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Abstract The small-scale microphysical processes governing the formation of precipitation particles cannot
be resolved explicitly by cloud resolving and climate models. Instead, they are represented by microphysics
schemes that are based on a combination of theoretical knowledge, statistical assumptions, and fitting to

data (“tuning”). Historically, tuning was done in an ad hoc fashion, leading to parameter choices that are not
explainable or repeatable. Recent work has treated it as an inverse problem that can be solved by Bayesian
inference. The posterior distribution of the parameters given the data—the solution of Bayesian inference—is
found through computationally expensive sampling methods, which require over (9(105 ) evaluations of the
forward model; this is prohibitive for many models. We present a proof of concept of Bayesian learning applied
to a new bulk microphysics scheme named “Cloudy,” using the recently developed Calibrate-Emulate-Sample
(CES) algorithm. Cloudy models collision-coalescence and collisional breakup of cloud droplets with an
adjustable number of prognostic moments and with easily modifiable assumptions for the cloud droplet mass
distribution and the collision kernel. The CES algorithm uses machine learning tools to accelerate Bayesian
inference by reducing the number of forward evaluations needed to (9(102). It also exhibits a smoothing effect
when forward evaluations are polluted by noise. In a suite of perfect-model experiments, we show that CES
enables computationally efficient Bayesian inference of parameters in Cloudy from noisy observations of
moments of the droplet mass distribution. In an additional imperfect-model experiment, a collision kernel
parameter is successfully learned from output generated by a Lagrangian particle-based microphysics model.

Plain Language Summary Clouds contain gazillions of cloud droplets, which grow by colliding
and sticking together with each other, and eventually they become big enough to fall out as rain. Keeping track
of every one of these droplets in weather and climate models is impossible, so the formation of rain has to be
represented by simplified models, so-called “microphysics schemes.” These schemes have become a bit like
black boxes, with baked-in statistical assumptions and some empirical parameters whose values are somewhat
obscure and not explainable. We show that we can use a method called Bayesian inference to determine the
values of these parameters in a way that is both mathematically sound and reasonably fast. The idea of Bayesian
inference is to come up with a first guess about the possible values of the parameters, and then to systematically
refine that guess using observed data. We apply this method to a new microphysics scheme that we developed
and named “Cloudy.” To be honest, the data we use for our experiments are not real observations from, say,
satellites, but are generated by Cloudy itself. With real observations, the problem becomes hairier, so what we
do here is only a proof of concept—but hey, its a start!

1. Introduction

Cloud microphysics comprises all processes controlling the formation and growth of cloud droplets and ice
crystals and their fallout as precipitation. These processes play a key role in the climate system, affecting surface
precipitation, latent heating and cooling, cloud radiative properties, and cloud chemistry. Due to the small scales
on which they occur (submicrons to centimeters), explicitly simulating the growth of individual cloud particles
in a turbulent cloud requires model resolutions at least as small as the Kolmogorov scale, which is about 1 mm
in the Earth's atmosphere. With horizontal grid spacings of about 10-50 km, state-of-the-art climate models are
(and will remain) orders of magnitude too coarse to resolve the vast number of hydrometeors—typically about
10% in 1 m? of cloudy air—on a global scale.
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Instead, global climate models (GCMs) represent microphysical processes by means of statistical parameteriza-
tions, which are developed based on a combination of physical understanding, statistical assumptions, heuristics,
and tuning to observations. GCMs typically employ so-called bulk schemes, which assume some functional
form of the cloud droplet size distribution (DSD) and step one or more statistical moments of the distribution
forward in time. More computationally expensive representations of microphysics include bin schemes (Khain
et al., 2004; Lynn et al., 2005; Tzivion et al., 1987), which partition the DSD into discrete size bins and model
the processes affecting the particles in each bin. More recent developments include Lagrangian particle-based
schemes (e.g., Andrejczuk et al., 2010; Riechelmann et al., 2012; Shima et al., 2009, 2019), which simulate an
ensemble of computational particles (“super-particles” or “super-droplets”), each representing a large number
of real cloud and precipitation particles. The closest approximations to “ab initio” calculations of microphysical
processes are performed by direct numerical simulations (DNS), which track the motion and growth of each
individual cloud particle (e.g., Chen et al., 2016, 2018, 2020, 2021; Wang et al., 2009). To do that, they need to
resolve the smallest scales of turbulence (millimeter and submillimeter scales), which limits typical domain sizes
to less than 1 m>.

Morrison, van Lier-Walqui, Fridlind, et al. (2020) provide an overview of the different approaches to the numerical
modeling of microphysics and argue that the Lagrangian particle-based methods overcome several shortcomings
of traditional bulk and bin schemes. A particularly attractive property of Lagrangian schemes is that in the limit-
ing case where each computational particle represents a single real particle and the model resolution approaches
that of a DNS, the Lagrangian scheme converges to the particle-by-particle DNS (Dziekan & Pawlowska, 2017).
Due to their computational cost, though, Lagrangian particle-based methods will likely not replace the bulk
schemes in global models within the next 1-2 decades. However, Lagrangian particle-based schemes can be used
for cloud modeling and, as shown in this study, they can provide a benchmark for testing bulk schemes.

All three types of microphysics schemes (bulk, bin, and Lagrangian) rely on empirical parameters to compute
process rates. Ultimately, this is a consequence of the fact that there is no known complete set of equations
governing these microscopic processes; that is, there is no microphysics analog to the Navier-Stokes equations.
Given the limited theoretical knowledge, data and observations play a crucial role in constraining the values of
empirical parameters. Historically, the process of determining (“tuning”) these values has not been approached
in a systematic and transparent way. However, a number of recent studies demonstrate the use of Bayesian tech-
niques to parameter estimation in bulk microphysics schemes (e.g., Posselt, 2016; Posselt & Vukicevic, 2010;
van Lier-Walqui et al., 2014). In a two-part paper, Morrison, van Lier-Walqui, Kumjian, and Prat (2020) intro-
duce the Bayesian Observationally constrained Statistical-physical Scheme (BOSS), a framework for the bulk
parameterization of microphysics, which is designed to learn microphysical parameter distributions from data by
means of Bayesian inference. The second part (van Lier-Walqui et al., 2020) gives a demonstration in the form
of a perfect-model experiment, which shows that BOSS can be used in conjunction with a Markov chain Monte
Carlo (MCMC) sampling algorithm to estimate parameters from synthetically generated rain observations. A
key feature of BOSS is its adjustable complexity. While traditional schemes have fixed numbers of prognostic
moments, BOSS allows the number of prognostic moments to be chosen flexibly, depending on the application
and the observations available.

In a similar vein, to model parametric uncertainty with a strong mathematical foundation, we use a Bayesian
framework, where model parameters are described by random variables. We propose a prior form of the distribu-
tions and refine them systematically with observed data, using a process known as Bayesian inference, Bayesian
calibration, or uncertainty quantification. As in Schneider et al. (2017), we use the word “data” for any infor-
mation source that is used as a ground truth against which a microphysics scheme is compared and calibrated,
including both observations of natural clouds (e.g., satellite products or in-situ airborne observations) and the
output of higher-resolution or more physical model simulations. There is also much to be gained from using a
perfect-model setting in a proof of concept, where the same model is used for both generating data and inversion;
however, the resulting parameter learning results will necessarily be optimistic. The standard tool of Bayesian
inference is MCMC sampling, which represents this data-refined distribution empirically by providing a large
set of samples drawn from it. The main drawback of MCMC methods is their computational cost. They require
large numbers of model evaluations (typically about 10° to 106), which is not feasible for expensive models such
as GCMs.
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Recent work by Cleary et al. (2021) presents a method to perform an approximate Bayesian inversion of compu-
tationally expensive models for which derivatives are not readily available and whose evaluations may be polluted
by noise, for example, from chaotic internal variability. This three-step method called Calibrate-Emulate-Sam-
ple (CES) has been shown to be effective for inferring parameter distributions in a convection scheme of a
GCM exhibiting these properties (Dunbar et al., 2021; Howland et al., 2021). The calibrate step of the algorithm
consists of ensemble Kalman inversion or variants such as the ensemble Kalman sampler (EKS; Garbuno-Inigo,
Hoffmann, et al., 2020), which are used to find pairs of parameters and their respective model outputs, automati-
cally focusing on a region of the parameter space that is likely to have produced the observed data. In the emulate
step, a Gaussian process (Rasmussen & Williams, 2006) is trained on these parameter output pairs and serves
as a surrogate (emulator) of the original (expensive) forward model. In the sampling step, the fast-to-evaluate
emulator is used in the likelihood of an MCMC algorithm to sample the posterior distribution in a computation-
ally efficient manner.

The goal of this study is twofold: First, we introduce a new bulk microphysics framework that was designed for
consistent representation of microphysical processes across models with different resolutions and physics. The
model, called “Cloudy” (available at https://github.com/CliMA/Cloudy.jl), is broadly similar to BOSS (Morrison,
van Lier-Walqui, Kumjian, & Prat, 2020; van Lier-Walqui et al., 2020), for example, in that the number of prog-
nostic moments is modifiable and that it can learn from data; however, there are also a few important differences,
for example, in that Cloudy allows for separate learning of collision kernels and DSDs, for example, in that
Cloudy allows for separate learning of collision kernels and DSDs, such that the learned parameters are more
directly associated with a physical interpretation. This facilitates the physical realizability of the simulation.
Cloudy currently simulates collision-coalescence and collisional breakup of cloud droplets (with future develop-
ment plans including an extension to other warm rain processes and ice microphysics), in a way that the governing
equations for the moments of the DSD can easily be related to the specific properties of collision kernels.

The second goal is to demonstrate that parameters in Cloudy can be learned from data in a computationally effi-
cient way through the approximate Bayesian inversion performed by CES. We present a suite of perfect-model
experiments (Where Cloudy itself is used to generate the data used for Bayesian inversion), as well as an exper-
iment using data from simulations generated by PySDM (Bartman et al., 2022), a high performance Python
implementation of the super-droplet method (SDM) for representing liquid microphysics (package available at
https://github.com/atmos-cloud-sim-uj/PySDM), with an additional process added to represent droplet breakup. In
the spirit of a proof of concept, both Cloudy and PySDM are run in a computationally cheap zero-dimensional
“box” framework.

This paper is organized as follows: Section 2 describes the underlying concepts and equations of Cloudy. In
Section 3, we give a brief introduction to the Bayesian approach to solving inverse problems, together with an
overview of the CES method. Section 4 explains the model experiments, including a summary of the PySDM
model. The results of the experiments are shown in Section 5. The paper concludes with a summary of the find-
ings in Section 6.

2. Cloudy Model Description

Cloudy is a flexible bulk microphysics model that simulates collision-coalescence and collisional breakup of
cloud droplets. By “flexible,” we mean the following:

¢ The number of prognostic moments can be adjusted to the requirements of the cloud droplet mass distribution
function, which in turn can be chosen based on the availability of data for calibration.

¢ A modular design facilitates experimenting with different collision kernels and cloud droplet mass distribu-
tion functions.

e It is set up for Bayesian inference, that is, parameters of collision kernels do not have to be fixed but instead
can be learned from data.

The three main inputs required to run the model are: an initial droplet mass distribution function; a collision
kernel specifying the rate of collisions between particles; and a coalescence efficiency defining the fraction of
collisions that result in coalescence of the particles into one larger drop, as opposed to collisions that result in
breakup of the particles into smaller fragments. Cloudy then simulates how the distribution (characterized by a
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set of n prognostic moments) evolves over time as a result of the droplet interactions defined by the given collision
kernel and coalescence efficiency. The number of prognostic moments is determined ab initio by the type of the
cloud droplet mass distribution to be simulated (e.g., a Gamma distribution or a mixture of Gamma distributions).
Assuming a fixed distribution type is the central closure assumption made in Cloudy, the number of prognostic
moments has to be chosen such that the distribution parameters can be computed from the prognostic moments.
Note that not all distributions can be inferred uniquely from their moments; for example, a lognormal distribution
is not uniquely defined by its moments because its moment generating function does not converge.

The mathematical core of the model consists of two equations: the stochastic collection equation (SCE;
Smoluchowski, 1916) and the stochastic breakup equation (SBE; e.g., Pruppacher & Klett, 1978), both expressed
in terms of the DSD moments. The SCE describes the time rate of change of f = f (i, ), the mass distribution
function of liquid water droplets, due to the process of collision and coalescence. The distribution f depends on
droplet mass m and time #; generally, it will also depend on position in space, but we neglect this dependence
in our zero-dimensional setting here. The mass distribution function is defined such that f (m, f) dm denotes the
number of droplets with masses in the interval [m, m + dm] per unit volume at time . We will mostly refer to f
(m, ) by the term “particle mass distribution” (PMD) rather than by “droplet size distribution,” even though the
two expressions could be used interchangeably for spherical water droplets (the only type of droplet considered
in this study), where there is a one-to-one map between droplet size and droplet mass. By deviating from the
traditional terminology, we account for the possibility that a future version of Cloudy may include nonspherical
and nonliquid particles.

Following Beheng (2010), the SCE can be written as

daf(m,1)
ot

=l/°° f(m’,t)f(m—m’,Z)C(m’,m_m') dm,—f(m,t) o f(m’,t)C(m,m’) dm'.(l)

coal 2 /=0 m'=0

The collection kernel C (m’, m") = K (m’, m") E_ (m’, m") (units: cubic centimeters per particle per second)
describes the rate at which two droplets of masses m’ and m” come into contact and coalesce. It is the product
of the collision kernel K (', m"”) and the dimensionless coalescence efficiency E_ (', m”), which denotes the
fraction of droplets that coalesce into a drop of mass m’ + m” upon colliding with each other. Throughout this
paper, we will assume E_ to have a constant value, even though in reality it depends on the kinetic energy of the
two colliding droplets (e.g., Beard & Ochs, 1995; Low & List, 1982a). The first term on the right-hand side of
Equation 1 describes the rate of increase of the number of drops having a mass m due to collision and coalescence
of drops of masses m’ and m — m’ (where the factor % avoids double counting); the second term describes the
rate of reduction of drops of mass m due to collision and coalescence of drops having a mass m with other drops.

The SBE describes the time evolution of the PMD due to collision-induced breakup and is given by

df(m,1)

ot breakup

= 2 D A [ f O 1) B ol P s ") "

2)
" t B / 1" m m” (
Mdm”/ ' P (' m,m”) dm'.

m'=0

—fm0) [, para7
The breakup kernel B (m’, m") = K (m’, m") (1 — E_ (m’, m")) (units: cubic centimeters per particle per second)
defines the rate at which two droplets of masses m’ and m” come into contact and break apart. The function P (m,
m’, m") is the mass distribution function of the fragments m produced by collisional breakup of two droplets of
masses m’ and m”, with P (m, m’, m”) dm giving the number of drops in the mass interval between m and m + dm
resulting from the breakup. We use the exponential fragment distribution introduced by Feingold et al. (1988),

P(mim',m") =V (m' +m") exp(—vm), 3)

where v = (gM/M,); M, (cm™) is the initial value of the zeroth PMD moment (i.e., the initial number of drop-
lets), M, (g cm~3) is the first PMD moment (i.e., the water content), and g is a positive integer characterizing the
fragment concentration; in this study, we use g = 2. Unlike other breakup formulations such as those by Low
and List (1982b) or McFarquhar (2004), the Feingold et al. (1988) formulation is not based on laboratory experi-
ments (Barros et al., 2008; Low & List, 1982a, 1982b) or particle-by-particle DNS (Schlottke et al., 2010; Straub
et al., 2010), which makes it a rare choice in complex microphysical models. However, given that maximizing
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the realism of the microphysical simulations is not of primary concern in this study, we chose the Feingold
et al. (1988) formulation for the simplicity of its implementation.

Conservation of mass dictates that the mass of the sum of all fragments must equal the mass of the two colliding
drops, that is,

m’+m”
/ mP (m; , m',m”) dm=m'+m". (@)
0

If the fragment distribution conserves mass exactly, the last integral in Equation 2 evaluates to m + m” and, after
division by the denominator of the previous term, results in a multiplication by 1. However, the fragment distri-
bution by Feingold et al. (1988) used in this study does not fulfill conservation of mass exactly, so the last integral
in Equation 2 cannot be omitted.

We will rewrite Equations 1 and 2 in terms of the moments M, of f (i, t), which are the prognostic microphysical
variables in Cloudy. They are defined by

M, = /°° m* f(m, t)dm. %)
0

The time rate of change of the kth moment of fis obtained by multiplying Equations 1 and 2 by m* and integrating
over the droplet mass, which yields

= l/m/co ((m+m/)k _mk _m/k)c(m,m/) f(m,t)f (m/,t) dmdm’
2 /o Jo
=: kacoala

m'+m'! © o
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—/ m* f (m, Z)dm/ S "0 B(m,m’) )dm”/ m' P (m';m,m") dm'
0 0 0

m+m"

oM,
ot

coal

oM
ot

breakup

=: Ik.breakup-
Thus, the time evolution of the kth moment M, due to collision-coalescence and collisional breakup is given by

oM,
ot

= Ik.coal + Ik.breakup (7)

To step the prognostic moments forward in time, Cloudy computes the right-hand side of Equation 7 using Monte
Carlo integration, a technique for numerical integration using random numbers. Compared with other numeri-
cal integration methods, Monte Carlo integration has the following advantages: It converges in any dimension,

regardless of the smoothness of the integrand, albeit only at a rate of O(W ) (where N is the number of random
samples used to compute the integral). It is also conceptually simple and parallelizable. A further desirable
feature is the fact that it adds a stochastic element to the simulations. The resulting internal model variability
provides a straightforward way of estimating the covariance of the observational noise needed as input to the CES
algorithm in a perfect-model setting (see Section 3.2). With a deterministic integration method such as numerical
quadrature, there would not be any randomness in the simulated data, and artificial noise would have to be added
to mimic observational noise. Compared to the covariance estimate for the synthetic data used in this study,
estimating the observational uncertainty of real measurements is much more complicated and has to consider
factors such as how the size of the sampling domain and processing methods impact their statistical properties
(e.g., Mace et al., 2016).

The drawback of Monte Carlo integration is its computational cost. Many samples—thousands or even millions—
may be required to obtain results of acceptable accuracy. Numerous techniques have been developed to reduce
the variance of the Monte Carlo estimator and hence the number of samples needed (e.g., Kleijnen et al., 2013).
For our specific application, 200 samples turned out to produce sufficiently accurate results (see Appendix A
for implementation details of the Monte Carlo integration). Monte Carlo integration can easily be extended to
higher dimensions and is therefore typically applied to compute high-dimensional integrals, but we use it here
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Cloudy Model

Repeat until tepng

Compute change
oM,
5= ()

Update moments Recover PMD ¢
My (t + dt) E(t +dt) fena

Supplied by User

f K(x:y) -1
Mk(tO: 0) E, hy -¢ hM—>€

Figure 1. Summary of the computational steps performed by Cloudy and the required user-defined input. See text for
notation.

to demonstrate that CES works even with models that produce noisy output, as well as for its general-purpose
functionality and robustness with respect to the integrand. For the simple model setup presented here, the compu-
tational cost of the Monte Carlo integration is easily affordable. The algorithm can even be applied in larger-scale
settings as its embarrassingly parallel nature can be exploited very efficiently by GPUs (e.g., Borowka et al., 2019;
Kanzaki, 2011).

Evaluating the integrals on the right-hand side of Equation 7 requires knowledge of the PMD function f (m,
t). The initial distribution f (m, t = 0) is specified by the user. There is a priori no reason to assume that the
PMD would retain its functional form as particles are colliding, are forming new drops, and are breaking apart.
However, to uniquely identify the distribution f at each time step, one would have to keep track of infinitely many
moments of the PMD, which is obviously not practicable. The truncation of this infinite system is the moment
closure problem, which all moment-based microphysics schemes have to address in some form. In Cloudy, as in
most bulk microphysics schemes, the closure is achieved by assuming an analytic functional form for the PMD
and allowing for the parameters of the PMD to change over time while the type of distribution itself is kept fixed.
Thus, a Cloudy simulation consists of the following steps, which are summarized in Figure 1:

1. The user specifies the collision kernel K (x, y), initial PMD f (m, t = 0; &) with distribution parameters &, the
coalescence efficiency E, (assumed to be constant, as mentioned above), and the end time 7, of the simula-
tion. In addition, a map &, . and a map h;/l‘a . have to be supplied. The former defines how to compute the

parameters & of the PMD from the prognostic PMD moments M = { My },_, . and the latter defines the

inverse map from the parameters to the prognostic moments. Note that except for simple distributions, Ay, .
does not have a closed form representation, and the PMD parameters have to be determined by solving an
optimization problem.

2. The contributions of collision-coalescence and collisional breakup to the time evolution of each prognostic
moment (right-hand side of Equation 7; denoted fn(¢) in Figure 1) is computed.

3. The prognostic moment is stepped forward in time.

4. The new parameters of the PMD are computed from updated moments using £, _ ..

5. Steps 2—4 are repeated until 7, ; is reached.

One of the guiding principles in developing Cloudy was to make the scheme amenable to learning from data.
Its modular design makes it easy to experiment with different kernels and PMDs, and the number of prognostic
moments is determined by the user-provided moment-to-parameter map /,,_ .. We focus here on learning param-
eters of the collision kernel K (x, y), though alternatively (and with slight modifications of the setup), Cloudy can
be used to learn parameters of the PMD instead or in addition.

The approach to the closure problem is a notable difference between Cloudy and BOSS. In contrast to Cloudy,
BOSS does not assume a functional form for the DSD. Instead, the diagnostic moments are expanded as
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multivariate generalized power series of the set of prognostic moments, and the DSD normalization method of
Morrison et al. (2019) is used to relate the moments to one another statistically. While the assumption of a DSD
form results in a loss of generality, it also allows for a clear separation of the parameters associated with the
physics of collision-coalescence and breakup (as defined by the parameters of the collision kernel) from those
associated with the droplet population (as defined by the parameters of the DSD). This improves the interpreta-
bility of the scheme and helps ensure the physical realizability of the simulations.

3. Methods
3.1. Bayesian Parameter Estimation

The estimation of model parameters such as the coefficients of a collision-coalescence kernel can be formulated
as a Bayesian inverse problem, whose solution—the posterior distribution of the unknown parameters given the
observed data—is given by Bayes' rule:

Sro(¥10)£6(6)

foy(Bly) = 0  fy10(16).fo(0). ¥

Here, f,,(6ly) is the posterior probability density function (PDF) of the parameters ¢ given the data y, f,(V16) is
the likelihood function of the data given the parameters, f,(6) is the prior PDF of the parameters, and the normal-
ization factor f|(y) is the marginal PDF of the data. In a Bayesian framework, the unknown parameters are thus
modeled as random variables, and the posterior distribution can be written in terms of contributions from both
prior information about the parameters and the likelihood of the observed data. Note that sampling the posterior
distribution using MCMC methods does not require knowledge of the normalization factor f,(y).

We assume that the data y are linked to the parameter vector € according to the additive relationship
Y =G(6) + ny
= G(O) + 1, + 1, ©)
=G(0) +n.

Here, the forward map G : R? — R maps a parameter vector § € R” to a d-dimensional output space; the error
term 75, denotes structural error, which arises from a model's inability to accurately represent its target due to
deficiencies in its mathematical structure. Because of the randomness introduced by the Monte Carlo integration
(see Section 2), the output of the forward map G is polluted by noise. We can think of () as noisy observations
of an underlying “true,” deterministic forward map G g = GO + 1y, where 7, is observational noise. The total
error € R?is thus the sum of two terms, observational noise 17, and structural error 7, which are assumed to be
independent. The choices we make for 7, and 5, will encode our assumptions about structure and origin of the
error in a given scenario.

The parameter-to-data map G consists of two components. The main component is the map ¥ : Q — R, involv-
ing a forward simulation of Cloudy using parameters sampled from a physical parameter domain 2. The map
¥ can be thought of as a dynamical model, whose output depends on p model parameters that we wish to learn
(here, the model parameters to be learned are parameters of collision kernels). So that computational methods
interface only with unbounded distributions, we choose to work always with unbounded parameter distributions
0 in tandem with an invertible transformation function 7 : Q — R”. The combined map G from parameters to
data thus takes the form

G=%oT . (10)

Sampling the posterior distribution (Equation 8) requires the repeated evaluation of the data likelihood, whose
distribution is given by

10 = £, (y=5®)), an
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where f, is the PDF of the noise 7. Initially, only the noisy map G is available, such that the likelihood given by
Equation 11 cannot be evaluated. The underlying true model G(8) only becomes accessible through the training of
a Gaussian process emulator in the middle stage of CES (see Section 3.2 and Dunbar et al., 2021)—this emulator
learns a smooth function, which is a surrogate for C(0).

We work with two different model-data scenarios. In the first scenario, we consider a perfect-model experiment
where we assume that there is no structural uncertainty, 7, = 0. We also choose 7, to be realizations of random
noise due to measurement error. When using data y that are statistical aggregates such as moments of the PMD or
other averages, and assuming a perfect (unbiased) model, it is reasonable to use a central limit theorem, so that 7,
is a draw from a (multivariate) normal random variable with zero mean and covariance matrix Fy.

For each experiment in this scenario, we approximate the observational covariance by running the forward model
10 times with true parameter values and estimating I'| as the sample covariance matrix of the resulting data,
which are three-dimensional vectors of PMD moments (note that in order to give a nonsingular estimate of the
covariance matrix, the number of samples needs to be greater than the dimensionality of the data). The data y are
taken to be the sample mean of these 10 vectors of PMD moments.

In a second scenario, the data y are generated by PySDM (see Section 4) instead of Cloudy. Structural uncertain-
ties arise from the differences between the modeling approaches of Cloudy and PySDM (bulk vs. Lagrangian
particle-based), with PySDM arguably simulating droplet-droplet interactions in a more realistic way (e.g., due
to the lack of a closure assumption).

Here, we opt for a simple representation of the model discrepancy #, as a (multivariate) normal random variable
with constant mean m, € R¢ and covariance I',. Explicitly, we write this as

y=GC+my +17, where7j ~ N (0,T, +T) (12)

As both PySDM and Cloudy have the same model parameters, we can estimate the bias m_ by running each
model 10 times with the true parameter value, which results in 10 samples of output moments for each of the two
models, and taking the difference of their sample means. Apart from the addition of a bias term, Equation 12 also
differs from the perfect-model version (Equation 9) in that the covariance of the noise 7j is the sum of the Cloudy
and PySDM noise covariance matrices.

In general, assessing a model's adequacy to reproduce the given data (even when the model is perfectly calibrated)
is a difficult task (e.g., Brockwell & Davis, 1996; Kennedy & O’Hagan, 2001; Weisberg, 2014). Our choice can
be seen as a special case of the approach followed by Kennedy and O’Hagan (2001), where 7, is modeled with a
Gaussian process.

3.2. Calibrate-Emulate-Sample

The Calibrate-Emulate-Sample (CES) method (Cleary et al., 2021) is designed for Bayesian inversion in settings
where the forward model is too computationally expensive and/or noisy for direct sampling of the posterior
using, for example, MCMC. We give a conceptual overview of CES and refer to Cleary et al. (2021) and Dunbar
et al. (2021) for more detailed descriptions. The method accelerates Bayesian learning by substantially reducing
the number of forward model evaluations required from the @ (105)—(9 (10") evaluations typically needed for
MCMC to O (102) evaluations. It consists of three stages:

¢ The calibration stage uses ensemble Kalman inversion (EKI; Iglesias et al., 2013) or variants thereof, such
as ensemble Kalman sampling (EKS; Garbuno-Inigo, Hoffmann, et al., 2020; Garbuno-Inigo, Niisken, &
Reich, 2020) to solve the experimental design problem of choosing good training points for the subsequent
emulation stage. EKI and EKS are derivative-free methods that place training points of the parameter-to-data
map in the vicinity of where the Bayesian posterior distribution of the parameters is concentrated. They are
highly parallelizable, scale well to high-dimensional problems, and are well suited to dealing with noisy
forward model evaluations (Duncan et al., 2021). In this study, we use EKS, whose ensemble approximates
the Bayesian posterior.
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¢ In the emulation stage, the samples from the calibration stage are used to train a Gaussian process regression
model, which serves as an emulator that approximates the original parameter-to-data map but is much cheaper
to evaluate.

¢ The sampling stage uses MCMC methods to sample the posterior distribution of the parameters, using the
cheap emulator instead of the original (expensive) forward model.

Cloudy is very cheap to run in the prototype setting of this paper; thus, CES is not necessary from the perspective
of computational cost here. But we apply the method with an eye toward larger-scale applications in GCMs later,
and for the smoothing property of the Gaussian process emulator, which increases robustness with respect to the
noise induced by the Monte Carlo integration (see Section 2 and Dunbar et al., 2021). A proof of concept with a
computationally cheap model also has the advantage that results can be compared against traditional techniques
of Bayesian inversion (namely, direct MCMC sampling without an emulator), which would not be feasible with
a more computationally expensive model.

4. Experimental Setup

The goal of the experiments is to demonstrate that kernel parameters in Cloudy can be learned from data using
the CES method. For this purpose, parameter learning is performed in a perfect-model setting, where the data are
generated by running Cloudy with the “true” parameter values that are then to be learned by Bayesian inversion.
This setup tests if the true parameters are identifiable in the absence of model uncertainty, that is, in a scenario
where the constrained model, with the correct parameters, is able to reproduce the data to within noise. In all
experiments, the data are values of the zeroth, first, and second moments of the PMD at the end time ¢, of the
simulation. The zeroth moment of the PMD is equal to the total number concentration, while the first and second
moments are proportional to the mass mixing ratio and radar reflectivity factor, respectively. Thus, the first three
PMD moments are directly related to quantities that can be in principle obtained from remote sensing systems,
albeit the quality of these data is often uncertain (e.g., Grosvenor et al., 2018).

We also present an experiment where the data are generated by PySDM (Bartman et al., 2022), a Lagrangian
super-droplet scheme based on the Monte Carlo algorithm by Shima et al. (2009), which models collisional
growth of cloud droplets without using the stochastic collection equation. Instead, it represents the cloud droplet
population by a number of computational super-droplets, each corresponding to some multitude of real droplets
with identical properties (including size and position). The collision and coalescence of these super-droplets is
modeled stochastically. Within each time step, only a discrete sample of super-droplet pairs is considered. This
is done to reduce the computational cost from @ (Nf), which would result from considering all pairs, to © (Nj),
where N/ is the number of super-droplets. Each of these candidate pairs then collides with a probability that
depends on the multiplicities of the two colliding super-droplets, that is, on the numbers of real droplets they
represent. A comprehensive description of the method is given in Shima et al. (2009), and its implementation in
PySDM is detailed in Bartman et al. (2022).

For the purpose of this paper, a simple breakup implementation was added to PySDM. In this implementation,
described in Appendix B, a breakup results in exactly two fragments, each of which carries half of the sum of
the masses of the two colliding drops. In Cloudy, the Feingold et al. (1988) fragment distribution (Equation 3)
is used to model breakup in all perfect-model experiments. In the imperfect-model experiment with PySDM
data, the breakup implementation in Cloudy is replaced with a binary breakup process that is consistent with the
implementation in PySDM, by defining a fragment distribution

/ /"
P (mom. ") =25 (m— wim ) a3

where ¢ is the Dirac delta function.
We will present results of the following experiments (see also Table 1):

¢ Collision kernel of the form K(x, y) = b(x + y): The parameter b is learned in a perfect-model setting, for
b =2,000cm?g~!s71, 4,000 cm3 g~ s71, 6,000 cm® g~! 571, and 8,000 cm?3 g~! s~!. In addition to CES, two
of these four experiments (b = 2,000 cm3 g~! s~! and 4,000 cm?® g~ s~!) are also carried out with a brute-force
MCMC sampling, to compare results and performance of the two methods. As the name suggests, brute-force
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Table 1
Overview of Collision Kernels, Kernel Parameters, and Their Prior Distributions and Constraints
Kernel Name Unconstrained parameter Prior Constrained parameter Constraint
Kx,y=bx+y) Sum-of-masses 0 =[B] 0~ N(O,1) ¢ =[b] [— bupper] =[10?,
1047 cm? g=!'s7!
K y)=a+bx+y) Sum-of-masses plus 6=[A, B] 0~ N(O,1) ¢ =la, b] [@)gers a“pper] =[1077,
constant 10~°] cm? s~!
[blower’ bupper] = [102’
10 cm® g~!'s7!
Piecewise 6=[A, B, C] 0~ N(O,1) ¢ =la,b,c] [1oerr Aupper] = [1077,
b(x+y) -5 3 -1
K(x,y) = 10™]cm” s
a
[blower’ bupper] = [102’
1041 cm3 g=!s7!
[clower’
Copperd = [5.0 X 10711,
50x 107 g

Note. For any element X of a parameter € living in the unconstrained space, the mapping to the corresponding parameter value x in the constrained space with a uniform
prior is given approximately by the transformation 7-!(X) = (xuppe,exp(X )+ xlowe,) /(exp(X) + 1).

MCMC sampling involves repeatedly (103 times) evaluating Cloudy itself rather than using the predictions
of an emulator.

» Collision kernel of the form K(x, y) = b(x + y): The parameter b = 2,000 cm?® g=! s~! is learned from data
generated by PySDM, using CES. The data are obtained by running PySDM with the parameter b set to its
true value b = 2,000 cm?® g=! 571,

e Collision kernel of the form K(x, y) = a + b(x + y): The parameters a and b are learned in a perfect-model
setting using CES, for a = 4.0 X 107 cm? s~! and b = 3,000 cm® g~'s~ 1.

¢ Collision kernel of the form

b(x+y) x<cory<ec,
K(x,y) = 14
a otherwise.

3 (-1

The parameters a, b, and c¢ are learned in a perfect-model setting using CES, for a = 2.0 x 10™° cm?® s71,

b=3,000cm*g s Landc=1.0x 10" g.

The kernels chosen for this suite of experiments represent a sequence of increasingly difficult learning tasks
(from learning one parameter to learning three parameters) that are used to assess the ability of the CES
method to retrieve parameters and provide uncertainty quantification. How realistically these kernels represent
droplet-droplet interactions from a physical perspective is of lesser concern for this purpose, but they are never-
theless inspired by established kernels: The sum-of-masses kernel K(x, y) = b(x + y) is known as a Golovin kernel
(Golovin, 1963), while the piecewise defined kernel is a simpler variant of a Long (1974) kernel, which is quad-
ratic for small droplets and linear for large droplets. To be precise, both the Golovin kernel and the Long kernel
are collection kernels; that is, they represent the product of a collision kernel and the coalescence efficiency. This
study is concerned with learning collision kernels, but since the coalescence efficiency is simply assumed to be
constant, the resulting collection kernel is proportional to the underlying collision kernel. The “sum-of-masses
plus constant” kernel K(x, y) = a + b(x + y) was tested in Long (1974) as one of several polynomial kernels that
were evaluated for their ability to approximate a gravitational collection kernel; as a two-parameter kernel, it falls
in between the other two kernels in terms of complexity of the inverse problem.

The PMD is assumed to be a Gamma distribution parameterized by £ = [N,, a, ], where N, is a scaling constant
(corresponding to the total number of droplets), a is the shape parameter, and f is the rate parameter:
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Figure 2. Schematic overview of the experiments: The input to the
Calibrate-Emulate-Sample (CES) algorithm consists of data y, the
observational covariance I, and prior parameter distributions. The data, a
vector of PMD moments, are obtained by running the “ground truth generating
model” (which is Cloudy in the case of the perfect-model experiments, and
PySDM in the case of the imperfect-model experiment) with the collision
kernel parameters set to their true values. K|, K,, and K, denote the “sum-of-
masses” kernel, the “sum-of-masses plus constant” kernel, and the piecewise
kernel. The covariance is obtained from model output according to the
description in Section 3.1. The calibration stage is performed by EKS, in
which Cloudy has to be run once per iteration and for each ensemble member
(see Figure 1 for a schematic representation of Cloudy model evaluations). The
resulting input-output pairs {6;, G (6;)}, are used to train a GP regression model
in the emulation stage of CES. This GP emulator G(9)is cheap to evaluate; it
replaces the original parameter-to-data map in the MCMC sampling, which
produces (approximate) samples of the posterior parameter distribution. These
samples are the final output of the CES algorithm.

am“"exp(—ﬂm). (15)

— NO
f(mv t) - r(a)

The parameter vector £ changes over time, as the shape of the distribution
evolves. For Gamma mass distribution functions, specifying the first three
moments is sufficient to uniquely determine the distribution parameters &,
hence Cloudy solves Equation 6 for k = 0, 1, 2 (but the number of prognostic
moments can be adjusted to the requirements of any given closure distribu-
tion). The map h,, . from the PMD moments M = [M,, M,, M,] to the distri-
bution parameters & and its inverse A}, g are given by

1 MM,
hy—e (Mo, My, M) = | Mo, s =[No,a, ] =&,
M 5( 0 1 2) 0 MOMZ_l MOMz—M% [ 0 ﬂ] 5
M’ (16)
[ Noa Noa(a+1
e (No,a, ) = NO,T"“,% =[Mo, M\, Ms] = M

The definition of ,,_ . shows that a goes to zero when the product of M, and
M, increases over time (M, is approximately constant and does not cause
much variation in the value of ). Small values of a lead to instabilities in
Cloudy and eventually cause it to crash. The reason is that in the regime of
a =~ 0, the small changes in the prognostic moments that the adaptive time
stepping produces correspond to large changes in the underlying distribution
parameters. In addition, sampling from Gamma distributions (which is done
in the Monte Carlo approximation of the coalescence and breakup integrals
described in Appendix A) becomes inaccurate and inefficient when the shape
parameter is small (e.g., Best, 1983; Liu et al., 2017). Collision-coalescence
decreases M|, and tends to increase M,, while collisional breakup increases M,
and tends to decrease M,. While the opposing effects of collision-coalescence
and breakup on M, and M, result in a model that is more stable than a model
that only includes one of the two processes, instabilities caused by an increas-
ing product of the two moments over time are still frequent. For the experi-
ments presented in this paper, we circumvented this problem by choosing the
settings (constraints for the kernel parameters, duration of the simulations,
initial condition, and value of the coalescence efficiency) such that the result-
ing simulations were stable, that is, the corresponding changes in moments
and distribution parameters from one time step to the next remained suffi-
ciently small to allow for the integration of Equation 7 over the entire simu-
lation time period.

All Cloudy and PySDM simulations are initialized with 10* particles, with a
mean mass and standard deviation of 0.33 x 10~ g, corresponding to initial
moments M, = 10*cm=3, M, =3.30x 10 gcm =3, and M, =2.18 X 1071 g2
cm~3, Droplet number concentrations in clouds range from less than 100 cm—3
in most maritime clouds up to 900 cm~ in some continental cumulus clouds
(Wallace & Hobbs, 2006); the initial condition of 10* particles is thus a bit
larger than typical observed values. The simulations are run for a simulation
time period of 60 s.

A schematic overview of the experimental setup and the information flow
from input data y to the posterior parameter distribution is given in Figure 2.
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Figure 3. Evolution of the (left) zeroth, (middle) first, and (right) second moments of the particle mass distribution for different values of the coalescence efficiency
E_(0.8,0.9, and 1.0). All simulations use a kernel of the form K (x, y) = b (x + y). (a) Simulations for each value of E,_ are repeated 10 times with the same kernel
(b =12,000 cm*g~'s~"). (b) Simulations for each value of E, are also repeated 10 times, but each time with a kernel parameter that is randomly drawn from its prior

distribution.

5. Results
5.1. Evolution of the PMD Moments

Unless the coalescence efficiency is set to O or 1, the time evolution of the PMD is the result of two compet-
ing processes: Collision-coalescence reduces the number of droplets (decreasing M) and creates larger drops
(increasing M,), while collisional breakup generates more but smaller droplets (increasing M, and decreasing
M,). Both processes conserve the liquid water mass (M,). To illustrate the effects of differences in the relative
strength of these two processes, Figure 3 shows the time evolution of M, M|, and M, for coalescence efficiencies
of 0.8, 0.9, and 1.0 (with a coalescence efficiency of 1.0, there is no breakup, i.e., all collisions result in coales-
cence). For each value of the coalescence efficiency in Figure 3a, 10 simulations with identical collision kernels
are run; the resulting spread in the moment evolution is due to the randomness inherent in the Monte Carlo
integration used to compute Equation 7. As is to be expected, the number of droplets in the simulation without
breakup decreases monotonically, moving toward its theoretical limit of a single drop containing all the liquid
water mass—in reality, the size of falling raindrops is limited to a few millimeters even in the absence of colli-
sions, as drops break apart when aerodynamic forces exceed the combination of surface tension and hydrostatic
forces (Loftus & Wordsworth, 2021). With a coalescence efficiency of 0.9, the droplet number decreases more
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slowly over the time period shown, and with a coalescence efficiency of 0.8, breakup produces more droplets than
coalescence removes. Mass is conserved most exactly for the no breakup simulation, where determining the time
rate of change of the moments does not involve the computation of the breakup term (Equation 6). For coales-
cence efficiencies of 0.8 and 0.9, mass is conserved to within 6% of the initial mass. These deviations from mass
conservation are due to the Monte Carlo approximation to the coalescence and breakup integrals (Equation 6)
and numerical time stepping errors. When simulations are run for longer time periods, they either reach a steady
state (though there is always some noise present due to the Monte Carlo integration), or they reach an instability
of the type described in Section 4. Which one of the two possibilities is realized in any given simulation depends
on the choice of initial conditions, collision kernel, and numerical settings.

In Figure 3b, each simulation is performed with a new kernel parameter b drawn from its prior distribution, such
that the observed spread in the moment evolution is due to the combined randomness of sampling the kernel
parameter and of the Monte Carlo integration. The former clearly accounts for a greater share of the variability,
as can be seen by comparing Figures 3b and Figure 3a (note that both figures use the same y axes). Figure 3b
also shows that the bounds on the kernel parameters (Table 1) are large enough for the M, evolution of different
coalescence efficiencies to overlap in some cases.

5.2. “Sum-of-Masses”” Kernel

Figure 4a shows the posterior distributions generated by the CES method for four different values of the param-
eter b in a sum-of-masses kernel K (x, y) = b (x + y). The results are shown in the transformed, “unconstrained”
space where the CES algorithm takes place and where the prior distribution of the parameter vector 0 is defined.
In Figure 4b, the same results are shown in the constrained space where the model input lives. Note that our
discussion of the posterior distributions is based on Figure 4a, and all following results will be displayed only in
the unconstrained space. The parameters in the unconstrained space are designated by uppercase letters to distin-
guish them from the corresponding parameters in the constrained space (Table 1).

In all four experiments, the maximum a posteriori estimate is a good estimate of the true parameter value. The
narrowest of the four distributions and hence the most certain parameter estimate is obtained for the smallest
parameter value (b = 2,000 cm? g~!' s71), while the largest of the four parameter values (b = 8,000 cm? g~! s71)
results in the distribution with the largest spread. The distribution spread reflects the underlying noise in the data,
which varies with the magnitude of the kernel parameter: the larger its value, the larger (in absolute value) the
error in the Monte Carlo estimate of the coalescence and breakup integrals describing the time rates of change
of the distribution moments (Equation 6), and hence the larger the resulting variance in the data. This effect gets
multiplied because the adaptive time stepper uses smaller step sizes when the solution is changing fast, leading to
more evaluations of the coalescence and breakup integrals over the course of a simulation (about 10 times more
evaluations for b = 8,000 cm?® g~! s~! than b = 2,000 cm? g~! s71).

While the Gaussian approximation obtained from the ensemble mean and covariance of the last EKS iteration
is a good approximation of the posterior distributions for » = 4,000 cm?® g=! s~! and b = 6,000 cm3 g~! s71, it

~! and does not capture the more

underestimates the mass in the tails of the posterior for » = 2,000 cm3 g~!' s
cusp-like shape of the posterior for b = 8,000 cm?® g=! s~. In all practical applications, the shape of the posterior
is (by definition) unknown a priori and may differ substantially from the Gaussian approximation obtained in the

calibration stage. Accurate uncertainty quantification thus requires sampling the posterior.

The results of these four experiments show that the CES method is able to retrieve the optimal parameter and
provide uncertainty quantification in a perfect-model setting, for a one-parameter kernel. For comparison,
Figure 4 also shows the posterior distributions obtained from brute-force MCMC sampling without the calibra-
tion and emulation stages, which is about 103 times slower than CES. The similar shapes of the posterior distri-
butions from these two methods confirm that CES produces a high-quality approximation to the true solution
of this problem. Brute-force sampling was only possible for the two smaller parameter values; the higher noise
levels in the simulations with the larger parameters caused the MCMC algorithm to get stuck in local maxima of
the objective function. While there are advanced Monte Carlo methods such as simulated annealing (Kirkpatrick
etal., 1983) that are less susceptible to local trapping, CES has the advantage of performing well even with simple
MCMC implementations, thanks to the smoothing property of the GP emulator.
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Figure 4. Histograms of Markov chain Monte Carlo samples of the posterior distributions obtained by the CES algorithm,
for the inverse problem of finding the parameter b of a “sum-of-masses” kernel K (x, y) = b (x + y). The results in (a) are
shown in the unbounded space where the CES algorithm is performed; in (b), the same results are shown in the bounded
space where the model input lives. Different colors correspond to different values of the true parameter b, each of which

is marked by a vertical black line (from left to right, in the bounded space: b = 2,000 cm?® g=! s~!, b = 4,000 cm? g~! s~/
b=6,000cm3 g~!s7!, and b = 8,000 cm? g~! s7!). The lines show Gaussian approximations to the posterior distributions,
which are specified by the ensemble mean and standard deviation of the parameters in the last EKS iteration. All four
experiments have the same prior parameter distribution, shown as the dark blue line. The two additional histograms for
b=2,000cm3 g~!s~! and b = 4,000 cm?® g~! s~! whose outlines are marked by thick black lines, show the results of
brute-force MCMC sampling.

Learning the parameter of a sum-of-masses kernel from data generated by PySDM results in the posterior distri-
bution shown in Figure 5. As described in Section 3.1, this experiment differs from the perfect-model experi-
ments in that its underlying equation includes a bias term representing the model discrepancy and an inflated
noise representing the combined stochasticity of Cloudy and PySDM (Equation 12). CES is able to provide

20
15
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B

Figure 5. Histogram of Markov chain Monte Carlo samples produced by Calibrate-Emulate-Sample (CES), showing the
posterior distribution of the parameter b of a “sum-of-masses” kernel K (x, y) = b (x + y), given data y generated by PySDM.
The Gaussian approximation to the posterior distributions shown as a line is specified by the ensemble mean and standard
deviation of the parameters in the last EKS iteration. The prior distribution of the parameter is shown in blue and the true
parameter value (b = 2,000 cm® g~' s~! in the bounded space where the model input lives) is marked by a vertical black line.
The plot is shown in the unbounded parameter space.
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Figure 6. Evolution of the ensemble over subsequent EKS iterations, for the “sum-of-masses plus constant” kernel K(x,
y)=a+b(x+y) witha=4x10"°cm? s~ and b = 3,000 cm? g~' s~!. The initial ensemble (iteration 0) is highlighted in
light blue; the subsequent eight iterations are colored in gray; and the final ensemble (iteration 9) is highlighted in red. The
intersection of the dashed green lines represent the true parameter values used to generate observational data. The plot is
shown in the unbounded parameter space.

uncertainty quantification and a good estimate of the true parameter value in this modified setup. Note, however,
that in the absence of the “gold standard” posterior distribution obtained from brute-force MCMC sampling, the
quality of the uncertainty quantification is not easily measured. This underlines the importance of testing any
approach to uncertainty quantification in a setting that allows for comparison of the resulting posterior distribu-
tion with that obtained from a method such as MCMC, which provably converges to the desired posterior distri-
bution (e.g., Robert & Casella, 2005).

5.3. “Sum-of-Masses Plus Constant’” Kernel

We will visualize the output of each of the three stages of the CES algorithm using the example of the “sum-of-
masses plus constant” kernel K(x, y) = a + b(x + y) witha =4 x 107° cm? s~ and b = 3,000 cm?® g~! s~1.

In the first stage (Figure 6), the EKS algorithm transforms an initial ensemble of J/ = 50 members through succes-
sive updates into approximate samples of the posterior distribution. The initial ensemble, randomly drawn from
the relatively uninformative prior distributions of the parameters, is spread broadly over the parameter space.
Over the course of subsequent iterations (each of which requires 50 model evaluations), the ensemble becomes
concentrated near the true parameter values, with the sample mean and covariance of the ensemble sampled from
a Gaussian approximation of the posterior distribution. This is a difference to EKI (Iglesias et al., 2013), a closely
related optimization method whose iterative updates result in a collapse of the ensemble onto the optimal param-
eter. EKS produces better training points for the emulator, but in its present form usually requires more iterations.

The calibration stage generates N, X J = 500 parameter-data pairs, which are used to train the emulator. The
Gaussian process emulator predicts the mean and the variance at any data point in its input space, conditional on
the training data (Figure 7). Thanks to the well chosen training points, which are concentrated around the mean
or mode of the posterior distribution, the predictions are most confident (have smallest variance) near the optimal
parameter (around [A, B] = [-0.43, —0.88]), that is, near the minimum of the objective function.

The MCMC algorithm samples the posterior distribution using the predictions of the emulator instead of actual
model evaluations. Figure 8 shows kernel density estimates of the MCMC results, with contours containing 5%,
10%, 50%, 75%, 90%, and 99% of the posterior mass. The true value (blue dot) is captured within the 5% contour
of the posterior density, showing that the maximum a posteriori estimate of the parameters obtained by the CES
method is a good approximation of the true optimum. Both the mean and shape of the MCMC sampled distribu-
tion differ from the distribution of the last EKS ensemble (red dots in Figure 6). Since EKS relies on a Gaussian
assumption for the posterior distribution, its output may diverge from the true posterior when that assumption
does not hold.
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Figure 7. Predictions of the Gaussian process emulator for the “sum-of-masses plus constant” kernel K (x,y) =a + b (x +y)
with a =4 x 107 cm® s~! and b = 3,000 cm?® g~! s~": (left) predicted mean and (right) predicted variance, for (a) M,, (b) M,
and (c) M,. The gray dots represent training points generated during the calibration stage of CES (there are additional ones
that fall outside the plotting domain). The predictions are shown in the unbounded parameter space.
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5.4. Piecewise Kernel

The piecewise kernel represents a scenario where the collision rates of drop-
lets smaller than some (not precisely known) threshold differ from those of
droplets exceeding that threshold. Figure 9 shows the posterior distributions
for the three parameters of this kernel, together with their true values and
prior distributions. The difference between the prior and posterior distri-
butions reflects the information about the kernel parameters learned from
the data. In this example, the largest information gain was achieved for the
linear rate b, whose posterior shows the smallest uncertainty. However, the
information gain from the prior to the posterior of the other two parameters
is smaller than that of previous examples, especially for the mass threshold
(parameter c¢). This reflects the difficulty of finding data that provide the

necessary constraints on all three parameters of the piecewise kernel and that

-038

-04  -02 00 make the inverse problem sufficiently well posed. For example, if the mass

A

threshold ¢ is not exceeded during a model run, the resulting output will

Figure 8. Density plot of Markov chain Monte Carlo samples of the posterior only be sensitive to the linear rate b. Similarly, the information content of

distribution, for the “sum-of-masses plus constant” kernel K (x, y) =a + b the model output is limited when the mass threshold is too small, when the
(x+y) witha =4 x 107 cm’ s~' and b = 3,000 cm’ g=' s~". The contours effect of a is much bigger than that of b (or vice versa), etc. Which parameter

contain 5%, 10%, 50%, 75%, 90%, and 95% of the sampled distribution. The
blue dot marks the true parameters and the red cross is the average across
ensemble members in the last EKS iteration. The posterior densities are shown
in the unbounded parameter space.

can best be retrieved depends on the choice of true parameter values and
their constraints, which has to ensure that the model output produced in the
calibration stage is sensitive to all underlying parameters. Choosing prior
parameter ranges that give rise to informative data while not being overly
narrow requires some exploration of the parameter space.

The problem of finding data that are informative enough to constrain microphysical processes is not limited
to this proof of concept study, where the only data available are moments of the PMD. In fact, the space- and
ground-based observations available today generally remain incomplete for directly constraining individual
microphysical process rates in schemes (Morrison, van Lier-Walqui, Fridlind, et al., 2020). Laboratory experi-
ments could play a critical part in providing additional observational constraints for statistical-physical schemes,
as well as in directly quantifying individual microphysical process rates (Morrison et al., 2019; Shaw et al., 2020).
Choosing and combining data for use in Bayesian inversion will arguably be the ultimate challenge in developing
data-informed microphysics schemes.

6. Summary and Discussion

This paper introduces Cloudy, a flexible microphysics scheme that simulates collision-coalescence and colli-
sional breakup of cloud droplets. We have shown how parameters of the collision kernels describing these
droplet-droplet interactions can be learned from data through a computationally efficient Bayesian inversion.

The main points of this study can be summarized as follows:

e Cloudy is a bulk scheme for the collision-coalescence and collisional breakup of cloud droplets. By virtue
of its flexible and modular design, the number of prognostic moments can be adjusted to the requirements of
the particle mass distribution (PMD), and both the PMD and collision kernel can easily be changed. Cloudy
is broadly similar to BOSS, the scheme introduced by Morrison, van Lier-Walqui, Kumjian, and Prat (2020),
with important differences in how the closure problem is formulated.

e We have looked at microphysics parameterizations through the lens of Bayesian inverse problems and have
configured Cloudy to learn parameters of collision kernels from data using Calibrate-Emulate-Sample (CES;
Cleary et al., 2021).

e CES is a three-stage approach to Bayesian inversion that is about a factor of 1000 faster than traditional tech-
niques. It makes estimation and uncertainty quantification of unknown parameters possible for computation-
ally expensive and/or noisy models.

e CESis able to retrieve posterior parameter distributions in a suite of perfect-model experiments where Cloudy
itself generates the data used to constrain the scheme. Results of experiments with different collision kernels
show that most posterior distributions capture the true parameter values within 5% of the posterior mass.
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Figure 9. Histograms of Markov chain Monte Carlo samples of the posterior
distributions obtained by the Calibrate-Emulate-Sample algorithm for

the parameters a, b, and ¢ of a piecewise kernel (Equation 14), given the
zeroth, first, and second moments of the PMD at time ¢, , = 60 s. The prior
distribution of the parameters is shown in blue, and the true parameter values
are marked by vertical black lines. The Gaussian approximations to the
posterior distributions shown as gray lines are specified by the ensemble mean
and standard deviation of the parameters in the last EKS iteration. The plot is
shown in the unbounded parameter space.

e Moving beyond perfect-model experiments, we have learned colli-
sion kernel parameters from output generated by PySDM (Bartman
et al., 2022), a Lagrangian particle-based microphysics model. In this
experiment, we represent model error resulting from the closure assump-
tion in Cloudy (an assumption that PySDM does not need to make) as a
simple bias term. This modification in the setup of the inverse problem
allows CES to retrieve the posterior distribution of the “true” parameter,
not of that which minimizes the mismatch with the PySDM data.

Taken together, they constitute a proof of concept that informing microphys-
ics schemes with data through Bayesian learning is possible in a computation-
ally efficient way. This makes data-informed but physics-based approaches
to modeling microphysics a more attractive and viable avenue for future
parameterization development. Such approaches have been gaining traction
in recent years (e.g., Morrison, van Lier-Walqui, Fridlind, et al., 2020; van
Lier-Walqui et al., 2020) as they incorporate the existing physical understand-
ing of microphysical processes while taking advantage of data and statisti-
cal tools to bridge knowledge gaps. Bayesian methods are particularly well
suited to this task because they allow for continuous updates as the physical
theory and understanding of these processes evolve. However, these strengths
can only be brought to bear in combination with microphysics schemes that
can be constrained in a rigorous and transparent way.

Both the formulation of microphysical parameter learning as a Bayesian
inverse problem and the use of the CES method to solve this problem can
be applied to more realistic settings. The ensemble Kalman algorithms
used in the calibration phase (the only part of CES that requires running
the dynamical model) are derivative-free methods that do not intrude on
the model in any way—in that sense, the CES method is “model agnostic.”
However, informing microphysics schemes by natural observations of clouds
and precipitations will require methods that account for structural uncertainty,
which is uncertainty resulting from the inadequacy of a model to reproduce
a given set of data even with the “correct” parameter values, for example,
because it lacks some processes that have been present in producing the data.
Neglecting to account for structural uncertainty results in parameter esti-
mates that do not necessarily represent the true physics but that minimize the
mismatch between the model output and the given data and hence maximize
the predictive accuracy of the emulator (e.g., Kennedy & O’Hagan, 2001).
Methods for quantifying structural uncertainty are less well developed than
those for parametric uncertainty, but an established approach is to model
the structural error as a Gaussian process at the interface of model and data
(Kennedy & O’Hagan, 2000). An alternative is to use Gaussian processes or
other machine learning techniques—for example, neural networks or learn-
ing from a dictionary of candidate terms (Brunton et al., 2016; Schneider

et al., 2021)—directly where structural model errors actually occur, for example, in the collision kernel. In our

example, the direct correspondence of the collision and breakup kernels between Cloudy and PySDM allowed

us to instead use a simple additive bias term. However, incorporating structural uncertainty in a rigorous way

will be a crucial element to fully exploit the potential of Bayesian inversion in constraining microphysics models.

While real observations complicate Bayesian inversion through the introduction of structural uncertainty, their

larger observational errors compared to those of the synthetic data used in this study do not affect the CES algo-

rithm, as long as the noise is well approximated. Ill-conditioned or singular covariance matrices may have to be

preprocessed to reduce their condition number (e.g., Tabeart et al., 2020). A large observational uncertainty will

be reflected in a flatter and wider posterior parameter distribution, but the maximum a posterior estimate (the
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“peak” of the distribution) does not depend on the magnitude of the noise. Assuming Gaussianity of observational
noise and priors improves algorithmic performance but is not a necessary condition for CES to work effectively.

Regardless of the type of data being used (model-generated or observational), the quality of the inference depends
crucially on whether the data contain enough information to constrain the parameters to be learned. Concretely,
inferring the true parameter values is challenging when the cost function measuring the discrepancy between
the model output and the observations has multiple local minima. CES can be applied even to less identifiable
problems where multimodal distributions appear. However, though well suited to optimization over noisy land-
scapes, the calibration with EKP will find a single local minimum of the loss function, with the consequence that
the accuracy of the GP emulator will be highest around that minimum. In the presence of multiple local minima,
regularized ensemble methods can help guide the inference to the true parameter value (i.e., to the global mini-
mum) by incorporating constraints, for example, boundary conditions or fundamental physical laws such as mass
conservation (e.g., Wu et al., 2019; Zhang et al., 2020).

Both the ensemble Kalman algorithms used in the calibration phase and the MCMC methods performing the
sampling scale well to higher-dimensional parameter spaces. The limiting factor for scalability is the training of
the GP emulator, which scales cubically with the number of training points as a result of having to perform matrix
inversion (or pseudo-inversion) of a covariance matrix. A growing number of techniques exist that improve the
scalability of GPs, for example, by identifying and removing variables with little or no impact on the output, or by
defining new variables based on combinations of the original ones (e.g., Binois & Wycoff, 2021). Alternatively,
other machine learning models such as deep neural networks can be used that scale better with input dimensions
(e.g., Lan et al., 2021).

Finally, while the Bayesian framework presented in this paper allows for full uncertainty quantification of the
model parameters, it does not perform model selection, that is, it does not assess the quality of the parameteri-
zation itself. How accurate and reliable a parameterization is depends both on its calibration with observations
and on its physical foundations—improving the theoretical understanding of microphysical processes will thus
remain an integral part of improving microphysics schemes.

Appendix A: Monte Carlo Integration

Monte Carlo integration is a numerical technique that uses random numbers to approximate integrals. The core
idea is to estimate the integral to be calculated by the sample mean of a sequence of random numbers, whose
expected value is the exact value of the integral. There exist many variants and modifications of Monte Carlo
integration that aim to reduce the variance of the estimator and hence the number of samples needed to achieve
the desired accuracy.

Our goal here is to provide some implementation details of the Monte Carlo integration that is used to compute
the time rate of change of the PMD moments in Cloudy, that is, the right-hand side of Equation 7. For a compre-
hensive treatment of Monte Carlo integration, the reader is referred to, for example, Robert and Casella (2005).

Suppose that the integrand /(x) (where x € R9) can be written as a product of a function 7T(x) and a probability
density p(x). We want to estimate the value of the integral

I= / h(x)dx = / T(p(x)dx = E,[T(x)] (A1)

Monte Carlo integration consists of generating samples {X,,---X,,} from the density p and approximating the
integral Equation A1 by

N
. 1
iv= Z} T (X)) (A2)

Due to the strong law of large numbers, [y converges to I with probability 1 as N — oo. If the variance 62 of T (X))

is finite, then the standard error, o2, is given by

X
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ot i=E|(iv-1)’] -2 (A3)

The error is thus independent of the dimension d of the integral.

To compute the coalescence integral (see Equation 7; repeated here for convenience),
Ticom = %/ / ((m+m')k—mk—m'k>C(m,m’)f(m)f (m') dmdm’, (Ad)
o Jo
we define
1
pi(x,y) = — F)f (). (AS)
M,

Drawing random samples { X; }fi ,and {Y;} fi , from pl1, I, . ., can be estimated by
M;
2N

I N ,k,coal =

N
DX+ = Xf =¥} C (X, ¥ (A6)
i=1

For the computation of the breakup integral /; ;...\, the source and sink term are treated separately:

m' +m"! 0 [+
I breakup = %/0 mkP (m;m/,m") dm/o f (m') dm'/0 f (m") B (m',m”) dm”

0o 00 1 B 1 m+m'!
/ m* f(m) dm/ f ™) B (m,m") dm” / m' P (m'sm,m") dm' (A7)
0 0 0

m+m"

— Jsource sink

k, breakup k, breakup

Both terms (730 and I, sik ) allow for the analytical integration of one of the variables, such that the Monte
, breakup k, breakup

Carlo integration is only applied to the remaining double integrals. To achieve this, we make use of the fact that
parts of the fragment distribution, P (m; m’, m") = p* (m’ + m")exp (—pm) (Equation 3), can be combined with

m* (for Iopee ) and m’ (for 1 sink ) into Gamma distributions with known cumulative density functions (cdf).
, breakup k, breakup
I

aj =2
We start with the breakup source integral, where introducing a normalization factor y = o (’; ) allows for the
k

construction of Gamma (e, f) distributions with density

a—1

pas(m) = P exp(—pm), (A3)

INCP)
with @, = k + 1. Outside of p,,(m), there is no dependence on m left in L . and so the integral

i pai(m)idm = ! can be integrated separately. Its solution is the cdf of a Gamma («,, §) distribution, which
v 14

0
for positive integers a, is given by

a—1

F(sanf)=1- ) (ﬁi—)'c)exp(—ﬂx), (A9)
i=0 :

evaluated at x = m’ + m”. The remaining double integral is then computed using the same technique as for the
coalescence integral. Drawing random samples {Y; }fi yand {Z;} ,]i , from pi(x,y) = # f(x)f (), the Monte Carlo
0

estimate of the breakup source term is

2 N

fsource LN (Yi+ Z) B(Y, Z) F (Yi + Zi; o, B) (A10)
i=1

N .k, breakup 2}’N

A similar approach is applied to the breakup sink integral, which is simplified to a double integral by the analytic
integration of the density of a Gamma (2, ) distribution (resulting from the product of m’ and > exp (—fm).
Drawing random samples { X; },.Z yand { Z; }i’i , from p1, the breakup sink term is approximated by
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2 N

. M
fsink ~ Y X B(Xi, Z) F (X + Zi32, ). (AlD)
i=1

N .k, breakup =
Putting everything together, the time rate of change of the sth PMD moment due to collision-coalescence and
collisional breakup (Equation 7) is approximated by

oMy
ot

= Ik,coal + Ik,breakup
~ jN,k,coal + jN.k, breakup (Alz)

-7 f'source _ fsink
- IN'k’CD“I + IN,k.breakup IN,k, breakup

The results shown in this paper were obtained using N = 200 Monte Carlo samples.

Appendix B: Super-Droplet Breakup

The super-droplet method to model stochastic collision-coalescence of droplets is extended in this work to include
a breakup-like process for numerical experiments. As breakup introduces a competing process for coalescence,
this stochastic breakup implementation provides a more realistic set of dynamics to demonstrate the CES algo-
rithm's ability to learn from data. Here, we will briefly describe the modifications made to the existing package
PySDM (Bartman et al., 2022) in order to introduce a breakup-like process.

Maintaining the notation of Shima et al. (2009), each super-droplet with label index i for these box model simu-
lations is assigned a multiplicity £ and a mass m,. A pair a of super-droplets collides and coalesces with scaled
probability p,, and a random number ¢ is generated to determine the number of coalescences that occur, y,. In
the implementation of PySDM, p, is computed based on a collision rate from kinetic theory and a coalescence
efficiency E_, which combined are referred to as the coalescence kernel. In this new implementation, every time
step also includes the potential for collisional breakup of a given super-droplet pair. Like p,, the probability of
a breakup is computed based on the collision rate multiplied with (1 — E), and whether the breakup occurs is
determined based on the generation of a new random number.

For a collision-coalescence event that occurs for the SD pair a with y, coalescences, the multiplicities of the
super-droplets are updated as follows:

& <& — vl

Sk < S
Mj<—Mj

(B1)

My — My + yaM;

In this process, the super-droplet j maintains its mass but loses multiplicity to coalescence, while droplets k grow
due to coalescence with droplets j.

As a substitute for collisional breakup, we treat the process as a collisional coalescence of two super-droplets
followed by spontaneous breakup into n,uniform fragments. Thus, if a breakup is determined to occur, the same
quantity y, is computed to determine the number of pre-coalescences that occur according to the same dynamics
described above. Subsequently, the newly coalesced super-droplet k spontaneously fragments:

&« npék
(B2)
Mk <« Mk/nf

For the purposes of these simple test cases, n,is set to 2 such that the resulting SD has the average mass of the
two colliding SDs. However, we note that this choice is fundamentally unrealistic, as it would drive the system
toward uniformly sized droplets that are the average size of the initial distribution. For the numerical experiments
presented in this paper, the simulation time is chosen to be far shorter than the time required for this nonstochastic
behavior to become apparent.
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