE’S DETECTION ERROR RATE

As discussed earlier, Willie’s goal is to detect whether
Alice is transmitting to Bob or not. It is assumed that Willie
has a perfect knowledge about the channel between himself
and Alice, and applies binary hypothesis testing while being
unaware of the value of PJ . The null hypothesis H0 states that
Alice did not transmit to Bob, and the alternative hypothesis
H1 specifies that a transmission from Alice to Bob occurred.
Willie’s decision of hypothesis H1 when H0 is true is referred
to as a false alarm and its probability is denoted by PFA.
Moreover, Willie’s decision in favor of H0 when H1 is true is
referred to as a missed detection with the probability denoted
by PMD. Then Willie’s overall detection error rate is defined
as Pe,w ≜ PFA + PMD. We say that a positive-rate covert
communication is possible if for any ϵ > 0 there exists a
positive-rate communication between Alice and Bob satisfying
Pe,w ⩾ 1− ϵ as the number of channel uses n → ∞. In this
section, we first derive the minimum value of Pe,w, denoted
by P ∗

e,w, under the assumption of complete knowledge of the
channels and an optimal radiometer detector at Willie. We also
assume that Willie observes infinitely large number of channel
uses. It is worth mentioning that such assumptions correspond
to the worst-case scenario for the covertness requirement as
they result in the minimum error rate for Willie. We then derive
the closed-form expression of the expected value of P ∗

e,w form
Alice’s perspective in Section III-B.

A. Pe,w with the Optimal Detector at Willie

As it is proved in [39, Lemma 2] for AWGN channels and
also pointed out in [16, Lemma 1], the optimal decision rule
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that minimizes Willie’s detection error is given by

Tw ≜
1

n

n∑︂
i=1

|yw(i)|2
H1

≷
H0

τ, (4)

where τ is Willie’s detection threshold for which we obtain
the corresponding optimal value/range later in this subsection.
Using (3) and the definition of Tw in (4), we can write Tw

under hypothesis H0, denoted by TH0
w , as

TH0
w =

(︂
PJGaw,sLaw|h̃aw,s|2 + σ2

w

)︂ χ2
2n

n
, (5)

where χ2
2n denotes a chi-squared RV with 2n degrees of

freedom. According to the strong law of large numbers, χ2
2n

n
converges to 1, almost surely, as n → ∞. Therefore, using
Lebesgue’s dominated convergence theorem [40], we cam
replace χ2

2n

n by 1 to rewrite TH0
w as

TH0
w = PJGaw,sLaw|h̃aw,s|2 + σ2

w. (6)

Similarly, Tw under hypothesis H1 can be obtained as

TH1
w =PaGaw,fLaw|h̃aw,f |2+PJGaw,sLaw|h̃aw,s|2+σ2

w.
(7)

One can observe that if Willie has a complete knowledge
about the jamming power PJ , he can choose any threshold in
the interval TH0

w ⩽ τ ⩽ TH1
w to achieve PFA = PMD = 0,

and hence Pe,w = 0 (recall that we assumed Willie has full
knowledge about the realization of the Alice-Willie channel
to constitute a worst-case scenario for the covertness require-
ment). Alternatively, if PJ is known to Willie with a probabil-
ity q > 0, then we cannot satisfy the covertness requirement
for the ϵ values smaller than q. In other words, some sort of
randomness is required in the system model to enable covert
communication. In the following theorem, we characterize the
optimal threshold of Willie’s detector and its corresponding
minimum detection error rate under the assumption that PJ

is completely unknown to Willie and changes randomly per
transmission block according to a uniform distribution over
the interval [0, Pmax

J ].

Theorem 1. The optimal threshold τ∗ for Willie’s detector is
in the interval

τ∗ ∈ [min(λ1, λ2),max(λ1, λ2)], (8)

and the corresponding minimum detection error rate is

P ∗
e,w =

{︄
0, λ1 < λ2,

1− PaGaw,f |h̃aw,f |2

Pmax
J Gaw,s|h̃aw,s|2

, λ1 ⩾ λ2,
(9)

where λ1 ≜ Pmax
J Gaw,sLaw|h̃aw,s|2 + σ2

w and λ2 ≜
PaGaw,fLaw|h̃aw,f |2 + σ2

w.

Proof: Using (6), the false alarm probability is given by

PFA = Pr
(︁
TH0
w > τ

)︁
= Pr

(︄
PJ >

τ − σ2
w

Gaw,sLaw|h̃aw,s|2

)︄

=

⎧⎪⎨⎪⎩
1, τ < σ2

w,

1− τ−σ2
w

Pmax
J Gaw,sLaw|h̃aw,s|2

, σ2
w ⩽ τ ⩽ λ1,

0, τ ⩾ λ1.

(10)

Also, by (7) the missed detection probability is given by

PMD = Pr
(︁
TH1
w < τ

)︁
= Pr

(︄
PJ <

τ − λ2

Gaw,sLaw|h̃aw,s|2

)︄

=

⎧⎪⎨⎪⎩
0, τ < λ2,

τ−λ2

Pmax
J Gaw,sLaw|h̃aw,s|2

, λ2 ⩽ τ ⩽ λ3,

1, τ ⩾ λ3,

(11)

where λ3 ≜ λ2 + Pmax
J Gaw,sLaw|h̃aw,s|2. Next, we consider

the following two cases.
Case I: When λ1 < λ2, Willie’s receiver can choose any

thresholds in the interval [λ1, λ2] to get both PFA = 0 and
PMD = 0, resulting in zero detection error Pe,w ≜ PFA+PMD.

Case II: When λ1 ⩾ λ2, we can write the overall detection
error rate Pe,w ≜ PFA + PMD, using (10) and (11), as

Pe,w =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, τ ⩽ σ2
w,

1− τ−σ2
w

Pmax
J Gaw,sLaw|h̃aw,s|2

, σ2
w ⩽ τ ⩽ λ2,

1− PaGaw,f |h̃aw,f |2

Pmax
J Gaw,s|h̃aw,s|2

, λ2 ⩽ τ ⩽ λ1,
τ−λ2

Pmax
J Gaw,sLaw|h̃aw,s|2

, λ1 ⩽ τ ⩽ λ3,

1, τ ⩾ λ3.

(12)

Therefore, based on (12), the receiver never chooses τ ⩽ σ2
w

or τ ⩾ λ3 since they result in the worst performance Pe,w = 1.
Moreover, (12) monotonically decreases, with respect to τ , in
the interval σ2

w ⩽ τ ⩽ λ2 until it reaches the constant value
corresponding to Pe,w in the interval λ2 ⩽ τ ⩽ λ1, and then
it monotonically increases in the interval λ1 ⩽ τ ⩽ λ3 until it
reaches 1. Therefore, the constant value of the detection error
rate in the interval λ2 ⩽ τ ⩽ λ1 is the minimum value of
Pe,w for λ1 ⩾ λ2 that can be attained using any threshold in
the interval [λ2, λ1].
Remark 1. Eq. (9) shows that for small values of Pmax

J with
Pmax
J Gaw,s|h̃aw,s|2 ⩽ PaGaw,f |h̃aw,f |2 Willie can attain a

zero error rate negating the possibility of achieving a positive-
rate covert communication as n → ∞. Although increasing
Pmax
J beyond PaGaw,f |h̃aw,f |2/(Gaw,s|h̃aw,s|2) can increase

P ∗
e,w and enable a positive-rate covert communication (P ∗

e,w →
1 as Pmax

J → ∞), it also degrades the performance of
the desired Alice-Bob link as we will see in Section IV.
The superiority of covert mmWave communication to that of
omni-directional RF communication becomes then apparent
by observing the beneficial impact of beamforming. In fact,
in the received signal by Willie, PJ is gained by Gaw,s which
is much larger than the gain Gaw,f of Pa; this simultaneously
increases the jamming signal and decreases the desired signal
received by Willie, i.e., significantly degrades the performance
of Willie’s detector. It will be shown in Section IV that an
opposite situation happens for the Alice-Bob link where the
desired signal is gained with Gab,f which is much larger than
the gain Gab,s of the jamming signal.

B. E[P ∗
e,w] From Alice’s Perspective

Given that Willie is a passive node, we make the re-
alistic assumption that Alice and Bob are unaware of the
instantaneous realization of the channel between Alice and
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Willie. Therefore, they should rely on the expected value of
P ∗
e,w. Note also that the minimum error rate P ∗

e,w in (9) is
independent of the beamforming gain of Willie’s receiver as
it cancels out in the ratio of Gaw,f/Gaw,s and also in the
comparison between λ1 and λ2. Furthermore, Alice perfectly
knows the gain ma,f of the side lobe of her first array to
Willie. However, she has uncertainty about the gain g(a,s) of
the main lobe of the second array toward Willie due to the
misalignment error; it is either g(a,s)1 ≜ Ma,s with probability
b
(a,s)
1 ≜ F|Ea,s| (θa,s/2) or g

(a,s)
2 ≜ ma,s with probability

b
(a,s)
2 ≜ 1 − F|Ea,s| (θa,s/2). Moreover, Alice and Bob do

not know whether the Alice-Willie link is LOS or NLOS;
hence, they should take into account two possibilities given
the LOS probability PLOS(daw). In the following theorem,
we characterize the expected value of P ∗

e,w form Alice’s
perspective in a closed form.

Theorem 2. The expected value of P ∗
e,w form Alice’s perspec-

tive is characterized as (13), shown at the bottom of this page,
where Paw(L) ≜ PLOS(daw), Paw(N) ≜ 1 − PLOS(daw),
Γ(·) is the gamma function [41, Eq. (8.310.1)], and g

(a,s)
k

and b
(a,s)
k are defined above for k ∈ {1, 2}. Moreover, the

function S(νB, g
(a,s)
k ) is defined as

S(νB, g
(a,s)
k )≜

νB∑︂
l=1

(︃
νB
l

)︃
(−1)l

(︄
1+l

ηBP
max
J g

(a,s)
k

Pama,fνB

)︄−νB

, (14)

and I(νB, l, g
(a,s)
k ), for νB = 1 and νB ⩾ 2, is defined as

I(1, l, g
(a,s)
k ) ≜ ln

(︄
1 + l

Pmax
J g

(a,s)
k

Pama,f

)︄
, (15)

I(νB ⩾ 2, l, g
(a,s)
k ) ≜

(νB − 2)!

ννB−1
B

[︃
1

−

(︄
1 + l

ηBP
max
J g

(a,s)
k

Pama,fνB

)︄−νB+1 ]︃
. (16)

Proof: Let PC
e,w, λC

1 , and λC
2 denote the values of P ∗

e,w,
λ1, and λ2, respectively, conditioned on the blockage instance
B ∈ {L,N} and the gain g(a,s) of Alice’s second array to
Willie. Then using (9) we have

E[PC
e,w]

=EλC
1 <λC

2
[PC

e,w]Pr(λ
C
1<λ

C
2 )+EλC

1 ⩾λC
2
[PC

e,w]Pr(λ
C
1⩾λ

C
2 )

= Pr(λC
1 ⩾λC

2 )

⎛⎝1− Pama,f

Pmax
J g(a,s)

EλC
1 ⩾λC

2

⎡⎣|h̃(B)

aw,f |2

|h̃
(B)

aw,s|2

⎤⎦⎞⎠.

(17)

The closed form of Pr(λC
1 ⩾ λC

2 ) is derived as

Pr(λC
1 ⩾λC

2 ) = Pr

(︃
|h̃

(B)

aw,f |2 ⩽
Pmax
J g(a,s)

Pama,f
|h̃

(B)

aw,s|2
)︃

(a)
=

νB∑︂
l=0

(︃
νB
l

)︃
(−1)l E|h̃(B)

aw,s|2

[︃
exp

(︃
−ηBl

Pmax
J g(a,s)

Pama,f
|h̃

(B)

aw,s|2
)︃]︃

(b)
=

νB∑︂
l=0

(︃
νB
l

)︃
(−1)l

(︃
1 + l

ηBP
max
J g(a,s)

Pama,fνB

)︃−νB

, (18)

where step (a) follows from Alzer’s lemma [42], [30, Lemma
6] for a normalized gamma RV X ∼ Gamma(νB, 1/νB),
which states that Pr (X < x) is tightly approximated by
[1− exp(−ηBx)]

νB where ηB = νB(νB!)
−1/νB , and then

applying the binomial theorem assuming νB is an integer [30],
i.e.,

FX(x) =

νB∑︂
l=0

(︃
νB
l

)︃
(−1)le−lηBx. (19)

Moreover, step (b) is derived using the moment generating
function (MGF) of a normalized gamma RV X , i.e., E[etX ] =
(1− t/νB)

−νB for any t < νB.
Moreover, for the expectation term in (17) we have

EλC
1 ⩾λC

2

⎡⎣ |h̃(B)

aw,f |2

|h̃
(B)

aw,s|2

⎤⎦
= E

⎡⎣ |h̃(B)

aw,f |2

|h̃
(B)

aw,s|2

⃓⃓⃓⃓
⃓|h̃(B)

aw,f |2 ⩽
Pmax
J g(a,s)

Pama,f
|h̃

(B)

aw,s|2
⎤⎦

=

∫︂ ∞

0

f|h̃(B)
aw,s|2

(y)

y

[︄∫︂ C1y

0

xf|h̃(B)
aw,f |2

(x)dx⏞ ⏟⏟ ⏞
V1

]︄
dy, (20)

where C1 ≜ Pmax
J g(a,s)

Pama,f
, and f|h̃(B)

aw,f |2
(x) and f|h̃(B)

aw,s|2
(y) are

the PDFs of the fading coefficients |h̃
(B)

aw,f |2 and |h̃
(B)

aw,s|2,
respectively. Applying the part-by-part integration rule to V1

and then using Alzer’s lemma together with the binomial
theorem as (19) yields

V1 =C1y

νB∑︂
l1=0

(︃
νB
l1

)︃
(−1)l1e−l1ηBC1y

− C1y −
νB∑︂

l2=1

(︃
νB
l2

)︃
(−1)l2

ηBl2

[︁
1− e−l2ηBC1y

]︁
. (21)

By plugging (21) into (20), using the MGF of the normalized
gamma RV |h̃

(B)

aw,s|2, and then noting that f|h̃(B)
aw,s|2

(y) =

E[P ∗
e,w]=

∑︂
B∈{L,N}

Paw(B)
2∑︂

k=1

b
(a,s)
k

[︃
1+S(νB, g

(a,s)
k )

]︃
×
[︃
1−S(νB, g

(a,s)
k )+

Pama,fν
νB
B

Pmax
J g

(a,s)
k ηBΓ(νB)

νB∑︂
l=1

(︃
νB
l

)︃
(−1)l

l
I(νB, l, g

(a,s)
k )

]︃
. (13)
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ννB
B yνB−1e−νBy/Γ(νB) we have

EλC
1 ⩾λC

2

⎡⎣|h̃(B)

aw,f |2

|h̃
(B)

aw,s|2

⎤⎦=C1

νB∑︂
l1=1

(︃
νB
l1

)︃
(−1)l1

(︃
1+l1

ηBC1

νB

)︃−νB

−
νB∑︂

l2=1

(︃
νB
l2

)︃
(−1)l2ννB

B
ηBl2Γ(νB)

[︃ ∫︂ ∞

0

yνB−2e−νBydy

−
∫︂ ∞

0

yνB−2e−(l2ηBC1+νB)ydy

]︃
. (22)

Now given that the parameter νB of Nakagami-m fading is
always greater than or equal to 0.5 and is assumed to be an
integer here, we have νB ∈ N where N stands for the set
of natural numbers. For νB ⩾ 2, by [41, Eq. (3.351.3)] we
have

∫︁∞
0

yνB−2e−αydy = (νB − 2)!/ανB−1 for any α ∈ R+.
On the other hand, for νB = 1 using [41, Eq. (2.325.1)]
we have

∫︁∞
0

y−1e−αydy = Ei(−αy)|∞0 , where Ei(·) is the
exponential integral function defined as [41, Eq. (8.211.1)] for
negative arguments. Therefore, following a similar approach
to the proof of [43, Corollary 2] we can calculate the differ-
ence of the two integrals in (22) as limy→0[Ei(−(l2ηBC1 +
νB)y) − Ei(−νBy)] = ln([l2ηBC1 + νB]/νB) which is equal
to ln(1+ l2C1) for νB = 1 (note that ηB = 1 for νB = 1, and
Ei(−∞) = 0). This completes the proof of the theorem given
the definition of I(νB, l, g(a,s)) in Theorem 2.
Remark 2. In Theorem 2, it is assumed that Willie is not in
the main lobe of Alice’s first antenna array and hence, receives
the desired signal by a side lobe gain ma,f . However, if Willie
is within the main lobe of the first array, we should include
another averaging over the gain g(a,f) of the first array given
the beamsteering error, i.e., that gain is either g

(a,f)
1 ≜ Ma,f

with probability b
(a,f)
1 ≜ F|Ea,f | (θa,f/2) or g

(a,f)
2 ≜ ma,f

with probability b
(a,f)
2 ≜ 1− F|Ea,f | (θa,f/2).

IV. PERFORMANCE OF THE ALICE-BOB LINK

In this section, we characterize performance metrics of
the Alice-Bob link including its outage probability, maximum
effective covert rate (i.e., the rate for which Alice can reliably
communicate with Bob while maintaining E[P ∗

e,w] ⩾ 1− ϵ for
any given ϵ > 0), and ergodic capacity.

A. Outage Probability

We assume that Alice targets a rate Rb requiring the Alice-
Bob link to meet a threshold signal-to-interference-plus-noise
ratio (SINR) γth ≜ 2Rb − 1. Then the outage probability
PAB
out ≜ Pr(γab < γth) in achieving Rb is characterized, in a

closed form, in Theorem 3, where the SINR γab of the Alice-
Bob link is given as follows by using (2):

γab =
PaGab,fLab|h̃ab,f |2

PJGab,sLab|h̃ab,s|2 + σ2
b

. (23)

Note that in addition to |h̃ab,f |2, |h̃ab,s|2, and PJ , the blockage
instance B ∈ {L,N} and the antenna gains can also change
randomly across transmission blocks. In particular, while we
assume that the jamming signal arrives with the deterministic
side lobe gain ma,s, there are still uncertainties in the gains of

Alice’s first array and Bob’s receiver (they are pointing their
main lobes) due to the beamsteering error. Therefore, the gain
g(a,f) of the main lobe of Alice’s first array pointed to Bob is
either g(a,f)1 ≜ Ma,f with probability b

(a,f)
1 ≜ F|Ea,f | (θa,f/2)

or g(a,f)2 ≜ ma,f with probability b
(a,f)
2 ≜ 1−F|Ea,f | (θa,f/2).

Similarly, the gain g(b) of Bob’s receiver is either g
(b)
1 ≜ Mb

with probability b
(b)
1 ≜ F|Eb| (θb/2) or g

(b)
2 ≜ mb with

probability b
(b)
2 ≜ 1−F|Eb| (θb/2). Furthermore, in Theorem 3

we assume that Willie is not in the main lobe of Alice’s
first array. However, if Willie is in the Alice-Bob direction,
we should include another averaging of the gain of Alice’s
second array carrying the jammer signal, i.e., instead of a
deterministic ma,s we should consider two possibilities g

(a,s)
k

with probabilities b
(a,s)
k , k ∈ {1, 2}, defined in Section III-B.

Theorem 3. The outage probability of the Alice-Bob link in
achieving the target rate Rb ≜ log2(1 + γth) is given by

PAB
out =

∑︂
B∈{L,N}

Pab(B)
2∑︂

k1=1

b
(a,f)
k1

2∑︂
k2=1

b
(b)
k2

[︃
1+

νB∑︂
l=1

(︃
νB
l

)︃
(−1)l

× exp

(︃
− lηBγthσ

2
b

Pag
(a,f)
k1

g
(b)
k2

L
(B)
ab

)︃
V (νB, l, g

(a,f)
k1

)

]︃
, (24)

where Pab(L) ≜ PLOS(dab) and Pab(N) ≜ 1 − PLOS(dab).
Also, V (νB, l, g

(a,f)
k1

), for νB = 1 and νB ⩾ 2, is defined as

V (1, l, g
(a,f)
k1

)≜
Pag

(a,f)
k1

Pmax
J lγthma,s

ln

(︃
1+

Pmax
J lγthma,s

Pag
(a,f)
k1

)︃
, (25)

V (νB ⩾ 2, l, g
(a,f)
k1

) ≜
νBPag

(a,f)
k1

Pmax
J lηBγthma,s(νB − 1)

×
[︃
1−

(︃
1 +

Pmax
J lηBγthma,s

νBPag
(a,f)
k1

)︃1−νB]︃
. (26)

Proof: Given the SINR of the Alice-Bob link in (23), the
outage probability conditioned on the blockage instance B as
well as the antenna gains g(a,f) and g(b) is characterized as
follows:

PAB
out,C ≜Pr(γab < γth|B, g(a,f), g(b))

(a)
= Pr

(︂
|h̃

(B)

ab,f |2 < C2PJ |h̃
(B)

ab,s|2 + C3

)︂
(b)
=

νB∑︂
l=0

(︃
νB
l

)︃
(−1)le−lηBC3 E

PJ ,|h̃
(B)
ab,s|2

[︂
e−lηBC2PJ |h̃

(B)
ab,s|

2
]︂

(c)
=

νB∑︂
l=0

(︃
νB
l

)︃
(−1)le−lηBC3 EPJ

[︄(︃
1 +

lηBC2PJ

νB

)︃−νB
]︄

(d)
= 1+

νB∑︂
l=1

(︃
νB
l

)︃
(−1)le−lηBC3

Pmax
J

∫︂ Pmax
J

0

(︂
1+

lηBC2x

νB

)︂−νB
dx, (27)

where in step (a) we have defined C2 ≜ γthma,s/(Pag
(a,f))

and C3 ≜ γthσ
2
b/(Pag

(a,f)g(b)L
(B)
ab ). Moreover, step (b) fol-

lows by Alzer’s lemma together with the binomial theorem as
(19), and step (c) is derived using the MGF of the normalized
gamma RV |h̃

(B)

ab,s|2. Finally, taking the integral in step (d) and
recalling the definition of the function V (νB, l, g

(a,f)
k1

) from the
statement of the theorem complete the proof.
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B. Maximum Effective Covert Rate

Given any target data rate Rb, Alice and Bob can have the
effective communication rate Ra,b ≜ Rb(1 − PAB

out ), where
their outage probability PAB

out in achieving the target rate Rb

is obtained using Theorem 3. The goal here is to determine
the optimal value of Pmax

J that maximizes Ra,b while also
satisfying the covertness requirement, i.e., E[P ∗

e,w] ⩾ 1 − ϵ
for any given ϵ > 0. We first note that E[P ∗

e,w] and PAB
out

both monotonically increase with Pmax
J (see also Fig. 1 and

Fig. 2 for the visualization). Then, in order to obtain the
maximum effective covert rate R

∗
a,b achievable in our setup,

we need to pick the smallest possible value for Pmax
J given

that Ra,b is monotonically decreasing with respect to Pmax
J .

This smallest possible value for Pmax
J , denoted by Pmax

J,opt, must
also satisfy the covertness requirement E[P ∗

e,w] ⩾ 1−ϵ for the
given ϵ > 0. Now, given that E[P ∗

e,w] monotonically increases
with Pmax

J , the solution of the equation E[P ∗
e,w] = 1 − ϵ for

Pmax
J defines Pmax

J,opt. This observation is summarized in the
following proposition. Note, however, that the optimal rate per
Proposition 4 needs to be evaluated numerically.

Proposition 4. Given fixed system and channel parameters,
fixed covertness requirement ϵ, and target data rate Rb, the
maximum effective covert rate achievable in the considered
setup is equal to Rb(1−P ∗AB

out ), denoted by R
∗
a,b, where P ∗AB

out

is equal to PAB
out , specified in (24), evaluated in Pmax

J,opt that is
the solution of the equation E[P ∗

e,w] = 1− ϵ for Pmax
J .

C. Ergodic Capacity

In addition to characterizing the maximum effective covert
rate R

∗
a,b given a target rate Rb, provided in Section IV-B, it is

desirable to determine the achievable average data rate of the
Alice-Bob link, referred to as its ergodic capacity, given fixed
values for the parameters involved in the model4. The ergodic
capacity E[Ra,b] of the Alice-Bob link is obtained while
assuming that the threshold/target data rate Rb is adjusted by
the channel conditions, i.e., γth = γab, implying that Bob’s
decoder can always decode the received signal without outage.
In fact, given the instantaneous SINR γab, Alice can reliably
transmit to Bob with the data rate equal to log2(1 + γab).
Therefore, on average, the data rate E[Ra,b] ≜ E[log2(1+γab)]
is achievable for the Alice-Bob link, where the expectation is
over the RVs involved in (23). In the following theorem, we
characterize E[Ra,b] in a tractable form that involves only one-
dimensional integrals over one of the fading coefficients.

Theorem 5. The ergodic capacity E[Ra,b] of the Alice-Bob
link is given by

E[Ra,b] =
Pa

ma,sPmax
J ln 2

∑︂
B∈{L,N}

Pab(B)
2∑︂

k1=1

b
(a,f)
k1

g
(a,f)
k1

×
2∑︂

k2=1

b
(b)
k2

νB∑︂
l=1

(︃
νB
l

)︃
(−1)l

lηB
[J1 − J2 − J3] , (28)

4We assume that the set of parameters is chosen such that the covert
communication requirement E[P ∗

e,w] ⩾ 1− ϵ is satisfied for any ϵ > 0. Note
that E[P ∗

e,w] depends only on the values of the design parameters as well as
the statistics of the RVs involved and not on their instantaneous realizations.

where J1, J2, and J3 are defined in the form of one-
dimensional integrals as follows:

J1 ≜
∫︂ ∞

0

1

y

[︄
eEi

(︄
lηB

Pag
(a,f)
k1

[︄
ma,sP

max
J y

+
σ2
b

g
(b)
k2

L
(B)
ab

]︄)︄]︄
fY (y)dy, (29)

J2 ≜

[︄
eEi

(︄
lηBσ

2
b

Pag
(a,f)
k1

g
(b)
k2

L
(B)
ab

)︄]︄∫︂ ∞

0

1

y
fY (y)dy, (30)

J3 ≜
∫︂ ∞

0

1

y

[︄
ln

(︄
1+

ma,sg
(b)
k2

L
(B)
ab Pmax

J

σ2
b

y

)︄]︄
fY (y)dy, (31)

where eEi(x) ≜ exEi(−x), and fY (y) is the PDF of a
normalized gamma RV as in (1).

Proof: Based on the system model considered in this
paper and our earlier discussions, we have

E[Ra,b]=
∑︂

B∈{L,N}

Pab(B)
2∑︂

k1=1

b
(a,f)
k1

2∑︂
k2=1

b
(b)
k2

E[Ra,b|B, g(a,f), g(b)],

(32)

where E[Ra,b|B, g(a,f), g(b)] is the ergodic capacity condi-
tioned on the blockage instance B, and the antenna gains
g(a,f) and g(b). Given the definition of the ergodic capacity
E[Ra,b] ≜ E[log2(1 + γab)] and the expression of the SINR
γab in (23), we have

E[Ra,b|B, g(a,f), g(b)]=EY,PJ

[︄∫︂ ∞

0

log2(1 + C ′
1x)fX(x)dx

]︄
,

(33)

where X ≜ |h̃
(B)

ab,f | and Y ≜ |h̃
(B)

ab,s| represent the RVs asso-
ciated with the involved fading coefficients with PDFs fX(x)
and fY (y), respectively. Moreover, C ′

1 ≜ 1/(C ′
2PJY + C ′

3)

with C ′
2 ≜ ma,s/(Pag

(a,f)) and C ′
3 ≜ σ2

b/(Pag
(a,f)g(b)L

(B)
ab ).

Observe that for a given RV Z with the PDF fZ(z) and CDF
FZ(z) we have the following part-by-part integration equality∫︂ b

a

log2(1 + cz)fZ(z)dz =
1

ln 2

[︄
c

∫︂ b

a

1− FZ(z)

1 + cz
dz

+ (1− FZ(a)) ln(1 + ca)− (1− FZ(b)) ln(1 + cb)

]︄
, (34)

with c being a constant. Then the integral involved in (33) is
computed as follows:∫︂ ∞

0

log2(1 + C ′
1x)fX(x)dx

(a)
=

C ′
1

ln 2

∫︂ ∞

0

1− FX(x)

1 + C ′
1x

dx

(b)
=

1

ln 2

νB∑︂
l=1

(︃
νB
l

)︃
(−1)lelηB/C′

1Ei(−lηB/C
′
1), (35)

where step (a) is by using (34), and noting that (1 −
FX(0)) ln(1 + C ′

1 × 0) = 0 and

lim
x→∞

(1− FX(x)) ln(1 + C ′
1x) = 0, (36)
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since 1 − FX(x) = −
∑︁νB

l=1

(︁
νB
l

)︁
(−1)le−lηBx decays expo-

nentially while ln(1 + C ′
1x) grows logarithmically with x.

Moreover, step (b) is derived by first using Alzer’s lemma
together with the binomial theorem as (19), and then applying
[41, Eq. (3.352.4)]. Now by substituting (35) into (33), we
have for the conditional ergodic capacity as

E[Ra,b|B, g(a,f), g(b)] =
1

Pmax
J ln 2

νB∑︂
l=1

(︃
νB
l

)︃
(−1)l EY

[︄
∫︂ Pmax

J

0

exp(lηB(C
′
2Y t+C ′

3)) Ei(−lηB(C
′
2Y t+C ′

3)) dt⏞ ⏟⏟ ⏞
I1

]︄
. (37)

The integral term I1 can be computed in a closed form as

I1
(a)
=

1

C ′
2Y

∫︂ C′
2Y Pmax

J +C′
3

C′
3

exp(lηBz) Ei(−lηBz) dz

(b)
=

1

lηBC ′
2Y

[︃
eEi(lηB(C

′
2Y Pmax

J + C ′
3))

− eEi(lηBC
′
3)− ln(1 + C ′

2Y Pmax
J /C ′

3)

]︃
, (38)

where step (a) is by defining z ≜ C ′
2Y t+C ′

3, and step (b) is
obtained using Lemma 7 in Appendix A and defining eEi(x) ≜
exEi(−x). Finally, taking the expectation of I1 in (38) over
Y and then plugging (37) back into (32) complete the proof.

To the best of our knowledge, the one-dimensional integrals
in (29)-(31) cannot be computed in closed forms for all values
of νB. In particular, obtaining closed-form expressions for the
special case νB = 1, which corresponds to Rayleigh fading
channels, is not straightforward mainly due to the fractional
term 1/y in the integrands. On the other hand, as delineated in
the following proposition, deriving the closed forms of (29)-
(31) for the special case νB = 2 is straightforward.

Proposition 6. For νB = 2, the closed-form expressions for
J1, J2, and J3, defined in Theorem 5, are as follows:

J1 =
4Pag

(a,f)
k1

lηBma,sPmax
J −2Pag

(a,f)
k1

[︄
eEi

(︄
2σ2

b

g
(b)
k2

L
(B)
ab ma,sPmax

J

)︄

− eEi

(︄
lηBσ

2
b

Pag
(a,f)
k1

g
(b)
k2

L
(B)
ab

)︄]︄
, (39)

J2 = 2 eEi

(︄
lηBσ

2
b

Pag
(a,f)
k1

g
(b)
k2

L
(B)
ab

)︄
, (40)

J3 = −2 eEi

(︄
2σ2

b

ma,sg
(b)
k2

L
(B)
ab Pmax

J

)︄
. (41)

Proof: The proof follows by substituting fY (y) =
4ye−2y . Then the closed forms for J1 and J3 are derived
by applying [43, Corollary 1] and [41, Eq. (4.337.2)], respec-
tively.

It is worth mentioning at the end that rather complicated
closed forms can also be obtained for the case of νB > 2
by employing, e.g., [44, Eq. (06.35.21.0016.01)], [41, Eq.
(3.351.3)], and [41, Eq. (4.358.1)] to solve the integrals
involved in (29), (30), and (31), respectively.

V. PRACTICAL SCENARIOS, DISCUSSIONS, AND FUTURE
DIRECTIONS

In this section, we first describe the localization issue
in covert mmWave communications and propose a potential
design approach that can be incorporated in the context of the
system model in this paper. We then establish how the perfor-
mance metrics of the proposed scheme can be characterized
using the earlier results in this paper. Finally, we highlight
several interesting future research directions.

A. Localization Issue

One of the important aspects in the design of a typical
mmWave communication network is the localization of the
nodes. This is mainly due to the highly directive beams used in
mmWave communication systems. In the context of the system
model in this paper, while it is important in the design of the
system to know both Bob’s and Willie’s locations, obtaining
the information about Willie’s location is ought to be much
more challenging. In fact, the legitimate parties Alice and Bob
can apply sophisticated beam training approaches to establish
a directional link. However, since Willie is a passive node, it
is more difficult for Alice to obtain precise information about
Willie’s location.

Speaking of Willie’s location, both Alice’s distance to Willie
and the spatial direction between them are important to set
up the covert mmWave communication system. However, the
distance between Alice and Willie is less challenging if the
spatial direction between them is known or if the direction
issue is properly addressed in the system design. In fact, all
of our earlier derivations are in terms of the link length daw
between Alice and Willie. Therefore, the performance metrics
change with respect to the distance between Alice and Willie,
and one needs to adopt a new set of values for the involved
parameters to ensure the covertness requirement while, in the
mean time, maximizing the effective rate between Alice and
Bob. Note that the uncertainty about Alice’s distance to Willie
also exists in conventional RF-based covert communication
systems incorporating omni-directional antennas and is not
particular to the case of covert mmWave communication.

On the other hand, the uncertainty about the spatial di-
rection between Alice and Willie is more challenging as it
directly impacts the design architecture for Alice’s transmitter.
Throughout the paper we assumed that Willie’s direction is
known to Alice such that the main lobe of Alice’s second
antenna array, carrying the jamming signal, is pointed toward
Willie. However, in the case of uncertainty about Willie’s
direction we might not be able to do that; as a result, the
jamming signal may arrive to Willie with a much lower gain of
the side lobe instead of the main lobe of the second array. This
deteriorates the system performance by improving Willie’s
detection performance which in turn degrades the Alice-Bob
link performance by, e.g., requiring Alice to employ lower
signal powers Pa or larger jammer powers Pmax

J to satisfy
the covertness requirement.

One immediate solution to address the aforementioned issue
on the uncertainty about Willie’s direction is to employ an
antenna array with a wide (main lobe) beamwidth to transmit
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the jamming signal. However, it is very difficult to cover the
whole space (except the Alice-Bob direction) using a single
wide main lobe [45]. Therefore, Alice may prefer to employ
several wide-beam antenna arrays to transmit the jamming
signal. In this case, the main lobe of each array covers a
certain spatial direction such that the union of the main lobes
covers the whole space except the Alice-Bob direction. As
a result, from the design perspective, we no longer need to
know Willie’s direction as the whole space is covered by
multiple antenna arrays leaving a null space (or negligible
side lobes) toward Bob’s direction. However, from the analysis
point of view, it is not easy to derive tractable forms for
the system performance metrics as discussed next. In fact,
assuming the sectored-pattern antenna model, as in Section
II-A, each antenna array has a main lobe and a side lobe.
Therefore, the jammer signal arrives at Willie by a main lobe
from the antenna array covering the Alice-Willie direction in
addition to several side lobes each from all other antenna
arrays. Similarly, the jammer signal arrives at Bob by the side
lobe of all arrays other than the first antenna array. Given
the spatial distance between the antenna arrays, the channel
between each side lobe and the receiver, either Willie or
Bob, has to be assigned an independent fading coefficient.
Therefore, the received signals by Willie and Bob involve
several independent Nakagami fading coefficients making it
difficult to derive tractable forms for the performance metrics.
In the next subsection, we elucidate how the results in the
paper can be applied to approximate the performance metrics
with respect to this multi-array system model that resolves the
issue of uncertainty about Alice-Willie direction.
Remark 3. The system model considered in this paper and
the subsequent analytical results are directly applicable to the
case where an external jammer node with a single or multiple
antenna arrays is used to transmit the jamming signal instead
of (an) extra antenna array(s) in Alice.

B. Approximate Performance of the Multi-Array Transmitter
Consider a system model same as the one described in

Section II-B except that Alice is equipped with NJ wide-beam
arrays, instead of one, each carrying the same jamming signal
and together covering the whole space except the Alice-Bob
direction. The main lobe gain of the antenna arrays carrying
the jamming signals is assumed to be the same, denoted
by Ma,s. Now, we make the following two assumptions to
approximate the system performance using tractable forms.

1- Zero side lobe gains from jamming arrays to Willie:
Note that, regardless of Willie’s location, the main portion of
jamming signal reaches Willie by a main lob gain Ma,s from
one of NJ arrays, denoted by the j1-th array, that is covering
Willie’s spatial direction. Then the received jamming signal
by Willie at the i-th channel use is expressed as

yw,J(i) =
√︁

PJLawg(w) xJ(i)

[︄
h̃aw,j1

√︁
Ma,s

+

NJ∑︂
j′=1
j′ ̸=j1

h̃aw,j′
√
ma,j′

]︄
, (42)

where g(w) is Willie’s beamforming gain, ma,j′ is the side
lobe gain of the j′-th array, and h̃aw,j′ is the fading coefficient
from Alice’s j′-th jamming array to Willie. Assuming that the
main lobe gain is much larger that the side lobe gains, we
can expect the summation term inside the bracket to have
negligible contribution compared to the term h̃aw,j1

√︁
Ma,s

for typical realizations of channel fading coefficients. Note
that NJ is relatively small given the wide beamwidths used.
Additionally, the fading coefficients h̃aw,j′ ’s have different
phases and hence, the summation term does not blow up with
NJ . Therefore, we can approximate yw,J(i) as

yw,J(i) ≈
√︂
PJLawMa,sg(w) h̃aw,j1xJ(i). (43)

2- A single side lobe from jamming arrays to Bob: Same
as in (42), the received jamming signal by Bob at the i-th
channel use is expressed as

yb,J(i) =
√︁
PJLabg(b) xJ(i)

NJ∑︂
j′′=1

h̃ab,j′′
√
ma,j′′

(a)
≈
√︂
PJLabma,j2g

(b) h̃ab,j2xJ(i), (44)

where h̃ab,j′′ is the fading coefficient from Alice’s j′′-th
jamming array to Bob. Moreover, step (a) in (44) is obtained
by considering the largest side lobe gain, denoted by j2-th
array, as the dominant term of the summation.

Now, given the above two assumptions, it is easy to observe
that the performance of the new multi-array system model can
be approximated according to our earlier results on the dual-
array model. The only difference is that we no longer need
to take the average over the gain of the jamming array to
Willie to compute E[P ∗

e,w] since that gain is deterministically
equal to Ma,s given the multi-array architecture. All the other
derivations remain the same.

C. Future Directions

Given the superiorities of covert communication over the
mmWave bands compared to that of RF systems, and that not
much work has been done in this area, significant effort is
needed to fill the gap on various aspects of covert mmWave
communication. In the following, we discuss some possibilities
for future research in this direction.

1) Uncertainty about Willie’s Location: In Section V-A,
we explained the importance of obtaining Willie’s location
information. However, it is desirable to explore how Alice’s
uncertainty about such information impacts the system perfor-
mance, e.g., the effective covert rate (see, e.g., [24]). Also,
exploring potential approaches that enable obtaining partial
information about Willie’s location and then characterizing
their performance is a viable research direction.

2) Precise Performance Characterization of the Multi-
Array System Model: In Section V-B, we highlighted how
the performance of the multi-array system model proposed in
Section V-A can, approximately, be characterized using the
analytical results in this paper. One might be able to provide
a more rigorous analysis by eliminating the two assumptions
made in Section V-B. To this end, some analytical tools, such
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as [46], to characterize the weighted sum of the involved RVs
in (42) and (44) are potentially useful.

3) Distribution of the Jamming Signal Power PJ : In this
paper, we considered a uniform distribution for PJ in the
interval [0, Pmax

J ]. Characterizing the performance metrics for
the considered covert mmWave communication system model
under other statistical distributions for PJ is a straightforward
yet important follow-up research that can help determining the
optimal/best distribution(s) for the jamming signal power.

4) Covert Communication under Partial Knowledge about
PJ : In practice, we may be interested in satisfying the
covertness requirement for a certain ϵ and not for all ϵ > 0.
In that case, one might be able to slightly degrade the
covertness requirement with the hope of improving the quality
of the Alice-Bob transmission. Characterizing performance-
covertness trade-offs and developing efficient schemes to allow
Bob achieving some knowledge about the jamming signal
(while minimizing Willie’s knowledge) are important direc-
tions for future research.

5) Covert MmWave Communication under other Potential
System Models: In this paper, we have incorporated jamming
signals with random realizations per transmission block to
enable positive-rate covert mmWave communication in the
limit of large blocklengths. One can explore covert mmWave
communication under other potential system models, such as
uncertainty about the channel gains, noise power, transmission
blocks, etc., by utilizing results already established in the
literature (see, e.g., [11]–[19]).

6) Multiple Alice/Bob/Willie: Throughout this paper, we
considered the conventional setting of covert communication
which consists of a single legitimate transmitter Alice, a single
legitimate receiver Bob, and a single warden Willie. Extending
the results of the paper to more realistic scenarios, consisting
of multiple legitimate transmitters and receivers and multiple
wardens (see, e.g., [23], [47], [48]), is an important direction
for future research.

VI. NUMERICAL RESULTS

In this section, we provide numerical results for various
performance metrics delineated in Theorem 2, Theorem 3,
Proposition 4, and Theorem 5. The parameters listed in Table
II are considered in our numerical analysis unless explicitly
mentioned. It is assumed that the beamsteering error follows a
Gaussian distribution with mean zero and variance ∆2; hence,
F|E|(x) = erf(x/(∆

√
2)) where erf(·) denotes the error

function [29]. Moreover, the blockage model PLOS(dij) =
e−dij/200 [25] is used throughout the numerical analysis.

Fig. 1 shows the expected value E[P ∗
e,w] of Willie’s de-

tection error rate for a benchmark scenario, corresponding
to the parameters listed in Table II, as a function of Pmax

J .
Moreover, the impact of some relevant parameters, i.e., Ma,s,
ma,f , Pa, θa,s, and ∆ is evaluated by changing each of these
parameters while keeping the rest of the parameters exactly
the same as the benchmark scenario. As expected, E[P ∗

e,w]
monotonically increases with Pmax

J since a larger jamming
signal will degrade Willie’s performance to a greater extent.
Also, reducing Pa degrades Willie’s performance since the

TABLE II
PARAMETERS USED FOR THE NUMERICAL ANALYSIS.

Coefficients Values

Link lengths (daw, dab) (25, 25) m

Path loss exponents (αL, αN) (2, 4)

Path loss intercepts (CL, CN) (10−7, 10−7)

Main lobe gains (Ma,f ,Ma,s,Mb) (15, 15, 15) dB

Side lobe gains (ma,f ,ma,s,mb) (−5,−5,−5) dB

Transmit power of Alice’s first array, Pa 20 dBm

Noise power (σ2
w, σ2

b ) (−74,−74) dBm

Nakagami fading parameters (νL, νN) (3, 2)

Array beamwidths (θa,f , θa,s, θb) (30o, 30o, 30o)

Beamsteering error parameter, ∆ 5o
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Fig. 1. The expected value E[P ∗
e,w] of Willie’s detection error rate for a

benchmark scenario with Ma,s = 15 dB, ma,f = −5 dB, Pa = 20 dBm,
θa,s = 30o, and ∆ = 5o. The effect of different parameters is explored
by considering the values Ma,s = 20 dB, ma,f = 0 dB, Pa = 5 dBm,
θa,s = 15o, and ∆ = 15o while keeping the rest of the parameters exactly
the same as the benchmark scenario.

power level of the desired signal is reduced making it more
difficult to be detectable by Willie. Moreover, increasing Ma,s

deteriorates Willie’s performance by exposing his receiver to
a more intense jamming signal. On the other hand, decreasing
θa,s or increasing ∆ decrease E[P ∗

e,w] since they reduce the
probability of Willie receiving the jamming signal with the
main lobe of Alice’s second array. Finally, increasing ma,f

also improves Willie’s performance by revealing a higher level
of the desired signal, gained by ma,f , to Willie.

The outage probability of the Alice-Bob link is illustrated in
Fig. 2 for various values of the transmit power Pa, threshold
rate Rb, and noise variance σ2

b . The rest of the parameters are
the same as those in Table II. As expected, PAB

out monotoni-
cally increases with Pmax

J . Moreover, the outage probability
increases by increasing the threshold rate Rb since it is harder
to guarantee a larger target rate (without outage). Addition-
ally, the reliability of Alice-to-Bob transmission degrades by
increasing the noise variance σ2

b while increasing Pa improves
the performance by exposing a higher level of the desired
signal to Bob.

Effective covert rates corresponding to the benchmark sce-
nario in Fig. 1 are summarized in Table III for ϵ = 0.05 and
various threshold rates. To obtain these results, we first numer-
ically solved the equation E[P ∗

e,w] = 1 − ϵ for Pmax
J , given
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Fig. 2. The outage probability of the Alice-Bob link for various values of the
transmit power Pa, threshold rate Rb, and noise variance σ2

b . The elements
of the triples in the legend are Pa in dBm, Rb, and σ2

b in dBm, respectively.

TABLE III
COVERT RATES FOR ϵ = 0.05 AND VARIOUS THRESHOLD RATES.

Rb 0.1 0.5 1 2.5 5 10

P ∗AB
out

0.00314 0.04253 0.0935 0.121 0.1308 0.9913

R
∗
a,b

0.0997 0.4787 0.9065 2.1975 4.3459 0.0866

the parameters corresponding to the benchmark scenario. This
resulted in the optimal value of Pmax

J,opt = 15.52 dBm. Then
we computed the corresponding optimal outage probabilities
P ∗AB
out , for various target rates, according to Theorem 3. The

effective covert rate R
∗
a,b and the corresponding optimal outage

probability P ∗AB
out for the considered benchmark scenario is

also plotted, as a function of target rate Rb, in Fig. 3. Further-
more, Fig. 3 includes the results of R

∗
a,b and P ∗AB

out for two
other scenarios of Fig. 1, namely those obtained by changing
Pa from 20 dBm to 5 dBm, and θa,s from 30o to 15o. It is
observed that, for a given link, the effective covert rate first
increases and then decreases by increasing the threshold rate.
This is because, after some point, the outage probability P ∗AB

out

quickly transitions from 0 to 1. The maximum effective covert
rate that is achievable for the benchmark scenario is 5.0743
that is obtained for the target rate of Rb = 6.42 with the
corresponding optimal outage probability of P ∗AB

out = 0.2096.
Moreover, maximum effective covert rates of R

∗
a,b = 2.0585

and 3.2223 are achievable at the target rates of Rb = 2.88 and
4.46 with the corresponding optimal outage probabilities of
P ∗AB
out = 0.2853 and 0.2775 for the scenarios of Pa = 5 dBm

and θa,s = 15o, respectively. The optimal values of Pmax
J

for these two scenarios are Pmax
J,opt = 0.52 dBm and 25.91

dBm, respectively. Although reducing θa,s to 15o does not
directly impact the performance of the Alice-Bob link (e.g.,
the outage probability or ergodic capacity), it requires much
stronger jamming signals with Pmax

J,opt = 25.91 dBm to satisfy
the covertness requirement which significantly degrades the
performance compared to the benchmark scenario. On the
other hand, the performance drop-off of the case Pa = 5 dBm
is a direct consequence of the much lower transmit power used
compared to the benchmark scenario though a much weaker
jamming signal of Pmax

J,opt = 0.52 dBm is enough to satisfy
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Fig. 3. The effective covert rate R
∗
a,b and the corresponding optimal outage

probability P ∗AB
out as a function of target rate Rb. In addition to the benchmark

scenario, two other scenarios of Fig. 1, namely those obtained by changing
Pa from 20 dBm to 5 dBm, and θa,s from 30o to 15o, are also considered.
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Fig. 4. The ergodic capacity E[Ra,b] of the Alice-Bob link for the benchmark
scenario, corresponding to the parameters in Table II, and several other setups
obtained by changing Ma,f , ma,s, Pa, θa,f , and ∆.

the covertness constraint.
The ergodic capacity E[Ra,b] of the Alice-Bob link is

shown in Fig. 4 for the benchmark scenario, corresponding
to the parameters in Table II. Moreover, the impact of several
parameters is examined by changing each one while keeping
the reset of the parameters as Table II. As expected, E[Ra,b]
monotonically decreases by Pmax

J . Moreover, enlarging Ma,f ,
Pa, and θa,f positively impacts the ergodic capacity by expos-
ing a higher level of the desired signal to Bob. Additionally, in-
creasing ma,s reduces E[Ra,b] by imposing a stronger jammer
on Bob. Finally, increasing ∆ negatively impacts the ergodic
capacity by reducing the chance of receiving the desired signal
at Bob with a main-lobe gain. It is worth mentioning that
mmWave links benefit from much larger bandwidths compared
to RF links; hence, the results in Figs. 3 and 4 imply much
higher data rates, in bits per second, compared to that of RF
communication counterparts.

Finally, it is important to study the performance loss as a
result of the existence of the warden Willie. Note that the
performance metrics in the absence of Willie can be obtained
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from the results of the paper by studying the performance
of our system model in the limit of Pmax

J → 0 (i.e.,
Pmax
J → −∞ dBm). Observe that the outage probability and

ergodic capacity results plotted in Figs. 2 and 4, respectively,
as a function of Pmax

J , start at some constant values and then
change once the value of Pmax

J is large enough to impact the
performance of the Alice-Bob link. Therefore, the constant
values of these plots at very small values of Pmax

J correspond
to the outage probability and ergodic capacity of the system in
the absence of Willie. Hence, Figs. 2 and 4 clearly illustrate the
performance loss due to the existence of Willie as a function of
Pmax
J . In fact, the outage probability increases and the ergodic

capacity decreases as we increase Pmax
J to support a stronger

level of covertness due to the existence of the warden.

VII. CONCLUSIONS

In this paper, we investigated covert communication over
mmWave links. We employed a dual-beam transmitter to
simultaneously transmit the desired signal to the destination
and propagate a jamming signal to degrade the warden’s
performance. We characterized Willie’s detection error rate
and the closed-form of its expected value from Alice’s per-
spective. We then derived the closed-form expression for the
outage probability of the Alice-Bob link which enabled us
to formulate the optimal achievable covert rates. We further
obtained tractable forms for the ergodic capacity of the Alice-
Bob link involving only one-dimensional integrals that can
be computed in closed forms for most ranges of the channel
parameters. Moreover, we elucidated how the results can be
extended to more practical scenarios, taking into account the
uncertainty about Willie’s location. We also highlighted several
interesting directions for future research on covert mmWave
communication. Through comprehensive numerical studies,
we analyzed the behavior of the derived performance metrics
with respect to variety of channel and system parameters.
Our results demonstrated the advantages of covert mmWave
communication compared to the RF counterpart, calling for
further research on this novel area.

APPENDIX A
A USEFUL LEMMA FOR THE INTEGRATION OVER Ei(·)
In [43, Lemma 1], a useful lemma is proved for the integral

of
∫︁ c2
c1

ebxEi(ax)dx with c1, c2 > 0, a < 0, and b ∈ R such
that (s.t.) a+ b < 0. In this appendix, we prove that the same
result, with a slight change, can be applied to the case of
b = −a, i.e., a+b = 0 (see, e.g., [44, Eq. (06.35.21.0014.01)]).

Lemma 7. For any c1, c2 > 0 and a < 0, we have∫︂ c2

c1

e−axEi(ax)dx =
1

−a

[︂
e−ac2Ei(ac2)

− e−ac1Ei(ac1)− ln (c2/c1)
]︂
. (45)

Proof: Note based on [43, Lemma 1] that for c1, c2 > 0,
a < 0, and b ∈ R s.t. a+ b < 0, we have∫︂ c2

c1

ebxEi(ax)dx =
1

b

[︁
ebtEi(at)− Ei([a+ b]t)

]︁⃓⃓⃓c2
c1
, (46)

where f(t)|c2c1 ≜ f(c2) − f(c1) for the function f(t). In the
case of b = −a per Lemma 7, the argument of the second
exponential integral function Ei([a + b]t) in (46) is zero.
Based on [49, Eq. (1)], limx→0 Ei(x) = γ + ln |x|, where
γ = 0.57721 is the Euler’s constant. Therefore, we can write
Ei([a+ b]t)

⃓⃓c2
c1

for the case of a = −b as

Ei([a+ b]t)
⃓⃓c2
c1
= lim

x→0
Ei(xt)

⃓⃓c2
c1
= lim

x→0
ln

(︃
|xc2|
|xc1|

)︃
=ln

(︃
c2
c1

)︃
.

(47)

This together with some similar arguments as the proof of [43,
Lemma 1] completes the proof of Lemma 7.
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