juliacon

MPIL jl: Julia bindings for the Message Passing Interface

Simon Byrne!, Lucas C. Wilcox?, and Valentin Churavy?

!California Institute of Technology
2Naval Postgraduate School
3Massachusetts Institute of Technology

ABSTRACT

MPLjl is a Julia package for using the Message Passing Interface
(MPI), a standardized and widely-supported communication inter-
face for distributed computing, with multiple open source and pro-
prietary implementations. It roughly follows the C MPI interface,
with some additional conveniences afforded by the Julia language
such as automatic handling of buffer lengths and datatypes.

Keywords
Julia, MPI, distributed computing

1. Introduction

Now over 25 years old, MPI is the stalwart of high-performance
computing communication, supported on everything from single
machines to billion-dollar supercomputers. Despite its age, it sup-
ports several models of communication, and significant engineering
effort goes into optimizing performance and supporting the latest
networking hardware.

Although Julia provides its own suite of distributed computing tools
via the Distributed standard library, it is based on a controller/-
worker model and is currently unable to leverage fast networking
hardware such as InfiniBand, which limits its scalability to large
problems. MPLjl leverages the well-established and proven tech-
nology, including extensions such as the CUDA-aware interfaces
for multi-GPU communication. It is being used by multiple Julia
projects, including the CliMA Earth system modeling project [5].

1.1 History

MPLjl originated as a repository developed by Lucas Wilcox in
July 2012, 4 months after Julia was first publicly announced. It was
registered in the Julia package registry in 2014, and since then has
evolved considerably along with the Julia language itself. It has so
far received contributions from 51 people, many of which are users
who required the addition of a specific piece of functionality.

For most of its history, the maintainers have practiced a light touch:
most new features were added by users. The only major changes
to the codebase were typically precipitated by changes in the Ju-
lia language itself, or modifications to the build system to support
different MPI implementations or platforms (section 3.4).

In the past two years there have been some larger architectural
changes while keeping the overall interface consistent. These
changes including CUDA-aware support and the addition of buffer
types (section 3.3), automatic installation of binary dependencies

(section 3.5), and moving code that integrated with Julia’s Dis-
tributed standard library to a new package (section 3.6).

2. Simple example and running MPI programs

Most MPI programs utilize a single-program, multiple-data
(SPMD) model where multiple processes all run the same program
and communicate via messages, with their data determined by the
process rank (a 0-based ordering of the processes).

An example of this is a simple “round-robin” communication pat-
tern in which each process sends a message containing its rank to
its next neighbor using nonblocking point-to-point operations:

sendrecv.jl

initialize and set global variables
using MPI

MPI.Init ()

comm = MPI.COMM_WORLD
rank = MPI.Comm_rank (comm)
N = MPI.Comm_size (comm)

nonblocking receive from previous rank

recv_buf = Array{Float64} (undef, 2)

recv_req = MPI.Irecv!(recv_buf, mod(rank-1, N), O,
comm)

nonblocking send to next rank

send_buf = Float64[rank, rank]

send_req = MPI.Isend(send_buf, mod(rank+1l, N), O,
comm)

block until communication is completed
MPI.Waitall!([recv_req, send_reql)
print ("$rank: Received $recv_bufl\n")

This can be run using the MPI launcher, typically called mpiexec:

$ mpiexec -n 3 julia sendrecv.jl
0: Received [2.0, 2.0]
2: Received [1.0, 1.0]
1: Received [0.0, 0.0]

3. Implementation details and challenges

Although MPLjl mirrors the C MPI interface quite closely, it does
take advantage of several features of the Julia language to improve
usability. Many of these changes were heavily influenced by the
mpidpy package [2] which provides MPI bindings for Python, and
has a similar aim of making MPI functionality easily usable in a
high-level, dynamic language.

Proceedings of JuliaCon

The C and Fortran MPI interfaces require that users manually check
the error code returned by each function; MPLjl is able to use
Julia’s exception handling machinery to automatically check er-
ror codes and print readable error messages. This allows functions
to return their results via return values instead of via additional
functions arguments. For example, nonblocking operations return
Request objects; blocking receive operations return their output
buffers.

3.1 Functionality

Most commonly-used MPI functionality is currently available via
the package, including dynamic process management and oper-
ations for point-to-point (blocking and nonblocking), collective,
one-sided and 1/0.

The MPI 3.1 standard lists several hundred functions: limited main-
tainer resources means that the addition of features is mainly
driven by needs of the contributors and requests by users, and
so lesser-used MPI features are not yet available. This includes
neighborhood and non-blocking collectives, persistent operations,
buffered/synchronous/ready point-to-point operations. Addition of
these features should not require any major architectural changes,
and should be able to leverage much of the work below.

3.2 Allocation and serialization

For communication operations which receive data, MPLjl typically
defines two separate functions:

—one function in which the output buffer is supplied by the user:
as it mutates this value, it adopts the Julia convention of suffixing
with ! (e.g. MPI.Recv!, MPI.Reduce!).

—one function which allocates the buffer for the output
(MPI.Recv, MPI.Reduce).

Additionally, we adopt the convention from mpi4py of using lower-
case names for functions which are able to handle arbitrary objects.
These are typically slower as they rely on serialization and are not
type-stable, but can be convenient as they don’t require that the ob-
ject type or size be known by the receiver. Currently only a small
number of these functions are provided.

3.3 Buffers, datatypes and operators

In C and Fortran, MPI communication functions require three argu-
ments (address, count, and element datatype) to specify their input
and/or output buffers e.g. the MPI_Send signature in C has six ar-
guments:

int MPI_Send(const void* buf, int count,
MPI _Datatype datatype, int dest, int tag,
MPI_Comm comm)

In Julia, these can all be determined from an Array object, so the
corresponding function in MPLjl only requires 4 arguments:

MPI.Send(buf, dest::Integer, tag::Integer,
comm: : MPI.Comm)

An intermediate Buffer type is defined that captures the pointer,
length and datatype properties, and allows defining MPI communi-
cation operations for other Julia objects without requiring that ad-
ditional methods for every communication function. For example,

1(1), 2019

to support the CUDA-aware MPI interface across all MPI func-
tions, only a small number of interface functions were required at
the buffer level.

Additional “chunked” buffer types are defined for collective opera-
tions which split the buffer among multiple processes in a commu-
nicator. For example, the UBuffer(an abbreviation for “uniformly
chunked”) is used as the send buffer for MPI.Scatter! or the re-
ceive buffer for MPI.Gather!; similarly the VBuffer(“variable-
length buffer”) is used for MPI.Scatterv! and MPI.Gatherv!.
For contiguous arrays the buffer will determine the default MPI
datatype based on the element type of the underlying array: for
standard integer, floating point, and complex number types, MPL.jl
will use the predefined MPI datatypes. For other Julia bits types
(primitive types or immutable structs with fields that are also bits
types), or if the buffer is a strided view, MPL.jl will build and com-
mit a corresponding MPI user-defined type. A lower-level, C-like
interface for manually constructing and committing MPI datatypes
is also available.

Similarly, for MPI collective reduction operations (MPI.Reduce,
MPI.Scan, etc.), MPLjl will convert Julia functions to MPI op-
erator objects, either mapping to predefined operators (e.g. + to
MPI.SUM), or wrapping functions to form custom operators.

The pooled variance example in section 4.3 illustrates the use of
both custom datatypes and custom operators.

3.4 Application binary interface

The MPI standard specifies C and Fortran application programming
interfaces (API), but not an application binary interface (ABI).
Consequently, datatypes and enum values vary between different
implementations, and require parsing C headers to extract their pre-
cise values. After much experimentation, we have settled on two
approaches that work reasonably well and require minimal user in-
tervention:

—Attempt to identify the MPI implementation by querying
MPI_Get_library_version, and use predefined constants and
types if known to be compatible with MPICH, Open MPI, or
Microsoft MPI. This should cover most MPI implementations
released since the completion of the MPICH ABI compatibility
initiative in 2016.

—Otherwise, at build time it compiles a small C program that out-
puts the type sizes and constants. One complication is that the
opaque C handles might only be defined at link time: in this
case, we convert to the Fortran handle values (which are re-
quired to be integers), and convert back to C handles when call-
ing MPI.Init (). A similar approach is used by the MPI bind-
ings for Rust [4].

3.5 Binary support

Similar to many Julia packages, MPL]l uses BinaryBuilder and the
Artifacts system to automatically install an MPI implementation
when the package is installed (currently Microsoft MPI on Win-
dows, MPICH on other platforms). This completely automates the
installation procedure for users on single machines, meaning that
MPL,jI can be added as a project dependency without users being
required to correctly install their own MPI implementation.

On high-performance computing systems one would typically want
to use system or other externally-provided binaries. To aid this,
MPIL,jl provides additional hooks to enable switching this at build
time via environment variables, and a warning is shown if a user
appears to be using the default MPI binary on a HPC cluster. Chal-
lenges remain on how to make it easier to switch implementations,

Proceedings of JuliaCon

such as how to correctly invalidate the package precompilation
cache.

There are similar challenges when working with external libraries
which also depend on MPI, such as HDF5 and PETSc. For exam-
ple, HDF5 jl has recently added MPI support, but it requires that the
user provide their own HDFS5 library that has been correctly linked
against the same MPI library used by MPLjl. This makes it difficult
to distribute Julia programs that make use of such functionality in
a reproducible manner. We are investigating ways to improve this,
such as integration with the Spack package manager [3].

3.6 Combining with other modes of Julia parallelism

Julia itself provides three models of parallelism: asynchronous
tasks/coroutines (green threading), simultaneous multi-threading,
and distributed computing.

Though MPI nonblocking operations act in a similar manner to
tasks, they can’t be integrated directly with Julia’s runtime sched-
uler as MPI does not provide a mechanism to interact with the Julia
event loop. Furthermore, calls from Julia to external libraries will
block the event loop, which means that calling a blocking MPI op-
erations in a separate task will not yield until it completes. One
simple but inefficient approach is to use a spinloop with a call to a
non-blocking query operation:

mpitask = @async begin
done =
while !done
done, _ = MPI.Test!(request)
yield ()
end
end

aftertask = Q@async begin

wait (mpitask)

code to run after MPI communication complete
end

wait (aftertask)

If the MPI library is initialized with multi-threading support via
MPI.Init_thread, then MPLjl functions can safely be called
from Julia tasks scheduled on different threads. For example, the
above spinloop could be replaced by

mpitask = Threads.@spawn MPI.Wait!(request)

however concurrency will be limited by the available threads.
Julia’s Distributed standard library is based on remote procedure
calls. This is widely used, though by default only supports IP
socket-based communication. The MPIClusterManagers.jl package
builds on MPLjl to allow both MPI and Distributed operations, as
well as use of MPI as a communication protocol for Distributed.
One useful feature of the Distributed library is that it enables in-
teractive distributed computing through a REPL or notebook in-
terface. Unfortunately attempts to provide similar functionality for
MPLjl have so far had limited success. The input and output redi-
rection imposed by the MPI launchers make it difficult to run MPI
sessions interactively.

Most common MPI implementations support “singleton” initial-
ization where a single process started outside a launcher can call
MPI_Init. This is widely used by Julia MPI projects which sup-
port both interactive serial and batch parallel functionality. Though

1(1), 2019

Avg time (s)

#| —— CMPI

——— MPIjl

— — — MPILjl generic

——— mpidpy

— — — mpidpy generic
Julia Serialize
Python pickle

L L

10° 10

Buffer length

Fig. 1. MPI ping pong benchmark in C, Julia (MPLjl), and Python
(mpidpy) using arrays of 64-bit floating-point numbers. For reference, the
cost of serializing and deserializing an array (Serialization in Julia, pickle
in Python) are also shown. Benchmarks were performed using Open MPI
4.0.4, using two processes on different nodes connected by EDR InfiniBand,
Julia 1.5.2 with MPLjl 0.15.1, and Python 3.8.5 with mpi4py 3.0.3.

the MPI standard encourages implementations to allow singleton
processes to connect using the client/server interfaces, we have yet
to find any implementations which support such operations.

4. Examples
4.1 Ping pong benchmark

The “ping pong” benchmark consists of two MPI processes which
alternate sending messages between each other, and is a useful mea-
sure of how function call overhead affects communication latency.
A simple Julia implementation is:

function pingpong (T, bufsize, iters)

buffer = zeros (T, bufsize)
comm = MPI.COMM_WORLD

rank = MPI.Comm_rank (comm)
tag = 0

MPI.Barrier (MPI.COMM_WORLD)
tic = MPI.Wtime ()
for i = 1:iters
if rank ==
MPI.Send (buffer, 1, tag, comm)
MPI.Recv! (buffer, 1, tag, comm)
else
MPI.Recv! (buffer, 0, tag, comm)
MPI.Send (buffer, 0, tag, comm)
end
end
toc = MPI.Wtime ()

avgtime = (toc-tic)/iters
return avgtime

Figure 1 compares the ping pong benchmark implemented in C,
Julia using MPLjl, and Python using mpi4py. The MPLjl bench-
mark exhibits similar performance to C, whereas mpi4py is notable
slower for smaller message sizes, likely due to the interpreter over-
head of Python.

Proceedings of JuliaCon

In addition, for MPL.jl and mpi4py we also compare the lowercase
“generic” MPI.send and MPI.recv functions, which are able to
handle arbitrary objects. Here MPLjl is still faster than mpidpy for
small messages, but slower for medium-sized messages. This ap-
pears to largely be determined by the relative performance of the
serialization in each language. mpidpy is changing its choice of
pickle protocol in its next release, which may affect these numbers.

4.2 Minimum-spanning tree broadcast

Julia syntax is close to pseudo-code found in the literature to de-
scribe parallel algorithms. For example, consider the minimum-
spanning tree broadcast algorithm in Figure 3a of [1]. A Julia im-
plementation is given as:

function MSTBcast(x, root, left, right, comm)

me = MPI.Comm_rank (comm)
tag = 999
if left == right

return x
end
mid = div((left + right), 2)
dest = root <= mid ? right : left
if me == root

MPI.send(x, dest, tag, comm)
end
if me == dest

(x, _) = MPI.recv(root, tag, comm)
end

if me <= mid && root <= mid

MSTBcast (x, root, left, mid, comm)
elseif me <= mid && root > mid

MSTBcast (x, dest, left, mid, comm)
elseif me > mid && root <= mid

MSTBcast (x, dest, mid + 1, right, comm)
elseif me > mid && root > mid

MSTBcast (x, root, mid + 1, right, comm)
end

end

This is nearly identical to the pseudo-code and can be called for all
of the datatypes supported by MPI.send and MPI.recv, for exam-
ple arrays, functions, and dictionaries.

4.3 Pooled variance using custom datatypes and
operators

Computing the variance of a distributed array « illustrates the
power of custom datatypes and reduction operations. Using the
standard formula

Var(z) = - Z(ml - 7)?
i=1
requires two rounds of communication (first to sum z; and broad-
cast the mean, second to sum the squared differences). Using the

sum-of-squares formula
1 n
Var(z) = — E z7 — 7°
n
i=1

can be done in one communication operation (by summing both z2
and x;), but suffers from numerical cancellation error. The pooled
variance formula is a numerically stable way of computing the vari-
ance of = from the means and variances of a partitioning (z*))X_,

1(1), 2019

of x:

(k)
Var(z) = Z nT [Var(w(k)) +z®z® — z)] .
3

This can applied recursively as a custom reduction operator on ob-
jects containing the mean, variance and length of each element of
the partition, requiring only a single MPI.Reduce operation:

Custom struct containing the summary statistics
struct SummaryStat

mean::Float64

var::Float64

n::Float64
end

function SummaryStat(X::AbstractArray)
m mean (X)
v varm(X,m, corrected=false)
n = length(X)
SummaryStat (m,v,n)

o

end

Custom reduction operator, computing pooled mean,
variance and length
function pool(S1::SummaryStat, S$2::SummaryStat)

n = Sl.n + S2.n

m (S1.mean * S1.n + S2.mean * S2.n) / n

v (S1.n * (S1.var + Sl.mean * (Sl.mean-m)) +

S2.n * (S2.var + S2.mean * (S2.mean-m))
) / n

SummaryStat (m,v,n)

end

Perform a scalar reduction to “root~
summ = MPI.Reduce (SummaryStat (X), pool, root, comm)

5. Acknowledgements

We thank the many contributors to MPLjl over the years: Erik
Schnetter, Jared Crean, Jake Bolewski, Davide Lasagna, Katharine
Hyatt, Jeremy Kozdon, Andreas Noack, Bart Janssens, Amit
Murthy, Steven G. Johnson, David Anthoff, Thomas Bolemann,
Joey Huchette, Seyoon Ko, Juan Ignacio Polanco, Tristan Kono-
lige, Samuel Omlin, Mose Giordano, Filippo Vicentini, Keno Fis-
cher, Maurizio Tomasi, Yuichi Motoyama, Tom Abel, Jane Herri-
man, Ernesto Vargas, Elliot Saba, Rohan McLure, Randy Lai, Mike
Nolta, Josh Milthorpe, Michel Schanen, Kiran Pamnany, Joaquim
Dias Garcia, Jonathan Goldfarb, Chris Hill, Balazs Nemeth, Al-
berto F. Martin, Ali Ramadhan, Viral Shah, Sacha Verweij, Kristof-
fer Carlsson, Joel Mason, and Yao Lu.

This research was made possible by the generosity of Eric and
Wendy Schmidt by recommendation of the Schmidt Futures pro-
gram, Mountain Philanthropies, the Paul G. Allen Family Foun-
dation, and the National Science Foundation (NSF award AGS-
1835860).

6. References

[1] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert
Van De Geijn. Collective communication: theory, practice, and
experience. Concurrency and Computation: Practice and Ex-
perience, 19(13):1749-1783, 2007. doi:10.1002/cpe.1206.

[2] Lisandro D Dalcin, Rodrigo R Paz, Pablo A Kler, and
Alejandro Cosimo. Parallel distributed computing using
python. Advances in Water Resources, 34(9):1124-1139, 2011.
doi:10.1016/j.advwatres.2011.04.013.

http://dx.doi.org/10.1002/cpe.1206
http://dx.doi.org/10.1016/j.advwatres.2011.04.013

Proceedings of JuliaCon 1(1), 2019

[3] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee,
A. Moody, B. R. de Supinski, and S. Futral. The spack
package manager: bringing order to hpc software chaos. In
SC15: International Conference for High-Performance Com-
puting, Networking, Storage and Analysis, pages 1-12, Los
Alamitos, CA, USA, nov 2015. IEEE Computer Society.
doi:10.1145/2807591.2807623.

[4] rsmpi developers. rsmpi: MPI bindings for Rust, 2020.

[5] Tapio Schneider, Shiwei Lan, Andrew Stuart, and Jodo Teix-
eira. Earth system modeling 2.0: A blueprint for models that
learn from observations and targeted high-resolution simula-
tions. Geophysical Research Letters, 44(24):12,396-12,417,
2017. doi:10.1002/2017GL076101.

—

http://dx.doi.org/10.1145/2807591.2807623
http://dx.doi.org/10.1002/2017GL076101

	Introduction
	History

	Simple example and running MPI programs
	Implementation details and challenges
	Functionality
	Allocation and serialization
	Buffers, datatypes and operators
	Application binary interface
	Binary support
	Combining with other modes of Julia parallelism

	Examples
	Ping pong benchmark
	Minimum-spanning tree broadcast
	Pooled variance using custom datatypes and operators

	Acknowledgements
	References

