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Abstract— We consider the critical problems of distributed
computing and learning over data while keeping it private from
the computational servers. The state-of-the-art approaches to this
problem rely on quantizing the data into a finite field, so that
the cryptographic approaches for secure multiparty computing
can then be employed. These approaches, however, can result in
substantial accuracy losses due to fixed-point representation of the
data and computation overflows. To address these critical issues,
we propose a novel algorithm to solve the privacy-preserving
distributed computing problem when data is in the analog do-
main, e.g., the field of real/complex numbers. We characterize the
privacy of the data from both information-theoretic and cryp-
tographic perspectives, while establishing a connection between
the two notions in the analog domain. More specifically, the well-
known connection between the distinguishing security (DS) and
the mutual information security (MIS) metrics is extended from
the discrete domain to the analog domain. This is then utilized
to bound the amount of information about the data leaked to
the servers in our protocol, in terms of the DS metric, using
well-known results on the capacity of single-input multiple-output
(SIMO) channel with correlated noise. It is shown how the pro-
posed framework can be adopted to do computation tasks when
data is represented using floating-point numbers. We then show
that this leads to a fundamental trade-off between the privacy
level of data and accuracy of the result. By extending the setup
to distributed learning, we show how to train a machine learning
model using the proposed algorithm while keeping the data as well
as the trained model private. Then numerical results are shown
for experiments on several datasets. Furthermore, experimental
advantages are shown comparing to fixed-point implementations
over finite fields.

I. INTRODUCTION

Distributed learning systems involve dispersing data among
many servers that operate in parallel with the aim of collectively
completing a certain computational job, e.g., computing a cer-
tain function over a dataset or iteratively updating the model
parameters trained on a dataset [[1]]. Then the results generated
by sufficiently many local servers are collected in order to
recover the desired outcome, e.g., the output of the given
function over the dataset or the updated model parameters. One
of the major concerns in such distributed systems is to preserve
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the privacy of the dataset while dispersing it among the servers.
More specifically, the dataset may contain highly sensitive
information, e.g., biometric data of patients in a hospital [2[] or
customers’ data of a company [3]], necessitating that almost no
information about the dataset is revealed to the computational
servers. Such a privacy constraint is often generalized to ensure
that any subset of colluding servers, up to a certain size, can not
gain almost any information about the dataset.

Since both the transmitter/encoder and the receiver/decoder
in a distributed computing setup are the same entity, referred
to as a master node, the notion of privacy, as opposed to
security, is used. However, the same metrics that are used
in conventional secure communication/computation setups, in-
cluding information-theoretic security [4] as well as well-
known notions of semantic security and distinguishing security
in the cryptography literature emanating from [5]], can be used
to measure the privacy level of the data in such emerging
distributed computing setups.

The seminal Shamir’s secret sharing scheme and its vari-
ous versions are often used to provide information-theoretic
security for data, referred to as a secret, while distributing it
among a set of servers/users [6]]. Also, Shamir’s scheme serves
as the backbone of most of the existing schemes on privacy-
preserving multiparty computing such as the celebrated BGW
scheme [7]. The idea can be illustrated via an example as
follows. Consider a given dataset X and two computational
servers, referred to as servers 1 and 2. Suppose that the function
f(X) = aX, where a is a scalar, needs to be computed
over the dataset X. The data symbols in X as well as a are
considered as elements of a finite field IF;. Then a random N
is generated, with the same size as the dataset X and entries
generated independently and uniformly at random from IFj.
Then N and X + N, also referred to as secret shares, are given
to the servers 1 and 2, respectively. Since N and X + N are both
uniformly distributed, the servers do not learn anything about X
individually. The servers return aN and a(X + N). Then aX is
recovered by subtracting the former from the latter.

In Shamir’s scheme, the secret/data symbols are always
assumed to be elements of a finite field. Consequently, the
state-of-the-art schemes treat the data symbols in the given
dataset as finite field elements in order to employ Shamir’s
secret sharing, see, e.g., [[7]. However, quantizing the data into
a finite field can result in substantial accuracy losses mainly
due to computation overflows. In practice, the dataset X con-
sists of real/complex values often represented as floating-point
numbers. One possible method to avoid overflow errors is to
bypass quantizing the data into a finite field and carry out the
computations over the real/complex numbers. This approach
eliminates the need for mapping back the computation results
from the underlying finite field to the analog domain and hence,
is not prone to accuracy loss due to overflow errors. However, in



this approach X can not be perfectly secured in an information-
theoretic sense, i.e., the mutual information between X and
X + N, denoted by I(X; X + N), being exactly zero. These are
the main challenges that need to be properly addressed when
designing privacy-preserving distributed learning algorithms in
the infinite fields of IR/CC, also referred to as the analog
domain.

A. Our contributions

In this paper, we provide a framework to construct the
counterpart of Shamir’s secret sharing scheme in the analog
domain. This framework is then used to construct privacy-
preserving distributed computation and learning protocols over
real/complex datasets. In other words, all the operations in-
cluding encoding the data symbols to be distributed among the
computational servers and recovery of the final outcome from
the collected results returned by the servers are over the infinite
fields of R/CC. It is assumed that the servers are honest-but-
curious meaning that they will not deviate from the protocol
but may attempt to infer the data from what they observe
throughout the protocol.

In the proposed protocol, the information-theoretic measure
of security is no longer perfect, comparing to Shamir’s secret
sharing scheme over finite fields, as discussed earlier. In order
to show the privacy guarantees of the protocol, bounds are
provided on how much information about data is revealed to a
server/subsets of servers in terms of various notions of security.
We also argue that, in a practical setting, this comes at the ex-
pense of accuracy of the final outcome of the protocol when all
data symbols are represented by floating-point numbers and all
operations are also assumed to follow standard floating-point
operations. More precisely, we provide a fundamental trade-
off between the security level of the protocol and the accuracy
of the outcome in a practical setting assuming floating-point
operations. The proposed protocol is also used in a distributed
learning experiment using four servers to train a logistic re-
gression model over MNIST dataset [§]]. In this experiment, the
amount of information about the dataset and the trained model
revealed to each of the servers, in terms of the distinguishing
security metric, is less than 10715 and 2 x 10~ 14, respectively.
It is observed that the accuracy of our protocol closely follows
that of the conventional centralized approach, thereby offering
a privacy-preserving distributed solution at a negligible cost in
terms of the accuracy of the result. Furthermore, it is shown
that while approaches based on fixed-point implementations
suffer from a sharp transition to the performance of randomly
guessing by increasing the size of training dataset, our protocol
offers a robust solution that is scalable with the size of the
training dataset.

B. Related work

Studying privacy-preserving distributed machine learning
algorithms has recently received significant attention in the
literature [9]-[[14]. There is also an extensive amount of work
on secure matrix-matrix multiplication which is a core build-
ing block for many machine learning algorithms, see, e.g.,

[15]-[19]]. As mentioned earlier, the information-theoretic pri-
vacy guarantees of the data in these prior works is based
upon Shamir’s secret sharing scheme and its variations. Since
Shamir’s scheme needs to be run over a finite field while data
symbols are real-valued, a common method is to assume a
certain quantization of the data symbols followed by mapping
them into elements of a finite field of a large prime size.
However, if an overflow occurs, i.e., a computed symbol during
the computation process by one of the servers becomes larger
than the field size, then a successful recovery of the outcome
of the computation can not be guaranteed. In other words, the
computation procedure at each of the servers can be regarded as
a fixed point computation, which is constrained by conditions
guaranteeing no overflow occurs.

There is also another line of work on adopting coded dis-
tributed computing protocols for computation over real-valued
data [20]-[26]. But these works are mostly focused on the
numerical stability of the protocols in the presence of slow or
unresponsive servers, also referred to as stragglers, and do not
study privacy guarantees for the data. Our focus in this paper is
on providing privacy-preserving protocols and straggler servers
are not considered.

However, secret sharing and privacy-preserving computation
in the analog domain are not discussed in these works.

Another related major line of work concerns with floating-
point implementation of secure multi-party computing (MPC)
protocols [27]-[29]. Such protocols can be described in high
level as follows. In a standard floating-point implementation,
each number/data symbol is represented by two main compo-
nents: one represents the most, let’s say by, significant bits
of the data symbol and the other one represents the power of
the exponent of data symbol. Then these two components of
the data symbols are secured separately using Shamir’s secret
sharing over finite fields. This requires a certain implementation
of floating-point operations and does not allow using off-the-
shelf readily available floating-point operations that are often
optimized to perform computational tasks on badges of data in
parallel. As a result, the inefficiency of such protocols poses a
major difficulty in their implementation. Furthermore, a major
difference between this line of work and our approach is that
the parties are allowed to communicate in secure multiparty
computing. This is mainly because in this setting each party
aims at computing a certain function of data symbols shared
between the parties without revealing any information about
his/her share of the data. The communication overhead between
the parties/servers is another major factor contributing to the
inefficiency of these protocols in practical systems. On the other
hand, in our approach, different servers are assumed to run
in parallel and no communication is required between them.
Once finished, the servers return their locally computed results
from which the true outcome of the computational task can be
computed.

It is worth mentioning that a follow-up work by the authors,
that extends the results of this paper by enabling parallelization
in computations with privacy guarantees, has been recently
published while this paper was undergoing the review process
[30]. Building upon the results of this work together with
Lagrange coded computing (LCC) [10]], we introduced analog



LCC (ALCC) in [30]. ALCC enables parallelizable privacy-
preserving coded computing in the analog domain. The scheme
leverages the Lagrange interpolation polynomial to encode sev-
eral secrets/datasets into a single polynomial, thereby allowing
the computations to be carried out in a parallel fashion over
batches of data. However, the primary distinction of [30] is to
illustrate that, even for a fixed noise variance, the choice of
a certain set of points in ALCC, referred to as interpolation
points, leads to a new trade-off between the accuracy and the
privacy which is specific to ALCC. Hence, one has to carefully
pick these parameters apart from the noise variance to avoid
unnecessarily compromising accuracy/privacy in practice. This
is a new fundamental trade-off that does not have a coun-
terpart in either analog adaptations of Shamir’s scheme, e.g.,
this work, or LCC with fixed-point implementation over finite
fields [10]]. It is important to note that neither the encoder nor
the decoder of ALCC can be reduced to those of the present
work for any choice of parameters. Nevertheless, by choosing
m =n =k = 1in ALCC [30]], one can compare the provided
accuracy bound in [30, Theorem4] with the one derived in
this work and observe that the bound provided in this work
outperforms that of [30] for any choice of other parameters
in ALCC. Furthermore, the privacy bound in [30] is evaluated
numerically, and no closed-form expression is provided for
the privacy bound. In comparison, we provide a closed-form
expression for the privacy bound in this work.

The rest of this paper is organized as follows. The problem is
formulated in Section[[T followed by the description of the pro-
posed protocol. The accuracy of the the protocol is analyzed in
Section[[I] In Section[[V]we provide an analysis for the privacy
level of data in the protocol by considering two well-known
notions of security. Various experimental results are provided
in Section[V] Finally, the paper is concluded in Section[V]]

II. PROBLEM FORMULATION AND THE PROTOCOL

Consider a setup with N computation servers/parties indexed
by 1,2,...,N. Given a data symbol s, also referred to as
a secret, a D-degree polynomial function of s denoted by
f (s)dzef Zizo f;s' needs to be computed by utilizing the compu-
tational power of the parties, while the secret remains private
assuming up to ft parties can collude. The notion of privacy
will be clarified in Section[[V] The secret s is an instance of a
continuous random variable S taking values in [—7,7]. ﬂOther
than this constraint on the range of S, no assumption is made
on the probability distribution of S.

Remark 1: Note that the computational task of polynomial
evaluation is considered in this paper in order to arrive at
explicit analytical guarantees. However, in order to apply this
setup to a learning experiment, a polynomial approximation of
the underlying computation function, e.g., the sigmoid function,
can be considered. This will be further discussed in Section[V]

!Following the convention, random variables are represented by capital
letters and their instances are represented by lower case letters.

In the considered protocol, given the secret s the polynomial
p(x) is constructed as follows:

t

def i

px) =s+ Z n]-x],
j=1

where nj’s are i.i.d., drawn from a zero-mean circular sym-
metric complex Gaussigln distribution with standard deviation
%, denoted by N (0, ‘77”), where f is the maximum number of
colluding parties. For evaluating the precision of the protocol
in practice, the distribution of 7n;’s will be truncated, i.e., it
is assumed that they are drawn from a truncated Gaussian
distribution with a maximum absolute value, denoted by m1, for
m € R*. This will be further clarified in Section[[Il The shares
of the computation parties consist of the evaluation of p(x) over
certain complex-valued evaluation points wy, . .., W, i.e.,

Lo
yi=s+2w{n1~ (1
j=1

is given to server i, for i € [N]. The system of equations in (1)
can be written in the matrix form as follows:

YNx1 = ANx(t+1)X(1+1)x 1 2
where x = (S, ny,... /nt)T’ Y= (yll .. ‘r.‘/N)T’ and
1 w ...
qef |1 w2 ... wy
A%
1 wy wh,

Then server i computes f(y;) and returns the result, e.g., to a
master node. The master node then recovers f(s). Conceptu-
ally, this can be done by interpolating the polynomial f(p(x))
and evaluating it at 0, i.e., the constant coefficient of f (p(x)) is
equal to f(s). More specifically, let a = (f(s),a1,...,ap)T,

where D = Dt, denote the vector of all coefficients of the
polynomial f(p(x)). Letalsoz = (f(y1),...,f(yn))T and
1 w wf
dof |1 w2 w?
B= [ . 3)
1 wy ... w]’::)]

Then the system of linear equations

ZNx1 = By (p11) 81 (D41)/ 4)

can be solved for a in order to recover f(s). Note that N >
Dt +1 = D +1 is the necessary and sufficient condition
on the number of parties in order to guarantee a successful
interpolation of f(p(x)), which is of degree D. Equivalently, it
is the necessary and sufficient condition for recovery of a in (@).
Throughout the rest of this paper, it is assumed that N = D + 1,
implying that all shares y;’s are needed to be returned to the
master node for a successful recovery of the computation.

Note that the master node does not need to compute the
entire a4 in @) and is only interested in recovering f(s), the
first entry of a. Let b denote the first row of B~1, which is



well-defined due to B being a Vandermonde matrix. Then the
master node only needs to compute bz to recover f(s). Since
w;’s are fixed, b is computed once, is stored, and then is used
every time the protocol is run.

Remark 2: Note that the computational complexity of encoding
in the master node is linear with the dataset size, where the
dataset is treated as a vector of secrets and f(-) needs to be eval-
uated over the entries of this vector. Moreover, the complexity
of decoding is also linear with the dataset size as the decoder
only computes a linear combination of the results returned by
the servers. In other words, the computational complexity at
the master node does not depend on D, which can be large.
It is worth mentioning that the goal of the protocol is not to
reduce the overall computational complexity of a computation
task across all the servers. The protocol in this paper, as well as
prior works in the literature, e.g., [[13]], provide a framework to
utilize external computation units in distributed servers while
providing privacy guarantees.

To summarize, the protocol is described step-by-step in Algo-
rithm[I] next.

Algorithm 1 Privacy-preserving distributed polynomial evalu-
ation scheme in the analog domain.

Input: Secret s.

Public parameters: Ay, ;1) bixn-
Output: Evaluation of f(s) in the master node.
Encoding phase (at thze master):

Pick iid. nj ~ N(0, %), forj=1,... ¢
Setx = (s,m1,...,1)".

Compute (y1,...,yn)T = Ax.

Send y; to server i.

Computation phase (at server i):

Compute z; = f(y;).

Send z; the to the master node.

Decoding phase (at the master):

Setz = (Zl, ce ,ZN)T.

Compute f(s) = bz.

In the next section, the accuracy of the protocol described in
Algorithm 1 is analyzed. In theory, if all the computations are
done over the complex numbers with infinite precision, then
f(s) is computed accurately. In practice, data is represented us-
ing a finite number of bits, either as fixed point or floating point.
Floating-point representation consists of a fixed-precision part
and an exponent part specifying how the fixed-precision part
is scaled. Let by, denote the number of precision bits in the
floating-point representation, referred to as mantissa and b,
denote the number of bits used to represent the power of the
exponent part in the floating-point representation, referred to as
6‘Xp0}’l€l’lt.

III. ACCURACY ANALYSIS

In this section, accuracy of the computation outcome of the
proposed protocol in Section[l]] is characterized in terms of
other parameters of the protocol.

In general, in a system of linear equations Ax = y, where
x is the vector of unknown variables, the perturbation in the

solution caused by the perturbation in y is characterized as
follows. Let # denote a noisy version of y, where the noise
can be caused by round-off errors, truncation, etc. Let also &

denote the solution to the considered linear system when y

is replaced by . Let Ax%E% — x and AydEfy y denote the

perturbation, also referred to as error, in x and y, respectively.
Then the relative perturbations of x is bounded in terms of that
of y as follows [31]]:

lax] 1Ayl
=yl

where x4 is the condition number of A and ||-|| denotes the -
norm.

(&)

As mentioned in Section[ll] the Gaussian distribution of 7;’s
is truncated in practice. This is used to provide a deterministic
(non-probabilistic) guarantee on the accuracy of the computa-
tion result expressed in the following theorem. It is assumed
that the computations at the master and servers do not impose
any errors other than precision loss due to finite representation
of the results.

Theorem 1: Let Af(s) denote the perturbation of f(s) in
the protocol discussed in Section Let mt +r > 1 and

25D |fi|. Then,

Af(s) < C\/N(mt + r)DK—B?._b"‘, (6)
Amin

where f is the maximum number of colluding parties, m is the
truncation parameter of the Gaussian distribution, kg and A;;;,
respectively are the condition number and minimum singular
value of B given in (3), by, is the number of precision bits, and
r is the bound on the absolute value of the secret. In particular,
by setting w; = exp ( ) for i € [N], we have

Af(s) <

c(mt 4 r)P270m,

Proof: In order to recover f(s), the system of equations
f(p(w;)) =y, fori e [N], is solved once all y;’s are returned.
This can be considered as a system of linear equations z = Ba,
as described in (@). Since the minimum singular value of B is
Amin, then

[zl

Jall < 3o )
Furthermore, one can write
N

Il = FOIHE < VNmax|fol - ®)
< Cfmax max y]: )

ie[N] je[D]w{0}
< cvV'N(mt + )P (10)

where (8) is by the definition of z, (9) is by noting that f(-) is
a D-degree polynomial and c is equal to the sum of absolute
values of the coefﬁcients of f(x), and (I0) is by noting that (I)
together with |s| < r, |n;| < mand r 4+ tm > 1 imply y; <
r + tm. Observe that Af < ||Aal| as f(s) is a component
of a. This together with (7] and (I0) and utilizing the relative



perturbation bound specified in (3 result in

Af (s)Amin |Az]]
cv/N(mt +r)P (4

Moreover, since by, is the number of precision bits, we have

Y

A
Iaz] )
=]
Combining with yields
Af(s) < cv/N(mt + r)PB_p=bn, (13)

min
In particular, if the evaluation points are the N-th roots of unity,
ie., w; = exp( mz) the matrix B turns into a +/N times a
unitary matrix for which xg = 1 and A,;;;, = v/ N. Hence,

Af(s) < c(mt +r)P27bm, (14)

|
Remark 3: The upper bound provided on Af(s) in (I3) scales
exponentially in the truncation limit of the noise m, with the
scaling exponent of D. Note that the ratio of the noise term
to f(s) in the computation results of the worker nodes, i.e.,
f(y;)’s, grows exponentially in the absolute value of the noise
which is upper bounded by m. Hence, when the number of
decimal precision digits in the implementation is less than
D1log;,(™), the precision digits of s are completely lost during
the computations performed in the worker nodes. Therefore,
one can not recover the true computation outcome in our
proposed scheme thereby implying that the exponent D in (T3]
can not be improved. Note also that the bound in provides
a deterministic guarantee on Af (s), but one can also utilize it to
obtain probabilistic bounds on the statistics of the computation
error in terms of the statistics of the noise by replacing m with
a random variable representing the noise value and applying
several well-known inequalities such as Markov’s inequality,
Chebyshev’s inequality, etc.

IV. PRIVACY ANALYSIS

In this section, we provide an analysis for the privacy level
of data/secret in the proposed distributed computing protocol
by considering two well-known notions of security, namely,
mutual information security (MIS) and distinguishing security
(DS). More specifically, we first consider these metrics of
security assuming { = 1, i.e., there is no collusion between
the computation parties, in Section Characterizing the
privacy in the presence of t colluding parties when t > 1 is
studied in Section[[V=BI In these two sections it is assumed that
the Gaussian distribution of noise terms ;s is not truncated,
i.e., m = oo. Then, in Section[IV-C] the results on the privacy of
data are extended to cases with truncated Gaussian distribution
for the noise terms.

A. Privacy against a single party

Consider the computational party i for i € {1,2,...,N}.
Then the amount of information revealed to party i about the

secret s can be measured in terms of the MIS metric, denoted
by 7., and defined as

iycd:ef max max I(S;Y;),

5)
i Ps:|S|<r

where Ps is the probability density function (PDF) of S. DS
metric, denoted by 7#s, is another metric for security which is
defined using the total variation (TV) distance metric Dty (., .).
In general, for any two probability measures P; and P, on
a o-algebra F, Dyy(P;, P») is defined as sup 4. |P1(A) —
P,(A)|. While DS metric is often defined for discrete random
variables in the cryptography literature, it can be extended to
real-valued random variables as follows:

;75 max sup DTV(Py|s s1/PY|S 52) (16)

i, 57€Dg
where IDg is the support of S. Note that both metrics 7. and
1s are non-negative. Also, roughly speaking, the smaller these
metrics are the more private the secret s is.
Upper bounding the security metric 7. is discussed next.
Since |S| < r, as discussed in Sect1onl we have E[S?] < 2.

This together with (I5) imply that

max I(S;Y;
:E[sl]<r2( 2

2 17
= log,(1+ ;),

n

= I(S;Y;
fle = pmax (8Y) <

where the last equality is by the well-known result on the

capacity of the additive white Gaussian noise (AWGN) channel

[32]. Since the noise variance a,zl can be picked arbitrarily large,

one can assume v = 0(0y,) to simplify the inequality in as
follows:

< L ﬁ ) ((L

TeS n2 o2 O

The notion of Hellinger distance, denoted by H(_,
to bound the DS metric. It is defined as follows:

1
H(Py, P,) def f\/ITl \/Po)?dy.

The Hellinger distance can be bounded in terms of the total
variation distance as follows [33]]:

H(P;, P;)? < Dry(Py, Py)

). (18)

.), is useful

19)

< V2H(Py, Py).

Let P; and P, be the PDFs of two complex Gaussian distribu-
tions both with variance c2and means i1 and iy, respectively.
Also assume that the real and imaginary parts are independent
and have identical variances. Then we have [34]

(20)

H(Py Py = \[1-exp(- 1020 )

Using the aforementioned relations, the privacy parameter s is
bounded in the following theorem.
Theorem 2: The DS metric 75 is bounded as follows:

7’2
s < \/2(1 —exp(— ),

n

where 7 is the maximum absolute value of the secret s and 02
is the variance of the noise used in the proposed protocol. In



particular, when v = 0(0;,) we have
r r
<V2—+o(—).
s < V2 o ( o )
Proof: Note that the conditional distribution of Y; given
S = s, specified in (T6), is NV'(—s;,02). Then by using
together with (20) and (ZI)) we have

2
r
s < \/2(1 —exp(——3))- (22)
O'Yl
In particular, for r = o(0y,), 22) is simplified to
r r
s < V2— +o(—). (23)
On On
| ]

Next, we discuss the relation between the two considered secu-
rity metrics in the analog domain. It is known that the MIS and
DS metrics can be directly related to each other over the space
of discrete random variables [35]]. In particular, it is shown that

[135]):
s < 4/ 21,

assuming all the underlying random variables are discrete. We
show in the next lemma that this result can be extended to the
analog domain.

Lemma 3: The inequality in (24) also holds when the under-
lying random variables, i.e., the secret as well as observations
by parties, are continuous random variables.

Proof: Let X and Y denote two continuous random
variables and X2 and Y2 denote their quantized versions,
respectively. Then we have [32]]

I(X,Y) = lim I(X%;Y2).

(24)

It can be observed that the same is true for the total variation
distance, i.e., Drv(X,Y) = limpa_, DTV(XA;YA). Hence,
(24) still holds assuming all the underlying random variables
are continuous. u

Lemma(3]is used to bound 75 later in Section[TV-B] Note that
one could apply it to derive a bound on #s using the bound
on 7/ in @]) However, the resulting bound would be weaker
comparing to the result stated in Theorem[2]

Note that the amount of information revealed to a compu-
tational party, in terms of either of the security metrics, is an
increasing function of é Furthermore, these metrics approach
zero, i.e., the case with the perfect privacy (175,77, = 0), as
0y, — 0. Hence, increasing the noise variance improves the
privacy of the scheme, however, this comes at the expense of
reducing the precision of the result. This motivates studying
the trade-off between the security metrics, as measures of data
privacy, and the precision of the computations given a fixed
number of bits to represent the floating-point numbers. This is
the focus of Section[IV-C] In the next section, the results of this
section are extended to the case with colluding parties.

B. Privacy against colluding parties

Let t denote the number of colluding parties. The aim is to
ensure the privacy of data against any subset of ¢ colluding
computational parties. To this end, an upper bound on the

amount of information revealed about the data/secret to the
colluding parties is derived. Let A = {iy,...,i;} denote the
set of indices for the colluding parties. Then the MIS metric is
the mutual information between S and all shares Y;’s fori € A,
in the worst case, i.e.,

nczmij(S;Yil,...,Yit). (25)
Next it is shown that this can be upper bounded using the known
results on the capacity of a single-input multiple-output (SIMO)
channel under power constraints [36], similar to how the upper
bound in (T7) is obtained using the capacity result of AWGN
channel. The input-output relation of a SIMO channel with ¢

receive antennas is as follows:
y=hx+n,

where x € CC is the transmit signal, y € CCt*1 denotes
the vector of received signal, h € CC'*1 denotes the channel
coefficient vector, and, n € CCt*1 is the zero-mean complex
Gaussian noise vector. The real and the imaginary parts of n are
assumed to be independent. Let N denote the noise correlation
matrix of the SIMO channel, i.e., N = IE[nnT]. Then the
capacity is given by [36]

C =log,(1+p||h|*v), (26)

where p is the power of transmitted signal and v is the max-
imum eigenvalue of N~!. Consider a SIMO channel with
hr = 1%, ...
flid:ef Z]t.:l w{ nj. Then the secret s is mapped to the input of
this channel. It can be observed that the shares given to f servers
can be mapped to the received symbols in this SIMO channel.
Then the average input power is bounded by 2, where 7 is the
maximum absolute value of s. Consequently, the capacity of the
aforementioned SIMO channel with input power #2 is an upper
bound on the amount of information revealed to the ¢ colluding
parties. Note that the coefficients w;’s are the N-th roots of the
unity, as discuss2ed in Section Then it can be observed that
E[nm*] = — 2, for j # k, and E[am*] = 2. Then, similar
to (I7), one can write

,1)T and the correlated noise terms of

2
.
e < log, (1 + ptv),

n

27)

where 7 is the maximum eigenvalue of N_l, where N =
#Itxt — %]l]lt . Note that N has t — 1 eigenvalues equal to
# and the last one is equal to % This implies that 7 = ¢.
Substituting this in yields:
242
ret
e < log,(1+ ?),

n

(28)

providing an upper bound on the amount of information re-

vealed to t colluding parties in terms the MIS metric #.. In
particular, for r = o(0},) we have

- 2 r? +of r )

TeSthooz "% 02

2
(29)

Note that 29) is reduced to (I8) for t = 1.

Let 75 denote DS metric for this case. By Lemma[3]together



with (28) we have

2
7s < 4 [2logy(1+ 25). (30)
Un
In particular, for r = o(0y,)
2 r T
<A/ —t— —). 31
s n2 Un+o(0n) (31)

C. Privacy results with truncated noise

The results provided on the security metrics so far are derived
by assuming the additive noise terms #;’s are drawn from a
Gaussian distribution. While this assumption is valid in theory,
such terms need to be truncated in practice as they can not be
arbitrarily large. Furthermore, as shown in Section [[II] in order
to provide guarantees on the accuracy of the computations, 7;’s
need to be bounded, i.e., \n]-| < m for some m € R™. In this
section, we extend the results on bounding the security metrics
in the proposed protocol to the case where n;’s are drawn
from a truncated Gaussian probability distribution. To simplify
the computation, it is assumed that the truncation threshold is
m = a”—"t, where & € R and % is the standard deviation of
the Gaussian distribution.

First, the effect of truncation on the total variation distance
metric is analyzed in the general case with  colluding parties.
In particular, we show that the change in the DS metric is
exponentially small in terms of «. Let 77, denote the DS metric
after truncation of noise terms. Let () denote a {-dimensional
complex vector space associated with (y;,,...,y;), where
yi],’s are defined in (I). Let Py, and Qy, denote the PDFs of

Yttf(Yil,...,Yit) given s = r and s = -7, respectively,

when the noise terms are not truncated. Similarly, Pyt and
Qy, are defined when the noise terms are truncated. Also, Let
By = {yt € O: Py, (y1) # 0}, By = {yt € O : Qy, (y1) # 0}
and BlZ = Bl N Bz.

Note that Py,(y:) = ;Py,(yr) and Qy,(yr) = Qv (w1),
for y; € By and y; € By, respectively, and are zero otherwise,
where p is given by

o =Pr[(jn| <m,..., |n| < m) (32)

2
= Prf|m| <m]' = (1— 2exp(—%))t, (33)

where the inequality is by bounding the tail distribution func-
tion of the standard normal distribution. One can observe that
the TV distance in (I6) is maximized when s; = r and
sp = —r. Then, using an alternative definition of the total
variation distance when the probability measures are over R
we can write:

1 - -
0= 5 | Pyl — Qv (34)
0
1 - -
=5 f |Py, (yt) — Qy, (yt)|dy: (35)
Bz
1 - -
+3 JBC |Py, (yt) — Qy, (yt)|dy:. (36)
12

The term in (33) is bounded as follows:

- - 1
fB P )~ Qw0 = L 1Py, (1) — Qv (v dye
37

1 1
< - fn |Py, (yt) — Qv, (yr)|dy: = 5175, (38)

o

where (38) is by noting that B < (). In order to derive an
upper bound on the term in (36) note that

f 1Py (ye) — Oy, (yo)ldye (39)

BS,

<f Py, (ys)dy; + f Qy, (yr)dy; (40)
BS, BS,

=2 LC Py, (ys)dy, (41)

12
where (@T) is due to symmetry. An upper bound on the term in
(4T]) is derived in the following lemma.
Lemma 4: We have
- 1 2/t
[ vt < 2espl—5a-

n

B, 7
Proof: Let P{(f denote the PDF of the random vector Y;
given s = r and assuming 7;’s are drawn from a truncated
Gaussian distribution with threshold m — 2r. Similar to the
definition of By, let Bidzef{yt e p’Yt (yt) # 0}. Since the
equations relating y;’s and #;’s in (I) are linear, then it can be

observed that B] — Bip. Then we have

)"

3 1
_[ Py, (y+)dy: < f =Py, (yt)dy: (42)
Bi, B§, P
1 1 1 2.,
< g [y Ptman < w5 T @)

where @2) holds because Py, (y;) is either equal to %Pyt (yt)
or zero, the first inequality in (@3) holds since Bi c Bpp
implies B{, < Bic, and the second one is by bounding the tail
distribution function of the standard normal distribution [ ]

Theorem 5: The DS metric for the case where n ]-’s are drawn
from a truncated Gaussian distribution with truncation level
a% satisfies the following inequality:

t< e+ Lexp(—ta— 2Vt

Js+ 5 2ep(—5 a2,

where p > (1 — 2exp(—”‘2—z))t.

Proof: The proof follows by (34) together with bounding
(35) using (@38) and (B36) using the result of Lemma [4] respec-
tively. [ ]
Theorem E] implies that picking, for instance, & = 10 with
t = 10, and already having a very small ULH is sufficient to obtain
almost the same bound on the DS metric as in the case where
the noise terms are not truncated. Hence, truncation of the noise
terms in (I) does not compromise the privacy of data in the
protocol as long as « is picked sufficiently large.
In order to obtain a similar result for the MIS metric, a result
on the capacity of channels with additive truncated Gaussian



log,,(on) 5 11 14
log,o(Af(s)) | —9.44 | 444 | —045
log,o(17s) | —236 | —8.36 | —11.36

TABLE I: Demonstration of the trade-off between DS security metric
and accuracy. The upper bound on 75 in (30) is calculted versus the up-
per bound on Af(s) obtained in Theorey ato, = 10°,1019,1014.
Other parameters are c = 1,t = 1, D = 1, « = 10, r = 255 and
b = 52.

noise is needed. This problem is studied recently, see, e.g., [37]].
In particular, it is shown that the capacity of AWGN channel is
robust against truncation of the noise. More specifically, it is
shown that the change in the capacity by truncating the noise
is O(exp(—”‘;)) [37]. Hence, the MIS metric is increased by at

most O(exp(—%z)) when truncating the noise, mimicking the
result derived for the DS metric in Theorem[3]

In Table[l} the trade-off between the privacy and the accuracy
of our protocol is demonstrated using the theoretical results
obtained in Section [l1Il and Section It can be observed that
increasing the variance of the noise 03, improves the privacy but
at the same time reduces the accuracy of the computations.
Remark 4: Note that the results provided in this section are de-
rived over the continuous space of complex numbers. The well-
known data processing inequality for mutual information guar-
antees that the same inequalities still hold when Algorithm([T]is
utilized using floating-point implementation in practice.

V. EXPERIMENTS

In this section, we demonstrate experiment results on the
performance of our proposed protocol when applied to a certain
learning algorithm. First, it is shown that the accuracy of the
results obtained by using our protocol in a distributed setting
closely follows that of a conventional centralized approach,
thereby providing almost the same accuracy as in the cen-
tralized approach. Second, the performance of our protocol is
compared with that of the state-of-the-art schemes employing
fixed-point numbers by quantizing the data and mapping it to
finite field elements. In particular, we compare our protocol
with CodedPrivateML [13] in terms of accuracy and run time.

The problem of training a logistic regression (LR) model
over GISETTE [38] dataset is considered. Let X € R™M*d
denote a dataset consisting of m samples with d features and
I € {0,1}" denote the corresponding label vector. The task
is to compute the model parameters (weights) h € R4 by
iteratively minimizing the cross entropy function using the
following parameter update equation:

R+ _ ) _ %XT(g(Xh(j)) ~1)), 4

where h(/) is the estimated parameters in iteration j» B is the

learning rate, and g(x)d:efm is the sigmoid function

that operates element-wise over the vector inputs. For each data
point x; € R1*4, the estimated probability of /; being equal to
1 is g(x;h). All experiments are performed in MATLAB and
the considered problem is the binary classification between the
highly confusible digits 4 and 9 over GISETTE dataset. The
train dataset consists of 6000 samples with 5000 attributes. Our

protocol for the distributed training of the LR model is inspired
by Algorithm[T|and is described in Algorithm[2] This protocol is
implemented using the default double-precision floating-point
(FLP) representation in MATLAB with 64 bits, where b, = 52,
b = 11, and the other bit is reserved for the sign.

Algorithm 2 Privacy-preserving distributed training of logistic
regression model in the analog domain.

Input: Dataset X € R™ xd  the number of iterations k and «.
Public parameters: (w1, ..., wy), bixn = (b1,...,bN).
Output: Parameter vector h for the logistic regression model.
Encoding dataset (at the master):
Pick i.i.d. N; € R™*4 with entries independently drawn from
N(0, ‘77’%) truncated at a%, forj=1,...,¢t
fori e [N] do

‘ Compute X; = X + Z]t-:l wa]-.
end
Send X; to server i.
Computation of / iteratively:
Set h) = 0.
forje{0,...,k—1} do
Encoding phase (at the master):
Pick i.id. n; € R4 with entries independently drawn

from A\ (0, UT%) truncated at DC%, forj=1,...,¢t
Compute Ijtfj) =h0) + 22:1 wf’nh.

Send ill(] ) to server i.

Computation phase (at server i):

Compute z; = XiTXifll(] ),

Send z; to the master node.

Decoding phase (at the master):

Compute u() = Zfil biz;.

Update hU+1) = o) — %[%um +XT@-21).

end
Return b = h(%),

Next, we describe the steps in Algorithm[2]in details. In the
beginning, the data matrix X is encoded element-wise using the
analog counterpart of Shamir’s encoder, same as in ([I]), and then
the secret shares are sent to the servers. Let X; denote the share
sent to server i, fori e [Ng The initial parameter vector is set to
the all-zero vector, i.e., h 0) — 0. Let k denote the total number
of iterations for updating the model parameters using {@4) in
the experiment. In the j-th iteration, for j € {0,...,k — 1}, the
master node encodes h(/) element-wise, again same as in @

and sends the shares to the servers. Let l~1§] ) denote the share
of h() sent to server i. The server i then computes X, X,ftfl )
and returns the result to the master node. Next, the master node
recovers X! Xh() by computing a linear combination of the
returned results, same as in the decoding phase in Algorithm[I]
and utilizes it to update the vector of parameters according
to ([@4) with the sigmoid function substituted by its 1-degree
polynomial approximation, i.e., g(x) ~ % + % . This procedure
is continued till the desired number of iterations is passed and
the last update of the parameter vector is returned as the final
result of the protocol. It is worth mentioning that the data
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Fig. 1: Comparison between the accuracy of our distributed
learning protocol for several values of ¢;; and the conventional
centralized logistic regression (LR).

matrix X is secret-shared only once at the beginning and the
same shares are used at each iteration by the servers while
the parameter vector h is updated and secret-shared in each
iteration.

The vector of model parameters h for the training dataset is
computed using Algorithm[2] as well as using the conventional
centralized method. The number of servers N = 4 and t = 1
are assumed. Note that in the centralized method the sigmoid
function is not approximated while in our implementation it is
approximated with a degree-1 polynomial. Then the accuracy
of the predictions are determined over the GISETTE validation
dataset in both approaches. The result is shown in Figure [T} It
can be observed that the accuracy of our protocol with ¢;, =
5 x 10° closely follows that of the conventional centralized
approach. The accuracy of our protocol is also demonstrated for
0y = 8 x 10°,10° to experimentally illustrate the implications
of the aforementioned privacy-accuracy trade-off in Section

It this setting with honest-but-curious servers, as mentioned
in Section[[-A] the servers may attempt to infer the data by
accumulating all received shares during all iterations. Since
ny’s in Algorithm[2]are picked independently in each iteration,
the leakage of information for the model in terms of DS metric
is bounded by kys, where k is the number of iterations and
#s is characterized in (23) for t = 1 and in (B0) for ¢t > 1.
Furthermore, the privacy guarantee for the dataset in terms of
the DS metric is given by (23) for ¢t = 1 and by (30) for t > 1,
regardless of the value of k since the dataset is encoded and sent
to the servers only once during the protocol. Hence, given all the
parameters in the described experiment, the privacy guarantee
in our protocol in terms of the DS metric is 775 < 2.5 x 1074
for the model and 775 < 107> for the dataset. These hold by
utilizing ([23), where 0, = 5 x 10° is picked, and setting I < 20
in all experiments while noting that d = 784 and the maximum
absolute value of data is ¥ = 1 in the normalized GISETTE
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Fig. 2: Comparison between the relative error e of our distributed
learning protocol for several values of oy and the conventional
centralized linear regression.

dataset.

Next, we consider the problem of training a linear regression
model over Combined Cycle Power Plant dataset [39]. Let X €
R™*4 denote a dataset consisting of m samples with d features
and I € R™ denote the corresponding label vector. The task is
to compute the model parameters (weights) i € R? using the
following parameter update equation:

WG+ ) = B xTix ) —y), 45)
m

where hU) is the estimated parameters in iteration j and
is the learning rate. The dataset contains 9568 samples that
is split to train and test datasets with size 7568 and 2000,
respectively. The relative error of the predictions over the test
dataset is defined as e, = HyH;|yH, where y is the vector of
true labels in the test dataset and  is the vector of predicted
labels. The relative error in our protocol is compared to that
of the centralized conventional linear regression algorithm in
Figure[2] The number of servers N = 4 and t = 1 are
assumed. It can be observed that the accuracy of our protocol
with 0, = 5 x 2 x 10° closely follows that of the conventional
centralized approach. The accuracy of our protocol is also
demonstrated for ;, = 7 x 10,107 to experimentally illustrate
the aforementioned privacy-accuracy trade-off in the problem
of training a linear regression model.

Next, the problem of training a one layer neural network with
softmax activation function over MNIST dataset is considered
[40]. Let X € R™*4 denote a dataset consisting of 7 samples
with d features. Let x; € R?*1 denote the i"th sample in X and
Y € R*K denote the corresponding categorical label vector,
where K denotes the number of classes in the datset which is
equal to 10 for the MNIST dataset. The task is to compute the
model parameters W € R?*K using the following parameter
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Fig. 3: Comparison between the accuracy of our distributed
learning protocol and the conventional centralized algorithm for
multi-class softmax classifier.

update equation:
WO+ — W) — B S 4 sxTw) —
w LHEETW) =y, @)

where W() is the estimated parameters in iteration j, B is the
learning rate, and s(x) is the softmax function. The accuracy in
our protocol is compared to that of the centralized conventional
centralized algorithm in Figure[3] The number of servers N = 4
and t = 1 are assumed. It can be observed that the accuracy
of our protocol with ¢, = 10° closely follows that of the
conventional centralized approach. Note that in our protocol
the softmax function is substituted by its 1-degree polynomial
approximation.

In the last experiment, the accuracy of a fixed-point (FXP)
implementation, according to the protocol proposed in Coded-
PrivateML [13]], is simulated in a similar scenario with N = 4
and t = 1, and is compared with that of our protocol. In
CodedPrivateML, the data is first quantized and then mapped
to the elements of a finite field. Then, instead of encoding the
data using Shamir’s scheme, it utilizes Lagrange interpolation
polynomial to encode K data matrices/secrets simultaneously to
leverage parallelization in computations. However, in order to
have a fair comparison with our results, we pick K = 1 in Cod-
edPrivateML that is equivalent to the baseline scheme where
the data is encoded using Shamir’s scheme after quantization.
In other words, for the considered case, our protocol utilizes the
analog counterpart of Shamir’s scheme in the complex domain
whereas CodedPrivateML leverages the conventional Shamir’s
scheme over finite field. All other parameter are picked ac-
cording to what is reported in [[13]], which also uses 64 bits to
represent elements of the finite field. The problem of training a
logistic regression (LR) model over MNIST dataset for binary
classification between the digits 3 and 7 is considered. Figure
[ demonstrates that the accuracy of CodedPrivateML (fixed
point) is significantly dropped to around 0.5, equivalent to
that of a random guessing, when the size of dataset exceeds
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Fig. 4: Comparison between the accuracy of our protocol and
CodedPrivateML [13]] implementations. The number of iterations
in both cases is 15.

100. Note that the original train and test datasets consist of
12396 and 2038 samples, respectively. In order to observe the
performance with small dataset sizes, we pick a dataset with
equal data points labeled with 3 and 7 in each experiment. Also,
we run the experiment 1000 times by picking different sets of
samples and the average accuracy is reported in Figure 4]

This comparison demonstrates the superiority of our pro-
posed protocol in the analog domain and implemented using
floating point numbers comparing to the state-of-the-art dis-
tributed computing and learning schemes employing quanti-
zation followed by computations over a finite field. In other
words, our protocol is robust with respect to the size of the
training dataset while the fixed-point implementations suffer
significantly from wrap-around error as the size of dataset
passes a certain threshold depending on the prime number
picked as the size of underlying finite field.

One major advantage of CodedPrivateML over MPC-based
approaches is that it provides an order of magnitude speed
up, based on the experiment results reported in [13[]. The
reason is that in CodedPrivateML, there is no communication
between computation parties thereby improving the communi-
cation complexity of the scheme significantly, compared with
the state-of-the-art cryptographic approaches. This advantage
is preserved in our protocol as well, since no communication is
needed between the parties.

Note that in order to avoid the wrap-around error in the fixed-
point implementation each computation party should stop the
computation before the the wrap-around threshold is passed
and divide the computation task into smaller subtasks. Then,
it needs to send back all the computation results associated
to each subtask to the master node in order to guarantee
recovery of the computation result. This results in an excess
communication and computation overhead compared with our
protocol. Moreover, since the threshold is not known a priori,
one always needs to check if the wrap-around is occurred
during the computation process. These factors slow down Cod-
edPrivateML when the dataset is large and one wants to avoid



the errors due to wrap-around. In Table [[I, the computation
times of CodedPrivateML and our protocol are compared for
the experiment discussed in this section for different dataset
sizes, while discarding the delay in CodedPrivateML due to
frequently checking wrap-around errors and communication
overhead. It shows that for the same level of accuracy of the
results, our approach with the floating-point implementation
also outperforms the fixed-point implementations while pre-
serving the speed up advantage compared with the MPC-based
schemes.

Dataset size | CodedPrivateML | Our Protocol
1000 0.72 0.25
2000 1.49 0.52
3000 2.49 0.80
4000 3.87 1.09
5000 5.94 1.38

TABLE II: Comparison of the run times between the fixed-point and
the floating-point implementations. The times are reported in seconds.
The experiments are done on a Macbook pro with 3.5 GHz dual-core
intel core i7 CPU and 16 GB memory.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we tackled the critical problems of privacy-
preserving computation and learning over a real-valued dataset
using distributed honest-but-curious servers. To this end, we
proposed a protocol that utilizes a counterpart of Shamir’s
secret sharing scheme in the analog domain. In order to measure
the privacy level of the data, the conventional notion of distin-
guishing security is extended to the analog domain and privacy
guaranties for the proposed scheme are characterized based on
this security metric. The well-known connection between the
DS and the MIS measures of security is extended from the
discrete domain to the continuous domain. This is then utilized
to bound the DS metric of our protocol using well-known
results on the capacity of SIMO channel with correlated noise.
Furthermore, the accuracy of the outcome of the computation is
characterized assuming a floating-point implementation of the
protocol. In our experiments, we illustrated that the accuracy
of the predictions for the logistic regression model over the
MNIST dataset derived by our protocol closely follows that of
the conventional centralized approach. Finally, we showed that
our protocol is robust with respect to the size of the training
dataset, i.e., there is almost no accuracy loss as the size of the
training dataset grows large, while the performance of the fixed-
point implementations in prior work significantly diminishes
due to overflow errors.

There are several directions for future work. Extending the
proposed protocol in this paper to scenarios with straggler
servers is an interesting direction for future research. More
specifically, in our protocol it is assumed that all the servers
successfully finish their assigned tasks, while a certain number
of servers, referred to as stragglers, may be slow or may not
respond at all in practice [41]-[46]. The main challenge in
this direction is to pick the parameters of the protocol and to
design the decoder that is better than the naive and numerically
unstable approach of solving a system of linear equations in

the analog domain. Another direction is to adopt the pro-
posed protocol in this paper to perform computational tasks in
distributed fashion for other applications, such as distributed
optimization and mechanism design [47]-[51], while keeping
the data private. Generalizing Algorithm[I] in order to simul-
taneously compute multiple evaluations of a polynomial in a
single-shot is another future direction. To this end, techniques
for multi-user secret sharing can be utilized [52]. Obtaining
such results can potentially lead to privacy-preserving multi-
task learning protocols, i.e., protocols that train multiple models
over a dataset in a single round.
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