
1.  Introduction
The remarkable achievements of machine learning over the past decade have led to renewed interest in informing 
Earth system models with data (Reichstein et al., 2019; Schneider et al., 2017). The spotlight is often on creating 
or improving models of processes that are deemed important for the correct representation of the Earth system 
as a whole. Examples of these processes include moist convection (Brenowitz et al., 2020), cloud microphysical 
and radiative effects (Meyer et al., 2022; Seifert & Rasp, 2020; Villefranque et al., 2021), and evapotranspiration 
(Zhao et al., 2019), among others.

Processes governed by poorly understood dynamics, such as biological processes, are obvious candidates for 
representation by purely data-driven models. On the other end of the spectrum are fluid transport processes, 
which are governed by the Navier-Stokes equations. Uncertain representation of these processes comes from 
a lack of resolution, not lack of knowledge about the underlying dynamics. Hybrid modeling approaches that 
incorporate domain knowledge and augment it by learning from data are attractive for such processes because 
they reduce what needs to be learned from data.

For processes with known dynamics, data-informed models fall into three broad categories according to their 
leverage of domain knowledge. In the first category are models that try to learn the entire dynamics using a 

Abstract  Most machine learning applications in Earth system modeling currently rely on gradient-based 
supervised learning. This imposes stringent constraints on the nature of the data used for training 
(typically, residual time tendencies are needed), and it complicates learning about the interactions between 
machine-learned parameterizations and other components of an Earth system model. Approaching learning 
about process-based parameterizations as an inverse problem resolves many of these issues, since it allows 
parameterizations to be trained with partial observations or statistics that directly relate to quantities of interest 
in long-term climate projections. Here, we demonstrate the effectiveness of Kalman inversion methods in 
treating learning about parameterizations as an inverse problem. We consider two different algorithms: 
unscented and ensemble Kalman inversion. Both methods involve highly parallelizable forward model 
evaluations, converge exponentially fast, and do not require gradient computations. In addition, unscented 
Kalman inversion provides a measure of parameter uncertainty. We illustrate how training parameterizations 
can be posed as a regularized inverse problem and solved by ensemble Kalman methods through the calibration 
of an eddy-diffusivity mass-flux scheme for subgrid-scale turbulence and convection, using data generated 
by large-eddy simulations. We find the algorithms amenable to batching strategies, robust to noise and model 
failures, and efficient in the calibration of hybrid parameterizations that can include empirical closures and 
neural networks.

Plain Language Summary  Artificial intelligence represents an exciting opportunity in Earth 
system modeling, but its application brings its own set of challenges. One of the challenges is to train machine 
learning systems within Earth system models from partial or indirect data. Here, we present algorithms, known 
as ensemble Kalman methods, which can be used to train such systems. We demonstrate their use in situations 
where the data used for training are noisy, only indirectly informative about the model to be trained, and may 
only become available sequentially. As an example, we present training results for a state-of-the-art model for 
turbulence, convection, and clouds for use within Earth system models. This model is shown to learn efficiently 
from data in a variety of configurations, including situations where the model contains neural networks.
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sufficiently expressive hypothesis set, such as deep neural networks. This approach has proved successful for 
predicting precipitation over short time horizons (Ravuri et al., 2021), and it has been explored for medium-range 
weather forecasting (Lopez-Gomez et al., 2022; Pathak et al., 2022; Rasp & Thuerey, 2021). An advantage of 
these models is that they are typically easy to implement and cheap to evaluate. They can afford very large time 
steps (Weyn et al., 2021), or they may learn directly mappings from the initial state to a probability distribution 
of final states with no need of time marching or ensemble forecasting (Sønderby et al., 2020). A deficiency of 
these models is that they often require an extreme amount of data to constrain the many (often > 10 6) parameters 
in them and to achieve acceptable performance.

Methods in the second and third categories employ models of subgrid processes to solve the closure problem that 
arises when coarse-graining the known dynamics, which are retained. Retaining the coarse-grained equations 
of motion ensures conservation of mass, momentum, and energy, which is more difficult when using models in 
the first category (Beucler et al., 2021; Brenowitz et al., 2020). The second category encompasses methods that 
try to learn the functional form of these closures avoiding the use of empirical laws. For example, Zanna and 
Bolton (2020) use relevance vector machines to prune a library of functions, resulting in a closed form expres-
sion of mesoscale eddy fluxes in ocean simulations; Ling et al.  (2016) learn a neural network closure of the 
Reynolds stress anisotropy tensor while explicitly encoding rotational invariance in the context of k − ϵ models 
of turbulence.

Finally, the third category refers to methods that seek to learn the parameters that arise in empirical closures 
of subgrid processes. In general, models in the third category are more restrictive, and they may be expected 
to underperform with respect to those in the second category given sufficient data on the target distributions. 
However, the limited parametric complexity of these closures makes them amenable to physical interpretation, 
robust to overfitting, and better suited for learning in the low-data regime. This may be attractive for Earth system 
models, for which online learning from limited high-resolution data may be a useful strategy to assimilate compu-
tationally generated data of the changing climate (Schneider et al., 2017).

A barrier delimiting data-driven and empirical subgrid-scale closures is the access to practical calibration tools. 
Neural network parameterizations are easily calibrated using stochastic gradient descent through backpropaga-
tion, which limits data sets to those including output labels, and models to those that afford automatic differentia-
tion with respect to their parameters. Empirical closures, which may depend on time-evolving terms with memory 
(Lopez-Gomez et al., 2020) or yield unobservable outputs (e.g., turbulent vs. dynamical entrainment in Cohen 
et al. (2020)) cannot be trained using this approach. Traditional Bayesian inference techniques, like random walk 
Metropolis (Metropolis et al., 1953) or sequential Monte Carlo (Moral et al., 2006), can be used in this context 
if the number of parameters is small and the model to be trained is cheap to evaluate. Such methods addition-
ally provide uncertainty quantification, but they become intractable for expensive models with many parameters 
(Cotter et al., 2013; Souza et al., 2020). Model-agnostic tools that enable fast calibration of subgrid-scale closures 
from diverse data are a necessary step toward the development of hybrid closures that leverage the strengths of 
all modeling approaches.

With this goal in mind, we present calibration strategies for models of subgrid processes, formulating the learn-
ing task as an inverse problem (Kovachki & Stuart, 2019). Solutions to the inverse problem are sought using 
the ensemble and unscented Kalman inversion (UKI) algorithms (Huang, Schneider, & Stuart, 2022; Iglesias 
et  al.,  2013). Emphasis is given to practical aspects of this specific inverse problem, which have not previ-
ously been explored in the literature. These include the construction of a domain-agnostic loss function from 
high-dimensional observations, a heuristic a priori estimate of model error, systematic handling of model failures 
during the training process, and the use of the Kalman inversion algorithms when only noisy evaluations of the 
loss function are available.

The strategies presented here are designed to have several attractive properties compared to other learning algo-
rithms. First, framing learning as an inverse problem enables the use of partial observations or statistically aggre-
gated data. Second, calibration is performed using gradient-free methods, which are well suited for stochastic 
models and/or models whose derivatives do not exist or are difficult to obtain. Finally, the strategies presented 
are amenable to parallelization and the use of high-dimensional correlated observations. The last two properties 
draw heavily on the use of Kalman inversion algorithms to tackle the inverse problem, which themselves build 
on the success of the ensemble Kalman filter (EnKF) for data assimilation (Burgers et al., 1998; Evensen, 1994; 
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Houtekamer & Mitchell,  1998) and are closely related to iterative EnKF (Bocquet & Sakov,  2013; Chen & 
Oliver, 2012; Emerick & Reynolds, 2013). The methods presented here are applicable to models of subgrid-scale 
processes, within the second and third categories described above. They provide an alternative to learning algo-
rithms that impose stringent requirements on either the model architecture, its computational cost, or the nature 
of the training data.

The article is organized as follows. Section 2 casts learning about parameterizations as an inverse problem, which 
can be solved through the minimization of a regularized low-dimensional encoding of the data-model mismatch. 
Section 3 reviews the application of the ensemble and UKI algorithms to inverse problems and proposes modifi-
cations to their update equations that enable training models that may experience failures. Section 4 then applies 
these ensemble Kalman algorithms to the calibration of closures within an eddy-diffusivity mass-flux (EDMF) 
scheme of turbulence and convection, using data generated from large-eddy simulations (LES). The robustness 
of these learning strategies is demonstrated by calibrating the EDMF scheme using noisy loss evaluations and 
partial information, and their flexibility is emphasized by learning the parameters in a hybrid model containing 
both empirical and neural network closures. Finally, Section 5 ends with a discussion of the findings and conclud-
ing remarks.

2.  Learning About Parameterizations as an Inverse Problem
We consider the problem of learning the parameters ϕ of a dynamical model Ψ(ϕ), using noisy observations y of 
the true dynamical system ζ that Ψ(ϕ) seeks to represent. In the context of subgrid parameterizations, Ψ(ϕ) repre-
sents a closed version of the coarse-grained dynamical system (e.g., the filtered Navier-Stokes equations), where 
closures are parameterized by ϕ. The model Ψ(ϕ) maps a user-defined initial state φ0 and a forcing Fφ(t) to a state 
trajectory 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) . Thus, our definition of Ψ(ϕ) can be interpreted as the iterative application of the resolvent opera-
tor on the initial field φ0 (Brajard et al., 2021). In the following, we denote any set of initial and forcing conditions 
collectively as the configuration 𝐴𝐴 𝐴𝐴𝑐𝑐 = {𝜑𝜑0, 𝐹𝐹𝜑𝜑}𝑐𝑐 ; the definition of all symbols is summarized in the appendix.

For each configuration xc, the dynamical model can be related to the observations yc by the observational map 
𝐴𝐴 𝑐𝑐 , which encapsulates all averaging and post-processing operations necessary to yield the model predictions 

associated with the observations. More precisely, the relationship between the observations yc, the true dynamics 
ζ, and the dynamical model Ψ(ϕ) for a given configuration may be expressed as

𝑦𝑦𝑐𝑐 = 𝑐𝑐 ◦ 𝜁𝜁 (𝑥𝑥𝑐𝑐) + 𝜂𝜂𝑐𝑐 = 𝑐𝑐 ◦Ψ (𝜙𝜙; 𝑥𝑥𝑐𝑐) + 𝛿𝛿 (𝑥𝑥𝑐𝑐) + 𝜂𝜂𝑐𝑐,� (1)

where 𝐴𝐴 𝐴𝐴 ∈ ℝ
𝑝𝑝 is the vector of learnable parameters, ηc is the observational noise associated with yc, and δ(xc) is 

the model or representation error, which we define as the mismatch between the denoised observations 𝐴𝐴 𝑐𝑐 ◦ 𝜁𝜁 (𝑥𝑥𝑐𝑐) 
and the output of a best-fitting model 𝐴𝐴 𝑐𝑐 ◦Ψ (𝜙𝜙∗; 𝑥𝑥𝑐𝑐) , following Kennedy and O’Hagan (2001). Thus, the model 
error is approximated as additive (Cohn, 1997; van Leeuwen, 2015) and defined with respect to the observational 
map 𝐴𝐴 𝑐𝑐 and the optimal parameters ϕ* that minimize its contribution to the data-model relation 1.

Observations are considered to come from finite spatial and temporal averages of fields such as temperature. 
Learning from averages can help prevent overfitting to trajectories in chaotic systems by focusing on the statistics 
of the dynamics (Morzfeld et al., 2018). It also improves numerical stability when coupling to a parent model 
(Brenowitz & Bretherton, 2018). Under this definition of observations, it is reasonable to assume the noise ηc to 
be additive and Gaussian. In the following, we will further consider δ(⋅) to be a centered Gaussian, although this 
constitutes a significantly stronger assumption (i.e., that the model is unbiased) and may not be appropriate for 
a detailed characterization of posterior uncertainty (Brynjarsdóttir & O’Hagan, 2014; van Leeuwen, 2015). The 
construction of more precise error models remains a challenge beyond the scope of this work. These assumptions 
enable us to write � (��) + �� ∼ (0,Γ�) .

In general, we are interested in minimizing the mismatch between yc and the model output for a wide range of 
configurations C = {xc, c = 1, …, |C|} that are representative of the conditions in which the model will operate. 
This defines the global data-model relation

𝑦𝑦 =  ◦Ψ(𝜙𝜙) + 𝛿𝛿 + 𝜂𝜂𝜂� (2)
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where 𝐴𝐴 𝐴𝐴 =
[
𝑦𝑦1,… , 𝑦𝑦|𝐶𝐶|

]𝑇𝑇
∈ ℝ

𝑑𝑑 , 𝐴𝐴 𝐴𝐴 =
[
𝛿𝛿 (𝑥𝑥1) ,… , 𝛿𝛿 (𝑥𝑥|𝐶𝐶|)

]𝑇𝑇  , 𝐴𝐴 𝐴𝐴 =
[
𝜂𝜂1,… , 𝜂𝜂|𝐶𝐶|

]𝑇𝑇  , 𝐴𝐴  ◦Ψ(𝜙𝜙) =
[
1 ◦Ψ (𝜙𝜙; 𝑥𝑥1) ,… ,|𝐶𝐶| ◦Ψ

𝐴𝐴  ◦Ψ(𝜙𝜙) =
[
1 ◦Ψ (𝜙𝜙; 𝑥𝑥1) ,… ,|𝐶𝐶| ◦Ψ (𝜙𝜙; 𝑥𝑥|𝐶𝐶|)

]𝑇𝑇  , and 𝐴𝐴 𝐴𝐴 + 𝜂𝜂 ∼  (0,Γ) . In addition, implicit in the definition of the dynamical model Ψ(ϕ) 
is a discrete resolution Δ. This dependence may be lifted if the closures are designed to be scale-aware or 
scale-independent, in which case the relation 2 should be augmented by stacking copies of y and evaluating 

𝐴𝐴  ◦Ψ (𝜙𝜙𝜙Δ𝑖𝑖) for different discretizations Δi.

In practice, the parameters ϕ are often defined over some subspace 𝐴𝐴 𝐴𝐴 𝐴 ℝ
𝑝𝑝 outside of which the model trajec-

tories are unphysical or numerically unstable. Examples of these are parameters controlling the diffusion or 
turbulent dissipation of a scalar field, for which negative values are not physically valid. On the other hand, many 
algorithms designed to solve inverse problems assume 𝐴𝐴 𝐴𝐴 ∈ ℝ

𝑝𝑝 . This obstacle may be circumvented by defining 
a transformation 𝐴𝐴  ∶ 𝑈𝑈 → ℝ

𝑝𝑝 , such that the global data-model relation 2 can be defined in an unconstrained 
parameter space,

𝑦𝑦 = (𝜃𝜃) + 𝛿𝛿 + 𝜂𝜂𝜂� (3)

where

 ∶=  ◦Ψ ◦ 
−1, 𝜙𝜙 = 

−1(𝜃𝜃).� (4)

In Equations 3 and 4, 𝐴𝐴 𝐴𝐴 ∈ ℝ
𝑝𝑝 is the parameter vector in unconstrained space and 𝐴𝐴  ∶ ℝ

𝑝𝑝
→ ℝ

𝑑𝑑 is the map from 
transformed parameters to model predictions, which represents the forward model. The task of learning a set of 
model parameters θ under relation 3 can be cast as the Bayesian inverse problem of finding the posterior (Huang, 
Huang, et al., 2022; Kaipio & Somersalo, 2006; Tarantola, 2005)

𝜌𝜌(𝜃𝜃|𝑦𝑦𝑦Γ) = 𝑒𝑒−(𝜃𝜃;𝑦𝑦)

𝑍𝑍(𝑦𝑦|Γ)
𝜌𝜌prior(𝜃𝜃), (𝜃𝜃; 𝑦𝑦) =

1

2
||𝑦𝑦 − (𝜃𝜃)||2

Γ
,� (5)

where Z(y|Γ) is a normalizing constant, 𝐴𝐴 || ⋅ ||2
Γ
 denotes the Mahalanobis norm 〈⋅, Γ −1⋅〉, 𝐴𝐴  is the loss or negative 

log-likelihood, and ρprior(θ) is the prior density. We stress that the posterior ρ(θ|y, Γ) is conditioned on our approx-
imation of the noise δ + η; see Kennedy and O’Hagan (2001) for a discussion on the usefulness and caveats of 
such an approach. Given the inverse problem defined by Equations 3–5, we may be interested in finding the 
maximum a posteriori (MAP), approximations of the density ρ(θ|y, Γ) around the MAP for uncertainty quantifi-
cation, or simply the maximum likelihood estimator (MLE) if we have no prior information about θ. Algorithms 
to perform these tasks are described in Section 3.

The error covariance Γc appearing in each model-data relation 1, and ultimately defining the inverse prob-
lem 3–5, is yet to be defined. In Section 2.1, we suggest an estimate of Γc relevant to the calibration of models 
with an unknown error structure δ(⋅). In addition, the choice of observational map 𝐴𝐴 𝑐𝑐 may not be evident when 
training dynamical models that aim to represent complex dynamical systems ζ with many observable fields. 
Section  2.2 suggests a model-agnostic definition of 𝐴𝐴 𝑐𝑐 that can be used to construct a regularized inverse 
problem.

2.1.  Estimate of Noise Covariances

Since the structure of the representation or model error δ is unknown a priori, we must either parameterize it and 
calibrate it as well (Brynjarsdóttir & O’Hagan, 2014) or use a heuristic to capture its magnitude. Here, we follow 
the second route and offer a heuristic that has worked well for us in practice. If we take yc = yc(t) to be an obser-
vation of the true system in configuration xc aggregated over a time interval [t, t + τ], we can write Equation 1 as

𝑦𝑦𝑐𝑐(𝑡𝑡) − 𝑦𝑦𝑐𝑐(0) = 𝑐𝑐 ◦Ψ (𝜙𝜙; 𝑥𝑥𝑐𝑐, 𝑡𝑡) − 𝑦𝑦𝑐𝑐(0) + 𝛿𝛿 (𝑥𝑥𝑐𝑐, 𝑡𝑡) + 𝜂𝜂𝑐𝑐(𝑡𝑡).� (6)

If we further consider a model with no predictive power of the first kind (Lorenz, 1975; Schneider & Griffies, 1999), 
such that 𝐴𝐴 𝑐𝑐 ◦Ψ (𝜙𝜙; 𝑥𝑥𝑐𝑐, 𝑡𝑡) ≈ 𝑦𝑦𝑐𝑐(0) for all times t, the covariance of Equation 6 from t = 0 to t = tc ≫ τ reads

Γ� = Cov(��) ≈ Cov(� (��)) + Cov(��) ,� (7)
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which yields an estimate of the aggregate noise 𝐴𝐴 𝐴𝐴𝑐𝑐 + 𝛿𝛿 (𝑥𝑥𝑐𝑐) ∼  (0,Γ𝑐𝑐) from the variability of the observation 
yc over a time interval [0, tc]. For non-stationary conditions or finite-time averages, Γc depends on tc. Estimating 
the magnitude of the aggregate noise from the internal variability of the true dynamics ensures that the loss or 
negative log-likelihood 𝐴𝐴 (𝜃𝜃; 𝑦𝑦) penalizes models Ψ(ϕ) that produce unrealistic outputs, and it represents a form 
of error inflation if the best-fitting model is expected to outperform the aforementioned unskillful model. The 
heuristic 7 is most appropriate when the dynamical model Ψ(ϕ) is expressive enough to closely replicate the 
initial observations yc(0), such that any mismatch in the initial condition can be lumped together with the obser-
vation error.

2.2.  Design of the Observational Map

2.2.1.  Application to Problems With High-Resolution Data

High-resolution data are becoming increasingly common, from reanalysis products (Muñoz-Sabater et al., 2021), 
satellite imagery (Schmit et  al.,  2017), and partial differential equation (PDE) solvers such as LES (Shen 
et al., 2022). Although computationally generated and thus suffering from their own limitations (e.g., microphys-
ical processes still need to be parameterized in LES), data from PDE solvers have some particularly desirable 
properties for the calibration of dynamical models:

•	 �All variables appearing in the coarse-grained equations of motion are observable. As a consequence, the 
nature of the observational map 𝐴𝐴  used to constrain the model is largely a design choice.

•	 �Data can be obtained systematically for all configurations xc of interest, which may be chosen to minimize 
parameter uncertainty through active learning (Dunbar et al., 2022). In contrast, data drawn from physical 
measurements (e.g., field observations) are often sparse in the space of forcing and boundary conditions.

High-resolution data are often high-dimensional, which poses particular difficulties regarding the conditioning 
and tractability of linear systems of equations when solving inverse problems. The guidelines for the construc-
tion of the observational map 𝐴𝐴  presented here are tailored to solve these issues, with a focus on data from 
high-fidelity solvers.

2.2.2.  Model Calibration

We define model calibration as the minimization of the mismatch between the observed dynamics and the 
dynamics induced by the model. We will use this definition to construct a domain-agnostic map 𝐴𝐴  . As an exam-
ple, consider a system ζ with coarse-grained dynamics

𝜕𝜕 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝒗̄𝒗 ⋅ ∇ ̄𝜑𝜑 + ∇ ⋅

(
𝒗𝒗
′𝜑𝜑′

)
= 𝐹𝐹𝜑𝜑,� (8)

where 𝐴𝐴 (⋅) denotes spatial filtering, (⋅)′ subfilter-scale fluctuations, and Fφ is the forcing. The field 𝐴𝐴 𝒗̄𝒗 is prescribed 

and 𝐴𝐴 𝒗𝒗
′𝜑𝜑′ is the term parameterized in Ψ(ϕ). Let 𝐴𝐴 𝐴𝐴(𝑡𝑡) = [𝜑̄𝜑(𝑡𝑡), 𝒗𝒗′𝜑𝜑′(𝑡𝑡)]

𝑇𝑇

 be the true state augmented with 

subgrid-scale fluxes, and 𝐴𝐴 𝑆̂𝑆(𝑡𝑡) the augmented state predicted by the model. For an incompressible fluid model, 
S(t) would contain the fluid momentum, energy, and the subgrid advective fluxes of these fields.

Model calibration then entails finding the minimizer of the expected state mismatch 𝐴𝐴 𝔼𝔼
[
‖𝑆̂𝑆 − 𝑆𝑆‖

]
 with respect 

to some norm and time interval, where the expectation is taken to allow for the calibration of stochastic models. 
Observations of the augmented state S(t), which includes subgrid-scale fluxes, are not always available. There-
fore, this definition of model calibration is representative of the ideal learning scenario. In scenarios where 
the full state is not observable, we will consider S(t) to be an observed state formed by all relevant observable 
spatial  fields.

2.2.3.  Observations in Physical Space

Following our definition of model calibration, we preliminarily define the observations in the model-data rela-
tion 1 as finite-time averages of the normalized observed state sc for a set of configurations C,
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�̃� =
1
�� ∫

��

��−��

��(�)��, �� =

⎡

⎢

⎢

⎢

⎢

⎣

��,1

…

��,��

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

��,1∕��,1

…

��,��∕��,��

⎤

⎥

⎥

⎥

⎥

⎦

, � = 1,… , |�|,� (9)

where Tc is the averaging time, 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐 ∈ ℝ
ℎ𝑐𝑐 are the normalized spatial fields comprising sc, Vc,j are the components 

of the state Sc prior to normalization, nc is the number of fields observed in configuration xc, and hc is the number 
of degrees of freedom of each field. As an example, the first configuration's observed state S1 may include as 
fields atmospheric soundings of temperature and specific humidity (n1 = 2) measured at h1 vertical locations 
above the surface, and the second configuration's state S2 may include these fields as well as horizontal velocity 
profiles (n2 = 4), measured at h2 different locations. Normalization of the observed state Sc is performed using the 
pooled time standard deviation σc,j of each field Vc,j, with

�2
�,� = ℎ−1

� tr
[

Cov(��,�)
]

.� (10)

Covariances are computed over a time tc ≥ Tc following the heuristic of Section 2.1 to capture the expected magni-
tude of the data mismatch,

Cov(��,�) =
1
�� ∫

��

0
��,�� �

�,��� −
1
�2�

(

∫

��

0
��,���

)(

∫

��

0
��,���

)�

.� (11)

We resort to pooled normalization, instead of normalizing each of the dimensions of the observed state Sc by their 
standard deviation, because some of the dimensions of the spatial fields Vc,j may not vary with a given forcing, 
resulting in zero-variance components. For example, in the atmospheric boundary layer, observations of liquid 
water specific humidity will always be zero below the lifting condensation level.

Stacking the observations from all configurations together, the full observation vector 𝐴𝐴 𝐴𝐴𝐴 is

�̃ =

⎡

⎢

⎢

⎢

⎢

⎣

�̃1

…

�̃
|�|

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝ�̃ , �̃ =
|�|

∑

�=1

�̃� =
|�|

∑

�=1

��ℎ�.� (12)

Following again the heuristic in Section  2.1, the noise covariance associated with each observation vector 
𝐴𝐴 𝐴𝐴𝐴𝑐𝑐 ∈ ℝ

𝑑𝑑𝑐𝑐 is Γ̃� = Cov(��) , computed as in Equation 11. Given that the noise is estimated independently for each 
configuration, the full noise covariance is the block diagonal matrix

Γ̃ =

⎡

⎢

⎢

⎢

⎢

⎣

Γ̃1 0

⋱

0 Γ̃
|�|

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝ�̃×�̃ , Γ̃� = Cov(��) ∈ ℝ�̃�×�̃� ,� (13)

where 𝐴𝐴 Γ̃𝑐𝑐 is the noise covariance matrix of configuration c.

2.2.4.  Observations in a Reduced Space

Each covariance matrix 𝐴𝐴 Γ̃𝑐𝑐 , possibly associated with high-dimensional observations and a finite sampling inter-
val, is likely to be rank-deficient and have a large condition number 𝐴𝐴 𝐴𝐴 = 𝜇𝜇𝑐𝑐𝑐1∕𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , where μc,i is the ith largest 
eigenvalue of 𝐴𝐴 Γ̃𝑐𝑐 and rc is the approximate rank of the matrix (Hansen, 1998). Numerically rank-deficient prob-
lems arise when 𝐴𝐴 𝑑𝑑𝑐𝑐 is greater than or equal to the number of samples used to construct 𝐴𝐴 Γ̃𝑐𝑐 , or when there exist 
eigenvalues μc,i such that μc,i/μc,1 ≲ ϵm, where ϵm is a measure of data or machine precision. An efficient regulari-
zation method for rank-deficient problems is to project the data from each configuration onto a lower-dimensional 
encoding, adding Tikhonov regularization to limit the condition number of the resulting global covariance matrix. 
If the lower-dimensional encoding is obtained through principal component analysis (PCA),
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𝑦𝑦𝑐𝑐 = 𝑃𝑃 𝑇𝑇
𝑐𝑐 𝑦̃𝑦𝑐𝑐 , Γ𝑐𝑐 = 𝑑𝑑𝑐𝑐𝑃𝑃

𝑇𝑇
𝑐𝑐 Γ̃𝑐𝑐𝑃𝑃𝑐𝑐 + 𝜅𝜅−1

∗ 𝜇𝜇1𝐼𝐼𝑑𝑑𝑐𝑐 ,� (14)

where 𝐴𝐴 𝐴𝐴𝑐𝑐 ∈ ℝ
𝑑𝑑𝑐𝑐 is the encoded observation vector, Pc is the projection matrix formed by the dc leading eigenvec-

tors of 𝐴𝐴 Γ̃𝑐𝑐 , 𝐴𝐴 𝐴𝐴𝑑𝑑𝑐𝑐 is the identity matrix, μ1 is the leading eigenvalue of the unregularized global covariance, and κ* is 
the limiting condition number of the global covariance, which should be chosen to be 𝐴𝐴 𝐴𝐴∗ < 𝜖𝜖

−1∕2
𝑚𝑚  . The encoding 

dimension dc should be chosen such that 𝐴𝐴 𝐴𝐴𝑐𝑐 ≤ 𝑟𝑟𝑐𝑐 ≤ 𝑑𝑑𝑐𝑐 , where rc is the approximate rank of 𝐴𝐴 Γ̃𝑐𝑐 . The actual value 
of dc may be chosen through the discrepancy principle, generalized cross validation, or based on the preservation 
of a given fraction of the total variance, among other criteria (Hansen, 1998; Reichel & Rodriguez, 2013). The 
Tikhonov inflation term regularizes problems where PCA is performed between eigenvalues that are close in 
value, or where the range of configuration variances tr

(

Γ̃�
)

 is large (Hansen, 1990). In projection 14, since the 
number of retained principal components may differ among configurations for a given truncation criterion, each 
block covariance matrix is scaled by dc.

Projection 14 enables the use of arbitrarily correlated observations by regularizing the linear system 𝐴𝐴 Γ−1((𝜃𝜃) − 𝑦𝑦) 
that appears in the gradient of the loss

∇(𝜃𝜃; 𝑦𝑦) ∝ (𝐷𝐷(𝜃𝜃))
𝑇𝑇
Γ−1((𝜃𝜃) − 𝑦𝑦),� (15)

and lowering its computational cost. Here, 𝐴𝐴 𝐴𝐴(𝜃𝜃) ∈ ℝ
𝑑𝑑×𝑝𝑝 is the Jacobian matrix of 𝐴𝐴  evaluated at θ. Although the 

ensemble Kalman algorithms presented in Section 3 do not compute the gradient 15 explicitly, they do rely on 
approximations of it, so this regularization effect still applies.

Since 𝐴𝐴 Γ̃ in Equation 13 is block diagonal, PCA can be performed in parallel for different configurations. Projec-
tion 14 maximizes the projected variance for each configuration; it is different than performing PCA on 𝐴𝐴 Γ̃ in 
that it does not discriminate based on the total variance of each configuration. Disparities between the two 
approaches are discussed in Appendix  A. Finally, the regularized observation vector and noise covariance 
matrix read

� =

⎡

⎢

⎢

⎢

⎢

⎣

�1

…

�
|�|

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝ� , Γ =

⎡

⎢

⎢

⎢

⎢

⎣

Γ1 0

⋱

0 Γ
|�|

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝ�×� ,� (16)

which define a regularized inverse problem of the form 3–5. A schematic of the inverse problem construction 
process is given in Figure 1. The construction of yc from each dynamical system configuration ζ(xc) defines 
the observational map 𝐴𝐴 𝑐𝑐 , used to obtain the forward model evaluation 𝐴𝐴 𝑐𝑐 ∶ ℝ

𝑝𝑝
→ ℝ

𝑑𝑑𝑐𝑐 for the same config-
uration from the dynamical model. The construction of each (yc, Γc) pair, and the evaluation of 𝐴𝐴 𝑐𝑐(⋅) , can be 
done in parallel.

Figure 1.  Schematic of the strategy used to construct a regularized inverse problem from observations of a dynamical system ζ. The two branches represent 
different configurations of the dynamical system. From left to right: (a) the observed state is obtained following Section 2.2.2 or from any observable fields for each 
configuration c; (b) the observed state is normalized; (c) mean and covariance of the normalized state are computed; (d) 𝐴𝐴 𝐴𝐴𝐴𝑐𝑐 and 𝐴𝐴 Γ̃𝑐𝑐 are projected onto a lower dimension 
and regularized; and (e) the statistical summaries of each configuration are aggregated, defining the global inverse problem 3–5.
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2.3.  Bayesian Interpretation of the Loss and Batching

Once the data and noise estimate encodings in Equation 16 have been defined, iterative methods to solve inverse 
problem 3–5 require evaluating the loss 𝐴𝐴 (𝜃𝜃; 𝑦𝑦) at each iteration, which entails running the dynamical model in 
all configurations C and can be very computationally demanding. A less onerous alternative is to use a mini-batch 
of configurations B ⊂ C to evaluate the average configuration loss,

�(�; ��) =
1

2|�|

|�|
∑

�=1

||�� − �(�)||2Γ� =
1
2

|�|
∑

�=1

||�� − �(�)||2
|�|Γ�

,� (17)

which acts as a surrogate of the configuration-averaged loss 𝐴𝐴 𝐴𝐴(𝜃𝜃; 𝑦𝑦) = (𝜃𝜃; 𝑦𝑦)∕|𝐶𝐶| . The use of L (θ; yB) in lieu 
of L(θ; y) may be regarded as using noisy evaluations of the loss for each parameter update. From a Bayesian 
perspective, using L(θ; y) in Equation 5 leads to the same MAP estimator as 𝐴𝐴 (𝜃𝜃; 𝑦𝑦) but a wider uncertainty about 
it, since we no longer consider configurations independent. This is important when interpreting the posterior 
uncertainty. To employ the loss 17, we only need to use the scaling Γc → |B|Γc; to approximate the aggregate loss 

𝐴𝐴 (𝜃𝜃𝜃 𝜃𝜃) when batching, we can use Γc → (|B|/|C|)Γc instead.

Batching is widely employed in data assimilation (Houtekamer & Mitchell, 2001) and deep learning, where it has 
been shown to help avoid convergence to local minima that generalize poorly (Keskar et al., 2016; Li et al., 2014). 
Understanding the behavior of algorithms when using mini-batches is crucial for online learning, where obser-
vations become available sequentially and the full loss cannot be sampled. Moreover, it provides insight into 
the appropriateness of training sequentially on seasonal or geographically sparse data in Earth system modeling 
applications. We explore the effect of batching on the solution of the inverse problem in Section 4.2, training 
sequentially on randomly sampled configurations with markedly different dynamics.

3.  Ensemble Kalman Methods
We consider two highly parallelizable gradient-free algorithms to solve the inverse problem defined in Section 2: 
ensemble Kalman inversion (EKI, Iglesias et  al.,  2013) and (UKI, Huang, Schneider, & Stuart,  2022). Both 
algorithms are based on the extended Kalman filter and draw heavily on Gaussian conditioning for their deriva-
tion: underlying their update rules is the approximation of the parameter distribution as Gaussian. They afford a 
Bayesian interpretation when augmented with prior information at every iteration (Huang, Huang, et al., 2022); 
how to do this is discussed in Section 3.2. If prior information is not used, which may be desirable when training 
for instance neural networks, they can be regarded as derivative-free methods to obtain the MLE.

EKI and UKI have been used successfully in a wide variety of inverse problems (Huang, Schneider, & Stuart, 2022; 
Iglesias, 2016; Iglesias et al., 2013; Kovachki & Stuart, 2019; Xiao et al., 2016). We demonstrate them here in the 
context of training models that may experience numerical instabilities for a priori unknown parameter combina-
tions, starting with a brief review of the algorithms.

3.1.  Ensemble Kalman Inversion (EKI)

Ensemble Kalman inversion searches for the optimal parameter vector θ*, given an inverse problem 3–5, through 
iterative updates of an initial parameter ensemble 𝐴𝐴 Θ0 =

[
𝜃𝜃
(1)

0
,… , 𝜃𝜃

(𝐽𝐽 )

0

]
 , used to obtain empirical estimates of 

covariances between parameters and the model output at each step of the algorithm. We form the initial ensemble 
by randomly sampling J parameter vectors 𝐴𝐴 𝐴𝐴

(𝑗𝑗)

0
∈ ℝ

𝑝𝑝 from a Gaussian (�0,Σ0) . The EKI update equation for the 
ensemble at iteration n is (Schillings & Stuart, 2017)

Θ�+1 = Θ� + Cov(��,�)
[

Cov(�,�) + Δ�−1Γ
]−1� (Θ�) ,� (18)

where 𝐴𝐴 Θ𝑛𝑛 ∈ ℝ
𝑝𝑝×𝐽𝐽 , Δt is the nominal learning rate of the algorithm, and �(Θ�) ∈ ℝ�×� encodes the mismatch 

between the forward model evaluations and the data,

�(Θ�) =
[

�(1)�+1 − 
(

�(1)�
)

,… , �(� )�+1 − 
(

�(� )�
)]

,� (19)

where
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�(�)�+1 = � + �(�)�+1, �(�)�+1 ∼ 
(

0,Δ�−1Γ
)

.� (20)

All covariances in Equation 18 are estimated as sample covariances of the J ensemble members,

Cov(��,�) =
1
�

(

Θ� −
1
�
∑

�

�(�)� ��
)(

Θ� −
1
�
∑

�


(

�(�)�
)

��
)�

,� (21)

Cov(�,�) =
1
�

(

Θ� −
1
�
∑

�


(

�(�)�
)

��
)(

Θ� −
1
�
∑

�


(

�(�)�
)

��
)�

,� (22)

where Θ� =
[


(

�(1)�
)

,… ,
(

�(� )�
)]

 , and 𝐴𝐴 𝟏𝟏 ∈ ℝ
𝐽𝐽 is the all-ones vector. Note that the sample covariances 21 and 22 

have at most ranks min(min(d, p), J − 1) and min(d, J − 1), respectively. From Equations 14 and 16, rank(Γ) = d 
by construction, so the linear system in Equation 18 is well-defined even for J < d.

Through iterative application of the update  18, the ensemble Θ minimizes the projection of the model-data 
mismatch on the linear span of its J members. In this study, we limit the use of EKI and UKI to the calibra-
tion of dynamical models for which using an ensemble size J ∼ p is feasible. For models with a large number 
of parameters, localization or sampling error correction techniques can be used to maintain performance with 
J ≪ p members (Lee, 2021; Tong & Morzfeld, 2022), like in EnKF for data assimilation (Anderson, 2012). The 
update 18 also drives the ensemble toward consensus, in the sense that 𝐴𝐴 |Cov (𝜃𝜃𝑛𝑛,𝑛𝑛) | → 0 as n → ∞; a popular 
method to control collapse speed is additive inflation (Anderson & Anderson, 1999; Tong & Morzfeld, 2022). 
This collapse property precludes obtaining information about parameter uncertainties directly from EKI. 
However, the sequence of parameter-output pairs 𝐴𝐴

{
Θ𝑛𝑛,Θ𝑛𝑛

}
 can be used to train emulators for uncertainty quan-

tification (Cleary et al., 2021).

3.1.1.  Addressing Model Failures Within the Ensemble

For some parameters θf, simulations may be physically or numerically unstable. For instance, the Courant–
Friedrichs–Lewy condition in fluid solvers may change nonlinearly with model parameters, or the initialized 
weights from a neural network parameterization may lead to unstable trajectories. In such situations, we need to 
modify Equation 18 to account for model failures within the ensemble.

Here, we propose a novel failsafe EKI update based on the successful parameter ensemble. Let 𝐴𝐴 Θ𝑠𝑠𝑠𝑠𝑠 =

[
𝜃𝜃
(1)
𝑠𝑠𝑠𝑠𝑠 ,… , 𝜃𝜃

(𝐽𝐽𝑠𝑠)
𝑠𝑠𝑠𝑠𝑠

]
 

be the successful ensemble, for which each evaluation 𝐴𝐴 
(
𝜃𝜃
(𝑗𝑗)
𝑠𝑠𝑠𝑠𝑠

)
 is stable or physically consistent, and let 𝐴𝐴 𝐴𝐴

(𝑘𝑘)

𝑓𝑓𝑓𝑓𝑓
 be 

the ensemble members for which the evaluation of the forward model 𝐴𝐴 

(
𝜃𝜃
(𝑘𝑘)

𝑓𝑓𝑓𝑓𝑓

)
 fails. We update the successful 

ensemble Θs,n to Θs,n+1 using Equation 18, and redraw each failed ensemble member from a Gaussian defined by 
the successful ensemble

�(�)�,�+1 ∼ (��,�+1,Σ�,�+1) ,� (23)

where

��,�+1 =
1
��

��
∑

�=1

�(�)�,�+1, Σ�,�+1 = Cov(��,�+1, ��,�+1) + �−1
∗ ��,1��� (24)

are the sample mean and regularized sample covariance matrix of the updated successful ensemble. In Equa-
tion 24, κ* is a limiting condition number and μs,1 is the largest eigenvalue of the sample covariance Cov(θs,n+1, 
θs,n+1). This update has proved very effective for us in practice, even in situations where Js  <  J/2; we use it 
throughout Section 4. The failsafe update may be combined with other conditioning techniques at initialization. 
For instance, the initial ensemble Θ0 may be drawn recursively until the number of failed members is reduced 
below an acceptable threshold.
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3.2.  Bayesian Regularization in Ensemble Kalman Methods

EKI implicitly regularizes the inverse problem by searching for the optimal solution θ* over the 
finite-dimensional space spanned by the initial ensemble. Although UKI does not share this property, both 
algorithms can be equipped with Bayesian regularization by considering the augmented data-model relation 
(Chada et al., 2020)

�� = �(�) + � ∶=
⎡

⎢

⎢

⎣

�

��

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(�)

�

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

�̂ + �̂

�

⎤

⎥

⎥

⎦

,� (25)

instead of Equation 3. Here, 𝐴𝐴 𝐴𝐴𝑝𝑝 ∈ ℝ
𝑝𝑝 is the parameter prior mean, 𝐴𝐴 𝐴𝐴 ∼  (0, 2Λ) defines the degree of regular-

ization, 𝐴𝐴 𝛿𝛿 + 𝜂̂𝜂 ∼  (0, 2Γ) , and � ∼ (0,Γ�) is the augmented error defined by Equation 25. In practice, using 
Equation 25 amounts to substituting 𝐴𝐴 {, 𝑦𝑦𝑦Γ} by 𝐴𝐴 {𝑎𝑎, 𝑦𝑦𝑎𝑎,Γ𝑎𝑎} in both algorithms. The Kalman inversion solution to 
the inverse problem defined by Equation 25 then satisfies

𝜃𝜃∗ = argmin
𝜃𝜃

[
(𝜃𝜃; 𝑦𝑦) +

1

2
||𝜃𝜃 − 𝑚𝑚𝑝𝑝||2Λ

]
.� (26)

From a Bayesian perspective, the solution 26 approximately maximizes the posterior density in Equation 5 for the 
Gaussian prior 𝐴𝐴 𝐴𝐴prior ∼  (0,Λ) . This is particularly interesting for UKI, which provides parametric uncertainty 
estimates (Huang, Huang, et al., 2022). When using a nominal learning rate Δt ≠ 1, the scaling Λ → Δt ⋅Λ must 
be used to retain the Bayesian interpretation of Λ as the prior variance, due to the fact that Δt effectively modifies 
the noise in Equation 18 to be Δ −1Γ. As noted before, if the original data-model relation 3 is used instead of the 
augmented relation 25, UKI and EKI provide MLE.

3.3.  Unscented Kalman Inversion (UKI)

Unscented Kalman inversion seeks a Gaussian approximation of the posterior ρ(θ|y, Γ) around the MAP (given 
Equation 25), or an approximation of the likelihood around the MLE (given Equation 3), by deterministically 
evolving an initial Gaussian estimate 𝐴𝐴  (𝑚𝑚0,Σ0) through updates

��+1 = �� + Cov� (��,�)
[

Cov� (�,�) + Δ�−1Γ
]−1�(��) ,� (27)

Σ�+1 = (1 + Δ�)Σ� − Cov� (��,�)
[

Cov� (�,�) + Δ�−1Γ
]−1Cov�(��,�)� ,� (28)

where mn and Σn are the mean and covariance estimates of the Gaussian after n iterations of the algorithm, 
and �(��) = � −  (��) is the data-model mismatch of the mean estimate. The covariances Cov�(��,�) and 
Cov�(�,�) in Equations 27 and 28 are computed through quadratures over 2p + 1 sigma points defined as

𝜃̂𝜃
(𝑗𝑗)
𝑛𝑛 = 𝑚𝑚𝑛𝑛 + 𝑎𝑎

√
𝑝𝑝

[√
Σ𝑛𝑛(1 + Δ𝑡𝑡)

]

𝑗𝑗

, 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝𝑝� (29)

𝜃̂𝜃
(𝑗𝑗+𝑝𝑝)
𝑛𝑛 = 𝑚𝑚𝑛𝑛 − 𝑎𝑎

√
𝑝𝑝

[√
Σ𝑛𝑛(1 + Δ𝑡𝑡)

]

𝑗𝑗

, 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝𝑝�

where 𝐴𝐴 [
√
Γ]𝑗𝑗 is the jth column of the Cholesky factor of Γ, 𝐴𝐴 𝐴𝐴 = min(

√
4∕𝑝𝑝𝑝 1) is a hyperparameter defined in 

Huang, Schneider, and Stuart (2022), and 𝐴𝐴 𝜃̂𝜃
(0)
𝑛𝑛 = 𝑚𝑚𝑛𝑛 is the central sigma point. The quadratures are then defined as

Cov� (��,�) =
2�
∑

�=1

��
(

�̂(�)� − ��
) (


(

�̂(�)�
)

−  (��)
)�
,� (30)

Cov� (�,�) =
2�
∑

�=1

��
(


(

�̂(�)�
)

−  (��)
) (


(

�̂(�)�
)

−  (��)
)�
,� (31)

where 𝐴𝐴 𝐴𝐴𝑗𝑗 =
(
2𝑎𝑎2𝑝𝑝

)−1 are the quadrature weights.
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A limitation of this algorithm is that the number of sigma points scales linearly with p, which precludes its use 
when training models with a large number of parameters. However, for situations where using an ensemble of 
2p + 1 members is tractable, UKI improves upon EKI by providing uncertainty quantification, instead of collaps-
ing to a point estimate. In particular, when updates 27 and 28 are applied to the augmented data-model rela-
tion 25, UKI ensures that Σn in the limit n → ∞ converges toward a Gaussian estimate of parametric uncertainty 
(Huang, Schneider, & Stuart, 2022),

Σ∞ ≈ Cov� (�∞,�,∞)
[

Δ� ⋅ Cov� (�,∞,�,∞) + Γ�
]−1Cov�(�∞,�,∞)� ,� (32)

which involves the augmented forward model 𝐴𝐴 𝑎𝑎(⋅) and covariance Γa defined in Section 3.2. Σ∞ approximates 
the covariance of the posterior in Equation 5 around m∞ if the full loss is evaluated at every UKI iteration and 
Δt = 1 (Huang, Huang, et al., 2022). When batching, an equivalent approximation can be recovered by using 
Δt = |C|/|B| to compensate for sampling errors in the construction of the empirical covariances 30 and 31; this is 
demonstrated in Section 4.2.

Finally, note that the limit 32 does not depend on Σ0, only on the Bayesian prior covariance Λ. This enables using 
a tight initial guess (i.e., tr(Σ0) ≪ tr(Λ)), which can reduce the fraction of model failures within the ensemble. To 
ensure robustness to the model failures that may still arise, we propose a modification of the UKI dynamics robust 
to model failures, similar to the one proposed for EKI, in Appendix B.

4.  Application to an Atmospheric Subgrid-Scale Model
In this section, the framework and algorithms discussed in Sections 2 and 3 are used to learn closure parameters 
within an EDMF scheme of atmospheric turbulence and convection. The EDMF scheme is derived by spatially 
filtering the Navier-Stokes equations for an anelastic fluid, and then decomposing the subgrid flow into n > 1 
distinct subdomains with moving boundaries (Cohen et al., 2020). In practice, the subdomain decomposition 
requires the use of n − 1 additional equations per grid-mean prognostic field, and n − 1 additional equations track-
ing the volume fraction of each subdomain within the grid (Tan et al., 2018). We retain second-order moments 
for one of the subdomains, the environment. Covariances within the other subdomains (updrafts) are neglected, 
which circumvents the need for turbulence closures therein. In the end, the EDMF equations require closure for 
the turbulent diffusivity and dissipation in the environment, and the mass, momentum, and tracer fluxes between 
environment and updrafts. In what follows, we consider an EDMF scheme with a single updraft (n = 2).

We consider the EDMF scheme discussed in Cohen et al. (2020); Lopez-Gomez et al. (2020), which is imple-
mented in a single-column model (SCM). Within this SCM, we first seek to learn 16 closure parameters: Five 
describing turbulent mixing, dissipation, and mixing inhibition by stratification (Lopez-Gomez et  al.,  2020), 
three describing the momentum exchange between subdomains (He et al., 2021), seven describing entrainment 
fluxes between updrafts and the environment (Cohen et al., 2020), and another one defining the surface area frac-
tion occupied by updrafts. In Section 4.4, we substitute the empirical dynamical entrainment closure proposed in 
Cohen et al. (2020) by a neural network, and train the resulting physics-based machine-learning model.

To showcase the versatility of the algorithms, UKI is used for approximate Bayesian inference of empirical 
parameters (using relation 25), and EKI is used for both MAP estimation of empirical parameters (relation 25, 
Sections 4.2, 4.3) and MLE estimation of neural network parameters (relation 3, Section 4.4). In all cases, we 
employ our failsafe modifications of the algorithms (Section 3.1.1 and Appendix B). The name, prior range U, 
and reference to the definition of each empirical parameter in the literature are given in Table 1. The prior mean is 
taken to be equal to the parameter values used in Lopez-Gomez et al. (2020) and Cohen et al. (2020). The prior in 
unconstrained space (��,Λ) is obtained from the physical prior mean and range through transformations defined 
in Appendix C. Finally, we initialize EKI ensembles from the prior, (�0,Σ0) ≡ (��,Λ) , and all UKI sigma 
points from a tighter initial guess (��,Λ∕16) to demonstrate the ability of UKI to decouple from the initial guess.

4.1.  Description of LES Data and Model Configurations

The data used for training and testing the EDMF scheme are taken from the LES library described in 
Shen et  al.  (2022). This library contains high-resolution simulations of low-level clouds spanning the 
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stratocumulus-to-cumulus transition in the East Pacific Ocean. The large-scale forcing used for these simulations 
is derived from the cfSites output of the HadGEM2-A model, retrieved from the Coupled Model Intercomparison 
Project Phase 5 archive. In particular, the monthly climatology of the cfSites output is computed over the 5-year 
period 2004–2008, and used to initialize and force LES for a period of 6 days. Radiative forcing is computed 
interactively using the Rapid Radiative Transfer Model (Mlawer et al., 1997).

The SCM runs are initialized from the coarse-grained LES fields after 5.75 days of simulation and are run for 
6 hr. This runtime was chosen to be much longer than the equilibration time of the SCM to the steady forcing; 
experiments using a runtime of 12 hr resulted in no statistical changes of the results. Large-scale forcing is identi-
cal to that of the LES, and the radiative heating rates are given by the horizontal mean of the rates experienced by 
the high-resolution simulations. The observational map used to define the inverse problem follows the guidelines 
of Section 2.2, using time and horizontally averaged vertical profiles from the last Tc = 3 hr of simulation, at a 
vertical resolution of Δz = 50 m; this is also the resolution of the SCM simulations, which employ 80 vertical 
levels. Following the strategy in Figure 1, we extract the observations from each configuration as

𝑆𝑆𝑐𝑐 =

[
𝑢̄𝑢𝑢 𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑙𝑙, 𝑞𝑞𝑡𝑡, 𝑤𝑤′𝑞𝑞′

𝑡𝑡
, 𝑤𝑤′𝑠𝑠′

]𝑇𝑇
,� (33)

where 𝐴𝐴 (⋅) denotes horizontal averaging, 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴 are the horizontal velocity components, 𝐴𝐴 𝐴𝐴𝐴 is the entropy, 𝐴𝐴 𝐴𝐴𝐴𝑡𝑡 is 
the total specific humidity, 𝐴𝐴 𝑤𝑤′𝑞𝑞′

𝑡𝑡
 and 𝐴𝐴 𝑤𝑤′𝑠𝑠′ are vertical fluxes of moisture and entropy, and 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 is the liquid water 

specific humidity. The pooled variances for normalization and covariance matrix 𝐴𝐴 Γ̃𝑐𝑐 associated with the observed 
state Sc are obtained from the full 6-day statistics of the LES to capture the internal variability of the system. 
Finally, a low-dimensional encoding is obtained from the normalized time-averaged observations through trun-
cated PCA as in Equation 14, truncating the dimension of the noise covariance matrix so as to preserve 99% of 
the total noise variance. Calibration results using fewer observed fields at a coarser resolution are discussed in 
Section 4.3.

As training data, we include a total of 60 LES configurations from the Atmospheric Model Intercomparison 
Project (AMIP) experiment, spanning the months of January, April, July, and October, and locations from the 

Symbol Description Prior range Prior mean

cm Eddy viscosity coefficient (0.01, 1.0) 0.14, LG2020

cd Turbulent dissipation coefficient (0.01, 1.0) 0.22, LG2020

cb Static stability coefficient (0.01, 1.0) 0.63, LG2020

Prt,0 Neutral turbulent Prandtl number (0.5, 1.5) 0.74, LG2020

κ* Ratio of rms turbulent velocity to friction velocity (1.0, 4.0) 1.94, LG2020

cɛ Entrainment rate coefficient (0, 1) 0.13, C2020

cδ Detrainment rate coefficient (0, 1) 0.51, C2020

cγ Turbulent entrainment rate coefficient (0, 10) 0.075, C2020

β Detrainment relative humidity power law (0, 4) 2.0, C2020

μ0 Entrainment sigmoidal activation parameter (10 −6, 10 −2) 4 ⋅ 10 −4, C2020

χi Updraft-environment buoyancy mixing ratio (0, 1) 0.25, C2020

cλ Turbulence-induced entrainment coefficient (0, 10) 0.3, C2020

as Updraft surface area fraction (0.01, 0.5) 0.1, C2020

αb Updraft virtual mass loading coefficient (0, 10) 0.12, H2021

αa Updraft advection damping coefficient (0, 100) 0.001, H2021

αd Updraft drag coefficient (0, 50) 10.0, H2021

Note. The prior mean values are taken from LG2020 (Lopez-Gomez et al., 2020), C2020 (Cohen et al., 2020), and H2021 
(He et al., 2021), where a physical description of the parameters may be found.

Table 1 
Parameters ϕ Considered for Calibration in This Study
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coasts of Peru and California to the tropical Pacific. Results are also shown for a validation set, which includes 
January and July simulations from an AMIP4K experiment, where sea surface temperature is increased by 4 K 
with respect to AMIP. This temperature increase leads to 10%–20% weaker large-scale subsidence, higher cloud 
tops, and reduced cloud cover; see Shen et al. (2022) for a detailed comparison. Validation results are representa-
tive of the generalizability of the trained model for the simulation of a warming climate; the model was not trained 
on these warmer conditions.

4.2.  Calibration Using Mini-Batch Loss Evaluations

To demonstrate the effectiveness of Kalman inversion in settings where evaluating all configurations of interest 
per iteration may be too expensive or impossible (e.g., due to sequential data availability), we present calibra-
tion results using mini-batches. Batching introduces noise in the loss evaluations due to sampling error. For this 
reason, the behavior of Kalman inversion algorithms using mini-batches is representative of their robustness to 
other sources of noise, such as noise in the data or stochasticity of the dynamical model. To correct for sampling 
noise due to batching, we use Δt = |C|/|B| as discussed in Section 3.3.

For training, data are fed to the algorithm by drawing |B| configurations randomly and without replacement from 
the training set at every iteration. Configurations are reshuffled at the end of every epoch (i.e., every full pass 
through the training set). Figure 2 shows the evolution of the training and validation errors for UKI and EKI, 
using training batches of 5 and 20 configurations. Since the total number of configurations in the training set is 
60, an epoch requires 12 iterations when using |B| = 5 and 3 when using |B| = 20. For many geophysical applica-
tions, the cost of evaluating an ensemble of long-term statistics 𝐴𝐴 (⋅) from a forward model is significantly higher 
than performing the inversion updates 18 or 27. In these situations, a training epoch has similar computational 
cost for any value of |B|.

The training error is evaluated in normalized physical space with respect to the current batch,

MSE (𝜃𝜃; 𝑦̃𝑦𝐵𝐵) =
1

𝑑𝑑𝐵𝐵

||𝑦̃𝑦𝐵𝐵 − ̃𝐵𝐵(𝜃𝜃)||2 =
1

∑|𝐵𝐵|
𝑐𝑐=1

𝑑𝑑𝑐𝑐

|𝐵𝐵|∑

𝑐𝑐=1

||𝑦̃𝑦𝑐𝑐 − ̃𝑐𝑐(𝜃𝜃)||2,� (34)

where 𝐴𝐴 𝐴𝐴𝐴𝐵𝐵 ∈ ℝ
𝑑𝑑𝐵𝐵 . The validation error is defined similarly, but it is computed over the entire validation set 

at every iteration. Thus, variations in the validation error are only due to changes in the model parameters; 
there is no random data sampling. The training and validation errors decrease sharply during the first epoch 

Figure 2.  Batch (a) training and (b) validation MSE as defined in Equation 34. The lines represent the error of the ensemble 
mean 𝐴𝐴 𝜃̄𝜃 , MSE (𝐴𝐴 𝜃̄𝜃 ; 𝐴𝐴 𝐴𝐴𝐴𝐵𝐵 ), and the shading represents the ensemble standard deviation of 𝐴𝐴 MSE (𝜃𝜃; 𝑦̃𝑦𝐵𝐵) around the optimal point 
estimate 𝐴𝐴 𝜃̄𝜃 . All errors are normalized with respect to the largest initial MSEv (𝐴𝐴 𝜃̄𝜃 ; 𝐴𝐴 𝐴𝐴𝐴𝐵𝐵 ), so they can be compared. Results are 
shown for ensemble and unscented Kalman inversion, using J = 2p + 1 and training batch sizes |B| = 5, 20. Errors for |B| = 5 
are averaged using a rolling mean of 20 configurations to enable comparison with |B| = 20. In (b), the inset focuses on the 
validation error evolution for a longer training period.
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(Figure 2). Subsequent epochs fine-tune the model parameters, further reducing the data-model mismatch. It is 
remarkable and important that the validation error decreases by about the same magnitude as the training error, 
demonstrating that the parameterization approach that leverages a physical model generalizes successfully out of 
the present-climate training sample to a warmer climate.

Both EKI and UKI display efficient training in the low batch-size regime: the validation error tends to be lower 
for smaller batches after a fixed number of epochs. Hence, decreasing batch size in EKI and UKI can help reduce 
the computational cost of training models. The optimal batch size will depend on the CPU and wall-clock time 
constraints of the user. Although using smaller batches reduces CPU time, it requires more serial operations, so 
using larger batches can reduce wall-clock time.

The sampling noise due to the use of different configurations per batch (e.g., stratocumulus vs. cumulus regimes) 
increases for smaller batches. Although both algorithms achieve convergence for a wide range of batch sizes, we 
find that EKI is more robust than UKI to high levels of noise. This is shown in the inset of Figure 2b for |B| = 5, 
and in Appendix D for |B| = 1. Other differences between UKI and EKI are observed in Figure 2. The consensus 
property of EKI leads to a collapse of the model error spread after a few iterations, converging to a point estimate. 
On the other hand, the UKI ensemble converges to an MSE spread characteristic of the parameter uncertainty as 
approximated by the distribution  (��,Σ�) .

The evolution of the parameter estimate (mn, Σn) is depicted in Figure 3 for the turbulent dissipation cd, updraft 
advection damping αa and surface area fraction as. The initial parameter estimate depends on the stochastic 
initialization for EKI. The UKI estimate provides information about parameter uncertainty, whereas EKI only 
provides a point estimate (i.e., mn). From the UKI estimate, we observe that the training set constrains the likely 
values of the turbulent dissipation (cd) and surface area fraction (as) to a significantly smaller region than the 
prior. However, the magnitude of updraft advection damping (αa) is not identifiable using this data set: the corre-
sponding diagonal element of Σn converges to the prior variance used in the regularized problem 25 (Figure 3b).

The covariance estimate Σn also provides information about correlations between model parameters and total 
reduction of uncertainty (Figure 4). For the current stratocumulus-to-cumulus transition data set, our EDMF 
model shows moderate correlations between parameters regulating the turbulence kinetic energy budget in the 
boundary layer (cb, cm, cd, see Lopez-Gomez et al., 2020). We also find entrainment to be negatively correlated 
with surface updraft area fraction, detrainment and drag. These correlations can be used to improve parameteri-
zations at the process level by identifying or developing a set of uncorrelated parameters. Figure 4b shows how 
Σn converges to a quasi-steady state estimate of the posterior covariance after ∼30 iterations.

Vertical profiles of 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙, 𝑤𝑤′𝑞𝑞′
𝑡𝑡
 and 𝐴𝐴 𝐴𝐴𝐴 from the validation set are compared to the reference LES profiles in Figure 5. 

The calibrated model yields smoother and more accurate profiles than the model before training. In particular, 

Figure 3.  Parameter evolution of the turbulent dissipation (a), updraft advection damping (b), and updraft surface area 
fraction (c). All values are given in physical space. The lines describe the trajectories of the mean estimate,  −1(��) . 
For unscented Kalman inversion, the marginal ±σ uncertainty band is included in shading. This uncertainty is equal to 
± −1

(

√

(Σ�)�,�
)

 for the ith parameter. The black dashed lines are the ±σ uncertainty bands of the prior used for regularization. 
Legend as in Figure 2.
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Figure 4.  Parameter correlations estimated from unscented Kalman inversion (UKI) using |B| = 20 (a), and evolution of the 
total parameter variance from UKI using |B| = 20, 10, and 5, normalized by the prior variance tr(Λ) = 16 (b). Note that the 
initial covariance estimate used in UKI (with tr (Σ0) = 1) is decoupled from the prior. Symbols follow Table 1.

Figure 5.  Prior, posterior and large-eddy simulations (LES) profiles of liquid water specific humidity 𝐴𝐴 (𝑞𝑞𝑙𝑙) , subgrid-scale 
moisture flux 𝐴𝐴 (𝑤𝑤′𝑞𝑞′

𝑡𝑡
) , and zonal velocity 𝐴𝐴 (𝑢̄𝑢) for cfSites 5 (top) and 14 (the bottom) using July forcing from the AMIP4K 

experiment as in Shen et al. (2022). The gray shading represents the internal variability of the LES simulations over 6 days 
of steady forcing, and the lines represent 3-hr time-averaged profiles. Ensemble Kalman inversion prior and posterior results 
are point estimates evaluated at the parameter vector closest to the ensemble mean. The unscented Kalman inversion posterior 
shading spans the central 68% of the profile posterior distribution. All Kalman methods used |B| = 5 and J = 2p + 1.
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calibration significantly reduces biases in liquid water specific humidity and moisture transport for both stra-
tocumulus and cumulus cloud regimes in the 4 K-warmer AMIP4K experiment. These results confirm that the 
dynamical model can be trained using a low-dimensional encoding of the time statistics, as proposed in Section 2. 
They also highlight the generalizability of sparse physics-based models.

4.3.  Calibration Using Partial Observations

Another application of synthetic high-resolution data is the study of calibration sensitivity to data resolution and 
partial loss of information. Such sensitivity studies can inform the technical requirements of future observing 
systems or field campaigns (Suselj et al., 2020), and are easily implemented with ensemble and UKI through 
modifications of the observational map 𝐴𝐴  .

Here, we employ the EKI and UKI algorithms for this task by using coarser training data at a vertical resolution of 
Δz = 200 m. In addition, we consider only a subset of fields for which observational data may be obtained in prac-
tice: the liquid water potential temperature 𝐴𝐴 𝜃̄𝜃𝑙𝑙 , the total water specific humidity 𝐴𝐴 𝐴𝐴𝐴𝑡𝑡 , and the liquid water specific 
humidity 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 (National Academies of Sciences, Engineering, and Medicine, 2018; Suselj et al., 2020). Figure 6 
compares calibration results using this reduced setup with the results obtained using the full high-resolution 
observations of Section 4.2. The loss of information is evident in the inability of the algorithms to find the same 
minimum reached with richer observations. Nevertheless, Kalman inversion significantly reduces the validation 
error from the prior even with sparser data and a limited number of fields.

The identifiability of individual parameters as a function of the observational map 𝐴𝐴  can be inferred from the 
UKI Σn diagnostic. Figure  6 shows that the partial observations of temperature and humidity are enough to 
constrain the entrainment coefficient in the EDMF scheme. However, the loss of information with respect to the 
original observations leads to much poorer constraints on the turbulent dissipation coefficient. The same compar-
ison can be performed for any parameter of interest to inform observational requirements to constrain models at 
the process level. This diagnostic is an important advantage of UKI over EKI; identifiability is not directly infer-
able from EKI due to the ensemble collapse. However, this information can be recovered through the emulation 
of the forward map (Cleary et al., 2021).

The use of partial observations also highlights the benefits of learning from time statistics instead of tendencies. 
Learning from statistics not only ensures that the calibrated dynamical model is stable, which requires a leap of 
faith when training on instantaneous tendencies (Bretherton et al., 2022). It also couples the evolution of ther-
modynamic and dynamical fields, which can improve the forecast of fields unseen during training. An example 
is shown in Figure 7. The model calibrated using thermodynamic profiles improves upon the prior model in the 
forecast of horizontal velocities within the boundary and cloud layers. A common reason to use tendencies for 
calibration is that they enable the use of supervised learning techniques, which are easy to implement for neural 

Figure 6.  Evolution of the validation error (a), and estimates of the turbulent dissipation (b) and entrainment coefficient (c) 
for calibration processes using observations of the state 33 at 50 m resolution (UKIf, EKIf), or from 𝐴𝐴 𝜃̄𝜃𝑙𝑙, 𝑞𝑞𝑡𝑡 , and 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 at 200 m 
resolution (UKIo, EKIo). All inversion processes use |B| = 20. Shading is defined as in Figures 2 and 3.
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network architectures (Bretherton et al., 2022). In the next subsection, we demonstrate the power of UKI and EKI 
to calibrate hybrid models with embedded neural network parameterizations.

4.4.  Calibration of a Hybrid Model With Embedded Neural Network Closures

We consider now a hybrid EDMF scheme that substitutes the dynamical entrainment and detrainment closures 
proposed by Cohen et al. (2020) with a three-layer dense neural network. We define the fractional entrainment 
(ϵ) and detrainment (δ) rates as

⎡

⎢

⎢

⎣

�

�

⎤

⎥

⎥

⎦

= 1
�
NN3 (Π1,… ,Π6) ,� (35)

where z is the height, and the hidden layers of NN3 have 5 and 4 nodes, from input to outputs. Our closure 35 
seeks to learn local expressions for the z-normalized entrainment/detrainment rates, which have been shown 
to vary weakly in empirical studies of shallow cumulus convection (de Roode et al., 2000; Siebesma, 1996). 
The neural network inputs Π1, …, Π6 are 6 nondimensional groups on which entrainment and detrainment may 
depend, defined as

Π1 =
�(��� − ���)

(��� −���)2 +�2
�

,� (36a)

Figure 7.  Prior, posterior and large-eddy simulations profiles of liquid water specific humidity 𝐴𝐴 (𝑞𝑞𝑙𝑙) , vertical moisture flux 
𝐴𝐴 (𝑤𝑤′𝑞𝑞′

𝑡𝑡
) , and zonal velocity 𝐴𝐴 (𝑢̄𝑢) for cfSite 3 using July forcing (the top) and cfSite 14 using January forcing (the bottom) from 

the AMIP4K experiment (Shen et al., 2022). Posterior results are shown for a model calibrated using the high-resolution 
state 33 (Full Obs.), and coarse-resolution observations of 𝐴𝐴 𝜃̄𝜃𝑙𝑙, 𝑞𝑞𝑡𝑡 , and 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 (Partial Obs.). Shadings and legend as in Figure 5. 
Results obtained using unscented Kalman inversion with |B| = 20.
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Π2 =
����2

�� + (1 − ���)�2
��

2 (1 − ���) ��� + ����2
�� + (1 − ���)�2

��
,� (36b)

Π3 =
√
𝑎𝑎𝑢𝑢𝑢𝑢,� (36c)

Π4 = RH𝑢𝑢𝑢𝑢 − RH𝑒𝑒𝑒𝑒,� (36d)

Π5 = 𝑧𝑧∕𝐻𝐻𝑢𝑢𝑢𝑢,� (36e)

Π6 = 𝑔𝑔𝑔𝑔∕𝑅𝑅𝑑𝑑𝑇𝑇ref.� (36f)

In Equations 36, 𝐴𝐴 𝐴𝐴𝑑𝑑 =

(
𝐻𝐻inv𝑤𝑤′𝑏𝑏′|𝑠𝑠

)1∕3

 is the Deardorff convective velocity, Hinv is the inversion height, 𝐴𝐴 𝑤𝑤′𝑏𝑏′|𝑠𝑠 
is the surface buoyancy flux, g is the gravitational acceleration, Rd is the ideal gas constant for dry air, and 
Tref is a reference temperature. The subscripts up and en denote updraft and environment: aup is the updraft 
area fraction, Hup is the updraft top height, and een is the environmental turbulence kinetic energy. The relative 
humidity RH, vertical velocity with respect to the grid mean w, and buoyancy b are defined for both updraft 
and environment.

The neural network closure 35 introduces 63 additional coefficients with respect to the entrainment and detrain-
ment closure calibrated in Sections 4.2 and 4.3, for a total of 79 parameters. As the closure complexity increases, 
it is most practical to use EKI for calibration, since it enables the use of ensembles with J < 2p + 1 members. 
In Figure 8, we present training and validation errors for the hybrid model using ensemble sizes J = 50, 100, 
and 159, and for the empirical EDMF scheme with J = 2p + 1 = 33 ensemble members. We initialize the neural 
network weights as 𝐴𝐴 𝐴𝐴NN ∼ 

(
𝜃𝜃0
NN
, 𝐼𝐼
)
 with 𝐴𝐴 𝐴𝐴0

NN
∼ 𝑈𝑈 (−0.05, 0.05) . In all cases, we use Bayesian regularization as 

discussed in Section 4.2 for all model parameters except for the neural network weights. We calibrate all parame-
ters of the empirical and hybrid models, to compare the optimal performance of both closures.

Both the empirical and hybrid EDMF schemes generalize well to the validation set, with training and validation 
errors reaching levels of about 5% of the largest a priori validation error. The strong generalization to 4 K-warmer 
cloud regimes contrasts with results from approaches that try to learn unresolved tendencies directly, without 
encoding the physics (Rasp et al., 2018). Using a physics-based hybrid approach, all learned closures are consist-
ently placed within the coarse-grained dynamics of the system (Cohen et al., 2020), which also vastly reduces 
data requirements. Further, targeting closure terms that isolate a single physical process lends itself to interpreta-
bility in a manner difficult for purely machine-learning based parameterizations that simultaneously model many 
physical processes. After training, relationships between EDMF variables and targeted physical quantities like 
entrainment can be teased out using partial dependence plots or ablation studies. In addition, the learned relation-
ships are point-wise and causal.

Figure 8.  Batch (a) training and (b) validation normalized MSE for the hybrid eddy-diffusivity mass-flux (EDMF + NN) 
and empirical (EDMF) models. The lines, shading, and inset as in Figure 2. Results are shown for calibration with ensemble 
Kalman inversion, using J = 50, 100 and 2p + 1 = 159 ensemble members for the hybrid model. The empirical model 
training uses J = 2p + 1 = 33. All inversion processes use batch size |B| = 10.
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The inset in Figure 8b shows how the higher-complexity hybrid model moderately overfits to the training set after 
∼10 epochs, a behavior that is not observed with the empirical model. Hence, in the low-data regime (d ≲ p), 
adoption of techniques such as early stopping (Prechelt, 1998) or sparsity-inducing regularization (Schneider 
et al., 2020) becomes necessary. The compact support property of EKI, which mandates that the solution be in 
the linear span of the initial ensemble, also regularizes the learned hybrid model with decreasing J; for J = 50 < p 
overfitting is significantly reduced. Thus, reducing the ensemble size is an efficient regularization technique 
when training large machine-learning models that tend to overfit, at the expense of reduced expressivity. Addi-
tional EKI-specific regularization techniques for deeper networks are discussed in Kovachki and Stuart (2019).

Another difference between the empirical and the hybrid models is that for the latter, we do not know a priori 
the parameter ranges for which the model trajectories remain physical. During the training sessions shown in 
Figure 8, the hybrid models experienced a maximum of 25 (J = 50), 30 (J = 100), and 72 (J = 159) failures in 
a single iteration, all occurring during the first epoch. The use of the failsafe update proposed in Section 3.1.1 
proved crucial to enable training in the presence of model failures, and it reduced the number of failures to a small 
fraction of the J ensemble members after a few EKI iterations.

Profiles of 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙, ̄𝑞𝑞𝑡𝑡 and 𝐴𝐴 𝑤𝑤′𝑞𝑞′
𝑡𝑡
 are shown in Figure 9 for the trained empirical and hybrid EDMF models. To produce 

the profiles with the hybrid model, we retain the parameters learned at the iteration with lowest validation error 
from a training session spanning 25 epochs, effectively similar to early stopping. As expected from the validation 
error, the hybrid model slightly improves upon the skill of the empirical model, predicting more accurate profiles 
of 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 within the cloud layer. This is, of course, at the cost of a significantly higher parameter complexity of the 
closure.

Figure 9.  Prior, posterior and large-eddy simulations (LES) profiles of liquid water specific humidity 𝐴𝐴 (𝑞𝑞𝑙𝑙) , total water 
specific humidity 𝐴𝐴 (𝑞𝑞𝑡𝑡) , and vertical moisture flux 𝐴𝐴

(
𝑤𝑤′𝑞𝑞′

𝑡𝑡

)
 for cfSite 14 using July forcing (top) and cfSite 8 using January 

forcing (bottom) from the AMIP4K experiment (Shen et al., 2022). Definitions of prior, posterior, and shading as in Figure 5. 
Posterior results are shown for the eddy-diffusivity mass-flux (EDMF) model with empirical closures (EDMF), and with the 
neural network entrainment closure 35 (EDMF + NN), using early stopping and 25 epochs of training. Results obtained using 
ensemble Kalman inversion with |B| = 10.
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As shown here, EKI allows for rapid prototyping and comparison of closures within an overarching black-box 
model. Importantly, this comparison can be done during training in terms of the online performance of the fully 
calibrated dynamical model.

5.  Discussion and Conclusions
Ensemble Kalman methods such as ensemble and UKI are powerful tools for training possibly expensive models. 
By leveraging covariances between the model output and its parameters, they do not impose any constraint on 
the data used for learning, or the architecture of the closures to be calibrated. This means that ensemble Kalman 
methods can be used to learn all parameters within complex overarching models, regardless of where those 
parameters appear in the formulation of the model. Furthermore, the Gaussian approximation of the parameter 
distribution makes them far more efficient than standard Bayesian inference techniques, at the cost of neglecting 
uncertainty beyond the second moment of the posterior, and the possible convergence to local minima (as for 
stochastic gradient descent and other optimization methods).

This enables training physics-based machine-learning parameterizations, as demonstrated here by substituting an 
internal component of the EDMF model by a neural network, which required no change in the data or framework 
used for training. The benefits of combining physics and data are demonstrated by the performance of our trained 
hybrid closure in simulations of clouds typical of conditions 4 K warmer than the clouds in the training set.

To use these algorithms, parameter learning must be framed as an inverse problem. This allows great flexibility, 
but raises the problem of choosing a reasonable observational map 𝐴𝐴  and noise covariance Γ to define an inverse 
problem. Through a domain-agnostic strategy and a reasonable heuristic about the expected model error, we have 
demonstrated a systematic way of constructing a well-defined inverse problem from high-dimensional data. This 
strategy is designed to maximize the information content through a lossy principal component encoding 𝐴𝐴  and 
to allow the use of time averages as observations, making it amenable to harnessing, for example, satellite obser-
vations in addition to computationally generated data. The success of this strategy is demonstrated in a variety of 
settings, using empirical and hybrid models.

The flexibility of the inverse problem allows to define the observational map 𝐴𝐴  through any observable diag-
nostic of the model, be it differentiable or not. For instance, Barthélémy et al. (2021) use a neural network as the 
mapping 𝐴𝐴  , to train a low-resolution dynamical model directly from features at high resolution. One could also 
envision the construction of 𝐴𝐴  through other statistics of the model dynamics, such as the variance or skewness. 
These choices may be preferable for particular tasks, such as the prediction of extreme events or the correct 
representation of emergent phenomena.

Given an inverse problem, we have shown that EKI and UKI are robust to noise and amenable to batching strat-
egies. This establishes the ability of the Kalman algorithms to train models using sequentially sampled data. 
The same robustness can be expected for other sources of noise, such as stochasticity in the model (Schneider 
et al., 2021). In addition, we have proposed modifications of the EKI and UKI updates that enable calibrating 
models that may fail during training, which is often the case for Earth system models.

Although similar, each ensemble Kalman algorithm presents its own relative strengths in our analysis. Calibration 
through EKI appears to be more robust to noise, and the number of ensemble members may be chosen to be lower 
than for UKI when the parameter space is high-dimensional. Indeed, Kovachki and Stuart (2019) show successful 
results for EKI when the number of parameters (e.g., p ∼10 6) is two orders of magnitude higher than the ensemble 
size. Using fewer ensemble members than parameters also introduces a regularization effect. On the other hand, 
UKI provides information about parametric uncertainty and correlations, which can be used to improve models 
at the process level, and to rapidly compare the added value of increasingly precise observing systems. Other 
ensemble Kalman methods, such as the sparsity-inducing EKI (Schneider et al., 2020) or the ensemble Kalman 
sampler (Garbuno-Inigo et al., 2020), can provide solutions to the inverse problem with other useful properties. 
In addition, all these ensemble methods generate parameter-output pairs that can be used to train emulators for 
uncertainty quantification that can capture non-Gaussian posteriors (Cleary et al., 2021).

Finally, ensemble Kalman methods may be used for the rapid comparison of parameterizations in terms of the 
online skill of an overarching Earth system model. For example, the same framework could be used to train 
Gaussian processes, random feature models (Nelsen & Stuart, 2021), Fourier neural operators (Li et al., 2020), 
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or stochastic closures (Guillaumin & Zanna, 2021). These are some of the exciting research avenues that we will 
be exploring in the future.

Appendix A:  Configuration-Based Principal Component Analysis
Performing PCA on each configuration allows retaining principal modes from low-variance configurations 
while filtering out trailing modes from high-variance configurations. The importance of this is demonstrated 
in Figure A1 for three configurations of our LES solver (Pressel et al., 2015) based on observational campaigns 
of a stable boundary layer, a stratocumulus-topped boundary layer, and shallow cumulus convection (Beare 
et al., 2006; Siebesma et al., 2003; Stevens et al., 2005). Performing global PCA is equivalent to using a cutoff 

𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐 > 𝜇𝜇∗
𝑐𝑐 in Figure A1a, where we need to choose between neglecting most modes from certain configurations 

(e.g., GABLS in Figure A1a) or retaining highly oscillatory modes from others (e.g., Bomex), as measured by 
the number of zero-crossings of the eigenmode (Hansen, 1998). Highly oscillatory modes may have a dispro-
portionate contribution to the loss when calibrating imperfect models. On the other hand, performing PCA on 
each 𝐴𝐴 Γ̃𝑐𝑐 alleviates this problem by aligning the eigenspectra before applying the cutoff, as shown in Figure A1b. 
Appropriate conditioning of the global covariance matrix is still enforced when applying configuration-based 
PCA through the Tikhonov regularizer in Equation 14.

Appendix B:  Addressing Model Failures With Unscented Kalman Inversion
In the presence of model failures, we perform the UKI quadratures over the successful sigma points. Consider 
the set of off-center sigma points 𝐴𝐴

{
𝜃̂𝜃
}
=
{
𝜃̂𝜃𝑠𝑠
}
∪
{
𝜃̂𝜃𝑓𝑓
}
 where 𝐴𝐴 𝜃̂𝜃

(𝑗𝑗)
𝑠𝑠  , j = 1, …, Js are successful members and 𝐴𝐴 𝜃̂𝜃

(𝑘𝑘)

𝑓𝑓
 

are not. For ease of notation, consider an ordering of 𝐴𝐴
{
𝜃̂𝜃
}
 such that 𝐴𝐴

{
𝜃̂𝜃𝑠𝑠
}
 are its first Js elements, and note that we 

deal with the central point 𝐴𝐴 𝜃̂𝜃(0) separately. We estimate the covariances Cov� (�,�) and Cov� (��,�) from the 
successful ensemble,

Cov� (��,�) ≈
��
∑

�=1

��,�
(

�̂(�)�,� − �̄�,�
) (


(

�̂(�)�,�
)

− ̄�,�
)�
,� (B1)

Cov� (�,�) ≈
��
∑

�=1

��,�
(


(

�̂(�)�,�
)

− ̄�,�
) (


(

�̂(�)�,�
)

− ̄�,�
)�
,� (B2)

where the weights at each successful sigma point are scaled up, to preserve the sum of weights,

Figure A1.  (a) Scatter plot of covariance eigenvalues μc,i and the number of zero-crossings of their corresponding eigenmode 
for three different configurations of a large-eddy simulations solver. (b) The same plot, with eigenvalues normalized by the 
leading eigenvalue of each configuration (μc,1). Trailing eigenvalues are associated with high-wavenumber oscillatory modes 
with frequent sign changes.
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𝑤𝑤𝑠𝑠𝑠𝑠𝑠 =

( ∑2𝑝𝑝

𝑖𝑖=1
𝑤𝑤𝑖𝑖

∑𝐽𝐽𝑠𝑠

𝑘𝑘=1
𝑤𝑤𝑘𝑘

)
𝑤𝑤𝑗𝑗.� (B3)

In Equations B1 and B2, 𝐴𝐴 𝜃̄𝜃𝑠𝑠𝑠𝑠𝑠 and 𝐴𝐴 ̄𝑠𝑠𝑠𝑠𝑠 must be modified from the original formulation if the central point 𝐴𝐴 𝜃̂𝜃(0) = 𝑚𝑚𝑛𝑛 
results in model failure,

𝜃̄𝜃𝑠𝑠𝑠𝑠𝑠 =

⎧
⎪
⎨
⎪
⎩

𝑚𝑚𝑛𝑛 if 𝜃̂𝜃(0) successful,

1

𝐽𝐽𝑠𝑠

∑𝐽𝐽𝑠𝑠

𝑗𝑗=1
𝜃̂𝜃
(𝑗𝑗)
𝑠𝑠𝑠𝑠𝑠 otherwise,

� (B4)

̄�,� =

⎧

⎪

⎨

⎪

⎩

 (��) if �̂(0) successful,
1
��

∑��
�=1 

(

�̂(�)�,�
)

otherwise.
� (B5)

These modified UKI quadrature rules are used throughout Section 4 to deal with model failures. Since UKI can 
be initialized from a tighter prior than EKI, due to the absence of ensemble collapse, failures are much easier to 
avoid than with EKI.

Appendix C:  Parameter Transformation and Prior
Given a prior range [ϕi, ϕf] for a parameter 𝐴𝐴 𝐴𝐴 ∈ ℝ , we define the transformation

𝜃𝜃 =  (𝜙𝜙) = ln
𝜙𝜙 − 𝜙𝜙𝑖𝑖

𝜙𝜙𝑓𝑓 − 𝜙𝜙
,� (C1)

such that the interval midpoint is mapped to θ = 0, and the bounds to ±∞. An unconstrained Gaussian prior may 
then be defined for θ, given the prior mean in physical (constrained) parameter space ϕp as

�0 ∼ 
(

 (��) , �2
0

)

,� (C2)

where 𝐴𝐴 𝐴𝐴2

0
 is a free parameter controlling the size of the region within the interval [ϕi, ϕf] containing most of the 

probability. This means that the magnitude of σ0 is already normalized with respect to the prior range, so we will 
generally choose 𝐴𝐴 𝐴𝐴0 ∼ (1) . The p − dimensional prior 𝐴𝐴  (𝑚𝑚0,Σ0) is then constructed as an uncorrelated multi-
variate normal with marginal distributions given by Equation C2. The normalization induced by Equation C1 also 
enables the use of isotropic regularization in Equations 25 and 26, even though the physical parameters ϕ may 
differ in order of magnitude. For more examples of parameter transformations in the context of EKI and UKI, see 
Huang, Schneider, and Stuart (2022), Schneider et al. (2022), and Dunbar et al. (2022).

Appendix D:  Calibration Using Very Noisy Loss Evaluations
The Kalman inversion results are expected to deteriorate above some noise threshold, as the signal-to-noise ratio 
in the training process decreases. We explored the sensitivity of UKI and EKI to noise by sampling a single 
configuration per iteration from the training set described in Section 4.1. As shown in Figure D1, UKI fails to 
converge to the minimum found with larger batches in this limit. The validation error is characterized by large 
oscillations due to strong changes in the value of model parameters like the entrainment coefficient cϵ or the 
eddy viscosity coefficient cm. On the other hand, EKI proves robust to noise even in this limit, converging to the 
minimum found by UKI employing larger batches.

In the context of Kalman inversion, decreasing the step size Δt is equivalent to increasing the noise variance, as 
shown in Equations 18 and 27. We investigate the time step role in the small batch limit by performing the EKI 
with Δt = |C| −1 = 1/60. The smaller time step increases the parameter uncertainty, which leads to a reduction 
in parameter oscillations and estimates closer to the prior. This is accompanied by a moderate reduction in vali-
dation error oscillations. We performed additional inversions using even smaller time steps, which resulted in a 
convergence of the parameter estimates toward the prior and a minor reduction in validation error with respect to 
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the initialization. We conclude that decreasing Δt in UKI can reduce oscillations due to high levels of noise, but 
it does not result in the same robustness as EKI.

Notation
𝐴𝐴 𝐴𝐴 ∈ ℝ

𝑝𝑝 	 learnable parameters, in physical space
𝐴𝐴 𝐴𝐴 ∈ ℝ

𝑝𝑝 	 transformed learnable parameters, in unconstrained space
𝐴𝐴 𝐴𝐴∗ ∈ ℝ

𝑝𝑝 	 optimal unconstrained parameter estimate (MAP or MLE)
φ0	 initial dynamical state
Fφ	 dynamical forcing

𝐴𝐴 𝐴𝐴𝑐𝑐 = {𝜑𝜑0, 𝐹𝐹𝜑𝜑}𝑐𝑐 	configuration of the dynamical system
ζ(xc): φ0 → φ(t)	 true dynamical system evolution

𝐴𝐴 Ψ (𝜙𝜙; 𝑥𝑥𝑐𝑐) ∶ 𝜑𝜑0 → 𝜑̂𝜑(𝑡𝑡) 	 dynamical model evolution
𝐴𝐴 𝑐𝑐 	 observational map for configuration c
𝐴𝐴 𝐴𝐴𝑐𝑐 ∈ ℝ

𝑑𝑑𝑐𝑐 	 observation vector for configuration c
𝐴𝐴 𝐴𝐴𝑐𝑐 ∈ ℝ

𝑑𝑑𝑐𝑐 	 observation error for map 𝐴𝐴 𝑐𝑐

𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑐𝑐) ∈ ℝ
𝑑𝑑𝑐𝑐 	 model or representation error for configuration c

𝐴𝐴 Γ𝑐𝑐 ∈ ℝ
𝑑𝑑𝑐𝑐×𝑑𝑑𝑐𝑐 	 covariance of the Gaussian noise ηc + δ(xc)

𝐴𝐴 𝑐𝑐 ∶ ℝ
𝑝𝑝
→ ℝ

𝑑𝑑𝑐𝑐 	forward model for configuration c
C = {xc, c = 1, …, |C|}	 set of configurations

𝐴𝐴 𝐴𝐴 =
[
𝑦𝑦1,… , 𝑦𝑦|𝐶𝐶|

]𝑇𝑇
∈ ℝ

𝑑𝑑 	 global observation vector
𝐴𝐴 𝐴𝐴 =

[
𝛿𝛿 (𝑥𝑥1) ,… , 𝛿𝛿 (𝑥𝑥|𝐶𝐶|)

]𝑇𝑇  	 global representation error
𝐴𝐴 𝐴𝐴 =

[
𝜂𝜂1,… , 𝜂𝜂|𝐶𝐶|

]𝑇𝑇  	 global observation error
𝐴𝐴 Γ ∈ ℝ

𝑑𝑑×𝑑𝑑 	 global noise covariance matrix
𝐴𝐴  ∶ 𝑈𝑈 → ℝ

𝑝𝑝 	 parameter transformation to unconstrained space
𝐴𝐴  ∶ ℝ

𝑝𝑝
→ ℝ

𝑑𝑑 	 forward model
ρ(θ|y, Γ)	 parameter posterior probability density, given Γ and y
ρprior(θ)	 parameter prior probability density, independent of Γ

𝐴𝐴  ∶ ℝ
𝑝𝑝 ×ℝ

𝑑𝑑
→ ℝ 	 loss or negative log-likelihood given Γ

𝐴𝐴 𝐴𝐴𝑐𝑐(𝑡𝑡) ∈ ℝ
𝑑𝑑𝑐𝑐 	 observed state

𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) ∈ ℝ
ℎ𝑐𝑐 	 spatial field j within the observed state Sc

𝐴𝐴 𝐴𝐴𝑐𝑐(𝑡𝑡) ∈ ℝ
𝑑𝑑𝑐𝑐 	 normalized observed state

𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) ∈ ℝ
ℎ𝑐𝑐 	 spatial field j within the normalized state sc

Figure D1.  Evolution of the validation error (a) and estimates of the entrainment (b), and eddy diffusivity (c) coefficients. 
Results shown for unscented Kalman inversion (UKI) using batch sizes of 10 and 1, and ensemble Kalman inversion 
using a batch size of 1. Parameter uncertainty only shown for UKI10 and UKI1, Δt = 1/60 for clarity. All results shown use 
Δt = |C|/|B| unless otherwise specified. Shading as in Figures 2 and 3.
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𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐 ∈ ℝ 	 pooled time standard deviation of Vc,j
𝐴𝐴 𝐴𝐴𝑐𝑐 ∈ ℝ 	 time-averaging window used in map 𝐴𝐴 𝑐𝑐

𝐴𝐴 𝐴𝐴𝐴𝑐𝑐 ∈ ℝ
𝑑𝑑𝑐𝑐 	 counterpart of yc prior to encoding

𝐴𝐴 𝐴𝐴𝐴 ∈ ℝ
𝑑𝑑 	 global observation vector prior to encoding

𝐴𝐴 Γ̃𝑐𝑐 ∈ ℝ
𝑑𝑑𝑐𝑐×𝑑𝑑𝑐𝑐 	 counterpart of Γc prior to encoding

𝐴𝐴 Γ̃ ∈ ℝ
𝑑𝑑×𝑑𝑑 	 counterpart of Γ prior to encoding

𝐴𝐴 𝐴𝐴𝑑𝑑 ∈ ℝ
𝑑𝑑×𝑑𝑑 	 identity matrix of size d × d

𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐 ∈ ℝ 	 ith largest eigenvalue of 𝐴𝐴 Γ̃𝑐𝑐

𝐴𝐴 𝐴𝐴 ∈ ℝ 	 approximate condition number of a matrix
𝐴𝐴 𝐴𝐴𝑐𝑐 ∈ ℝ 	 approximate rank of matrix 𝐴𝐴 Γ̃𝑐𝑐

𝐴𝐴 𝐴𝐴𝑚𝑚 ∈ ℝ 	 machine or data precision

𝐴𝐴 𝐴𝐴∗ < 𝜖𝜖
−1∕2
𝑚𝑚  	 limiting matrix condition number

𝐴𝐴 𝐴𝐴𝑐𝑐 ∈ ℝ
𝑑𝑑𝑐𝑐×𝑑𝑑𝑐𝑐 	 truncated PCA projection matrix

𝐴𝐴 𝐴𝐴(𝜃𝜃) ∈ ℝ
𝑑𝑑×𝑝𝑝 	 Jacobian of forward model at θ

B = {xc, c = 1, …, |B|}	 mini-batch of configurations
𝐴𝐴 𝐴𝐴 ∶ ℝ

𝑝𝑝 ×ℝ
𝑑𝑑
→ ℝ 	 configuration-averaged loss

𝐴𝐴 𝐴𝐴𝐵𝐵 ∈ ℝ
𝑑𝑑𝐵𝐵 	 observation vector for batch B

𝐴𝐴 𝐴𝐴𝐴𝐵𝐵 ∈ ℝ
𝑑𝑑𝐵𝐵 	 counterpart of yB prior to encoding

𝐴𝐴 ̃𝐵𝐵 ∶ ℝ
𝑝𝑝
→ ℝ

𝑑𝑑𝐵𝐵 	 forward model corresponding to observations 𝐴𝐴 𝐴𝐴𝐴𝐵𝐵

𝐴𝐴 Θ𝑛𝑛 ∈ ℝ
𝑝𝑝×𝐽𝐽 	 parameter ensemble at iteration n

𝐴𝐴 𝐴𝐴𝑛𝑛 ∈ ℝ
𝑝𝑝 	 mean parameter estimate at iteration n

𝐴𝐴 Σ𝑛𝑛 ∈ ℝ
𝑝𝑝×𝑝𝑝 	 parameter covariance estimate at iteration n

𝐴𝐴 Θ𝑛𝑛
∈ ℝ

𝑑𝑑×𝐽𝐽 	 forward model evaluation ensemble at iteration n
𝐴𝐴 𝐴𝐴 (Θ𝑛𝑛) ∈ ℝ

𝑑𝑑×𝐽𝐽 	 data-model mismatch ensemble at iteration n
𝐴𝐴 Δ𝑡𝑡 ∈ ℝ 	 nominal learning rate
𝐴𝐴 Θ𝑠𝑠𝑠𝑠𝑠 ∈ ℝ

𝑝𝑝×𝐽𝐽𝑠𝑠 	 successful parameter ensemble at iteration n

𝐴𝐴 𝐴𝐴
(𝑘𝑘)

𝑓𝑓𝑓𝑓𝑓
∈ ℝ

𝑝𝑝 	 kth failed parameter vector at iteration n
𝐴𝐴 𝐴𝐴𝑝𝑝 ∈ ℝ

𝑝𝑝 	 parameter prior mean
𝐴𝐴 Λ ∈ ℝ

𝑝𝑝×𝑝𝑝 	 gaussian prior covariance
𝐴𝐴 𝐴𝐴𝑎𝑎 ∈ ℝ

𝑑𝑑+𝑝𝑝 	 observation vector augmented with mp

𝐴𝐴 𝑎𝑎(𝜃𝜃) ∈ ℝ
𝑑𝑑+𝑝𝑝 	 forward model augmented with θ

𝐴𝐴 𝐴𝐴 ∈ ℝ
𝑑𝑑+𝑝𝑝 	 aggregate noise in the augmented data-model relation

𝐴𝐴 Γ𝑎𝑎 ∈ ℝ
(𝑑𝑑+𝑝𝑝)×(𝑑𝑑+𝑝𝑝) 	 covariance of the aggregate noise ξ

𝐴𝐴 𝜃̂𝜃
(𝑗𝑗)
𝑛𝑛 ∈ ℝ

𝑝𝑝 	 jth sigma point for UKI quadrature
Πj	 jth nondimensional input to neural network

Data Availability Statement
The software package implementing ensemble Kalman methods can be accessed at https://doi.org/10.5281/
zenodo.6382968, the one implementing the eddy-diffusivity mass-flux (EDMF) scheme at https://doi.
org/10.5281/zenodo.6392397, and the software used to calibrate the EDMF scheme may be accessed at 
https://doi.org/10.5281/zenodo.6382865. The data from Shen et al. (2022) used for model training are available 
at https://doi.org/10.22002/D1.20052.
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