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Abstract. We introduce ClimateMachine, a new open-
source atmosphere modeling framework which uses the
Julia language and is designed to be scalable on cen-
tral processing units (CPUs) and graphics processing units
(GPUs). ClimateMachine uses a common framework both
for coarser-resolution global simulations and for high-
resolution, limited-area large-eddy simulations (LESs). Here,
we demonstrate the LES configuration of the atmosphere
model in canonical benchmark cases and atmospheric
flows using a total energy-conserving nodal discontinu-
ous Galerkin (DG) discretization of the governing equa-
tions. Resolution dependence, conservation characteristics,
and scaling metrics are examined in comparison with exist-
ing LES codes. They demonstrate the utility of ClimateMa-
chine as a modeling tool for limited-area LES flow configu-
rations.

1 Introduction

Hybrid computer architectures and the need to exploit the
power of graphics processing units (GPUs) are increasingly
driving developments in atmosphere and climate modeling
(e.g., Schalkwijk et al., 2012; Palmer, 2014; Schalkwijk
et al., 2015; Marras et al., 2015; Abdi et al., 2017b, a;

Fuhrer et al., 2018; Schir et al., 2020). The sheer computing
power available on modern hardware architectures presents
opportunities to accelerate atmosphere and climate model-
ing. However, exploiting this computing power requires re-
coding atmosphere and climate models to an extent not seen
in decades, and portable performance and scaling across dif-
ferent platforms remain difficult to achieve (Fuhrer et al.,
2014; Balaji, 2021).

In this paper, we introduce ClimateMachine, a new open-
source atmosphere model written in the Julia programming
language (Bezanson et al., 2017) using the Julia Message
Passing Interface (MPI) to provide a computational frame-
work that is portable across CPU and GPU architectures. The
use of Julia aims to increase accessibility and utility of Cli-
mateMachine as a simulation tool. Julia, developed with the
aim of bridging the gap between productivity (e.g., Python)
and performance (e.g., Fortran) languages (Bezanson et al.,
2018), is a strong candidate for an application such as at-
mospheric large-eddy simulations (LESs). Features such as
package composability, GPU programming tools, and inter-
active programming interfaces contribute to its usability in
scientific computing. Compilation time, incompatibilities be-
tween Julia MPI programs and interactive read—eval—print
loops (REPLs), and the discovery of code issues during run-
time due to Julia’s dynamic typing are general drawbacks for
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new users of this language. Despite these drawbacks, a recent
assessment by Lin and McIntosh-Smith (2021) further sup-
ports the suitability of Julia as a high-performance comput-
ing language. The atmospheric model presented here is de-
signed to be usable across a range of physical process scales
from large-eddy simulations (LESs) with meter-scale resolu-
tion to global circulation models (GCMs) with horizontal res-
olutions of tens of kilometers, as in a few other recent models
(Dipankar et al., 2015). We focus on the LES configuration
of ClimateMachine in this paper.

Since the pioneering work on turbulence in stratified flows
by Lilly (1962), on horizontal subgrid-scale dissipation in
GCMs by Smagorinsky (1963), and the subsequent extension
of such models to LESs (Lilly, 1966), several models have
been developed to improve the ability of LESs to model at-
mospheric turbulence: from the extensive work by Deardorff
in the 1970s and 1980s (Deardorff, 1970, 1974, 1976, 1980),
Moeng in the 1980s and beyond (Moeng, 1984; Moeng and
Wyngaard, 1988; Sullivan et al., 1994; Moeng et al., 2003),
to Stevens, Teixeira, Mellado, and others in the last 2 decades
(Stevens et al., 2003, 2005; Savic-Jovcic and Stevens, 2008;
Matheou et al., 2011; Pressel et al., 2015; Matheou, 2016;
Matheou and Teixeira, 2019; Mellado, 2017; Mellado et al.,
2018). LES results in canonical flows are sensitive to the fine
details of the equations used to represent the flow dynamics,
the viscous dissipation, the thermodynamics, and the numer-
ical methods used to solve them (Ghosal, 1996; Chow and
Moin, 2003; Kurowski et al., 2014), especially in the case
of cloud simulations (Stevens et al., 2005; Siebesma et al.,
2003; Schalkwijk et al., 2012, 2015; Schneider et al., 2019;
Pressel et al., 2015, 2017).

One distinguishing aspect of the ClimateMachine LES is
that it uses a nodal discontinuous Galerkin (DG) formula-
tion to approximate the Navier—Stokes equations for com-
pressible flow (Giraldo et al., 2002; Hesthaven and War-
burton, 2008a; Giraldo and Restelli, 2008; Kopriva, 2009;
Kelly and Giraldo, 2012; Giraldo, 2020). The DG method
is a spectral-element generalization of finite-volume meth-
ods. It lends itself well to modern high-performance com-
puting architectures because its communication overhead is
low, enabling scaling on many-core processors including
GPUs (Abdi et al., 2017b). Another important consideration
within ClimateMachine is the use of total energy of moist
air as a prognostic variable, ensuring energetic consistency
of the simulations. We demonstrate that the ClimateMachine
LES can be successfully used to simulate canonical LES
benchmarks, including simulations of flows over mountains
and different cloud and boundary layer regimes (e.g., Straka
et al., 1993; Schir et al., 2002; Stevens et al., 2005).

In what follows, we describe the conceptual and numeri-
cal foundations and governing equations of ClimateMachine
and demonstrate the model in a set of standard two- and
three-dimensional benchmark simulations. Section 2 begins
by highlighting the governing equations. Their numerical ap-
proximation through the DG representation is described in

Geosci. Model Dev., 15, 6259-6284, 2022

A. Sridhar et al.: ClimateMachine: a new open-source code for atmospheric LESs on GPUs and CPUs

Sect. 3. Section 4 presents subgrid-scale models used in the
LES to represent under-resolved flow physics, with results
from key benchmarks presented in Sect. 5. Conservation
properties are examined in Sect. 6, and performance on CPU
and GPU hardware is described in Sects. 7 and 8, respec-
tively. Section 9 contains closing remarks. Additional details
about the model, boundary conditions, statistical definitions,
and computer hardware are summarized in the Appendices.

2 Governing equations
2.1 Working fluid

The working fluid of the atmosphere model is moist, poten-
tially cloudy air, considered to be an ideal mixture of dry air,
water vapor, and condensed water (liquid and ice) in clouds.
Dry air and water vapor are taken to be ideal gases. The
specific volume of the cloud condensate is neglected rela-
tive to that of the gas phases (it is a factor of 10° less than
that of the gas phases). All gas phases are assumed to have
the same temperature and are advected with the same veloc-
ityu = (u, v, w)T. Cloud condensate is assumed to sediment
relative to gaseous phases slowly enough to be in thermal
equilibrium with the surrounding fluid.

The density of the moist air is denoted by p. We use the
following notation for the mass fractions of the moist air mix-
ture (mass of a constituent divided by the total mass of the
working fluid).

— qq: dry air mass fraction

— gy: water vapor specific humidity

q1: liquid water specific humidity

gi: ice specific humidity

qc = q1 + gi: condensate specific humidity
— gt = qv + g total specific humidity

Because this enumerates all constituents of the working fluid,
we have g; 4+ gq = 1. In Earth’s atmosphere, the water vapor
specific humidity g, dominates the total specific humidity g,
and is usually (’)(10_2) or smaller; the condensate specific
humidity is typically O(10~%). Hence, water is a trace con-
stituent of the atmosphere, and only a small fraction of at-
mospheric water is in condensed phases. The working fluid
pressure is the sum of the partial pressures of dry air and wa-
ter vapor such that p = p(Raqq + Rvqy)T, where Ry is the
specific gas constant of dry air, and Ry is the specific gas
constant of water vapor.

2.2 Mass balance

Moist air mass satisfies the conservation equation:

0 ~
S+ V- (ow) = p, (1)
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Moist air mass is not exactly conserved where precipitation
forms, sublimates, or evaporates, where water diffuses, or
where condensate sediments relative to the gas phases (Bott,
2008; Romps, 2008). The right-hand side involves the local
source and/or sink of water mass Sql owing to such noncon-
servative processes, which we take into account although it is
small because water is a trace constituent of the atmosphere.

2.3 Total water balance

Total water satisfies the balance equation:

9(0q)
—LAC 4V - (pqun) = pS,, =V - (pdy)

+V. (quwCIAc) = psqt. )

Here, the source—sink Sql arises from evaporation or subli-
mation of precipitation and formation of precipitation. Diffu-
sive fluxes of moisture are captured by d . The effective sed-
imentation velocity of cloud condensate w, is defined such
that

geWe = qw] + qgiwj, 3)

with wy and w; defined to be positive downward (i( being the
upward-pointing unit vector). The right-hand side pS'ql of the
total water balance equation is the same as the right-hand side
of the mass balance in Eq. (1).

2.4 Momentum balance

The coordinate-independent form of the conservation law for

momentum is

a(pu)
ot

+V-[pu@u+(p—p)Iz]=—(p—p)V®
—2@x pu—V-(p1)—V - (dg ® pu)
+V - (qewek ® pu) + pFu, @)

where I3 is the rank-3 identity matrix, ® is the effective grav-
itational potential including centrifugal accelerations, 7 is a
viscous and/or subgrid-scale (SGS) momentum flux tensor,
and F, (typically with F,-u <0 so that F, represents a
momentum sink) is any other drag force per unit mass that
may be applied, for example, at the lower boundary. The term
involving the planetary angular velocity € accounts for Cori-
olis forces. To improve numerical stability, we have factored
out a reference state with a pressure p;(z) and density p;(z)
that depend only on altitude z and are in hydrostatic balance
so that they satisfy

Vpr=—pVO.

The tensor involving the diffusive flux d,, of water on the
right-hand side of Eq. (4) represents the momentum flux car-
ried by water that is diffusing; this term is usually very small,
but we take it into account.
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2.5 Energy balance

The specification of a thermodynamic or energy conservation
equation closes the equations of motion for the working fluid.
We use the total specific energy, ', as the prognostic vari-
able. Total energy is conserved in reversible moist processes
such as phase transitions of water.

Total energy satisfies the conservation law (Romps, 2008;
Bott, 2008):

9 (petot)

at

+ V- ((pe'” + p)u) ==V - (pFR)

—V-[p(J+D)]+p0+V - (pWek)
—V.-(u-pt)

— Y i+ ®)pClgj— gp) — M, )
je{v. i}

where the total specific energy ' is defined by
tot 1 2
e :§||u|| + P41 (6)

The constituents (dry air and moisture components) here are
assumed to be moving with the same velocity u (that is,
we neglect, as is common, the diffusive and sedimentation
fluxes of water in the kinetic energy). The constituents are
also assumed to be in thermal equilibrium at the same tem-
perature T so that the specific internal energy of moist air is
the weighted sum of the specific energies of the constituents
dry air (14), water vapor (Iy), liquid water (1;), and ice (I;):

I(T,q) = (1 —q)1a(T) + g Iy(T) + @ ((T) + ¢ [i(T), (7)

with

14(T) = cya(T — Tp), (8a)
I, (T) = cyy(T —To) + IV,Ov (8b)
L(T) = cy(T —Tp), (8¢)
L(T) = cvi(T —To) — Iip. (8d)

Here, cy for k € {d, v, 1, i} represents isochoric specific heat
capacities for the appropriate species denoted by k; they are
taken to be constant. The reference specific internal energy
Iy o is the difference in specific internal energy between va-
por and liquid at the arbitrary reference temperature Tp; I o
is the difference in specific internal energy between ice and
liquid at Tp (Romps, 2008). The reference internal energies
are related to specific latent heats of vaporization and fusion,
Ly, and Ly, at the reference temperature Ty through

IV,O = Lv,O - RVT()v (9)
L0 = L. (10)

The values of the thermodynamic constants we use are listed
in Table 1.
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Table 1. Thermodynamic constants in CLIMAParameters.

Ry 2871 (kgK)~!

Ry 4627 (kgK)~!

cvda 71757 (kgK)~!
cww 139757 (kgK)™!
ey 4181T(kgK)~!

cvi 21007 (kgK)~!

Ty  273.16K

Lyo 2.5008 x 10 Jkg™!
Lio  0.3336x 109Tkg™!

Furthermore, the flux FR is the radiative energy flux per
unit mass; J is the conductive energy flux per unit mass, and
D is the specific enthalpy flux associated with the diffusive
flux of water:

D = (¢ + RyT)d,, +e®d, + ¢*d,,. (11)

The flux u - pt is the energy flux associated with the viscous
and/or SGS turbulent momentum flux; Q is any internal en-
ergy source (e.g., external diabatic heating). The flux

W, = qlef(’twl + qieitmwi (12)

represents the downward energy flux due to sedimenting con-
densate.

The terms involving pC(gj — gp) (j € { v, 1,1}) represent
the loss of internal and potential energy of moist air masses
owing to precipitation formation; the kinetic energy loss is
neglected, consistent with the neglect of the source and/or
sink associated with precipitation formation in the momen-
tum balance in Eq. (4). Additional energy sinks involve the
energy loss owing to heat transfer from the working fluid
to precipitation as it falls through air and possibly melts at
the freezing level (Raymond, 2013); the associated energy
sources and sinks are generally provided by a microphysics
parameterization and are subsumed in the term M.

2.6 Equation of state

Pressure p is calculated from the ideal gas law:

P =pPRaT, 13)
where Ry, is the gas “constant” of moist air,

Rim(g) = Rq(1 — q) + Ryqy
= Ra[1+ (av — Dgi — eavge] . (14)

with the ratio of the gas constants of water vapor and of dry
air egqy = Ry/Ry.

2.7 Saturation adjustment

Gibbs’ phase rule states that in thermodynamic equilibrium,
the temperature 7 and liquid and ice specific humidities g
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and g; can be obtained from the three thermodynamic state
variables density p, total water specific humidity ¢;, and in-
ternal energy /. Thus, the above equations suffice to com-
pletely specify the thermodynamic state of the working fluid
given p, g, and I, with the latter obtained from the total en-
ergy via its definition in Eq. (6).

Obtaining the temperature and condensate specific hu-
midities from the state variables p, g, and I is the problem
of finding the root T of

I"(T;p,q) — I =0, 15)

where I*(T; p, q¢) is the internal energy at equilibrium, when
the air is either unsaturated and there is no condensate (gy =
q), or water vapor is in saturation and the saturation excess
gt — qv is apportioned, according to temperature 7', among
the condensed phases g and g;. We solve this nonlinear “sat-
uration adjustment” problem by Newton iterations with an-
alytical gradients (see Tao et al., 1989; Pressel et al., 2015).
To obtain the saturation vapor pressure and derived functions
needed in this calculation, we assume all isochoric heat ca-
pacities to be constant (i.e., we assume the gases to be calori-
cally perfect); with this assumption, the Clausius—Clapeyron
can be integrated analytically, resulting in a closed-form ex-
pression for the saturation vapor pressure (Romps, 2008).
This procedure allows the use of total moisture g, as the
sole prognostic variable but confines the system to the as-
sumption of equilibrium thermodynamics. Alternatively, us-
ing explicit tracers for the condensate specific humidities g
and g; allows non-equilibrium thermodynamics to be consid-
ered and mixed-phase processes to be explicitly modeled.

3 Discretization of the governing equations
3.1 Space discretization

The governing equations are discretized in space via a nodal
DG approximation. To describe the DG procedure, we recast
the Egs. (1)—(5) in divergence form as

% =-V.(Fi+F)+8(Y), (16)

where Y = [p, pu, pe'', pgi]” is an abstract vector of state
variables, F| contains the fluxes not involving gradients of
state variables and functions thereof, F, contains the fluxes
involving gradients of state variables (e.g., diffusive fluxes),
and S(Y) contains the sources.

The DG solution of Eq. (16) is approximated on the finite-
dimensional counterpart Q" of the flow domain €2, which
consists of Ngq, non-overlapping hexahedral elements €2,
such that

Ng.

Q"= .
e=1

https://doi.org/10.5194/gmd-15-6259-2022



A. Sridhar et al.: ClimateMachine: a new open-source code for atmospheric LESs on GPUs and CPUs 6263

where a superscript £ indicates the discrete analog of a con-
tinuous quantity. By virtue of tensor-product operations al-
lowed on hexahedral elements and the ability to rely on inex-
act quadrature when elements of order greater than 3 are uti-
lized, high-order Galerkin methods are particularly attractive
for operation-intensive solutions (Kelly and Giraldo, 2012).
Within each element, the finite-dimensional approximation
of Y (x, 1) is given by the expansion

(N+1)3

Yi.n= > YY), a7
a=1

where (N +1)3 is the number of collocation points within the
three-dimensional element of order N, and v/ represents the
interpolation polynomials evaluated at local point « inside
element e.

From now on, the subscript or superscript e is omitted with
the understanding that all operations are executed element-
wise unless otherwise stated. Furthermore, the physical ele-
ments in the x = (x, y,z) space are mapped to a reference
element & = (&, n, ). The three-dimensional basis functions
Vg result from the one-dimensional functions L;(§), Lj(n),
and Lk (¢) as the tensor product:

Vo (§) =Li(§) @ Lj() ® Li(5), Vi, jk=1,...N+1.

Each function L is a one-dimensional (1D) Lagrange poly-
nomial defined on the 1D reference element [—1, 1]. The La-
grange function evaluated at points i along the £ direction

within the element is

N+l
§—&
Li¢)= | | ,
I=1,1%i & —&

where §; represents the N + 1 co-located interpolation points
along &. The polynomials L;j and Ly in the other two direc-
tions 1 and ¢ are built in the same way. The N + 1 inter-
polation points may be chosen in a variety of ways (Dev-
ille et al., 2002; Karniadakis and Sherwin, 1999); here we
choose Legendre—Gauss—Lobatto (LGL) points (Giraldo and
Restelli, 2008). The Kronecker § property of the Lagrange
polynomials is such that

V(&) =8
in 1D, which, in three dimensions (3D), translates to

Wy (8, nb’gc)z‘sia@)gjb@akc- (18)

This allows us to reduce the operation count as follows.

https://doi.org/10.5194/gmd-15-6259-2022

We construct the space and time derivatives as

Y 0en) (Nf:)3 I (x)

Iy =« Y0, (19)
a=1
ay" Gy Y4
AL = X = =0, 20)

By virtue of the 3D Kronecker § property, the spatial deriva-
tives of the basis functions appearing here are given by

% wi(éa)

08 ——Ca, M, &) = T ®38b ® bk, (21
o Y

I/, (é}-a, Nbse) =6ia @ w(;;(nnb) ® 8¢k, (22)
o 0 ¢

’” e a8 =0 ©8 ® ‘”gf ). 23)

Using this property reduces the operation count significantly
since we only require 3N operations instead of the N3 oper-
ations otherwise needed to compute the derivatives at a given
node (Abdi et al., 2017b).

The operators defined on the reference elements are
mapped onto the physical space by means of the transfor-
mation

vy =J"'Vy, (24)
where V = (3, 9y,9;)” and V = (3, 3, ;)7 , and
1 & & &
J = Ny 71Nz
& &y &

is the inverse Jacobian of the transformation from physical
space to the reference element.

The DG approximation of the differential Eq. (16) is con-
structed by multiplying, within each element, the equation
by the test function ¥, and then integrating over the element
volume €2 such that

/1//0, (Y +V-F1(Y)+V. Fy(Y,VY))d2e
Qe

= / Ve S(Y)dQe, (25)

Qe

where 1/, within each element belongs to the function space
of square integrable piecewise polynomials of order N (i.e.,
¥ € L?). By definition, these functions are discontinuous
across element boundaries; differentiability is not globally
required but only within each element (Hesthaven and War-
burton, 2008b). Integrating the divergence term by parts

Geosci. Model Dev., 15, 6259-6284, 2022
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yields

/\yaaty dQe + f\yan - F5(Y)drI,
Qe Te

- /V\Da CF1(Y)dSe
Qe

—/\IIO,V-FZ(Y,VY)dQe
Q

_ / W, S(Y)dS., (26)
Qe

where . and I'. are the volume and boundary of each
element, respectively, n is the outward-facing unit vector
orthogonal to each element face, and F} is a numerical
flux. The imposition of the numerical fluxes across element
boundaries is the numerical mechanism that promotes conti-
nuity of the discontinuous solution across the elements. The
numerical fluxes are calculated as the approximate solution
to a Riemann problem across two neighboring elements. Cli-
mateMachine currently implements the Rusanov (1961), Roe
(1981), and Harten—Lax—van Leer contact (HLLC) (Toro
et al., 1994; Harten, 1983) numerical fluxes. The Rusanov
flux, for instance, is constructed as

n Fi(0) =3 [FI@)+F@")]
+nir, (Y~ Y1), 27

where Y~ is the state at the internal interface of element e,
Y T is the state at the external interface of e, and Ar (Y™, Yt
is an estimate of the maximum flow speed (e.g., the maxi-
mum eigenvalue of the Jacobian of the flux F; with respect
to the state variables, which is the speed of sound).

Because the second-order derivatives in V - F5 cannot be
directly built with the weak variational formulation if a dis-
continuous function space is used (Bassi and Rebay, 1997),
an auxiliary variable Y is introduced such that

VY=Y (28)
V- (uVY) = V- (uY), (29)

which can then be discretized via DG as
f\yav VY dQ, ~ yg\yan : (ﬁ* — m?) dr,
Qe Ce

+ / W V- (1Y) dS2e. (30)
Qe

Here, Y is approximated via centered flux like in Bassi and

Rebay (1997). We also refer to Abdi et al. (2017b) for more
details.

Geosci. Model Dev., 15, 6259-6284, 2022

For algorithmic efficiency, inexact quadrature is used to
calculate the integrals above. By virtue of inexact integration
and of Egs. (17), (19), and (24), the variational DG equations
yield the semi-discrete matrix problem:

dys
dr

witlJ I} (F°

_ T e e
_ (Vf’i)Fi+Si+wie|J|;° :

—FY),

i’

€29

where w; represents interpolation weights. The algebraic de-
tails to obtain this expression can be found in Giraldo and
Restelli (2008), where the s superscript indicates a value
that is defined on the element boundary surface. The system
(Eq. 31) is integrated on each element with respect to time.

In order to achieve good parallel scaling it is necessary to
overlap communication and computation to the fullest extent
possible. With DG (and all element-based Galerkin methods)
this can be naturally achieved by splitting Eq. (31) into terms
that arise from the approximation of volume integrals and
surface integrals. All volume contributions can be calculated
independently of element-to-element communication regard-
less of the order of the spatial approximation, as can surface
integrals that are not on elements which share boundaries
across MPI ranks. Thus, in the code, we start with Message
Passing Interface (MPI) communication, do all volume cal-
culations and surface calculations for elements not on bound-
aries shared across ranks, and then apply surface calculations
for elements on the rank boundaries after communication
operations have been completed. This approach makes DG
naturally effective with respect to parallel computing as pre-
viously shown by, e.g., Miiller et al. (2018) on CPUs and
Abdi et al. (2017b) on GPUs. At high order, element-based
Galerkin methods such as DG require fewer neighboring de-
grees of freedom than high-order finite-difference and finite-
volume discretizations.

3.2 Time discretization

ClimateMachine provides a suite of time integrators consist-
ing of explicit Runge—Kunge methods as well as low-storage
(Carpenter and Kennedy, 1994; Niegemann et al., 2012),
strong stability-preserving (Shu and Osher, 1988), and addi-
tive Runge—Kutta (ARK) implicit—explicit (IMEX) methods
(Giraldo et al., 2013; Kennedy and Carpenter, 2019).

The benchmarks presented in this paper with isotropic grid
spacing are run using the fourth-order 14-stage method of
Niegemann et al. (2012), which has a large explicit time-
stepping stability region. One of the benchmarks, however,
uses a highly anisotropic grid, which benefits from the use
of a 1D IMEX approximation; there we use a variant of the
horizontally explicit, vertically implicit (HEVI) schemes by
Bao et al. (2015). While 3D IMEX is also an option, its per-
formance in terms of time to solution is ultimately limited by
the availability of scalable 3D implicit solver algorithms.

https://doi.org/10.5194/gmd-15-6259-2022
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4 Subgrid-scale models

The governing equations are resolved with the discretiza-
tions presented in Sect. 3. This leaves unresolved but dynam-
ically significant scales on the computational grid that must
be modeled with three-dimensional SGS models. We note
that, while filtering over the grid volume is typically a formal
requirement for LES variables, no explicit filter kernel is ap-
plied to the equations here. The resolution of the prognostic
variables on a discretized grid constitutes an implicit filter-
ing operation, with an equivalent length scale given by the
grid resolution. In general, SGS fluxes are modeled as dif-
fusive fluxes, which capture down-gradient transport of con-
servable scalar quantities assuming that mixing lengths are
small compared with the scales over which the gradients of
the scalars vary. We address the physical form of the diffu-
sive flux components in Egs. (1)—(5), following which we de-
scribe standard models of subgrid-scale turbulence available
for use in ClimateMachine.

The diffusive turbulent stress tensor 7 is represented in
terms of the symmetric rate of strain tensor S such that

S(u) = % (Vu n (Vu)T) , (32)
with
T =—(20S). (33)

Here, v is a turbulent viscosity tensor whose components
are typically orders of magnitude larger than the molecular
viscosity and are a function of the velocity gradient tensor.

The diffusive flux d,, of total water specific humidity in
Eq. (2) is modeled as

dy =—(DVq), (34)

where D; is a turbulent diffusivity vector. The turbulent dif-
fusivity D; is related to the turbulent viscosity tensor v; via
the turbulent Prandtl number such that

D, = diag(vy)
Prt

; (35)

where Pr; takes a typical value of Pry = 1/3.
The unresolved flux of total enthalpy /4" results in a dif-
fusive subgrid flux term of the form

J+ D =—(DVh'), (36)

where J is the thermal diffusion flux analogous to the molec-
ular conductive heat flux, and D is the energy flux carried by
water vapor, defined in Eq. (11). For energetic consistency,
we use the same turbulent diffusivity Dy for moist enthalpy
and water.

4.1 Smagorinsky-Lilly model

The turbulent eddy viscosity v; in the model by Lilly (1962)
and Smagorinsky (1963) (SL henceforth) is defined by means
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of the magnitude of the rate of the strain tensor S, whose

o= L (0w 0uy
components are S;; = 5 (ax, + o5

v = (CsA)*/25;Si; (37)

for i, j =1,2,3; Cs is a constant Smagorinsky coefficient
usually within the range 0.12 < Cy < 0.21, and A is the LES
filter width. Inside each hexahedral element of order N and
side lengths L, , . along the x, y, and z directions, the effec-
tive grid resolutionis A(x, y, z) = Ly y ;/N, which is the av-
erage distance between two consecutive nodal points. We use
an isotropic eddy viscosity tensor v¢ in LESs, with its compo-
nents defined by Eq. (37). Similar eddy viscosity models can
be found in other recent models of compressible atmospheric
flows (e.g., Jahn et al., 2015; Shi et al., 2018).

), according to

4.2 Vreman eddy viscosity model

The SGS model developed by Vreman (2004) is of interest
because of its robustness across flow regimes and because it
has low dissipation near wall boundaries and in transitional
flows. Its computational complexity is similar to the classical
SL model. While the Vreman model is extensively used in
engineering LESs, it is uncommon in atmospheric flows, for
which a constant coefficient SL or the one-equation turbulent
kinetic energy (TKE) model by Deardorff (1970, 1980) is the
most common choice (see, e.g., Stevens et al., 2005).

The turbulent eddy viscosity of this model depends on
first-order derivatives of velocities and is given by

B
w=25C2 P (38a)
Ui, jui,j
where
Bg = B11B2 + B11B833 + B2B33
— (B + Bh + B2). (38b)
Bij = Atimitjm, (38¢)
oui (38d)
nJ an

Here, summation over repeated indices i, j € {1, 2,3} is im-
plied, Cj is the constant Smagorinsky coefficient, and u; rep-
resents the components of the resolved-scale velocity vector
so that u;_; is the velocity gradient tensor. The mixing lengths
A,, can be determined as the grid spacing in the direction
implied by subscript m; in this paper A, =L,y ./N. Near-
surface corrections to the characteristic length (e.g., Mason
and Callen, 1986) have not been applied to either subgrid-
scale model in the present work.

Richardson correction in stable regions of the atmosphere.
To account for the atmospheric stability and, effectively, re-
duce turbulence generation to zero in stably stratified atmo-
spheres, we multiply the eddy viscosity by the correction fac-
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tor
Lol Ri <0, 9
"7 Ymax(0,1—Ri/Pr)'/* Ri >0,
where
)
6y 0
Ri = S

Here, Pri=1/3 is a constant turbulent Prandtl number, and
0y is the virtual potential temperature for a given specific hu-
midity ¢; and specific liquid water content g (see, e.g., Dear-
dorff, 1980). This temperature is computed consistently with
the moist phase partitioning (saturation adjustment) in the
system and is therefore a reasonable measure of the effect of
buoyancy on flow stratification. This is applied to both turbu-
lence closures discussed in this paper.

4.3 Numerical stability

When high-order Galerkin methods are used to solve non-
linear advection-dominated problems, spurious Gibbs oscil-
lations may affect the solution and need to be addressed.
ClimateMachine provides a set of spectral filters, cut-off fil-
ters, and artificial diffusion methods to remove these oscil-
lations. While filters may be effective, we found that stabi-
lizing the LES solution by means of the SGS eddy viscos-
ity alone is effective and robust; this is in agreement with
results shown by Marras et al. (2015), Marras and Giraldo
(2015), and Reddy et al. (2022) in the case of continuous
Galerkin methods. Other methods of stabilizing numerical
solutions are discussed by Light and Durran (2016) and Yu
et al. (2015). This approach stems from the idea that under-
resolved scales are responsible for the numerical oscillations
observed in solutions through the introduction of unphysical
artifacts in properties of the solution variables. Detailed anal-
yses of the interactions of subgrid-scale models and filtering
techniques with DG numerics in the context of atmospheric
flows will be presented in a forthcoming paper.

5 Numerical experiments and discussion

We first demonstrate the convergence of the numerical solu-
tion to the Euler equations with an isentropic vortex advec-
tion problem. Following this, we demonstrate results from
the ClimateMachine using standard benchmark problems in-
cluding (1) dry rising thermal bubble in a neutrally strat-
ified atmosphere, (2) dry density current, (3) hydrostatic
and nonhydrostatic mountain-triggered linear gravity waves,
(4) the Barbados Oceanographic and Meteorological Experi-
ment (BOMEX), and (5) decaying Taylor—Green vortex in a
triply periodic domain.
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5.1 Advection of an isentropic vortex

To demonstrate convergence of the numerical solutions, we
consider the two-dimensional dry isentropic vortex advection
problem with fourth-order polynomials, consistent with the
benchmark cases shown in the sections that follow. We con-
sider the pure advection of a vortex in a domain with edge
lengths L = 0.1 m, with a vortex radius R = 0.005m. The
initial velocity profile is given by

u = (ugcosa + 8, ugsina + dy), 40)

with a prescribed translational velocity ug=150ms~!,
translation angle o = 77/4, and a vortex speed vg = 50ms ™!
so that the velocity perturbations are given by

y r\2
Sy = —vsxzexp (ﬁ) , 41
x/ r\2
Sy = vsxiexp (ﬁ) . (42)

The perturbations are computed with an offset coordinate
given by

x’:x—2Lﬂoor(
2

x+ L
2 ) (43)
'=y—-2LA1l
Y=y oor( 3

y+L
7 ) (44)

where x and y represent Cartesian coordinates, to ensure that
the resulting functions are periodic. The initial temperature
profile is given by

T=Too(1—xdipﬁexp(—i)2), 45)
2 Poo R

with a reference temperature of T, = 300 K, reference pres-
sure poo = 10° Pa, and the corresponding density ps, com-
puted from the ideal gas law. The simulation time is given
by fend = L/(10up). We consider fourth-order polynomials,
with increasing refinement given by the addition of elements
in the domain discretization, to generate the Euclidean dis-
tance between the initial state and the time-stepped solu-
tion state at zeng = 10 s, as shown in Fig. 1. The results
demonstrate consistent convergence across three numerical
flux methods for element numbers ranging from 5-320. The
convergence rate approaches 5 for the fourth-order polyno-
mials considered in this study.

Tests presented in Sect. 5.2-5.5 are executed in a 3D do-
main even when the problem is two-dimensional, in which
case we have effectively zero tendencies in the third dimen-
sion; this setup is identified as 2.5D in what follows.
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7? Rusanov

Euclidean Distance

10* 10
Number of Elements

Figure 1. Euclidean distance between initial and final solution
vectors of the prognostic variables generated using Rusanov (oc-
tagons), Roe (squares), and Harten—Lax—van Leer contact (HLLC)
numerical fluxes. Final solutions are evaluated at fopq = 10745
based on a translational velocity of 150ms~!. For each numeri-
cal flux method, we consider Ne = [5, 10, 20, 40, 80, 160, 320] el-
ements with fourth-order polynomials. The dashed line represents
Ng 3 convergence.

5.2 2.5D rising thermal bubble in a neutrally stratified
atmosphere

A neutrally stratified atmosphere with uniform background
potential temperature 6y = 300K is perturbed by a circular
bubble of warmer air. The hydrostatic background pressure
decreases with z as

cpd/Rd
P=Do (1 - z) (46)
¢pdto

in a domain € = [0, 10000] x [—o00, 00] x [0, 10000] m3. The
perturbation is as defined in Ahmad and Lindeman (2007),

AB =6, [1.0 - i} if r < rg =2000m, (47)
ro

where r=y(x—x)%+ (@ —z0% (Xe,ze) =
(5000,2000) m, and 6. =2K. The initial velocity field
is zero everywhere. Periodic boundary conditions are
used along y, and solid walls with impenetrable, free-slip
boundary conditions are used in the x and z directions.
Detailed information on boundary conditions for all test
cases is provided in Appendix A. Five runs are performed
at effective uniform resolutions Ax = Az = 250, 125, 62.5,
and 31.25, and 15.625m, with polynomial order N =4.
Potential temperature 6 and the two velocity components u
and w are plotted at r = 1000 s in Fig. 2 for the grid resolu-
tion of 15.625 m, which represents a reference solution for
comparison with solutions at coarser resolutions. The value
of the maximum potential temperature perturbation A6px
and of the horizontal and vertical velocity components
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agree with the 125 m resolution results shown by Ahmad
and Lindeman (2007). The grid dependence of the solution
is shown in Fig. 3, where potential temperature is plotted
for Ax = Az =31.25, 62.5, 125, and 250 m. While the
solution is visibly more dissipative at coarser resolutions,
the bubble’s leading edge position (and hence propagation
speed) is not sensitive to the grid resolution.

The SL and Vreman closures are used to model diffusive
fluxes in this problem. The solutions show no discernible dif-
ferences, and only the SL solution is shown. A visual com-
parison of the two becomes more meaningful when shear
triggers mixing, which is shown for the density current test in
Sect. 5.3. Although DG inherits an implicit numerical diffu-
sion as an effect of the numerical flux calculation across el-
ements, under-resolved advection-dominated problems still
require a dissipation or filtering mechanism to preserve the
solution’s stability. In the case of Marras et al. (2015), a dy-
namically adaptive SGS model was used, whereas a Boyd-
Vandeven filter (Boyd, 1996; Vandeven, 1991) was used by
Giraldo and Restelli (2008).

5.3 2.5D density current in a neutrally stratified
atmosphere

The density current problem by Straka et al. (1993) is used
to test the LES framework in a flow with Kelvin—Helmbholtz
instabilities. As for the rising thermal bubble, the back-
ground initial state is in hydrostatic equilibrium at uni-
form potential temperature 6p = 300 K. A perturbation of 6
centered on (xc, zc) = (0,3000) m and with radii (r,,r;) =
(4000, 2000) m is given by the function

)
AO = EC [1+cos(mer)] ifr <1, (48)

where 6, = —15K and r = \/(x —x)/r2+(z—z0)/r2 in

the domain Q = [0, 25600] x [—o0, oo] x [0, 6400] m3. Pe-
riodic boundary conditions are used along y; impenetrable
free-slip conditions are imposed in x and z. The flow is ini-
tially stationary.

To reach solution grid convergence, this test is classically
executed with a constant kinematic viscosity v =75m? s~
Increasingly finer structures are resolved when the resolu-
tion increases (Marras et al., 2012, 2015). A measure of
solution fidelity is the front position, which we compare
against other models in Appendix D for different resolu-
tions. The ClimateMachine results show quantitative agree-
ment with respect to the frontal location from a range of mod-
els with varying spatial discretizations at resolutions ranging
from 12.5 to 100 m. This demonstrates the scope for captur-
ing small-scale flow features with the numerics described in
Sect. 3.

The structure of potential temperature at the final time
t =900 s is shown in Fig. 4 for the Vreman and SL solutions.
When Rusanov is the chosen numerical flux (Fig. 4a and b),
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Figure 2. 2.5D rising thermal bubble with effective resolution Ax = Az = 15.625m and N = 4. Panels depict (a) potential temperature 6,
(b) horizontal velocity u, and (c) vertical velocity w at # = 1000s in 2 = 10 x 10 km?.
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Figure 3. 2.5D rising thermal bubble solution with N = 4 at decreasing effective resolution. Grid convergence of potential temperature 0
at four different resolutions to be compared against the 15.625 m resolution results shown in Fig. 2. (a) Ax = Az =31.25m, (b) 62.5m,
(¢) 125m, and (d) 250 m. Although the solution is visibly more dissipated at coarser resolution, the bubble’s leading edge (and hence
propagation speed) is not affected.

the solutions are very similar although Vreman is visibly less ported in Sect. 5.6. Despite Vreman being less dissipative
dissipative for a prescribed value of the Smagorinsky coeffi- than SL, the Roe (Fig. 4c) and HLLC (Fig. 4d) fluxes con-
cient Cs = 0.18, with finer scales of motion apparent in the tribute to additional numerical diffusion when compared to
contours of potential temperature. Further quantitative anal- Rusanov fluxes. Detailed analysis of the interaction between

ysis of the dissipative properties of the SGS models is re-
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numerical fluxes and subgrid-scale models will be presented
in future articles.

5.4 Passive transport over warped grids

To verify the correct behavior of the DG implementation in
the presence of topographic features, the simple passive ad-
vection test described by Schir et al. (2002) is used. The con-
servation law for the diffusive transport of a passive tracer x
is

a(px)
ot

+ V- (puy) =—=V-(pdy), (49)

which is approximated via DG in the same way as Eq. (16).
For a scalar tracer variable x, we model diffusive fluxes d
such that

dy =, DV ). (50)

where §, relates the ratio of turbulent diffusivity of the tracer
to that of the energy and moisture variables. For this test case,
however, tracer diffusivity is set to zero to assess the stabil-
ity and transport properties when using a warped grid. The
volume grid in ClimateMachine is built by stacking elements
above the surface and warping them around the terrain pro-
file. To reduce the element distortion across the domain, a
linear grid damping function is used such that a topography-
conforming surface of nodal points near the domain’s bottom
surface decays to a horizontal plane at higher altitudes (Gal-
Chen and Somerville, 1975).

The initial scalar field x is described by an ellipti-
cal perturbation centered on (xc, zc) = (25,9) km with radii
(ry, ;) = (25, 3) km such that

= D

xocos? (%), forr <1,
0 otherwise ,

where xo =1 and r = \/(x —x¢)/r} + (z — z¢)/r? in the do-

main 2 = [0, 150000] x [—o0, 0] x [0,30000] m3. An ef-
fective uniform grid resolution Ax = Az = 500 m is used for
this test. The initial velocity profile is given by

1, forz >z
u(z) = ug sin(%zzz—_zzll), forz;1 <z < 22, (52)
0, for z <z,

where ug = 10ms™!, z; = 4km, and 7z, = 5km.
The topography is defined by the function

Zste(X) =
hocos? (W) cos? (@) for |x —xg| <a (53)
0, for |x — xg| > a,

where hg =3km, a = 25km, A = 8 km, and x¢o = 75 km.
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The contours of x in Fig. 5 show minimal distortion in
spite of the warped elements directly above the topograph-
ical feature, indicating that the DG transformation metrics
from physical to logical space in the presence of topography
do not adversely affect the solution. Deviation from the ini-
tial profile of tracer magnitudes is between —4 % and +2 %
when the tracer is above the topographical feature, with max-
imum deviation amplitudes of —5 % and +3 % at the end of
the test, showing a favorable comparison with the hybrid and
SLEVE coordinate results presented in Schir et al. (2002).

5.5 Mountain-triggered gravity waves

To assess the correct implementation of a Rayleigh sponge
layer to attenuate fast, upward-propagating gravity waves
before they reach the top of the domain, two steady-
state mountain-triggered gravity wave problems suggested
by Smith (1980) are solved. The sponge layer is de-
scribed in Appendix A2. These problems consist of a flow
that moves eastward with uniform horizontal velocity u =
(u,0,0)ms™! in a doubly periodic domain. The flow im-
pinges against a mountain of height Ay, and base length a
centered at x. as

hma?

Gl 54)

Zste(X) =

The background state is in hydrostatic balance with Brunt—
Viisild frequency A such that

N2
0 = Osc exp <?Z)

for a given surface potential temperature 6gr, = Tgfc. The hy-
drostatically balanced pressure is

2

/R4
g —zN? d
= 1+— —) -1 , (55
P pSfC|: * deesfc-/\/'2 <exp( 8 ) >:| ( )

which yields, by means of the ideal gas law, the background
density:

Psfc
9Rd<L>CVd/CPd

Psfe

= (56)

These tests are affected by spurious oscillations that ap-
pear approximately 5000 s into the simulation. In the absence
of shear, because of the free-slip bottom and top boundaries,
the SGS models are unable to introduce sufficient diffusion
to remove the Gibbs modes so that an exponential filter (Hes-
thaven and Warburton, 2008b) of order 64 was applied on the
velocity field to remove spurious modes. The filter assumes
the form of

o) =e", (57)

where s is the filter order, n is a function of the polyno-
mial order, and o = —log(em) is a parameter that controls
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2500 5000

10000 12500 15000

Figure 4. 2.5D density current. Potential temperature 6 (K) at # = 900s computed with an effective DG resolution of Ax = Az =12.5m
with domain extents shown in meters. (a) Rusanov numerical flux with SL SGS. (b) Rusanov numerical flux with Vreman SGS. (¢) Roe
numerical flux with Vreman SGS. (d) HLLC numerical flux with Vreman SGS. The color scale ranges from 6 = 285 to 300 K. A shared

color bar for all plots is shown in panel (a) for clarity.

the smallest value of the filter function for machine preci-
sion g\1. In double precision, o ~ 36. The filter in this form
is applied to perturbations of the prognostic variables from
the balanced background state.

5.5.1 Linear hydrostatic

The linear hydrostatic case proposed by Smith (1979) con-
sists of a neutrally stratified isothermal atmosphere with
6 = 6stc = 250 K. The background atmosphere is isothermal
with temperature 7p, resulting in a Brunt—Viiséla frequency
of

Geosci. Model Dev., 15, 6259-6284, 2022
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The flow moves in a periodic channel along the x direction
with velocity # = (20m s~ho, 0) over a mountain with Ay, =
1 m and @ = 10000 m. A Rayleigh absorbing layer is added
at z; = 25 km with relaxation coefficient a = 0.5s~!, power
y =2, and domain top ztp = 30km (see Appendix A2 for
details). The domain extends from O to 240 km in the hori-
zontal direction.
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Figure 5. Solution of the passive transport of scalar yx at three different time instances, with contours of tracer quantity x (from 0, outermost
contour, to 1, innermost contour) overlaid on a representation of nodal points on the underlying mesh. Tracer advection is driven by a
prescribed velocity profile from left to right. As it crosses the deformed grid above the mountain ridge, only a minimal distortion of tracer
contours is observed, which is completely recovered back to a smooth solution downwind of the ridge.

The steady-state solution at # =15000s is shown in
Fig. 6a. It is consistent with the DG results shown by Giraldo
and Restelli (2008).

5.5.2 Linear nonhydrostatic

The linear nonhydrostatic mountain waves are forced by a
flow of uniform horizontal velocity u = (lOms_1 ,0,0) over
a mountain with 2, = 1 m and a = 1000 m. The domain ex-
tends from O to 144km in the horizontal direction and is
30km high.

The steady-state solution at r =18000s is shown in
Fig. 6b. It is consistent with results shown by Giraldo and
Restelli (2008).

5.6 Decaying Taylor—Green vortex

The decaying Taylor—Green vortex (TGV) is a classical test
to estimate the dissipative properties of turbulence models in
the absence of solid boundaries. The gravity-free flow is ini-
tialized in a triply periodic cube of dimensions [—, 7]°. The
solenoidal initial velocity field ug = (ug, vo, wo) is defined as

ug = Upsin(kx) cos(ky) cos(kz), (58)
vo = Ugcos(kx)sin(ky) cos(kz), 59)
wo =0, (60)

with initial pressure

U2
PO = Poo + p0160 (24 cos(kz))(cos(2kx) + cos(2ky)), (61)
where k is the wavenumber, Uy= 100m s~ po =

1.178kgm™3, and pe, = 101325 Pa. Fourth-order polyno-
mials are used for all simulations considered in this section.
We first consider the volume-averaged kinetic energy,
which provides insight into the dissipation characteristics of
the flow with respect to nondimensionalized time t* = kUpt.
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In integral form, the kinetic energy can be written as

Ei = () = = / de” (62)
= —(|lU = u-u 5
k=3 200

Qh

where (-) denotes a volumetric average over the volume Qh.
If the flow is inviscid, the kinetic energy should be conserved.
This is only valid if the numerics or SGS models do not in-
troduce numerical dissipation or if all flow scales are well
resolved. As such, the time series of kinetic energy is a met-
ric that shows the point along the simulation at which the
solution becomes under-resolved. The kinetic energy dissi-
pation rate is the second quantity of interest, which allows us
to quantify the rate of decay of kinetic energy over time. This
is defined as
dEy

€= T (63)
A third quantity of interest for this analysis is enstrophy,
which is defined as the square of the vorticity norm:

(@) = (IIV x u|?). (64)

The enstrophy of a fully resolved flow should go to infinity
if the flow is inviscid. Therefore, enstrophy can be used as a
criterion to estimate the effect of numerical dissipation.

By means of a three-dimensional fast Fourier transform
(FFT) of the velocity field, the kinetic energy spectrum is
calculated as

2r w K

E(k):///A(kx,v,g)kZSin(g) dk dv de, (65)
00 0

where K = 2m /L, L is the characteristic length, A is a three-
dimensional array of Fourier mode amplitudes, v =k;/k,

¢ =tan~'(ky/ky), and k = k2 + k§ + k2. The TGV flow is
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Figure 6. Vertical velocity w for two linear mountain wave tests. Velocity contours are shown in the range from —4 x 1073 ms ! (blue) to
4% 103 ms™! (red). (a) Hydrostatic test at = 15000 s, with an effective horizontal resolution Ax = 500 m and effective vertical resolution
Az =240m with N = 4. (b) Nonhydrostatic test at t = 18000 s, with an effective horizontal resolution Ax = 200 m and effective vertical

resolution Az = 160 m with N = 4.

simulated using both the SL and Vreman models on grids
with 323, 643, 1283, and 1923 points. Figure 7 shows a 3D vi-
sualization of the flow at two different nondimensional times
using zero Q-criterion isosurfaces, which identify balance
between rotation and shear in the flow (Hunt et al., 1988).
As the flow evolves, the flow generates smaller and smaller-
scale vortices. Eventually, the flow becomes under-resolved,
making it impossible to conserve kinetic energy. As the flow
continues to evolve, an instability occurs, which causes the
disintegration of the vortex sheet. After this point, the TGV’s
dynamics are controlled by the interaction of small-scale vor-
tical structures formed by vortex stretching.

Results for the coarse-resolution simulations are presented
in Fig. 8, and those for the fine-resolution simulations are
shown in Fig. 9. Figure 8a shows that the kinetic energy
changes with time for the 323 resolution simulations are dis-
tinctly different from their higher-resolution counterparts in
Fig. 9a. The severe under-resolution of the flow seems to gen-
erate much larger amounts of dissipation early on. This is fur-
ther demonstrated when comparing Figs. 8b and 9b. Beyond
643 resolution, the peaks in dissipation are larger as the res-
olution increases, since smaller vortices can be resolved be-
fore the instability eventually happens. The 32° simulations
(Fig. 8b) have larger peaks than even the 1923 (Fig. 9b) simu-
lations, demonstrating that the under-resolution of the vortex
structures leads to different, more dissipative early-flow be-
havior.

Figure 9b shows that the 128> and 192° simulations us-
ing both SGS closures are characterized by a peak in the ki-
netic energy dissipation at t* = 9. Brachet et al. (1983) and
Brachet (1991) demonstrate this result for their direct nu-
merical simulations (DNSs) of the Taylor—Green vortex for
a Reynolds number R. = Up/ kv > 3000. Examining Fig. 8b,
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the 64° simulations suggest a dissipation peak time of * = 8,
and the 323 simulations suggest a dissipation peak time of
t* = 6. The underprediction of the time at which the peak
occurs is due to an inability to resolve the vortices that ap-
pear early on in the flow’s evolution at extremely coarse res-
olutions. This leads to the early appearance of the instabil-
ity which causes the dissipation peak. Furthermore, we see
that the kinetic energy decay occurs sooner for the lower-
resolution simulations as a result of increased dissipation
from the SGS models.

Figure 9c also shows that the flow’s enstrophy behaves as
expected, with peak values at r* =9 coinciding with peaks
in kinetic energy. The higher-resolution simulations are able
to reach a higher enstrophy than the lower-resolution sim-
ulations as they are naturally able to resolve more vortical
motion. On the other hand, the choice of SL or Vreman mod-
els seems to have very little impact on the ability to resolve
more small-scale eddies for low resolutions. However, the SL
SGS scheme leads to higher enstrophy than the Vreman SGS
scheme, increasingly so as resolution increases.

Figure 10 shows the kinetic energy spectra obtained for
the higher-resolution simulations used for this test. All simu-
lations present peaks in their respective spectra at k = 2 to 4,
which persist even as the flow evolves over time. These peaks
are explained by Drikakis et al. (2007) as being imprinted on
the spectra by the initial velocity field. Furthermore, as the
flow evolves, all spectra show a slope close to the theoreti-
cal k7/3 of homogeneous turbulence and eventually decay
towards a k3 slope at higher wavenumbers. This behavior
is consistent with the DNS results of Brachet et al. (1983),
who showed, using DNS, that this transition occurs around
k = 60.
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Figure 7. Taylor—-Green vortex. Isosurfaces of zero Q-criterion (these identify surfaces where the vorticity norm is identical to the strain rate
magnitude) on a 1923 grid, corresponding to 48 elements of order 4 at (a) r* = 4 and (b) * = 60. Plots are shown for the Vreman solution.
The isosurfaces of the Q-criterion are colored by dimensionless kinetic energy.
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and (c) enstrophy, each computed on 323 and 643 grids with the Vreman and SL SGS models.

5.7 Barbados Oceanographic and Meteorological
Experiment (BOMEX)

BOMEX features a shallow-cumulus-topped boundary layer
as described in Holland and Rasmusson (1973). The setup
of this test follows Siebesma et al. (2003). The initial pro-
files are characterized by a well-mixed sub-cloud layer be-

https://doi.org/10.5194/gmd-15-6259-2022

low 500 m, a cumulus layer between 500 and 1500 m, an in-
version layer up to 2000 m, and a free troposphere above.
Large-scale forcing includes prescribed large-scale subsi-
dence, horizontal advective drying, radiative cooling, and
pressure gradient effects. Sensible and latent heat fluxes at
the surface are prescribed to SHF =n-(pJstc) =9.5W m~2
and LHF = n - (0o D) = 147.2 W m~2. Additional detail on

Geosci. Model Dev., 15, 6259-6284, 2022
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Figure 9. Evolution of volumetrically averaged quantities in the numerical solution to the Taylor—Green vortex problem computed on 1283

and 1923 grids with the Vreman and SL SGS models.

the application of boundary conditions is presented in Ap-
pendix A. The domain, €2 = 6400 x 6400 x 3000 m?3, is dou-
bly periodic in the x and y directions. A Rayleigh sponge
layer (see Appendix A2 for details) is applied along the z di-
rection to damp upward-propagating gravity waves. On the
bottom surface, a momentum drag forcing is applied (see
Appendix Al). The effective horizontal and vertical reso-
lutions are Ax = Ay = 100m and Az =40 m, respectively.
The simulation time is 6 h.

Figure 11 shows the vertical profiles of the domain mean
thermodynamic and turbulence properties over the last hour
of the simulations. Figure 12 shows the time series of lig-
uid water paths (LWPs), cloud cover, and turbulence kinetic
energy. The time-averaged results of the vertical profiles of
01, q1, cloud fraction, and gy = g; — q1 during the last hour
are in good agreement with the same quantities presented by
Siebesma et al. (2003). The SGS model does not have much
effect on the simulation characteristics, except that the Vre-
man SGS model produces a stronger peak in the variance of
vertical velocity, w'w’, near the cloud top. Although the dif-
ference is mild, it is possibly due to the low dissipation nature
of the Vreman’s model. Excluding the first hour of flow spin-
up, the results compare well with PyCLES (Pressel et al.,
2015) and fall within the ensemble range shown in Fig. 2

Geosci. Model Dev., 15, 6259-6284, 2022

of Siebesma et al. (2003). PyCLES solves the anelastic con-
servation equations with entropy as the prognostic thermo-
dynamic variable using weighted essentially non-oscillatory
(WENO) numerics. Differences in the initial conditions (as
seen in the initial LWP in Fig. 12) are likely contributing to
the initial mismatch in horizontally averaged properties of
moisture and turbulence. Details on the computation of hori-
zontally averaged profiles can be found in Appendix B.

A large-domain simulation of BOMEX with effective hor-
izontal resolution Ax = Ay =50m and vertical resolution
Az =20m in a 30 x 30 x 3.6km® domain was executed us-
ing 16 GPUs on the Google Cloud Platform. The simulation
was executed using 1D IMEX time integration (1D implicit
in the vertical direction and 2D explicit in the horizontal di-
rection) at maximum horizontal advective Courant number
C =0.9. A visualization of instantaneous shallow cumulus
structures is shown in Fig. 13.

https://doi.org/10.5194/gmd-15-6259-2022
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Figure 11. BOMEX. Profile of the mean state of liquid potential temperature, total specific humidity, cloud fraction, liquid water specific
humidity, and variance of the vertical velocity fluctuations averaged along the last hour of the simulation. The solutions with PyCLES and
ClimateMachine were calculated with effective grid resolution Ax = Ay = 100m and Az =40m. Results calculated with Vreman (blue
lines) and SL SGS (orange lines) models in ClimateMachine are compared against results of PyCLES (grey lines) in its paired SGS modality

using the SL model.

6 Verification of conservation property of prognostic
variables

We respectively define the time-dependent normalized total
mass and energy changes as

Jolp@) — p(19)1d<2
Jop(t0)dS2

AM(t) = (66)

https://doi.org/10.5194/gmd-15-6259-2022

and

Jalpe® ) = pet9)] dg2

tot _
Ape Of (1) = fgpetOt(l‘o)dQ

, (67)

where ty indicates the initial time and 2 is the full domain.
Figure 14 shows AM (t) and Ape'©'(¢) for a 1 h simulation of
a moist rising thermal bubble. The SL eddy viscosity model
was used to represent under-resolved diffusive fluxes. This

Geosci. Model Dev., 15, 6259-6284, 2022
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Figure 12. BOMEX. From left to right, time series of horizontally averaged LWP, cloud cover, and turbulence kinetic energy diagnosed from
ClimateMachine using Vreman and SL. These results are consistent with ensemble results presented in Fig. 2 of the intercomparison study

by Siebesma et al. (2003). Line colors are as in Fig. 11.
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Figure 13. BOMEX. Instantaneous visualization of the shallow cumulus structures on a 30km x 30km x 3.6 km domain. The white shading
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Figure 14. Time evolution of the mass and total energy loss (relative
change when compared against initial conditions) for a moist ther-
mal bubble simulation. Blue line: relative change in energy; orange
line: relative change in mass.

simulation was run using free-slip boundary conditions with
adiabatic walls. We note that the loss of energy and mass
in the system is contained to O(10~1%): that is, numerical
roundoff error. This result highlights a key benefit of the gen-
eral formulation of the prognostic conservation equations in
flux form, which guarantees conservation properties up to
source or sink contributions.
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7 CPU strong scaling

Demonstration of favorable scaling capabilities across multi-
ple hardware types is critical to the utility of ClimateMachine
as a competitive tool for large-eddy simulations. Toward this,
we first examine strong scaling on CPU architectures. The
rising thermal bubble problem described in Sect. 5.2 is used
as the test problem, with its domain extents modified to form
an 8.192 km3 cube, with an effective nodal resolution of 32 m
to ensure that CPU memory on a single rank is maximally
loaded. For tests with multiple MPI ranks, each rank resides
on a unique node to ensure communication overhead is ap-
propriately represented; in practice, one would expect to use
multiple ranks per node. Scaling across multiple threads is
not assessed in the present work. Figure 15 shows the speed-
up in time to solution for 10 time integration steps of the
test problem with Npynks € {1, 2,4, 8, 16, 32} for both dry and
moist simulations. We exclude checkpoint, diagnostic, and
periodic runtime output steps from time-to-solution measure-
ments. In both dry and moist simulations, we see a speed-up
of approximately 19.7 when using 32 ranks compared with
the corresponding single-rank simulation.

A single-rank GPU run of the test problem on a 6.144 km?
domain with 32 m effective resolution (restricted by GPU
memory capacity) has a wall-clock time for 10 integration
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Figure 15. Speed-up of the time integration (solver) step relative to
the time to solution for a single-rank simulation of the rising thermal
bubble problem in an 8.192 km? domain with a uniform effective
resolution of 32m (with fourth-order polynomials). Blue circles:
dry simulation; orange squares: moist simulation.

steps of 314 s. The wall-clock time for a 32-rank CPU run
was 449 s for a problem 2.37 times larger.

This provides an estimate for a comparison between CPU
and GPU hardware performance. However, the balance be-
tween memory bandwidth limits and computing operation
limits guides the maximum scaling possible on the GPU
hardware relative to its CPU counterpart, so this cannot be
interpreted as a direct comparison across hardware types.
Based on the present results, we conclude that it is more fea-
sible to pursue strong scaling improvements on CPU hard-
ware than on GPU hardware. Further optimization and ex-
ploration of scaling in ClimateMachine are ongoing work.
Additional details on the hardware used for scaling tests can
be found in Appendix C.

8 GPU weak scaling

To test the multi-GPU scalability of ClimateMachine, we
first execute a BOMEX setup that is sufficiently large to
saturate one GPU. The single-GPU execution represents the
baseline from which we calculate the average time per time
step denoted by 7;. We then expand the domain size to
match an increase in the number of GPUs and measure the
average time per time step. Our scaling is then obtained
as the ratio #1/t,, with t, being the average time per time
step obtained with n GPUs. The results are obtained using
up to 16 NVIDIA Tesla V100 GPUs running Julia version
1.4.2, CUDA 10.0, and CUDA-aware OpenMPI 4.0.3. Fig-
ure 16 shows excellent weak scaling for up to 16 GPUs
on Google Cloud Platform resources. Over 95 % weak scal-
ing was achieved with 1D IMEX time integration and over
98 % for the simulation with explicit time stepping. This is
an encouraging result and supports the ability to prototype
smaller problem setups and deploy larger simulations in the
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Figure 16. BOMEX weak scaling using 1D IMEX versus fully ex-
plicit time integration.

ClimateMachine limited-area configuration at identical reso-
lutions without significantly compromising the time to solu-
tion.

9 Conclusions

This paper introduced and assessed the LES configuration
of ClimateMachine, a new Julia-language simulation frame-
work designed for parallel CPU and GPU architectures. No-
table features of this LES framework are the following:

— conservative flux form model equations for mass, mo-
mentum, total energy, and total moisture to ensure
global conservation of dynamical variables of interest
(up to nonconservative source or sink processes);

— discontinuous Galerkin discretization with element-
wise evaluation of the approximations to volume and
interface integrals, resulting in reduced time to solution
due to MPI operations;

— application of model equations to the solution of bench-
mark problems in typical LES codes, including atmo-
spheric flows in the shallow cumulus regime (BOMEX);
and

— demonstration of strong scaling on CPUs with up to 32
MPI ranks (speed-up of 19.7 in time to solution) and
weak scaling with up to 16 GPUs (95 %-98 %) in both
dry and moist simulation configurations.

Geosci. Model Dev., 15, 6259-6284, 2022
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Appendix A: Boundary conditions
Al Solid walls and wall fluxes
Al.l Momentum

Rigid surfaces are considered impenetrable such that the
wall-normal component of the velocity vanishes at rigid
boundaries by imposing u-n = 0. The viscous sublayer is not
explicitly resolved, and a momentum sink is applied to model
the effect of wall-shear stresses. While the wall-normal ad-
vective momentum flux vanishes, the wall-normal viscous or
SGS momentum flux, also known as the bulk surface stress
(units of Pa),

n-(pr)=—n-[2pvSup)], (Al)

is not necessarily negligible. Here, S(up) = (Vu, + Vug)/Z
is the strain rate tensor of the near-surface wall-parallel ve-
locity, up. We note that, throughout Appendix A, n refers to
the inward-pointing normal vector at domain boundaries, dis-
tinct from the prior definition of the element-interface normal
vector in Sect. 3.

In the case of free-slip conditions at a solid surface (indi-
cated by subscript “sfc”), there is no viscous or SGS momen-
tum transfer between the atmosphere and the surface, such
that

n: (p1)|sfc =0.

Because the momentum flux tensor depends linearly on ve-
locity derivatives, this amounts to homogeneous Neumann
boundary conditions on velocity components parallel to the
surface. On the other hand, viscous drag is imposed by the
classical aerodynamic drag law,

n-(pt) = —pCaintllUp,incl|Up,int, (A2)

where the quantities with subscript int are evaluated at an in-
terior point xjy; adjacent to the surface. The drag coefficient,

Cd,int = Ca(Y; Xiny),

can depend parametrically on state variables Y (x, ) and on
the position xj,; of the interior point relative to the surface.
In the present implementation, the plane of interior points
relevant to boundary flux evaluation is interpreted as the
first layer of interior nodes in the surface-adjacent elements.
The drag law boundary condition amounts to inhomogeneous
Neumann boundary conditions on velocity components par-
allel to the surface.

Al.2 Specific humidity

As for momentum, the advective specific humidity fluxes
normal to a rigid surface vanish, but the diffusive or SGS

Geosci. Model Dev., 15, 6259-6284, 2022

specific humidity fluxes normal to the surface may not van-
ish. Normal components of SGS fluxes of condensate, ¢gj, are
generally set to zero at boundaries,

n-(pdg)|,. =0, (A3)

implying homogeneous Neumann boundary conditions (n -
Vg =0) on the condensate specific humidities. The total
SGS specific humidity flux then reduces to the vapor flux
at the surface. SGS turbulent deposition of condensate (fog)
on the surface can in principle occur; representing this would
require nonzero condensate fluxes at the surface. With the
assumption of zero condensate boundary fluxes, we have

n-(pdg)| . =n-(odg,) (A4)

sfc’

where evaporation (measured in kgm~—2s~!), or condensa-
tion if negative, is given by

E=n- (pd‘iv)|sfc =-n: (’ODtht)\

Evaporation can be zero (water impermeable) or it can be
given as a function of Y at the surface according to

(A5)

sfe”

E=n'(,0dqv)|sfc:E(Ystfc’t)v (A6)

which, numerically, translates into an inhomogeneous Neu-
mann boundary condition on the vapor specific humidity.

Al1.3 Energy

As for momentum and humidity, the advective energy fluxes
normal to a rigid surface vanish, but the diffusive or SGS flux
of total enthalpy, 2!, normal to the surface (units of W m~2),

n-p(J+D)=—n-(pDVh'), (A7)

may not vanish. Because the kinetic energy contribution to
the total enthalpy flux near a surface is usually 3—4 orders
of magnitude smaller than the thermal and potential energy
components, it is generally neglected so that the total en-
thalpy flux J 4+ D reduces to a flux of moist static energy
MSE = h + ®. The surface can be insulating, in which case
the SGS transfer of total enthalpy between the atmosphere
and the surface is zero:

n-p(J+ D)se =0, (A8)

which, from a numerical point of view, translates to a ho-
mogeneous Neumann condition on the total enthalpy (n -
VA = 0) or, by neglecting kinetic energy, on MSE such that
(n - VMSE = 0). With known MSE, the moist static energy
flux (MSEF) at the surface is given by

n-p(J + D)se = MSEF(Y; x4, 1)

= —pCh,intlltp,int | (MSEine — MSEgtc). (A9)
with Cy, ine the thermal exchange coefficient.

The value of pn-(J + D) can also be assigned by the

summation of given LHF and SHF, as done in the case of
BOMEX described in Sect. 5.
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A2 Non-reflecting top boundary

To prevent the reflection of fast, upward-propagating gravity
waves at the top boundary, a Rayleigh damping sponge is
added to the right-hand side of the momentum equation (see
Sect. 5). The damping in the momentum equations takes the
form

ou ( )
— =...—tp(u—u ,
97 sP relax

(A10)
where ueax 18 a specified background velocity to which the
flow is relaxed within the absorbing layer, with a characteris-
tic relaxation coefficient tg. Of the many alternative options
known for 74 (e.g., Durran and Klemp, 1983), the default in
ClimateMachine is

Z—Zs

. 1
T, = asin? (— (A11)

) for z > zg,
2 Ztop — <s

where the absorbing sponge layer starts at z = z, y is a pos-
itive even power typically set to 2, and « > 0 is a relaxation
coefficient typically of order O(1s™1).

A3 Numerical implementation

For the boundary velocity corresponding to the impenetrable
wall condition, we use the following reflecting condition:

(A12)
(A13)

Upc=u —(n-u n),

ut =2up.—u".

The no-slip condition follows from Eq. (A12) by setting all
components of uy. = 0. Boundary conditions on a scalar x
are similarly specified as follows:
+ _ —
X =2x0c — X (Al4)
Nonzero mass flux boundary conditions can be imposed
at penetrable or free surfaces by applying the transmissive
boundary condition:

t=u". (A15)

Diffusive fluxes are applied by a direct specification of the
wall-normal fluxes, and over-specified boundary conditions
are avoided by using only the interior (7) gradients and first-
order fluxes.

https://doi.org/10.5194/gmd-15-6259-2022

Appendix B: Statistics

Since the flow is compressible, we use density-weighted
Favre averages following Canuto (1997) when computing
horizontally averaged statistics. For a scalar ¢, the density-
weighted average ¢ at a given height level z is defined by

¢ = @, (B1)
(p)

where (-) denotes a horizontal mean. All calculations of hor-
izontal statistics are done on the DG nodal mesh to avoid
introducing interpolation errors (Yamaguchi and Feingold,
2012), with metric terms accounted for in the descriptions
of diagnostic variables. The density-weighted vertical eddy
flux for a variable ¢ is defined by

w/_qb’ — M (B2)
(p)

where

¢'=0-0 (B3)

denotes the deviation from the density-weighted mean. The
variance can then be defined as

— 2
¢/2 — M (B4)

(p)

Appendix C: Hardware

This section summarizes the hardware characteristics for the
primary computing resources used in tests throughout this
paper. This is particularly relevant to the data presented in
Sect. 7. Compute nodes for the CPU tests were 14-core In-
tel Xeon (2.4 GHz), with a maximum memory capacity of
1.5TB. GPU nodes on this cluster were of 14-core Intel
Broadwell (2.4 GHz) type with 28 cores per node and 256 GB
of memory per node. Compute nodes on the Google Cloud
Platform leverage Tesla V100 GPUs available for general-
purpose use.

Geosci. Model Dev., 15, 6259-6284, 2022



6280 A. Sridhar et al.: ClimateMachine: a new open-source code for atmospheric LESs on GPUs and CPUs

Appendix D: Supplementary results

This section provides additional information on the compar-
ison of the density current benchmark in ClimateMachine
with existing literature references in Table D1.

Table D1. Summary of frontal locations for the density current test case from existing literature. Results tabulated are of the front location at
t =900s. The results are reported for the following models: ClimateMachine with SL and Vreman, finite-element model (FEM) variational
multiscale stabilization (VMS), f-wave, filtered spectral elements (SEs), filtered discontinuous Galerkin (DG), and the piecewise parabolic
method (PPM). NUMA is the Nonhydrostatic Unified Model of the Atmosphere.

Model Space Resolution Order p©=75 m?s~!  Front location

discr. [m]
ClimateMachine, SL DG 12.5m  4th No 15090
ClimateMachine, SL DG 25m  4th No 14990
ClimateMachine, SL DG 50m 4th No 14770
ClimateMachine, SL DG 100m  4th No 14 669
ClimateMachine, Vreman DG 12.5m 4th No 15091
ClimateMachine, Vreman DG 25m  4th No 14950
ClimateMachine, Vreman DG 50m 4th No 14739
ClimateMachine, Vreman DG 100m 4th No 14 606
Giraldo-Restelli (Giraldo and Restelli, 2008) DG 50m 4th Yes 14767
Giraldo-Restelli (Giraldo and Restelli, 2008) SEM 50m  4th Yes 14767
NUMA Dyn-SGS (Marras et al., 2015) SEM 125m 4th No 15056
NUMA Dyn-SGS (Marras et al., 2015) SEM 25m  4th No 14992
NUMA Dyn-SGS (Marras et al., 2015) SEM 50m 4th No 14535
NUMA Dyn-SGS (Marras et al., 2015) SEM 100m  4th No 14325
NUMA SL (Marras et al., 2015) SEM 25m  4th No 14918
NUMA SL (Marras et al., 2015) SEM 50m 4th No 14726
NUMA SL (Marras et al., 2015) SEM 100m  4th No 14551
VMS (Marras et al., 2013) FEM 25m st No 14 890
VMS (Marras et al., 2013) FEM 50m  Ist No 14629
VMS (Marras et al., 2013) FEM 75m  Ist No 14487
VMS (Marras et al., 2013) FEM 100m  1st No 14355
f-wave (Ahmad and Lindeman, 2007) FV 50m 2nd Yes 14975
PPM (Straka et al., 1993) FD 50m 2nd Yes 15027

Code availability. ClimateMachine is an open-source frame-
work that is maintained on GitHub: https://github.com/CliMA/
ClimateMachine.jl (last access: 20 June 2022). Documentation for
installing and running ClimateMachine is available at https://clima.
github.io/ClimateMachine.jl/latest/ (last access: 20 June 2022). The
version used in this paper is v0.2.0, which can be downloaded
from https://doi.org/10.5281/zenod0.5542395 (Climate Modeling
Alliance, 2020) or https://github.com/CliMA/ClimateMachine.jl/
releases/tag/v0.2.0 (last access: 20 June 2022). The parameters in-
cluded in Table 1 are available in the accompanying CLIMAPa-
rameters.jl Julia package. The code is released under the Apache
License, version 2.0
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Data availability. The test cases presented in the paper are avail-
able in the following directory locations in the source code.

— Sect. 5.1: /test/Numerics/DGMethods/Euler/isentropicvortex.jl
— Sect. 5.2: /tutorials/Atmos/risingbubble.jl

— Sect. 5.3: /tutorials/Atmos/densitycurrent.jl

— Sect. 5.4: /experiments/AtmosLES/schar_scalar_advection.jl

— Sect. 5.5: /experiments/AtmosLES/agnesi_hs_lin.jl and /ex-
periments/AtmosLES/agnesi_nh_lin.jl

— Sect. 5.6: /experiments/AtmosLES/taylor_green.jl

— Sect. 5.7: /experiments/AtmosLES/bomex_model.jl and /ex-
periments/AtmosLES/bomex_les.jl

Configuration instructions and methods for resolution, numeri-
cal flux schemes, boundary conditions, and turbulence model
specification can be found in the code documentation at https:
//clima.github.io/ClimateMachine.jl/v0.2/ (Climate Modeling Al-
liance, 2020). Instructions for installing and launching simula-
tions can be accessed at https://clima.github.io/ClimateMachine.jl/
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v0.2/GettingStarted/RunningClimateMachine/ (last access: 20 June
2022).
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