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Abstract—We present a low-complexity and low-latency decod-
ing algorithm for a class of Reed-Muller (RM) subcodes that
are defined based on the product of smaller RM codes. More
specifically, the input sequence is shaped as a multi-dimensional
array, and the encoding over each dimension is done separately
via a smaller RM encoder. Similarly, the decoding is performed
over each dimension via a low-complexity decoder for smaller
RM codes. The proposed construction is of particular interest
to low-capacity channels that are relevant to emerging low-rate
communication scenarios. We present an efficient soft-input soft-
output (SISO) iterative decoding algorithm for the product of
RM codes and demonstrate its superiority compared to hard
decoding over RM code components. The proposed coding scheme
has decoding (as well as encoding) complexity of O(n logn) and
latency of O(logn) for blocklength n. This research renders a
general framework toward efficiently decoding RM codes.

I. INTRODUCTION

In recent years, there has been significant renewed interest in
exploring Reed-Muller (RM) codes, which are one of the oldest
families of error-correcting codes [1], [2]. RM codes are closely
connected to polar codes [3] in the sense that the generator
matrices of both codes are obtained by selecting rows from the
same matrix, though by different selection rules. In contract
to polar codes, which have channel-specific construction, RM
codes have a universal encoding scheme. It is also conjectured
that RM codes have similar characteristics to random codes in
terms of weight enumeration [4] and scaling laws [5]. While it
was proved earlier that RM codes achieve the Shannon capacity
of binary erasure channels (BECs) [6], and that of binary
symmetric channels (BSCs) at extreme rates converging to zero
or one [7], Reeves and Pfister have shown very recently that
that RM codes are also able to achieve the capacity of general
binary-input memoryless symmetric (BMS) channels [8].

Although RM codes have shown excellent performance un-
der maximum likelihood (ML) decoding, they still lack ef-
ficient decoding algorithms for general code parameters. To
this end, Dumer’s recursive list decoding algorithm [9] pro-
vides a complexity-performance trade-off by achieving close-to-
ML decoding performance for large enough, e.g., exponential
in blocklength, list sizes. Recently, a recursive projection-
aggregation (RPA) algorithm was proposed in [10] for decoding
RM codes. Despite its explicit structure and excellent decoding
performance, the RPA algorithm (in its general form) requires
a complexity of O(nr log n) for an RM code of length n and
order r. Building upon the projection pruning idea in [10], there
has been some recent attempts at reducing the complexity of
the RPA algorithm [11], [12], and also applying it in other
contexts than communication [13]. Moreover, building upon
the computational tree of RM (and polar) codes, a class of
neural encoders and decoders has been proposed in [14] via
deep learning methods.

In this paper, our goal is to devise an efficient, low-
complexity, and low-latency coding scheme for low-capacity

channels [15]–[19], that are relevant to emerging low-rate
communication scenarios, such as narrowband Internet-of-
Things (NB-IoT) [20], deep-space communication, and covert
(millimeter-wave) communication [21], among others. Users in
these applications typically experience very low signal-to-noise
ratios (SNRs). Consequently, reliable communication in such
applications requires very large blocklengths, and challenges
such as ensuring low latency/complexity and high reliability
become more apparent. The current practical approaches for
these scenarios are mainly based on large repetitions of a
powerful moderate-rate code. While such a construction, i.e.,
concatenation of a repetition code and a moderate-rate code,
results in low-latency codes, it has been shown in [15] that the
error performance can be significantly degraded as a result of
repetitions. Therefore, using more principled coding schemes
to design low-rate codes can potentially lead to significantly
more powerful codes. We will employ the recent advances in
RM codes as well as product codes to design efficient coding
schemes that achieve better performance while maintaining
low complexity and low latency. Consequently, our proposed
schemes are also of particular application to ultra-reliable and
low-latency communications (URLLC).

We build upon product codes [22] to construct a larger RM
code based on the product of smaller RM code components. It
is well known that building larger codes upon product codes
renders several advantages, such as low encoding and decoding
complexity, large minimum distances, and a highly parallelized
implementation [22]–[24], and it has very recently been shown
that it also enables training neural encoders and decoders for
relatively large channel codes [25].

While the framework in this paper is applicable to any RM
code components, we particularly consider first-order RM codes
as the components to take advantage of their ML performance
with an O(n log n) complexity, enabled by fast Hadamard
transform (FHT) [10]. The resulting code will be a subcode
of an order-Q RM code, when considering Q component codes
in the product; thus, it can be a low-rate code depending on the
blocklength of individual code components. We present an effi-
cient soft-input soft-output (SISO) iterative decoding algorithm,
enabled by our soft-FHT algorithm over code components.

We show that our decoder maintains a low complexity of
O(n log n) and a low latency of O(log n), regardless of the
value of Q. Moreover, our numerical results demonstrate the
superiority of the proposed SISO decoder compared to hard de-
coding over RM code components as well as RPA-like decoding
of RM subcodes [11]. We also demonstrate meaningful gains
compared to conventional designs such as Turbo-repetition.
Lastly, we remark that the proposed methods in this paper can
lead to a general framework toward low-complexity decoding
of RM codes.
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Fig. 1. Demonstration of two-dimensional (2D) product codes. Each q-th encoder Eq and decoder Dq , q = 1, 2, performs encodings and decodings over the
q-th dimension of the 2D input arrays.

II. PRELIMINARIES AND SETTING

A. RM Codes

An RM code is defined in terms of two parameters: (i) a
positive integer m that defines the blocklength as n = 2m;
and (ii) a nonnegative integer r ∈ {0, 1, · · · ,m}, named the
order of the RM code, that defines the code dimension k as
k =

∑︁r
i=0

(︁
m
i

)︁
. There are several ways, including the algebraic

formulations in [10], to describe an RM code of length n = 2m

and order r, denoted by RM(m, r). One simple description is
through the so-called polarization matrix. Indeed, the generator
matrix of an RM(m, r) code, denoted by Gk×n, can be
obtained by choosing rows of the following matrix that have
a Hamming weight of at least 2m−r:

Pn×n =

[︃
1 0
1 1

]︃⊗m

, (1)

where F⊗m is the m-th Kronecker power of a matrix F. The
resulting generator matrix Gk×n can then be partitioned into
sub-matrices as

Gk×n =

⎡⎢⎢⎣
G0

G1
...

Gr

⎤⎥⎥⎦ , (2)

where G0 is a length-n all-one row vector, and G1 is an m×n
matrix that lists all the n = 2m unique length-m binary vectors
{0, 1}m as the columns. Moreover, Gi, for 1 ⩽ i ⩽ r, is an(︁
m
i

)︁
×n matrix whose each row is obtained by the element-wise

product of a distinct set of i rows from G1 [26]. Accordingly,
Gk×n has exactly

(︁
m
i

)︁
rows with the Hamming weight n/2i,

for 0 ⩽ i ⩽ r.

B. Product Codes

Fig. 1 illustrates the encoding and decoding procedure for
two-dimensional (2D) product codes. Assuming two code com-
ponents C1 : (k1, n1) and C2 : (k2, n2), their product code
is constructed by first forming the length-k1k2 information
sequence as a k2 × k1 matrix, and then encoding each row
using the first encoder E1 and each column using the second
encoder E2. It can be shown that in the resulting encoded matrix
of size n2×n1 (that can be reshaped to a length-n1n2 vector as
a codeword), each row is a codeword of C1 and each column is
a codeword of C2. Therefore, after properly reshaping the noisy
codewords at the receiver, the first decoder D1 decodes the rows
of the received 2D array and the second decoder D2 decodes
the columns of its input array. Note that the order of decoders
as well as encoders can be interchanged given the symmetry of
the problem.

In general, a Q-dimensional product code C can be con-
structed by iterating Q codes C1, C2, · · · , CQ. More specifically,
each q-th encoder, q = 1, · · ·Q, encodes the vectors in the q-
th dimension of the Q-dimensional input array. Similarly, after
properly reshaping the noisy codewords at the receiver, each

q-th decoder decodes the noisy vectors on the q-th dimension
of the incoming array. Then, assuming Cq : (kq, nq, dq, Rq)
with the generator matrix G(q), where d and R stand for the
minimum distance and rate, respectively, the parameters of the
resulting product code C can be obtained as the product of the
parameters of the component codes, i.e.,

p =

Q∏︂
q=1

pq, p ∈ {k, n, d,R}, (3)

G = G(1) ⊗G(2) ⊗ · · · ⊗G(Q). (4)

It is known that applying a few decoding iterations (together
with SISO decoding) usually improves the decoding perfor-
mance of product codes [23]. Therefore, often a few, say I ,
iterations will be applied at the decoder of product codes.

In the special case of RM component codes, the resulting
product code is a subcode of a larger RM code, i.e., [26,
Corollary 2]

RM(m1, r1)⊗RM(m2, r2)⊗ · · · ⊗ RM(mQ, rQ)

⊆ RM
(︃ Q∑︂

q=1

mq,

Q∑︂
q=1

rq

)︃
. (5)

Note, based on (3), that the resulting product code has a
blocklength of nt := 2mt , where mt :=

∑︁Q
q=1 mq , that is the

same as the blocklength of the larger code in the right-hand
side (RHS) of (5). Also, given that an RM(m, r) code has a
minimum distance of d = 2m−r, one can observe that both the
resulting product code and the code in the RHS of (5) have the
same minimum distance dt := 2mt−rt , where rt :=

∑︁Q
q=1 rq .

However, the resulting product code has a smaller dimension
than the larger RM code, i.e.,

Q∏︂
q=1

[︄
rq∑︂

il=0

(︃
mq

il

)︃]︄
⩽

rt∑︂
it=0

(︃
mt

it

)︃
. (6)

C. Problem Setting
In this paper, we consider binary phase-shift keying (BPSK)

modulation and transmission over additive white Gaussian noise
(AWGN) channels. More specifically, we first map each code-
word c to c̃ := 1 − 2c, before sending it through the channel.
The received vector at the channel output is y = c̃ + n,
where n is the noise vector whose elements are zero-mean
Gaussian random variables with variance σ2. In this case, the
log-likelihood ratio (LLR) vector can be obtained from y as
l = 2y/σ2. Throughout the paper, we define the SNR as
SNR := 1/(2σ2) and the energy-per-bit Eb to the noise ratio
as Eb/N0 := SNR/R = n/(2kσ2).

III. PROPOSED SCHEME

A. Encoding Scheme
The general encoding procedure has been described in Sec-

tion II-B. In this paper, we focus on first-order RM code compo-
nents with two major motivations. First, using (5), the resulting



Algorithm 1 Decoding of Q-Dimensional Product Codes
Input: Noisy codeword y, noise variance σ2, number of de-
coding iterations I
Output: Decoded codeword ĉ

1: l← 2y/σ2 ▷ compute the LLR vector
2: Properly reshape l to a Q-dimensional array L
3: for i′ = 1, 2, · · · , I do
4: for q = 1, 2, · · · , Q do
5: L← Dq(L,dim = q) ▷ update the vectors on the

q-th dimension of L after decoding them using Dq

6: end for
7: end for
8: Properly reshape L to a length-nt vector l̂
9: ĉ← 0.5(1− sign(l̂))

10: return ĉ

product code becomes a subcode of an RM(mt, Q) code, and
thus a low-rate code for large enough mt’s (compared to Q).
Therefore, it aligns with the general objective of the paper,
which is to design an efficient, low-complexity, and low-latency
coding scheme for emerging low-capacity channels. Second,
we can take advantage of the low-complexity FHT decoder for
order-1 RM codes, that achieve the same performance as an ML
decoder but with an O(n log n) complexity instead of an O(n2)
complexity. In fact, we establish in Section III-D the possibility
of decoding the product of any Q first-order RM codes with
O(n log n) complexity and O(log n) latency.

B. Decoding Scheme

It is not hard to show that the vectors on each q-th dimension
of the encoded Q-dimensional array, at the output of the product
encoder, are codewords of the q-th component code Cq , even if
systematic encoders are not used. Therefore, the vectors on each
q-th dimension of the received multi-dimensional array, after
carefully reshaping the received signal, can be viewed as the
noisy codewords of Cq . Accordingly, the decoding procedure
can be summarized as Algorithm 1. The reshaping of length-nt

vectors to Q-dimensional arrays and vice versa, performed in
lines 2 and 8, respectively, need to be handled carefully with
respect to the product encoder architecture (e.g., the parameter
of the individual code components, order of the encoders, etc.).
Additionally, in line 5, we considered a general decoder Dq for
decoding the noisy codewords of Cq on the q-th dimension of
the LLR array L. In the case of order-1 RM codes, considered
in this paper as the component codes, we apply a soft version
of the FHT algorithm, developed in Section III-C, to enable an
efficient SISO decoding for the underlying product code.

C. Soft-FHT Algorithm

Given l ∈ Rn as the vector of channel LLRs, corresponding
to the transmission of an (n, k) code with codebook C over a
general binary-input memoryless channel, the ML decoder picks
a codeword c∗ according to the following rule [10]

c∗ = argmax
c∈C

⟨l, 1− 2c⟩, (7)

where ⟨·, ·⟩ denotes the inner-product of two vectors. A naive
implementation of the ML decoder then requires an O(n2k)
complexity to compute 2k inner-products between length-n
vectors. In particular, for first-order RM codes, RM(m, 1),

that have 2m+1 = 2n codewords, this is equivalent to an
O(n2) complexity and an O(n) latency (when computing all
the inner-products in parallel). However, one can do the ML
decoding for order-1 codes in a more efficient way via the FHT
algorithm. The high-level idea is that half of the 2n codewords
of an RM(m, 1) code (in ±1) are the columns of the standard
n × n Hadamard matrix H, and the other half are columns
of −H. Therefore, the ML decoder for order-1 RM codes
boils down to the matrix multiplication of the LLR vector l
and the Hadamard matrix H, i.e., lWH := lH, which can be
performed in O(n log n) complexity and O(log n) via the FHT
algorithm (see Lemma 3). Since lWH contains half of the 2n
inner-products in (7), and the other half are just the elements of
−lWH, the FHT version of the ML decoder for first-order RM
codes can be obtained as

c∗ =
1

2
[1− sign(lWH(i

∗))hi∗ ] s.t. i∗ = argmax
i=1,2,···n

|lWH(i)|,

(8)

where lWH(i) is the i-th element of the vector lWH, and hi is
the i-th column of the matrix H.

It will be shown in Section IV that soft decoding of the
RM product codes results in a much better performance than
their hard decoding. To enable a SISO decoder for RM product
codes under consideration, we derive the soft version of the
FHT algorithm, referred to as soft-FHT in this paper, for first-
order RM code components. We do this in two steps, i.e., first
calculating the LLRs of the information bits and then calculating
the LLRs of the encoded bits, which will be discussed in the
following.

For the AWGN channel model y = c̃ + n and any (n, k)
binary linear code C, the LLR linf(i) of each i-th information
bit ui, i = 1, 2, · · · , k, can be obtained form the channel LLRs
vector l, using the max-log approximation, as [11]

linf(i) ≈ max
c∈C0

i

⟨l, 1− 2c⟩ − max
c∈C1

i

⟨l, 1− 2c⟩, (9)

where C0i and C1i denote the subsets of codewords that have
ui = 0 and ui = 1, respectively. In the particular case of order-
1 codes, one can compute linf more efficiently by invoking the
FHT algorithm.

The generator matrix Gk×n of a first-order RM code has
one row of Hamming weight n and m rows of weight n/2.
Assuming that the first row is the all-one row, the calculation
of linf for u1 should be carried out differently from the other
ui’s. Let U2k×k be a matrix listing all binary vectors of
length k as the rows such that the j-th row, j = 1, 2, · · · 2k,
is the binary representation of the number j − 1 in k bits
with the most significant bit being at the left. The matrix
multiplication C2k×n := UG (over the binary field) then lists
all the codewords in a way that the upper half (the first n rows)
of C̃ := 1 − 2C is equal to H and the lower half is equal to
−H. Therefore, given that u1 is equal to zero for the first half
of the codewords and equal to one for the second half, we have
using (9)

linf(1) ≈ max
i′=1,2,···n

lWH(i
′) − max

i′=1,2,···n
− lWH(i

′). (10)

To compute the LLRs linf(i) for i = 2, · · · k, we only need
to find the set of indices of the first half of the codewords that
have ui = 0 and ui = 1, denoted by the sets I0,i ⊂ {1, 2, · · ·n}



Algorithm 2 Soft-FHT Algorithm for RM(m, 1) Codes
Input: The channel LLR vector l; RM code parameter m, the
sets of indices I0,i and I1,i for each i-th bit, i = 2, · · ·m+ 1
Output: Soft decisions (i.e., the updated LLR vector) l̂

1: lWH ← lH ▷ apply FHT algorithm to l
2: Initialize linf as an all-zero vector of length m+ 1
3: linf(1)← Eq. (10) ▷ calculate linf(1) using (10)
4: for i = 2, · · · ,m+ 1 do
5: linf(i)← Eq. (11) ▷ calculate linf(i) using (11)
6: end for
7: Initialize lenc as an all-zero vector of length n := 2m

8: R← repeat(lTinf , 1, n) ▷ concatenate n copies of lTinf
9: V← R⊙G ▷ element-wise matrix multiplication

10: for j = 1, 2, · · · , n do
11: v← nonzero elements in the j-th column of V
12: lenc(j)←

∏︁
j′ sign(v(j

′))×minj′ |v(j′)| ▷ using (12)
13: end for
14: l̂← lenc
15: return l̂

and I1,i ⊂ {1, 2, · · ·n}, respectively1. In fact, for any codeword
in the first half that has ui = 0 or ui = 1, we have exactly the
negative of that codeword in the second half, corresponding to
the same realization of the bits (u2, u, · · · , uk) but with ui = 1
instead of u1 = 0 (recall that the first row of G is all-one).
Therefore, using (9), we have

linf(i ̸= 1) ≈ max
i′∈I0,i

± lWH(i
′) − max

i′∈I1,i

± lWH(i
′)

= max
i′∈I0,i

|lWH(i
′)| − max

i′∈I1,i

|lWH(i
′)|. (11)

Once we have the LLRs of the information bits, we can use
them to calculate the LLRs of the encoded bits, denoted by lenc.
Note that the j-th encoded bit cj , j = 1, · · · , n, is obtained
using the j-th column of G as cj =

∑︁m+1
i=1 uigi,j . Therefore,

the LLR lenc(j) of the j-th encoded bit can be obtained using
the well-known min-sum approximation as

lenc(j) =
∏︂
i∈Λj

sign(linf(i))× min
i∈Λj

|linf(i)|, (12)

where Λj is the set of indices corresponding to the nonzero
elements in the j-th column of G. The soft-FHT algorithm is
summarized in Algorithm 2.

D. Complexity and Latency Analysis

The following two lemmas establish sufficient conditions for
decoding any Q-dimensional product code with an O(n log n)
complexity and an O(log n) latency.

Lemma 1. Any Q-dimensional product code can be decoded
with an O(n log n) complexity if the component codes can be
decoded with an O(n log n) complexity.

Proof: Let N (nq, kq) denote the decoding complexity of
the q-th decoder, q = 1, 2, · · · , Q. At each iteration, the decoder
needs to perform nt/nq decodings over length-nq vectors, each
incurring an N (nq, kq) complexity. Given that there are Q

1Note that these sets of indices are fixed across the decoding and can be
computed before hand to reduce the decoding complexity and latency.

decoders at each iteration, the overall decoding complexity Nt

will be

Nt = I

Q∑︂
q=1

nt

nq
N (nq, kq)

(a)
= Int

Q∑︂
q=1

O(log nq)

(b)
= IntO(log nt), (13)

where step (a) is by the assumption that the q-th decoder
requires N (nq, kq) = O(nq log nq) complexity, and step (b)

follows by
∑︁Q

q=1 log nq = log
∏︁Q

q=1 nq = log nt. As we
numerically verify in Section IV, I is a small number (usually
less than 5) and does not impact the complexity and latency.

Lemma 2. Any Q-dimensional product code can be decoded
with anO(log n) latency if the component codes can be decoded
with an O(log n) latency.

Proof: Given that all nt/nq decodings at each q-th
dimension can be executed in parallel, the overall latency is
I
∑︁Q

q=1O(log nq) = IO(log nt).

Lemma 3. Besides having an O(n log n) complexity, the FHT
algorithm performs the ML decoding in O(log n) latency for
first-order RM codes of blocklength n.

Proof: The core idea behind the implementation of
the FHT algorithm is that the 2m × 2m matrix H can be
written as the product of m matrices of size 2m × 2m, say
M1,M2, · · · ,Mm, each having only two non-zero elements
per column [27, page 421]. Therefore,

lWH := lH = lM1M2 · · ·Mm (14)

boils down to m matrix multiplications of the form fs :=
fs−1Ms, s = 1, 2, · · · ,m, with f0 := l. Given that each matrix
Ms has two non-zero elements per column, we only need a
single addition/subtraction to compute each of 2m elements of
each vector fs. Therefore, each fs can be computed with O(2m)
complexity and O(1) latency (when computing all 2m elements
of fs in parallel). Finally, since each of m vectors fs’s should
be computed serially, to get lWH, we need O(m2m) complexity
and O(m) latency in total.

Theorem 4. Any RM subcode that is obtained as the product
of order-1 RM codes can be decoded in O(n log n) complexity
and O(log n) latency via soft-FHT algorithm over component
codes.

Proof: This follows immediately from Lemmas 1 and 2,
and noting that the proposed soft-FHT algorithm, similar to the
FHT algorithm, requires O(n log n) complexity and O(log n)
latency to decode order-1 RM codes.

Theorem 5. The proposed coding scheme has the encoding
complexity of O(n log n) and encoding latency of O(log n).

Proof: Note, based on the general encoding procedure
of binary linear codes c = uG, that the encoding complexity
and latency are O(kn) and O(k), respectively. For order-1 RM
code components we have k = m + 1 = 1 + log n, which
results in the encoding complexity and latency of O(n log n)
and O(log n), respectively, for the code components. Following



Fig. 2. Accordance of the performance of 4 different decoders, namely FHT,
soft-FHT, MAP, and soft-MAP [11], for first-order RM codes. The impact of
the number of iterations I is also illustrated for RM(6, 1)⊗RM(2, 1).

similar procedures to Lemmas 1 and 2, one can show that the
overall encoding complexity and latency of any Q-dimensional
product code are also O(n log n) and O(log n), respectively, if
the underlying code components have that encoding complexity
and latency.

IV. NUMERICAL RESULTS

In this section, we present extensive numerical results to
study the performance of the proposed coding scheme in various
aspects, while focusing on 2D product codes. We first verify
the accuracy of the soft-FHT decoder in Fig. 2. As seen, all
decoders, namely FHT, soft-FHT, MAP, and soft-MAP [11],
match for order-1 RM codes. Fig. 2 also shows the impact of the
number of iterations I on the performance of a sample product
code, i.e., RM(6, 1)⊗RM(2, 1). It is observed that not many
iterations are required for our proposed decoder.

Note that, as shown in Fig. 1, we first do the decoding
over C1 and then over C2. As such, decoder D1 is expected
to decode noisier codewords than D2. Therefore, one needs
to use a stronger code (e.g., larger blocklength and/or lower
rate) for C1 compared to C2. In the context of the product
of order-1 RM codes, considered here, this is equivalent to
having m1 > m2. This is confirmed in Figs. 3 and 4 for
subcodes ofRM(13, 2) andRM(8, 2), obtained as the product
of RM(m1, 1) ⊗ RM(m2, 1) such that m1 + m2 = 13 and
m1 + m2 = 8, respectively. It is observed that the system
performance improves2 as we increase m1 −m2.

Fig. 4 also compares the performance of hard decoding
with soft decoding for various subcodes of RM(8, 2). The
results for hard decoding are obtained by applying the FHT
algorithm to the component codes to return hard decisions of
the noisy codewords over each dimension. The hard decisions
ŷi ∈ {0, 1}ni , i = 1, 2, are then mapped to 1 − 2ŷi before
feeding the next FHT decoder. As seen, our SISO decoder
significantly outperforms hard decoding. Additionally, the same
trend is observed for hard decoding as we increase m1 −m2.

To demonstrates the efficiency of the proposed SISO de-
coder, we compare its performance with the sub-RPA algorithm
[11], that achieves close-to-ML performance though with full-
projection decoding incurring O(nr log n) complexity for a sub-

2Note that the channel capacity is approximately linear in SNR over low-
capacity regimes. Therefore, based on the definition of Eb/N0, it is logical to
compare the performance of different low-rate codes in terms of Eb/N0.

Fig. 3. Impact of code component parameters on the performance of various
subcodes of RM(13, 2).

Fig. 4. Impact of code component parameters on the performance of various
subcodes of RM(8, 2). The comparison between hard decoding and soft
decoding is also included.

code of RM(m, r). Fig. 5 shows that the full-projection sub-
RPA decoding outperforms our low-complexity and low-latency
decoder by almost 0.5 dB at the BLER of 10−3, for a subcode of
RM(8, 2) obtained as the product of RM(6, 1)⊗RM(2, 1).
However, a more fair comparison is to limit the number of
projections in the sub-RPA decoder to a level with a comparable
complexity to our SISO decoder. Indeed, the full-projection
sub-RPA decoder applies n − 1 = 255 projections resulting
in O(n2 log n) overall complexity. If we apply 5 random pro-
jections for the sub-RPA decoder (we tried 8 different random
selections of 5 subspaces from 255 possible subspaces), the
performance is then inferior to our SISO decoder by a large
margin. Also, the sub-RPA algorithm cannot beat our low-
complexity decoder even with 16 projections (that is still much
more complex than our decoder). Our additional simulations
with 32 projections for the sub-RPA decoder show that there are
a few (2 out of 8) random trials of the selection of projections
that get close to our decoder, while most of the random trials
with 64 projections get slightly better than our decoder.

Finally, Fig. 6 compares the performance of the proposed
coding scheme with Turbo-repetition and polar codes. the
Turbo-repetition is obtained by repeating a (120, 40) Turbo code
68 times to obtain a (40, 8160) code. It is observed that the
equivalent RM product codes have sharper slopes and achieve
much better performances over moderate to low BLER regimes,



Fig. 5. Comparison of the proposed SISO decoder with the sub-RPA algorithm
[11] with full-projection as well as 5 and 16 random projections. Product code
RM(6, 1)⊗RM(2, 1) is considered.

Fig. 6. Comparison of the proposed coding scheme with Turbo-repetition and
polar under successive cancellation (SC) decoding.

thus demonstrating potential applications to URLLC. Fig. 6
also shows that it is useful to increase the rate of the second
component when the first component is a strong enough code to
support such a high rate. For example, RM(11, 1)⊗RM(3, 2)
(via soft-MAP [11] over RM(3, 2)) achieves almost 0.3 dB
gain over RM(12, 1) ⊗ RM(2, 1) and 0.9 dB over Turbo-
repetition at the BLER of 10−4 (note that the performance
of Turbo-repetition does not change in Eb/N0 by doubling
the number of repetitions as the SNR will increase by the
same factor of two that the rate is decreased). Moreover, our
RM(11, 1) ⊗RM(3, 2) code achieves the same performance
as the equivalent polar code of parameters (214, 84), under
successive cancellation (SC) decoding, despite its much lower
latency. List decoding of the proposed RM product codes to
further improve their performance is a subject of future research.

V. CONCLUSIONS

In this paper, we presented a low-complexity and low-latency
coding scheme, based on the product of smaller (particularly,
first-order) RM code components, with particular applications
to emerging low-capacity scenarios. We proposed an iterative
SISO decoder enabled by soft-FHT decoding of code compo-
nents. It was shown that the proposed coding scheme requires
O(n log n) complexity and O(log n) latency for both encoding
and decoding. Through extensive numerical results, we studied

the performance and efficiency of the proposed coding scheme
in various aspects. Given the recent breakthrough result [8]
proving the capacity-achievability of RM codes over any BMS
channel, the design of efficient decoders for RM codes becomes
even more substantial than ever. And, based on the fact that any
RM code can be written as the union of RM subcodes, defined
as the product of smaller RM codes [26], we believe that the
research in this paper opens a new framework toward efficient
decoding of RM codes.
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