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Abstract

Due to technological advancements over the last two decades, algorithmic
trading strategies are now widely used in financial markets. In turn, these
strategies have generated high-frequency (HF) data sets, which provide in-
formation at an extremely fine scale and are useful for understanding market
behaviors, dynamics, and microstructures. In this paper, we discuss how in-
formation flow impacts the behavior of high-frequency (HF) traders and how
certain high-frequency trading (HFT) strategies significantly impact mar-
ket dynamics (e.g., asset prices). The paper also reviews several statistical
modeling approaches for analyzing HFT data. We discuss four popular ap-
proaches for handling HFT data: (i) aggregating data into regularly spaced
bins and then applying regular time series models, (ii) modeling jumps in
price processes, (iii) point process approaches for modeling the occurrence
of events of interest, and (iv) modeling sequences of inter-event durations.
We discuss two methods for defining events, one based on the asset price,
and the other based on both price and volume of the asset. We construct
durations based on these two definitions, and apply models to tick-by-tick
data for assets traded on the New York Stock Exchange (NYSE). We discuss
some open challenges arising in HFT data analysis including some empirical
analysis, and also review applications of HF'T data in finance and economics,
outlining several research directions.

AMS (2000) subject classification. Primary 62M10, 62M05; Secondary 62P20.
Keywords and phrases. Asynchronous data, durations, GARCH models,
high-frequency trading data, jumps, volatility.

1 Introduction

With advances in automation, algorithmic trading has largely replaced
floor-based trading in many financial markets. These automated trading
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platforms allow for unprecedented speed of order placement and execution,
thereby creating financial data sets that are of increasingly higher frequency
(Cont, 2011). While a small firm may have traded tens of times each day
in the 1990s, high-frequency trading (HFT) firms today can execute several
thousand trades each day.

The advent of high-frequency trading (HFT) has triggered substantial in-
terest among financial traders and policymakers alike, due to HFT’s promise
of offering deeper insights into the workings of financial markets. Informa-
tion contained in high-frequency financial data has been shown to predict
market movements such as realized volatility and certain higher-order mo-
ments of returns distributions (Easley et al., 2021). In addition, this data
is useful for studying market microstructure, which examines the process
by which assets are traded and the resulting consequences (O’Hara, 1997).
For example, access to high-frequency (HF) data sets can provide greater
insight into price discovery mechanisms (Tay et al., 2004) and the presence
of informed traders (Easley et al., 2012b). All of these aspects are valuable
for regulators and policymakers.

Tick-by-tick (high-frequency) data sets are more information-rich than
asset price data collected at regular intervals, e.g., monthly, daily, or even
intra-day. This is because—in addition to the trajectory of the price process—
these high-frequency data sets provide us with the number of trades executed
for a particular stock within a small time interval. Trade volumes provide
additional information about how attractive a particular stock is to investors.
Thus, analyzing the number of events that occur in a certain time window—
or equivalently, the duration between trades or other events—is at the heart
of statistical modeling of HF'T data and is precisely what makes analysis of
HFT data both unique and challenging.

Since trades can occur at any point in time, HF'T data on asset prices are
usually irregularly spaced time series. These data sets also exhibit some styl-
ized features that contribute to new modeling challenges. For instance, HF'T
data exhibit intra-day diurnal effects, i.e., higher activity during the start
and close of the market and less activity during the middle of the trading
day. Moreover, most variables used in HF'T data analyses (e.g., volumes and
bid-ask spreads) are non-negative and exhibit strong temporal dependence,
which introduces non-trivial challenges in modeling and estimation.

Statistical modeling of HFT data broadly falls into three categories.
The first approach aggregates HFT data into regularly spaced bins (1 min,
5 min, etc.) and then applies models to the regular time series. Such mod-
els include the autoregressive conditional heteroscedastic (ARCH) model,
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the generalized ARCH (GARCH) model, and the stochastic volatility (SV)
model (Tsay, 2005). The second approach builds on the point process ana-
lysis literature to model the occurrence of events of interest (e.g.,
a single trade of an asset). The third approach models sequences of dura-
tions between consecutive occurrences of events. Both the second and third
families have tailored strategies to incorporate other relevant information
into the modeling framework, e.g., information about the relative occur-
rence of buys versus sells, as well as the direction and magnitude of price
changes.

In this paper, we focus primarily on the third approach: duration mod-
els. We describe two common methods for defining events of interest and
thereby constructing inter-event durations: (i) using a pre-specified thresh-
old on price changes in the asset, and (ii) explicitly including information on
the asset’s order flow. We review existing statistical methods for duration
modeling and contrast the two event definition methods through the lens of
a popular class of conditional duration models, which we apply on HF'T data
sets.

The rest of the paper is organized as follows. Section 2 provides examples
of how HF traders use available information to determine when to place and
change orders. Section 3 details some of the stylized features of HFT data.
Section 4 briefly reviews the models for regularly spaced time series and dis-
cusses modeling event times using point processes. Section 5 discusses some
of the existing open challenges in HFT data. Section 6 describes economet-
ric applications where HFT data are routinely used. Section 7 presents a
summary and discussion.

2 Background on High-Frequency Trading (HFT)

Technological innovations, combined with a series of regulatory changes
in the early 2000s, ushered in the era of high-frequency trading. HFT is
characterized by both high speeds and high volumes: traders operate on the
order of micro- or nanoseconds, which they achieve through a combination of
sophisticated technology and co-location, the practice of placing computers
in the same area as an exchange’s servers. To cover these fixed costs—and
since HF traders earn very small profits per trade—firms place large volumes
of orders. These firms aim to generate profits by exploiting small amounts
of predictive power on large quantities of orders (Easley et al., 2012a).

Most HFT firms use limit orders, meaning the trader sets a price above
(below) which she is unwilling to (buy) sell. These limit prices are referred to
as the bid and ask prices, respectively. If a counterparty is not immediately
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willing to take the opposite side of the trade, then the order is placed in
a limit order book. Many exchanges govern their books using automated
rule-based order-matching. Most often this means that orders are executed
first according to price priority and then according to time priority. Limit
orders can remain on the book for a substantial period of time before the
limit price is reached and the trade executed; however, traders may modify
or cancel existing orders as part of their trading strategies. Hence the order
book is highly dynamic.

HFT firms implement these strategies using automated algorithms that
introduce, adjust, and cancel orders as new information is received. Im-
portantly, these algorithms do not operate in clock time, placing an order
every minute, for example. Instead the algorithms speed up or slow down
their rate of activity based on information they glean from external sources
(e.g., macroeconomic events, company earnings announcements) and from
other market participants. Consider the HFT strategy known as pinging.
Pinging involves placing small immediate-or-cancel limit orders: if liquidity
is available at the limit price or better, the order is executed immediately;
otherwise the order is canceled. To understand why this might be useful,
suppose that firm A places a large buy order and firm B detects this liquid-
ity using immediate-or-cancel limit orders. Firm B can then frontrun firm
A’s buy order and sell the shares back to firm A at a higher price, thereby
generating a profit.

Other HFT strategies include spoofing (placing a large number of orders
on one side of the book, with the intention of moving the security’s price),
redirecting liquidity to the firm’s own dark pool, and performing statistical
arbitrage (taking advantage of short-lived price differences across trading
venues or between related securities). See Goldstein et al. (2014) for further
discussion. A significant number of trades are block trades, i.e., high-volume
trades that are typically defined as 10,000 or more shares. Large trades
may cause a significant price impact, hence block trades are often negoti-
ated through experienced intermediaries who can fragment the order and/or
search for counterparties before sending the trade for execution (Keim and
Madhavan, 1996; Hasbrouck, 2007).

Since they can place orders at ultra low latencies, HF traders are able to
swiftly react to information events. When a trader believes that the price
of an asset will rise (fall), she may want to buy (sell) that asset in large
quantities and as quickly as possible in order to maximize her short-term
profits. Thus greater trading intensity, or equivalently shorter durations
between transactions, can signal that an information event has occurred and
that there are informed traders in the market. Indeed Easley and O’Hara



REVIEW OF STATISTICAL APPROACHES... 5)

(1992) develops a theoretical microstructure model in which longer durations
are correlated with the absence of information events. Dufour and Engle
(2000) and Manganelli (2005) provide empirical evidence confirming these
propositions.

3 Stylized Features of HFT Data

The availability of HF'T data has opened new avenues for empirical stud-
ies of market microstructure. Before embarking on such analyses, it is im-
portant to understand the underlying features of such data that are not
observed at lower frequencies. These unique characteristics of HFT data are
referred to as stylized facts and are usually formulated in terms of qualitative
properties of asset returns and durations. These properties are commonly
observed across many financial assets, financial markets, and intra-day time
periods. In this section, we review some stylized features of HF'T data that
are discussed in the literature.

Irregular Spacing High-frequency financial transactions typically occur
at irregularly spaced time points as trading takes place. Therefore the time
durations between consecutive data points are not the same, leading to r-
reqular time series. In any given time interval, transactions for a given stock
may arrive rapidly, separated by short durations, or arrive slowly, with longer
durations between arrival times (see Fig. 1, top and bottom left). Empir-
ical evidence shows that market activity tends to peak around the market
opening and closing times, and exhibits varying patterns of intra-day and
intra-week behavior (Yan and Zivot, 2003).

Diurnal Effect Intra-day transactions, and hence durations, often exhibit
a periodic pattern. For instance, consider inter-event durations, such as trade
durations, mid-quote (change) durations, price durations, volume durations,
excess volume durations, or excess depth durations, all of which have been
well studied in the literature. Such durations often exhibit a diurnal effect,
which refers to high trading intensity (shorter durations) during the opening
and closing periods of the trading day, with relatively lower trading activity
(longer durations) around noon (see Fig. 1, top right) (Engle and Russell,
1998). There are many approaches discussed in literature for adjusting du-
rations for the diurnal effect (Tsay, 2005).

Non-negativity and Temporal Dependence Most variables related
to HFT data are non-negative (e.g., prices, volumes). Moreover, many
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Figure 1: Features of high-frequency financial transactions, illustrated on
Bank of America data. Top left: histogram of inter-trade durations for the
first quarter of 2018. The median time between trades is 0.000118 seconds,
with minimum and maximum durations of 0.000005 and 19.963947 seconds,
respectively. Top right: cubic spline fitted to durations over the course of
a single trading day. Notice the increased activity (shorter durations) near
the market opening and closing. Bottom left: durations between 10:00 and
10:30 AM on a single trading day. Financial durations tend to be clustered,
with short (long) durations following other short (long) durations. Bottom
right: sample autocorrelation function of the duration series

variables, including volumes, spreads, and market depth are positively au-
tocorrelated, i.e., high (low) values tend to be followed by high (low) values.
Let pi be the autocorrelation between the k lags of a stationary time series
X, with mean p. The autocorrelation is written as py = %, where (k)
= cov(Xiyr, Xt) = E[(Xiqx — ) (X — p)]. Often X; exhibits strong persis-
tence; that is, the temporal dependence is non-zero over a long range of lags,
with the autocorrelations, pg, decaying in hyperbolic fashion rather than in
exponential decay: limy_,o pr/ck™ =1, with a € (0,1) and ¢ > 0 (Beran,
1994) (see Fig. 1, bottom right).



REVIEW OF STATISTICAL APPROACHES... 7

Asynchronous Trading Asynchronous (also referred to as non-synchronous)
trading of multiple assets is an important stylized feature of HFT data (Fan
et al., 2012). In general, different stocks have different trading frequencies,
and a single stock’s trading intensity often varies intra-day and intra-week.
Since the exact timing of transactions within any two stocks are likely to
occur independently, we do not expect the trading to be synchronous. Non-
synchronous data typically occur due to trading effects (e.g., some assets
do not trade at certain periods of the day) or timing effects (e.g., trading
happens in different time zones). Suppose there are two stocks A and B and
that they are independent, that A trades more frequently than B, and that B
stops trading two hours before the market closes. Also suppose that a news
item arrives just before closing time on a Monday. Stock A is more likely to
show the effect of the news on the same day, while stock B may react with a
day’s lag. This will in turn differentiate the autocorrelations of the returns of
A and B and affect the nature of their cross-correlation function. These fea-
tures become relevant when we consider models for multivariate HF'T time
series. The Epps effect has been discussed as the decreasing estimated corre-
lation between two stocks when the sampling frequency increases primarily
due to asynchronicity of price observations and possible lead-lag relation-
ships between asset prices (Epps, 1979; Reno, 2003). Hayashi et al. (2005)
discuss the bias in estimates of the covolatility based on non-synchronous
data.

Jumps in Price Processes The presence of jumps in price processes is
one of the stylized features of financial data, and can occur due to specific
macroeconomic events (Evans, 2011) or some unexpected news announce-
ments. In empirical studies, it has been shown that the decomposition of
daily variation into its continuous and jump components can better explain
the volatility dynamics (Andersen et al., 2007; Ait-sahalia et al., 2012; Song
et al., 2021). Many statistical tests have been developed to detect jumps
from discretely observed prices, see Jiang and Oomen (2005), Barndorff-
Nielsen and Shephard (2006), Lee and Mykland (2008), and Ait-sahalia et
al. (2012).

Modeling jumps is related to addressing sudden and relatively large
changes observed in real stock prices and the implied volatility smile phe-
nomenon (Cont and Tankov, 2004).

4 Approaches for Modeling HFT Data

As mentioned in Section 1, there are several approaches for modeling
HFT data. One way to accommodate HFT data in volatility modeling is by
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aggregating tick-by-tick data into regularly-spaced bins (e.g., 1 min, 5 min)
and then applying models for regularly spaced time series (Tsay, 2005), as
discussed in Section 4.1. Although this is a useful approach, it is not gener-
ally preferred since aggregation can induce loss of information. Furthermore,
traditional time series models of volatility do not account for the intra-day
periodicity exhibited by return volatility, i.e., for the systematic patterns
that occur over the course of a trading day and that may lead to model mis-
specification, as illustrated by Andersen and Bollerslev (1997). The classical
volatility models are discussed and followed by their extensions to include
realized measures of volatility, see So et al. (2021) for an excellent review of
univariate and multivariate volatility models for HF'T data.

4.1.  Regularly Spaced Time Series Models for Aggregated Data Let {y:}},
denote a real-valued, discrete-time stochastic process, and let F; be the infor-
mation set up to time ¢. In most financial applications, y; is the log-return of
an asset at time ¢, defined as y; = In P, —In P,_1, where P, is the price of the
asset at time ¢, and In denotes natural logarithm. The conditional variance
of y; is hy = Var(y,|Fy—1) and the conditional mean of y; is p; = E(y|Fi—1).

The volatility at time ¢ is given by ht1 /2,

GARCH and its Extensions The seminal work of Engle (1982) on the
autoregressive conditional heteroscedastic (ARCH) model laid the founda-
tions for modeling the heteroscedasticity (changing variance) of the log-
returns process. Later, Bollerslev (1986) proposed a more flexible model,
an extension of ARCH known as generalized ARCH (GARCH). The key fea-
ture of both models is the ability to accommodate volatility clustering, a key
stylized fact of financial time series.

Let y; denote the (mean-subtracted) returns at time ¢. Then y; is said
to follow a GARCH(P, @) model if

1/2
Yt = ht/ 2t

P Q
he :a0+2aiyt2_i+25jht_j, t=1,...,T, (4.1)
i—1 j=1

where {z:} is a sequence of i.i.d. random variables with zero mean and unit
variance. In Eq. 4.1, P refers to the lag orders of the returns series while @
refers to the lag orders of the conditional variance series. Sufficient conditions
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for the conditional variance h; to be positive are ag > 0, o; > 0 for ¢ =
1,...,P,and 8; > 0for j =1,...,Q. The constraint Z;ialx(P’Q) (i +5i) <1
ensures stationarity. For () = 0, this process reduces to the ARCH(P) model.

There have been numerous extensions of the GARCH model that are
important for modeling the stylized features of financial returns. One such
improvement is to use a different distribution for the random variable, z,
in order to capture the distribution’s heavier tails (e.g., we may use Stu-
dent t-distribution with low degrees of freedom). To capture the asymmetry
phenomenon in volatility and to overcome a restrictive model specification,
the exponential GARCH (EGARCH) model was proposed by Nelson (1991).
Detailed discussions on GARCH modeling and its extensions are provided in
Tsay (2005). GARCH models have also been used extensively in the context
of high frequency data. Hansen and Lunde (2005), Hansen et al. (2003),
and Andersen and Bollerslev (1998) are useful references and the R packages
rugarch by Ghalanos (2020) and MSGARCH by Ardia et al. (2019) contains

several useful functions that allow users to fit different GARCH models.

Stochastic Volatility Models Stochastic volatility (SV) models were de-
veloped to model the heteroscedasticity of y; by considering a latent (unob-
served) stochastic process for volatility, see Taylor (1982, 1994), and Harvey
and Shephard (1996). In particular, the evolution of the logarithm of y;’s
conditional variance is described by a stochastic process whose dynamics are
assumed to be autoregressive. The basic form of SV model is the following:

Yy = hi/%t, Inhip1 =a+ ¢lnhy +n,
1
(et,m) ~ N(0,X), Ez( g) t=1,....T, (4.2)
0 oy,

where In h; is assumed to follow a stationary AR(1) process with |¢| < 1.
The latent process h; can be interpreted as a random flow of information in
financial markets and ¢ is the persistence in the volatility. The error terms,
€; and 1, are independent Gaussian white noise sequences. A fundamental
difference between GARCH and SV models is that, in the GARCH frame-
work, given the information set F;_1, the time-varying volatility is assumed
to follow a deterministic, rather than stochastic, evolution.

The usefulness of using SV models lies in the fact that they provide
greater flexibility in describing stylized facts. The volatility asymmetry,
which refers to the different impacts of positive and negative shocks of equal
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magnitude on volatility, has been addressed in Jacquier et al. (2004), who
proposed an alternate specification of ¥ as:

1 o
(Eta 77t) ~ N(Ov E)a Y= <po_77 Z_Qn> t= 1, ce ,T. (43)
777

If the correlation p is negative, then a decrease in ¢; will be associated with
an increase in 7; and hence associated with higher contemporaneous and
subsequent volatilities through h;. This will allow us to model the lever-
age effect, which is the association of negative return with an increase in
volatility (Black, 1976). Most financial time series exhibit kurtosis higher
than the one resulting by incorporating conditional heteroscedasticity into
a normal process. This has been studied in Chib et al. (2002), Harvey et al.
(1994), and Jacquier et al. (2004), where ¢, in Eq. 4.2 is allowed to follow a
Student t-distribution. Detailed extensions of the SV models including its
multivariate extensions are discussed in Yu and Meyer (2006), Chib et al.
(2009), among others. The R package stochvol (Hosszejni and Kastner, 2019)
contains several functions that allow users to fit different stochastic volatil-
ity (SV) models estimated using Bayesian methods. Amongst many others,
Barndorff-Nielsen and Shephard (2002), Takahashi et al. (2009), and Stroud
and Johannes (2014) are useful references for the applications of stochastic
volatility models for high-frequency data.

Realized GARCH Models With the availability of HF data, numer-
ous realized measures of volatility has been introduced in literature includ-
ing realized variance, bipower variation, realized range and many others
(Andersen and Bollerslev 1998; Barndorff-Nielsen and Shephard 2002, 2004;
Martens and Van Dijk 2007). Realized measures are more informative than
squared returns and hence found more useful for modeling and forecasting
future volatility. Andersen and Bollerslev (1998) found realized volatility
to be a better measure of volatility than the measures based on daily re-
turns since the former measure provides noise reduction and more temporal
stability.

Let P; be the observed price of an asset for day t = 1,...,n. Divide each
day into fixed M sub-intervals and let A = ﬁ denote the length of time
between the two consecutive observations. To obtain realized variances at
5-min sampling frequency, set A = 300 (seconds) and similarly for 1-min
sampling frequency, set A = 60 (seconds). Let {Pt—l-',-jA}j]Vil denote the
sequence of observed prices for a day ¢ at the sampling frequency A = ﬁ In
case of missing observed prices, previous tick method or linear interpolation
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between adjacent ticks (Zivot and Wang, 2007) can be used to estimate the
missing observations. The jth intraday return for day ¢ is defined as

Yjip =ImP1pjn —In Py qyyG-na, J=1,...,M. (4.4)

RV, (realized variance for day t) is defined as the cumulative squared
sum of the intraday returns y;

M
RV, => 2 (4.5)
7j=1

V/RV} is known as the realized volatility.

Hansen et al. (2012) proposed Realized GARCH for the joint modeling of
returns and realized measures of volatility. This model can also be referred
to as a GARCH model that makes use of realized measures. The main idea
is a measurement equation given by Eq. 4.6 for RV; that relates the realized
measure (e.g., realized variance) to the conditional variance of returns and
facilitates modeling of the dependence between returns and future volatil-
ity. The realized GARCH model for simultaneous modeling of returns and
realized variance is

Y = hg/QZta
hi = oo+ Brhi—1 + 7RV,
RV; = &+ &he+7(2) + w, (4.6)

where h; is the volatility of the asset at time ¢, z; ~ 1.1.d.(0,1) and w; ~
ii.d.(0,02), with z and u; being mutually independent. 7(z) is known
as the leverage function that captures the leverage effect, the dependence
between returns and future volatility. The empirical results in Hansen et al.
(2012) shows that Realized GARCH outperforms GARCH when applied to
Dow Jones Industrial Average stocks and an exchange traded index fund.
In the literature, there have been several extensions and applications of
Realized GARCH. Gerlach and Wang (2016) extended the class of Realized
GARCH models to include more efficient realized measures such as realized
range (RR). So and Xu (2013) proposed to model the intraday returns y;¢
in Eq. 4.4 and intraday volatility using a GARCH-RV model with realized
volatility to forecast intraday Value-at-Risk (VaR) and intraday volatility.

Realized Stochastic Volatility (SV) Models Takahashi et al. (2009)
extended the well-known Stochastic volatility models to jointly model daily
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returns and the realized volatility. The proposed model also takes into ac-
count the bias in the realized volatility induced by the presence of non-
trading hours and market microstructure noise in transaction prices. The
specification of the joint model is

yr = exp(h/2)e,
hiv1 = p+ olhe — p) + e,
RVy = &+ h+uy,
hi = u+770,no~N<0,1_¢2>,
€t 1 poy, O
m | ~N|0,|po, o7 O : (4.7)
Pt 0 0 0'3

In the equation for RV;, the inclusion of the constant term £ and the noise
term corrects the bias due to microstructure noise and non-trading hours.
The parameter p captures the correlation between the returns gy and the
future volatility hey1. The above is an extension of the SV model in Eq. 4.3
to include realized measures.

Asai et al. (2017) proposed a new model to take into account both
asymmetry and long memory in which the unobserved time series of log-
volatility In h; follows an AutoRegressive Fractionally Integrated Moving Av-
erage (ARFIMA) process similar to the approach by Shirota et al. (2014) and
the observed series of returns follows the stochastic volatility model with a
heavy-tailed distribution. Extreme value distributions have also been incor-
porated in realized stochastic volatility models by employing the generalized
hyperbolic skew Student’s ¢t-distribution (Takahashi et al., 2016).

4.2.  Modeling Jumps in Price Process The analysis of jumps (instan-
taneous and discrete moves) in asset price processes is well discussed in the
literature; see Cont and Tankov (2004), Carr et al. (2002), Vasileios (2015)
and references therein. There are two broad categories of financial models
with jumps. The first category consists of jump-diffusion models, where a
diffusion process captures normal asset price variations while the Poisson-
driven jump part captures large market movements. Different jump-diffusion
models arise depending upon the distributional assumptions. The second
category consists of jump models that allow for infinitely many jumps in fi-
nite time intervals. Examples of this category of models include the variance
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gamma model (Madan and Seneta, 1990; Carr et al., 1998), the hyperbolic
model (Eberlein and Keller, 1995), the CGMY model (Carr et al., 2002),
and the finite moment log stable process (Carr and Wu, 2003).

Models with finite jumps Let X = (X;);>0 be the logarithmic price of a
financial asset that is defined on a filtered probability space (w, F, (F¢)t>0, P).
Here F; represents the information available at time ¢, ¢ > 0. Following the
model setup in Christensen et al. (2014), we assume that X operates in an
arbitrage-free frictionless market, implying that X belongs to the class of
semimartingale process. We assume that X can be represented by a jump-
diffusion model to allow for stochastic volatility and finite price jumps as

t t NY
X, =X, +/ asds + / osdWs+ Y Ji t>0, (4.8)
0 0 i=1
where X; is the log price at time ¢, a = (at)s>0 is a locally bounded and
predictable drift term, o = (0¢)¢>0 is an adapted cadlag volatility process,
and W = (Wy)i>0 is a standard Brownian motion. Here N/ = (N/);>q
is a counting process representing the total number of jumps in X and
J = (Ji)iz1,.. n7 18 a sequence of nonzero random variables denoting the
corresponding jump sizes.

The model specified in Eq. 4.8 nests many popular continuous models
as special cases such as the geometric Brownian motion with an Ornstein-
Uhlenbeck process for log-volatility (Alizadeh et al., 2002), the stochastic
volatility model with log- normal jumps generated by a non-homogeneous
Poisson process (Andersen et al., 2002), and the affine class of models (Duffie
et al., 2000). In practice, we observe discretely sampled observations which
at an individual level can contain substantial noise. One source of noise
is from microstructure effects that arise due to bid-ask spreads, or price
discreteness (Black, 1986). The other source is due to the presence of outliers
which can be attributed to delayed trade reporting on block trades, fat-finger
errors, bugs in the data feed, misprints, decimal misplacement, incorrect
ordering of data, etc. (Christensen et al., 2014). The model setup for the
tick level data that takes into account the sources of noise and restricting to
the unit time interval ¢ € [0, 1] can be specified as

Yin = Xyn +uyny +Oyn i=1,...,N, (4.9)

where u is i.i.d. noise process such that E(u) = 0, E(u?) = w? and u and X
are independent(Christensen et al., 2014). Here, Oi/n = Li/NeaySi, where
Apy is a random set containing the number of occurrences of outliers and
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their sizes are given by (8;i);—y,. yo. Assuming Ay to be a.s. finite, model
it by

AN:{[NNTi]:ogTigl}, (4.10)

where (7;);—; NO are the arrival times of another counting process N© =

(NP)i>0. We assume that O is mutually independent of X and u, which
implies that N” is independent of N© meaning that the counting process
generating jumps and counting process generating outliers are independent
of each other. The model in Eq. 4.9 can be considered as an extension to
the standard microstructure component formulation considered in the high
frequency finance literature (Barndorff-Nielsen and Shephard, 2005) which
also accommodates the outlier process.

Models with Infinite Jumps Recently, several studies based on real
asset returns have suggested the use of infinite activity models.

Consider a Lévy process with infinite jump activity and microstructure
noise, which is considered as one of the simplest models for high frequency
financial data. Following the model setup in Wang et al. (2021), consider
a one-dimensional Lévy process X = {X;}+>o defined on some probability
space (€2, F, (Ft)e>0, P) over a fixed time horizon ¢ € [0,7]. The model can
be represented as

Xy =pt + oWy + Jy, (411)

where 1 € R and ¢ € [0,00) are respectively the drift and the variance
parameters, W = {W;};>0 is a Wiener process, and J = {Ji:}+>0 is an
independent pure-jump Lévy process. The jump component J is defined as

t
Ji = Ji+ Jo, Jlt:// rp(de, ds),
0 Jlz|>1

Joy = /0 /0<a;|§1 z(p(dx,ds) — v(dz)ds), (4.12)

where 1 is a Poisson random measure on R; x R\0O with mean measure
v(dz)dt such that fR\O(|x\2 A1)v(dz) < oco. Typically, X; represents the log-
return or log-price process log(.S/Sp) of an asset with price process {S¢}>0.
In this case, the parameter o is called the constant volatility of the process
and contributes to the total “variability” of the process X. The model frame-
work (4.11)—(4.12) can also be used to accommodate the observations of the
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process which may be contaminated by random errors. Let us assume that
the observations take the form

Vi, =Xy, +e;, j=0,...,n, (4.13)

with equally-spaced discrete times 0 = to < t1--- < t, = T such that
tj —tj—1 = T/n. The assumption of constant volatility is quite restrictive
and can be relaxed to stochastic volatility when the microstructure noise
can be ignored. It is generally believed that when using medium range
frequencies such as 5-min or daily observations, the microstructure noise is
negligible. For such data, we may consider the model

dX; = Bidt + o dW, + dJy, te[0,T), (4.14)

where W = {W, }+>¢ is a Weiner process, J = {J;}+>0 is a suitable pure-
jump semimartingale, and 8 = {f:}1>0 and o = {0y }+>0 are cadlag adapted
processes. A more detailed discussion about the statistical inference for
processes with infinitely many jumps can be found in (Mies et al., 2020).

The R package yuima (Brouste et al., 2014) has a comprehensive frame-
work for the simulation and inference of stochastic differential equations
and other stochastic processes. It allows one to specify stochastic differen-
tial equations of abstract types, including one- or multidimensional diffusion
processes driven by a Wiener process or a fractional Brownian motion with
general Hurst parameter, with or without jumps (i.e. driven by Lévy pro-
cesses). lacus and Yoshida (2018) provide more details on the usage of yuima
package.

Jump Testing Identification and testing of price jumps in asset prices
are very important in the context of financial and economic activities such
as portfolio re-balancing and risk management, Barndorff-Nielsen and Shep-
hard (2006) proposed a non-parametric test for the existence of jumps based
on the ratio of bipower variation and realized quadratic variation, while
Lee and Mykland (2008) proposed a non-parametric procedure to detect the
exact timing of jumps at the intra-day level using the ratio of realized re-
turn to estimated instantaneous volatility. Jiang and Oomen (2008) used
an approach based on “swap variance” (accumulated difference between the
simple return and log return) to detect the presence of jumps. Sen (2009)
proposed a non-parametric method for detecting jumps using the functional
data analysis (FDA) technique, which requires no assumptions from the func-
tional volatility process beyond smoothness and integrability. Ait-Sahalia
and Jacod (2009) compared two higher order realized power variations with
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different sampling intervals to develop a test statistic for the null hypothesis
of no jumps. More recently, a rank jump test has been proposed by (Li et
al., 2019). In this procedure, the jump matrix is tested for its rank at simul-
taneous jump events in market returns, as well as in individual assets. A
more detailed review of jump tests can be found in (Mukherjee et al., 2020;
Tsai and Shackleton, 2016; Bjursell and Gentle, 2012)

In R, the highfrequency package (Boudt et al., 2021a), provides func-
tionality and a comprehensive framework to manage high-frequency data.
It helps to clean and match high-frequency trades and quotes data, calcu-
late various liquidity measures, estimate and forecast volatility, detect price
jumps and investigate microstructure noise and intraday periodicity. The
function AJjumpTest implements the jump test proposed by Ait-Sahalia
and Jacod (2009) while the function BNSjumpTest examines the proce-
dure based on Barndorff-Nielsen and Shephard (2006). The function in-
tradayJumpTest can be used to test jumps using the theory of Lee and
Mykland (2008) and JOjumpTest examines the jumps based on Jiang and
Oomen (2008). The function rankJumpTest implements the rank jump test
of Li et al. (2019).

4.3.  Modeling Fvent Times with Point Processes Let t denote the cal-
endar time and let ¢;, i = 1,2,..., be the random time of occurrence for the
ith event. We assume 0 < t; < t;11, thereby excluding the possibility of si-
multaneous occurrence of events. The sequence {t;} is a simple point process
in R. If we also observe a mark, W;, then we refer to {t;,W;, i =1,2,...}
as a marked point process. Marks can indicate different types of events,
such as the arrival of buys, sells or certain limit orders. The ith dura-
tion is a non-negative random variable defined as the time interval between
the events occurring at times ¢;_1 and t;: x; = t; — t;—1, for i = 1,2,...,
with o = 0. A counting process N(t) associated with {¢;} is defined by
N(t) = Z¢21 1ft; < t], which is a right-continuous step function with up-
ward jumps of magnitude one at each ;. These three views of high-frequency
data (the point process, durations, and the counting process) are often inter-
changeable, allowing for rich modeling scenarios and interpretations. How
well we can model and predict will of course depend on the quality and for-
mat of the data, which in turn depend on underlying institutional settings
and recording systems (Harris, 2003; Hautsch, 2011).

Hautsch (2011) discusses four broad approaches for modeling a point
process as a function of its history, F;: (i) models for intensity processes,
(ii) models for hazard processes, (iii) models for duration processes, and
(iv) models for counting processes. Exogenous predictors, if available, may



REVIEW OF STATISTICAL APPROACHES... 17

be used as well. There is a distinction between discrete-time models and
continuous-time models.

The intensity is the instantaneous arrival rate of an event at time ¢,
conditional on the history, F; (Daley and Vere-Jones, 2003):

A(t; Fr) = limay—o P(1 event in [t,t + At] |F),

and may be modeled by an autoregressive conditional intensity model (Engle
and Russell, 1998). A general class of intensity models can be defined, as in
Hautsch (2011), by

A(t; Fi) = Ao(t; g2(Fi)) g1 (t; Fe), (4.15)

where \g(.) denotes a baseline intensity, and g1 (.) and g2(.) enable us to cap-
ture dependence on time-varying covariates or past history. Various choices
of A\g, g1 and go give rise to well-known models, including the proportional
intensity, proportional hazards, and accelerated failure time models. These
models can be extended to accommodate long range dependence (Hautsch
et al., 2006), for multivariate marked counting process modeling (Russell,
1999), or for stochastic conditional intensity (SCI) models (Bauwens and
Hautsch, 2006). Hautsch (2011) discusses dynamic versions of intensity mod-
els, defined in continuous time, for univariate and multivariate cases. These
include the autoregressive conditional intensity (ACI) model—which is a dy-
namic extension of the proportional intensity (PI) model (Russell, 1999)—as
well as models based on linear self-exciting Hawkes processes (Hawkes, 1971),
where the intensity is governed by the sum of negative exponential functions
of time to all previous events (Swishchuk and Huffman, 2020). The R package
hawkes by Zaatour (2014) can be used to simulate Hawkes processes both
in univariate and multivariate settings. The package contains functions that
can be used to compute various moments of the number of jumps on a given
interval, separated by a lag.

Given the sequence of inter-event durations, {z;}, where x; has p.d.f.
f(zi; Fi—1) and survival function S(z;; F;—1), the hazard function, h(x;; F;—1)
is defined as the conditional instantaneous risk that the ith event happens
in a small time interval (z;, z; + 4],

h(xs; Fio1) = f(xs Fio1)/S(xi; Fic1).

There are close connections between intensity models and hazard models. As
mentioned earlier, by setting specific forms for the terms in Eq. 4.15, we can
obtain the proportional intensity (PI), proportional hazards (PH), or acceler-
ated failure time (AFT) models. Kalbfleisch and Prentice (2011), Kleinbaum
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and Klein (2010), Cox and Oakes (2018), Cox (1972) provide excellent dis-
cussions of several hazard process models, including the Cox proportional
hazards model and accelerated failure time models. These models have been
applied in a variety of settings. For example, the duration of unemployment
is studied in a wide range of theoretical and empirical econometric papers,
including Lancaster (1979) and Heckman and Singer (1984). Lane et al.
(1986) also demonstrates a novel application of the proportional hazards
model to the study of bank failure. The R package survival by Therneau
(2021) contains several functions that allow users to fit these models.

The count process model is obtained by specifying the joint distribution
of the number of points in equally spaced intervals of length A. A simple
count data model is given by

AA
N] |Z‘7 NPO()\),

where zjA is a vector of covariates associated with N jA and N jA is defined as
the number of events in the interval [jA, (j + 1)A] for j = 1,2,.... Flem-

ing and Harrington (2011) provides an excellent introduction to counting
processes. Cameron and Trivedi (2013) discusses more general models by
using the negative-binomial distribution and double Poisson distribution in-
troduced by Efron (1986). Dynamic count approaches are also used to model
the behaviour of discrete, positive-valued time series, such as bid-ask spreads
(the magnitude of trade-to-trade price changes). Let {y;}I"; be a time se-
ries of counts. Autoregressive conditional Poisson (ACP) models are useful
for modeling dynamic intensity processes based on aggregated data. These
models can be defined as

P Q
yi|f}_1 ~ POi()\,’)7 ANi=w+ Z Q;Yi—j + Z ﬁj)\i_]‘. (4.16)
Jj=1 J=1

This specification was proposed by Rydberg and Shephard (2000) and its
extensions are considered by Heinen (2003). Detailed extensions of the dy-
namic models for discrete data and its multivariate extensions are discussed
in Hautsch (2011). The R packages acp by Vasileios (2015) and tscount by
Liboschik et al. (2017) can be used to fit Autoregressive Conditional Poisson
models.

4.4.  Modeling Durations Conditional on Past Information Engle and
Russell (1998) introduces a general class of time series models for positive-
valued random variables, referred to as multiplicative error models (MEM).
MEM express the dynamics of the variables of interest (e.g., durations, vol-
ume, volatility) as the product of the expectation of the process—conditional
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on the available information—and an i.i.d. positive-valued error term with
unit mean. This model specification parallels the GARCH specification.
The autoregressive conditional duration (ACD) model was the first univari-
ate MEM model introduced in high-frequency econometrics to model the
dynamic behavior of the random times between trades (Engle and Russell,
1998). This model was generalized to any non-negative valued process by
Engle (2002b).

Let {D;}?_; be a discrete time series of raw inter-event durations, defined
as D; = t;—t;—1. Let {z;}7_, be a discrete time series of adjusted inter-event
durations on (0,00), where z; = %, f(t;) is a deterministic function (Tsay
(2005)) consisting of the cyclical component of ¢;. Here n is the number of
events. Let F;_1 be the information set available at the (i — 1)th event and
let the conditional mean function be 1); = E(x;|F;—1). This notation is used
throughout Section 4.4.

Autoregressive Conditional Duration Models (ACD) The ACD model
proposed by Engle and Russell (1998) is one of the most popular methods for
modeling inter-event durations and acts as a benchmark model for further
developments of conditional duration models. We say that {z;} ; follows
an ACD(p, ¢) model if it can be expressed as

T; = i€, (4.17)

where, conditional on F;_1, ¥; can dynamically evolve as

P q
vi=wt Y amig+ > Bty (4.18)

j=1 j=1

The ACD model specification assumes that the standardized inter-event
durations ¢; follow an i.i.d. process defined on positive support and that
E(e;) = 1. The conditions w > 0,5 > 0 for j = 1,...,p, and 3; > 0 for
j =1,...,q ensure that the conditional inter-event durations are positive.
By letting n; = z; — v¢; (a martingale difference sequence by construction),
the ACD(p,q) model can be formulated as an ARMA (max(p, q),q) model
for x; as

maz(p,q) q
zi=wt Y (o +B)zioi— Y Bimij+mi- (4.19)
j=1 J=1

Hence a sufficient condition for x; to be covariance-stationary is given by
Yy aj+ 305 B; < 1 (Pacurar, 2008).
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Engle and Russell (1998) discusses parameter estimation using the method
of maximum likelihood. Many variations of ACD model specifications have
been used in the literature with the assumption that the innovations follow
exponential, Weibull, gamma and generalized gamma distributions. Engle
and Russell (1998) also discusses the application of WACD and EACD mod-
els to IBM transactions data, where WACD and EACD refers to the ACD
model with Weibull and exponential innovations, respectively.

Log ACD Models The model specification of ACD(p, q) is quite restric-
tive since it requires non-negativity constraints on the model parameters
to ensure positive-valued inter-event durations. Log ACD; and Log ACD,
models were introduced by Bauwens and Giot (2000) to (i) provide a more
flexible structure without any sign restrictions on model parameters, and (ii)
to facilitate the inclusion of exogenous variables in the model. The general
Log ACD,(p, q¢) model can be written as

Ty = ewieh

p q
d}i =w+ Z Q; lnxi,j + Z 53’1/%7]‘, (420)
7j=1 J

= =1

where Z;n:af v ’Q)(ozj + ;) < 1 1is required for weak stationarity of x;. Simi-

larly, for the model specification of Log ACD,(p, q), ¥; takes the form

p q

T s
v =w+ Z Qj eqzijj + Zl Bjvi—j, (4.21)
j:

Jj=1

where 2321 Bj < 1is required to ensure weak stationarity of ;. Here ¢; are
assumed to be an i.i.d. process defined on positive support with E(e;) = 1.
Both specifications of the Log ACD model are more flexible but retain many
of the characteristics of the ACD model. Bauwens and Giot (2000) applies
the Log ACD, model to price durations, relative to the bid-ask quote process,
of three securities listed on the New York Stock Exchange: IBM, DISNEY,
and BOEING. It also investigates the influence of certain characteristics of
the trade process (e.g., trading intensity, average volume per trade, and
average spread) on the bid-ask quote process.

Other Types of ACD Models Fernandes and Grammig (2006) proposes
a new family of ACD models known as augmented autoregressive conditional
duration (AACD) models, which allow asymmetric responses to small and
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large shocks. This is a generalization of the ACD process that applies a
Box-Cox transformation with parameter A > 0 to the conditional inter-event
duration process, ¥;. The AACD model can be written as

T; = Vi€,
) = w4 o) (|61 — b + clei—1 — )] + Bt 4, (4.22)

where w > 0, a > 0, and 8 > 0 and ¢; are assumed to be an i.i.d. process
defined on positive support. The shocks impact curve is given by g(€;) =
[lei — b 4+ c(e; — b)]”. The shift parameter, b, helps identify the asymmetric
response implied by the shocks impact curve, while the rotation parameter,
¢, determines the clockwise (¢ < 0) and anti-clockwise (¢ > 0) rotation. The
shape parameter, v, induces concavity (v < 1) or convexity (v > 1) in the
shocks impact curve. AACD models nest many existing ACD models, such
as the ACD model of Engle and Russell (1998) and both specifications of
the Log ACD models from Bauwens and Giot (2000).

The Stochastic Conditional Duration (SCD) model was introduced by
Bauwens and Veredas (2004) under the assumption that a dynamic stochastic
latent variable governs the evolution of inter-event durations. The general
model specification of SCD(p, ¢), as in Thavaneswaran et al. (2015), is given
by:

z = eV,

p q
v = w+ Z T + Z Bivi—; + 2, (4.23)

Jj=1 J=1

where z;|F;_1 areii.d. N(0,02) variables, ;| F;_1 follows a distribution with
positive support, and the z;’s and ¢;|F;—; are independently distributed for
all 4, 7. This model is a generalized version of the model proposed in Bauwens
and Veredas (2004). One of the most important features of the latent variable
is that it helps to capture the random flow of information, which in the
case of financial markets is very difficult to observe directly but drives the
duration process. This model is a counterpart to the stochastic volatility
model introduced by Taylor (1982).

The major difference between an ACD process and an SCD process is
that SCD processes are doubly stochastic processes. The conditional ex-
pected duration in the case of SCD models is a random variable, while for
ACD models, it is a fixed function of unknown parameters. Parameter esti-
mation in SCD models is a difficult task since it requires integrating out the
latent variable. Bauwens and Veredas (2004) estimates the model param-
eters based on the quasi-maximum likelihood technique using the Kalman
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filter. In empirical studies, SCD models have been applied to various inter-
event durations (e.g., trade durations, price durations and volume durations)
of BOEING, COCA COLA, DISNEY, and EXXON stocks (Bauwens and
Veredas (2004)). The authors compare the SCD model with the Log ACD
model and find that the SCD model provides a superior fit when the Weibull
distribution is used for innovations.

Extreme Value Modeling of Durations Modeling extreme events is
popular in finance for quantifying risk, stock market shocks, and large fluc-
tuations in financial data. Embrechts et al. (2013) is an excellent reference
outlining the theory on the subject of extreme events modeling. Rocco (2014)
provides an extensive survey of the distributional assumptions for calculat-
ing different risk measures (e.g., Value-at-Risk, Expected Shortfall) and for
the study of dependence and contagion across markets under stress.

Block trades are one example of how extreme value theory is used in mod-
eling durations. Block trades occur when there is a high-volume transaction
in a security that is privately negotiated and traded outside of the open
market. Typically block trades consist of at least 10,000 shares of a stock
or $100,000 of bonds. Zheng et al. (2016) shows that duration sequences of
such block trades may exhibit both heavy tails and extreme values; thus it
proposes modeling such durations using the Fréchet ACD model, i.e., the
usual ACD model with Fréchet innovations. The Fréchet distribution is a
special case of a generalized extreme value distribution, and has a heav-
ier right tail than other non-negative distributions such as the gamma and
Weibull distributions. Zheng et al. (2016) analyzes durations of block trades
from the Hong Kong Stock Exchange (SEHK) and the London Stock Ex-
change (LSE), demonstrating a better fit using the Fréchet ACD model as
compared to the Weibull ACD model.

In R, the ACDm package, created by Belfrage (2016), can be used to fit
autoregressive conditional duration models and several extensions thereof,
including the Log ACD model, additive and multiplicative ACD model
(Hautsch, 2011), augmented box-Cox model (Hautsch, 2011) and spline news
impact ACD model (Hautsch, 2011). The function diurnalAdj is used to
create diurnally adjusted duration series, while the function acdFit allows
different specifications for the error distribution and fits the models primarily
using maximum likelihood estimation.

5 Practical Challenges in HFT Applications

HFT data pose a set of new challenges for researchers and practition-
ers as mentioned in Section 1. In this section, we discuss a few interesting
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applications of HFT data and mention a few open challenges that are yet
to be resolved. Comprehensive statistical modeling and inference of the du-
ration process can give insight into the market’s buyer and seller trading
activity patterns, which is a topic of considerable interest in market mi-
crostructure theory. One of the important questions in this context is how
to best construct and model inter-event durations. Long range dependence
(persistent memory) in durations is also an important stylized feature of
HFT data, and adequate modeling of persistence is still an open problem.
Furthermore, the asynchronicity problem poses several challenges in multi-
variate modeling of HF'T data, including covariance estimation of multiple
assets, which has several applications in trading, risk management and port-
folio rebalancing. The following sections discuss these issues.

5.1.  Constructing and Modeling Durations High-frequency trading has
yielded massive amounts of dense irregular data, leading to the question of
how best to subsample or aggregate the data to facilitate effective data anal-
ysis. Indeed most statistical approaches involve some form of subsampling or
aggregation. This not only reduces the amount of data to be processed, but
also limits the effect of noise and allows researchers to create economically
meaningful variables (e.g., realized volatility). Many practitioners subsam-
ple the data according to clock time; for example, Bloomberg allows users to
retrieve intra-day data over fixed time intervals ranging from 1 min to 24 h.
For each interval, referred to as a bar, there are several associated quanti-
ties, including the volume traded over the bar, and the opening and closing
prices. These values can then be used to compute variables of interest; for
instance, closing prices over successive bars can be used to calculate squared
returns, which are then averaged to produce an estimate of volatility.

Time bars, however, can have undesirable empirical and theoretical prop-
erties. For instance, when data is sampled uniformly in time, the resulting
price changes often display volatility clustering (i.e., large price changes tend
to be followed by other large price changes), which makes modeling more
challenging. Furthermore, HF traders may have little need for data analysis
that is performed with time bars: forecasts over fixed time horizons (e.g.,
1 h) are less useful than forecasts over fixed volumes (e.g., 100,000 shares),
since execution algorithms typically consider volume without regard to how
quickly or slowly that volume can be traded (Easley et al., 2012a).!

Indeed this is one of the criticisms of HFT. The May 6, 2010 “Flash Crash,” in which the
Dow Jones Industrial Average dropped by almost 1,000 points in 30 min, was the result
of an execution algorithm that considered only volume, not time. As a result, $4.1 billion
of E-Mini S&P 500 futures contracts were sold on the Chicago Mercantile Exchange in a
mere 20 min interval (Goldstein et al. (2014)).
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Event aggregation, i.e., aggregation of a process based on some specific
trading event, is one of the most popular approaches to forming durations.
There are many ways of defining events and hence inter-event durations, e.g.,
price durations, volume durations, trade durations etc. (Hautsch, 2011). In
constructing trade durations for stocks with low liquidity, we may define
events as successive trades. For more liquid stocks, however, we need to use
alternative event definitions to reduce the impact of market microstructure
effects. In what follows, we discuss two such approaches for constructing
durations: the price threshold approach and the dollar-volume approach.
The two methods differ in how events are defined. The price threshold
approach considers the price at which trades are executed, while the dollar-
volume approach incorporates information both on price and volume traded.

Defining Events Based on Price Threshold Under this method, an
event is said to have occurred when the change in price between successive
trades exceeds a certain threshold, say d,. Consider a particular trading day.
Let Py be the opening price of the stock on that day and let P; denote the
price of the stock at time ¢;. Let the total number of trades that day be
denoted by T'. Then we define the set of events as

E={i:|P—P_1|>6, i=1,...T}. (5.1)

Typically modelers choose the threshold, é,, in such a way that it captures
realistic price movements. For instance, Bauwens and Giot (2000) use a
value of $0.125 and Engle and Russell (1998) set d,, to be one-half the largest
observed price spread (see Fig. 2, left).

Defining Events Using Dollar-Volume Bars The dollar-volume method
defines an event as occurring when the change in cumulative dollar-volume
exceeds a given threshold, é,. Let P; and V; denote the price and volume of
the stock at trade j. Their product, P;Vj;, is then the dollar-volume of trade
j. If event (i — 1) occurs with the execution of trade r;_1, then event i takes
place whenever trade r; occurs, where

* *

T T
ri = argmin o PV Y BVizd, . (5.2)
Jj=ri—1+1 Jj=ri—1+1

In other words, r; is the first trade at which the total dollar-volume (summed
over all trades that took place since event ¢ — 1) exceeds the threshold, 4,
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Figure 2: Constructing durations for Bank of America (BAC) based on
trades that took place around the market opening on January 2, 2018. Left:
Under the price threshold approach, an event occurs when the price change
exceeds some threshold, ¢,. Trades are marked with circles and the first
three inter-event durations (D; -D3) are shown. A plot of BAC’s full price
trajectory is inlaid. Right: Under the dollar volume approach, an event
occurs when the cumulative dollar volume exceeds some threshold, d,. As
on the left, the first three inter-event durations are marked

(see Fig. 2, right). The i*" dollar-volume bar consists of all trades between
events (¢ — 1) and i. Notice that ¢, varies from stock to stock, with larger
firms tending to have greater daily dollar-volume and thus higher thresholds.
Moreover, a stock will have fewer events on days when it is relatively inactive
and more events on days when it is highly traded. The selection of the
threshold 6, to be 1—(1)0 would mean that on average each stock will have 100
dollar-volume bars each day.

The dollar-volume approach for constructing durations has several ap-
pealing properties. First, Easley et al. (2012a, b) show that this technique
yields series of price changes that exhibit less heteroscedasticity and less
serial correlation, and whose distribution is closer to normal, than what
results from sampling in clock time. With approximate normality and in-
dependence, practitioners can use standard statistical methods, which may
be faster to implement and thus provide a time advantage over competitors
(Easley et al., 2012a). Second, Easley et al. (2021) argue that sampling
by volume acts as a proxy for sampling by information content. A trade’s
dollar-volume is correlated with the amount of news entering the market;
thus, by defining events based on a constant amount of cumulative dollar-
volume, we ensure that each bar represents the same amount of underlying
information. Dollar-volume sampling has been used to address a variety of
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market microstructure questions, e.g., to improve on PIN (Probability of
Informed Trading) (see Section 6).

Empirical Analysis of Durations We demonstrate two approaches for
constructing durations (price threshold and dollar-volume threshold) on real
data. We use HF transaction-by-transaction stock price data for two assets,
Bank of America (BAC) and 3M (MMM). This data was obtained from
the Trade and Quotes (TAQ) database at Wharton Research Data Services
(WRDS) (N.Y.S.E. Trade and Quote Database, 2019). We consider data
from all trading days in June 2018 (N = 21). For each of these days, raw
durations were obtained from the transactions data as D; = t; — t;_1, where
we have assumed the occurrence of an event occurs in two different ways,
as described below. BAC is a highly liquid stock with trading volumes
(100,000 to 200,000 transactions per day on average) and with a relatively
low price spread of about $0.5 per day on average. On the other hand,
MMM is a relatively lesser liquid stock with trading volumes (15,000 to
30,000 transactions per day on average) and with a price spread of about $3
per day on average.

e Price threshold: as in the method described earlier, we compute the
threshold using data from January 2018 to May 2018. For each month,
we calculate the average turnover ratio as the average daily volume,
divided by total shares outstanding. Then we compute the average of
those values to obtain 4, (see Eq. 5.1). We find that ¢, is 0.0054 for
BAC and 0.0040 for MMM. As expected, the lengths of the duration
time series depend on the liquidity of the stock.

e Dollar-volume threshold: using the data from January 2018 to May
2018, we calculate the mean daily dollar-volume. Then, we set the
value of 0, (see Eq. 5.2) to be 7—(1)Oth of the stock’s mean daily dollar-
volume. Note that we do not use a fraction of 5—10th, as originally
suggested in Easley et al. (2012a). This is because we experience con-
vergence issues when we try to fit multiplicative error models to a time
series with less than 500 data points.

Using price and dollar-volume thresholds, we obtain for each stock two
time series of different lengths for each trading day. For example, for BAC
on June 6, 2018, we obtain a time series of length 13,181 using the price
threshold approach and a time series of length 696 using the dollar-volume
threshold approach. We fit different ACD(p, ¢) models to the adjusted du-
rations, select the best model based on the Bayesian Information Criterion
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(BIC), and use the best fitted model to calculate in-sample errors. More
specifically, we have fitted 16 different ACD(p, ¢) models using Weibull in-
novations, where p, ¢ can take values in {0,1,2,3,4}. We fit these models
for each trading day in June 2018 and for both stocks.

Table 1 shows the in-sample errors for BAC and MMM, using differ-
ent threshold methods. The in-sample error is calculated as the relative
mean absolute difference between the actual adjusted durations and the fit-
ted adjusted durations. In the case of MMM, in-sample performance using
the price threshold method is superior, while in the case of BAC, we ob-
serve that the dollar-volume and price threshold methods exhibit comparable
performance.

5.2.  Persistence in Durations Long memory behavior in time series has
been well documented in Beran (1994), Palma (2007), & Robinson (2003).
Although long memory patterns have been explored extensively in return
and volatility series (Baillie, 1996), only a few approaches have focused on
such effects in HF'T data. Long range dependence is a key stylized feature in
time series of durations as noted in Section 3. Ever since the seminal paper
of Engle and Russell (1998), who proposed ACD models for modeling dura-
tions and also provided empirical evidence for the persistence in durations,
a number of studies have documented the slowly decaying autocorrelation
function of transaction, price, and volume durations. More recently, studies
of durations in Sun et al. (2008), Deo et al. (2010), Chen et al. (2013), Cartea
and Jaimungal (2013), and Zikes et al. (2017) have produced compelling ev-
idence of long memory in equities and currencies.

Jasiak (1999) proposed a class of fractionally integrated ACD (FIACD)
models, (which are analogous to fractionally integrated GARCH (FIGARCH)
models proposed by Baillie et al. (1996)), and studied long memory behav-
ior in IBM trade durations. Hautsch et al. (2006) generalized the idea of
long memory in the Log ACD model, referred to as Long memory Log ACD
(LM-Log ACD) model. The LM-Log ACD(p, d, q) model is specified as

v = Ve,
di=w+ (1 - BIL) (1 - L) a(L)e; (53)
where B(L) = Y1 | B;L', a(L) = >F_  a;L' denote polynomials of lag

operator L and ¢; follows an i.i.d. process defined on the positive sup-
port with Ele;] = 1. The parameter d is the long memory parameter with
d € (—0.5,0.5). The stationarity conditions for the LM-Log ACD are de-
rived in Feng and Zhou (2015). The Log ACDy(1,1) model in Eq. 4.21 is
obtained by letting d =0, p=1 and ¢ =1 in Eq. 5.3.
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Table 1: In-sample errors for BAC and MMM, using both dollar-volume and

price threshold durations

Day of Date BAC MMM
week Dollar- Price Dollar- Price
Volume Threshold Volume Threshold
Threshold Threshold

Friday 2018-06-01 0.51% 0.97% 2.10% 0.99%
Monday 2018-06-04 0.98% 0.94% 1.07% 0.34%
Tuesday 2018-06-05 0.98% 0.90% 1.47% 1.08%
Wednesday 2018-06-06 0.06% 1.21% 1.02% 0.51%
Thursday 2018-06-07 1.05% 1.12% 2.84% 0.80%
Friday 2018-06-08 1.55% 0.91% 0.38% 0.91%
Monday 2018-06-11 1.44% 1.03% 1.57% 0.83%
Tuesday 2018-06-12 1.53% 0.88% 0.27% 0.72%
Wednesday 2018-06-13  0.05% 1.25% 1.60% 0.26%
Thursday 2018-06-14 1.24% 1.00% 0.79% 1.07%
Friday 2018-06-15 1.78% 0.91% 2.60% 0.50%
Monday 2018-06-18  2.26% 1.00% 0.86% 0.51%
Tuesday 2018-06-19  0.70% 1.13% 3.13% 0.66%
Wednesday 2018-06-20 1.12% 1.02% 1.16% 0.71%
Thursday 2018-06-21 0.18% 1.14% 1.71% 0.60%
Friday 2018-06-22 0.50% 1.03% 1.73% 0.88%
Monday 2018-06-25 2.41% 0.91% 0.86% 1.22%
Tuesday 2018-06-26  0.24% 1.16% 0.38% 0.97%
Wednesday 2018-06-27 0.91% 0.97% 1.64% 0.43%
Thursday 2018-06-28 1.21% 0.76% 1.39% 0.90%
Friday 2018-06-29 0.31% 1.82% 0.53% 1.05%

We present preliminary results from an investigation of persistence in du-
rations using the same data that we used in Section 5.1, i.e., dollar-volume
threshold and price threshold based durations for BAC and MMM. We fit
the LM-Log ACD (1,d,0) model in Eq. 5.3 to the durations data using our
R code (available upon request) and obtain the conditional MLEs of the
unknown model parameters including the persistence parameter d. Table 2
shows the estimated values of d with their estimated standard errors. These
results show that the estimated persistence for BAC (higher liquidity) is
higher than that of MMM (lower liquidity) for any day, both for the dollar-
volume threshold and price threshold based durations. A day-of-the-week
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Table 2: Estimated values of d from LM-Log ACD(1,d,0) model and their
standard errors in brackets for two types 01? threshold. dpy is the estimate
of d for Dollar-Volume threshold whereas dp is the estimate of d for Price

threshold

Day of Date BAC MMM

Week dDV dp dDV dp

Friday 2018-06-01  0.241 (0.038) 0.226 (0.016) 0.117 (0.052) 0.189 (0.027)
Monday 2018-06-04  0.225 (0.055) 0.210 (0.024) 0.172 (0.037) 0.133 (0.03)
Tuesday 2018-06-05  0.159 (0.053) 0.262 (0.027) 0.108 (0.054) 0.187 (0.029)
Wednesday  2018-06-06  0.262 (0.048) 0.172 (0.021)  0.179 (0.041)  0.224 (0.031)
Thursday 2018-06-07  0.242 (0.038)  0.234 (0.013)  0.102 (0.057) 0.162 (0.041)
Friday 2018-06-08  0.154 (0.056)  0.215 (0.021) 0.128 (0.044) 0.128 (0.038)
Monday 2018-06-11  0.218 (0.062)  0.221 (0.024) 0.172 (0.036) 0.116 (0.053)
Tuesday 2018-06-12  0.145 (0.076)  0.105 (0.037)  0.156 (0.049)  0.085 (0.055)
Wednesday  2018-06-13  0.201 (0.035) 0.154 (0.017) 0.147 (0.054)  0.053 (0.043)
Thursday 2018-06-14  0.244 (0.027)  0.204 (0.017) 0.175 (0.039) 0.123 (0.033)
Friday 2018-06-15  0.236 (0.034) 0.231 (0.019) 0.242 (0.026) 0.119 (0.026)
Monday 2018-06-18  0.268 (0.038)  0.251 (0.020) 0.137 (0.049) 0.182 (0.026)
Tuesday 2018-06-19  0.266 (0.053) 0.195 (0.016) 0.158 (0.039) 0.218 (0.026)
Wednesday  2018-06-20  0.271 (0.049) 0.228 (0.015) 0.164 (0.042) 0.221 (0.019)
Thursday 2018-06-21  0.138 (0.044) 0.160 (0.024) 0.164 (0.047) 0.184 (0.032)
Friday 2018-06-22  0.192 (0.037) 0.173 (0.016) 0.135 (0.054) 0.161 (0.03)
Monday 2018-06-25 0.170 (0.041)  0.220 (0.023) 0.129 (0.04) 0.077 (0.034)
Tuesday 2018-06-26  0.239 (0.041) 0.244 (0.014) 0.201 (0.035) 0.099 (0.036)
Wednesday  2018-06-27  0.179 (0.038)  0.190 (0.018) 0.098 (0.057)  0.082 (0.043)
Thursday 2018-06-28  0.134 (0.074)  0.199 (0.019) 0.14 (0.063) 0.174 (0.023)
Friday 2018-06-29  0.216 (0.027) 0.204 (0.019) 0.241 (0.028) 0.131 (0.031)

analysis similar to Zhang et al. (2019) shows that that on average, the per-
sistence appears to be higher (lower) for BAC at the start (end) of the week,
while the reverse is true for MMM. More detailed analysis following these
preliminary results for durations will be a useful avenue of research.

Other avenues of research can also be pursued along the following di-

rections.

Deo et al. (2010) proposed a long memory version of stochastic

conditional duration (SCD) model (Bauwens and Veredas, 2004) known as
Long-memory Stochastic Duration model (LMSD) by letting the latent fac-
tor to follow a long-memory process. Empirical analyses show that LMSD
is a better fit than the autoregressive conditional duration (ACD) model.
Thavaneswaran et al. (2015) considered modeling long range dependence
in durations using long memory stochastic conditional duration (LMSCD)
model, which is defined along the lines of FIACD model. There is an emerg-
ing body of literature which considers modeling persistence in pure jump
processes (Cao et al., 2017; Hsieh et al., 2019).

5.8.  Multivariate Relationship with Asynchronous Data Asynchronic-
ity is one of the stylized features of HFT data as referred to in Section 3.
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Tick-by-tick transactions of assets are not homogeneously spaced like low-
frequency (e.g., daily) time series. Instead, they usually occur randomly and
asynchronously and are accompanied by microstructure noise. As a conse-
quence, it is not straightforward to apply the existing multivariate time
series models to intraday data and hence the covariance estimation is chal-
lenging. In econometrics literature, the price dynamics of high frequency
assets are known to be characterized by ‘lead-lag’ effects, which means that
some assets (laggers) tend to follow the movements of other assets (leaders).
This is an important phenomenon as noted in the empirical finance liter-
ature (Chan, 1992; De Jong and Nijman, 1997; Dobrev and Schaumburg,
2017) and in the statistics literature (Hoffmann et al., 2013; Hayashi and
Koike, 2017) among many others. The estimation of contemporaneous and
lagged correlations among assets traded at high-frequency is more complex
than with lower frequency (e.g., daily) data, due to asynchronous trading,
which prevents the usage of traditional methods. The asynchronous nature
of trading results in two main types of spurious lead-lag correlations when
standard estimators are used (Buccheri et al., 2021b). First, due to fre-
quent trading activity of some assets, they seem to lead other assets. This
effect is due to different levels of trading activity and is not necessarily re-
lated to cross-asset pricing. Second, even when the assets are traded at
similar levels, there exist spurious nonzero lead-lag correlations that are un-
related to true lead-lag dependencies. A combination of autocorrelation and
contemporaneous correlations might also be a source of spurious lead-lag
correlations.

Estimating Contemporaneous Relationships Among Multiple Stocks
from HFT Data In high-frequency finance, the problem of estimating
and forecasting intraday volatilities and correlations is of prime importance.
For example, a high-frequency trader may be interested in rebalancing the
portfolio on an intraday basis and therefore requires accurate forecasts of
short-term covariance. Likewise, presence of highly correlated stocks as con-
stituents in a portfolio might increase the probability of a large loss and
hence precise estimation of the covariance matrix of the stocks is necessary.
Additionally, the study of intraday dependencies of financial assets offers in-
sight into the market’s reaction to external information and is theoretically
relevant to the study of market microstructure.

Several conditional covariance models have been proposed in economet-
ric literature for regularly spaced time series, and they are widely used
in risk and portfolio management at daily or lower frequencies. Popular
multivariate dynamic time-series models include the class of multivariate
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extensions of the univariate GARCH model of Engle (1982) and Boller-
slev (1986), the Dynamic Conditional Correlation (DCC) model of Engle
(2002a) and multivariate stochastic volatility model (MSV) of Harvey et al.
(1994). A limitation of these models is that they are misspecified in cases
where data are recorded with observational noise and require synchroniza-
tion when data are irregularly spaced. Therefore, it is not straightforward
to apply these models to HFT data, since the HF prices are contaminated
by microstructure noise and assets are traded asynchronously. These ef-
fects may lead to significant data loss and underestimation of correlations
(Buccheri et al., 2021a).

Often analysts have trouble dealing with the multiple HFT data at once
when conducting multivariate analysis since assets do not trade on a fixed
grid, trades and quotes don’t arrive synchronously. Hence synchronization
of HF data from multiple assets is necessary. Data synchronization includes
explicit schemes, such as previous tick, refresh time (Barndorff-Nielsen et al.,
2011), generalization sampling time (Ait-sahalia et al., 2010), implicit ap-
proaches used in Hayashi-Yoshida estimator Hayashi et al. (2005), and pre-
averaging estimators (Christensen et al., 2010; Jacod et al., 2009). Here
we give a brief review of the refresh time sampling procedure. More de-
tailed discussion about the other synchronization procedures can be found
in (Wang and Zou, 2014). We also illustrate refresh time sampling pro-
cedure using three stocks Intel, General Electric (GE) and Cisco (Fig. 3).
Assume there are p stocks, and trading time of the ith stock is given by

tio, 0 = 1,...,n5i=1,...,p. For a given time ¢, define N} = the number
of tie < t, £ =1, ---,n;, which counts the number of distinct data points
t;¢ available for the ith asset up to time ¢. The first refresh time is defined
as 71 = max{ti1,...,tp1}, which is the first time taken to trade all assets
Intel 0: ¢ o—0 : e e Stock
g GE <$o—o0—! 5O ©0oo—o0—— . e
Cisco C: ¢O \% : {x:>o e
> O Q >
.&g .&@ Q"’(’L .c”‘b
© 2 2 ©
§& & §& §&

Time (in seconds)

Figure 3: Refresh Time Sampling for Intel, GE and Cisco.The dotted vertical
blue lines represent the refresh time points
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and refresh their posted prices. The subsequent refresh times are defined as
follows. Given the jth refresh time 7;, define the (j + 1)th refresh time

= p
Tj4+1 = mMax {tl,N}jH» e ,tp7N£j+1} (5.4)

Suppose there are m refresh time points 71, - - - , 7,. Intuitively, 7 is the se-
cond time when all the assets are traded and their prices are refreshed. The
following figure illustrates the refresh time sampling idea and in this example
71 =09 :45:00.08, 7% =09 :45:00.69, 71 =09 :45:02.20 and 74, = 09 :
45 : 04.58 are the first four refresh times. The refresh time sampling proce-
dure reduces the Epps effect (Boudt et al., 2021b). A limitation of refresh time
sampling procedure is that the least liquid stock determines the sampling
grid and one tend to lose many observations and even with same liquidity,
because of random arrivals, large data losses may occur in high dimensions.
Although intraday covariance estimation from HFT data is a difficult task
due to asynchronicity, there have been several studies which has been de-
voted to the estimation of the covariance from HFT data (Ait-sahalia et al.,
2010; Zhang, 2011; Mancino and Sanfelici, 2011; Bibinger, 2011; Corsi and
Audrino, 2012; Peluso et al., 2014; Buccheri et al., 2021a). More recently,
there has been an interest in exploring non-linear dependence structures in
high frequency asset returns through copula (Chakrabarti and Sen, 2019).

Estimating Lead-Lag Relationships Among Multiple Stocks from
HFT Data Understanding lead-lag relationships between the time series
of different stocks’ returns or volatilities can provide insight into the underly-
ing network structure of an interlinked financial market. For regularly spaced
daily or monthly time series, such strategies have received significant inter-
est in the empirical finance and econometrics literature (Billio et al., 2012;
Diebold and Yilmaz, 2014). There is robust empirical evidence that networks
built on lead-lag relationships tend to be denser during market downturns
and systemic events such as a financial crisis, and can be useful in monitor-
ing systemic risk build-up in the financial markets. While building similar
networks based on HF'T data can potentially provide deeper insight into im-
portant linkages in financial markets, the asynchronous nature of HFT data
poses considerable challenge in developing statistical techniques to measure
such lead-lag relationships. To the best of our knowledge, common meth-
ods such as Granger causality (Granger, 1969) have not been generalized
to build financial networks from HFT data. Developing rigorous statistical
methods for measuring lead-lag relationships from asynchronous HFT data
of multiple stocks is a promising research direction.
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6 Econometric Perspectives of HFT

Academics and practitioners have used HFT data in a range of appli-
cations. Some of these applications involve testing competing hypotheses
about market microstructure or assessing the likelihood of informed trading
in a financial market. Other applications are more econometric in nature,
where HF'T data is used to provide intra-day versions of commonly used risk
assessment measures such as Value-at-Risk (VaR) and Expected Shortfall

(ES).

Testing Theory About Market Microstructure Tay et al. (2004) in-
troduces autoregressive conditional marked durations (ACMD) models to
analyze marked duration processes, using events such as tick movements and
trade directions (buy/sell) as marks. This model helps explain how trade
direction, size, and frequency are transmitted into prices through durations.

Let there be N + 1 transactions (events) and let ¢; denote the time of
occurrence of the ith event. Assume that there are m discrete states of
the marks associated with {¢;}, and let the state of the mark when the
ith event occurs be denoted by W; (and its realization w;), i = 1,...N.
These marks are useful in classifying each event occurrence, so that there
are m underlying stochastic processes, each governing one of these m states
of the mark. The flexibility of ACMD models lies in the fact that other
exogenous market variables can be augmented into the model, depending on
the market hypotheses we want to examine. Denote the vector of exogenous
variables, observed after the ith event, occurs by v;, where i = 1,... N. The
information set after the ith event is ®; = {t,, w,,v,;r = 1,2,...,i}. Let
the duration between the (i —1)th and ith events be X; (with realizations z;,
i=1,...,N). The adjusted durations are obtained after the data cleansing
and diurnal effect adjustments described in Section 3.

Let T}j; be the random time duration between the (i —1)th and ith events
when the state j of the mark is observed, and assume that—conditional on
the past information set, ®;_;—the T};’s are independent over j, where
7 =1,...m. The joint distribution of the mark, W;, and duration, X;, can
be expressed as

pi(k,z;|®i—1) = PW; = kN X; = 2;|®;_1) H 1%, (Ti) W
jen Tkilq)i—l(xl)

(6.1)

for all k € Q = {ki1,...,kn}, where fr, |0, ,(z:) and Sr, |, ,(xi) are the
density function and the survival function of Tj;|®;_1, respectively. With



34 C. Dutta et al.

appropriate distributional assumptions on T};|®;—1, one can derive the ex-
plicit form of the joint distribution and marginals of X; and W;, conditional
on the past information set, ®;_1. The log-likelihood function for the ACMD
model is

N

N
fTw. i|®i— (331)
10) = > Inpy(k, i@ 1) = S | SIS g, (@) + In o2

i—1 o1 | e STy, @iy (%4)

where 0 denotes the set of parameters of the underlying distribution. Let
E(T}i|®i—1) = vji be the expected marked duration, which is governed by
m ACD models, as discussed in Section 4.4. Then 1;; is updated according
to the following dynamics:

Iy = > vjpDe(wi1) +a;Ine, 1+ By + f(wi1,vio15p;) (6.2)
ke

for all j € Q. The function f is linear in the natural logarithm of the
exogenous variables in v, contains possible interactions with x;_1, and each
term is weighted by elements in the vector p; The variable Dy(z) is an
indicator variable of the state k for the mark, which assumes value 1 if z = k
and 0 otherwise, k € ). The parameters of this model can be estimated
using the maximum likelihood approach.

Tay et al. (2004) uses ACMD models to study competing hypotheses from
Easley et al. (2002) and Diamond and Verrecchia (1987) about whether low
transaction rates indicate bad news or no news. The empirical results are
in favor of Diamond and Verrecchia (1987). This model has been used for
estimating the probability of informed trading (PIN), as described in the
next subsection, using high-frequency transaction data. Kwok et al. (2009)
demonstrates an application of ACMD models using stocks traded on the
Hong Kong Stock Exchange (SEHK).

Estimating the Probability of Informed Trading (PIN) PIN is de-
fined as the probability that a counterparty in the trading process has private
information on the value of the asset exchanged. It serves as a proxy for the
proportion of informed traders in the market. The parameters needed to
compute PIN are obtained from the estimation of a theoretical model of the
trading process. This is a key concept in market microstructure theory and
is widely used as an indicator of asymmetric risk information related to asset
trading. Easley et al. (1996, 2002) build a structural model for the trading
process which assumes that the market is composed of a heterogeneous pop-
ulation of traders, with informed traders, market makers, and uninformed
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traders. For a given stock on the ith trading day, let B; denote the buy or-
ders and S; denote the sell orders. An information event for a given stock is
assumed to follow a Bernoulli distribution with success probability a. This
event reveals either a signal for a low stock value (with probability ¢) or a
signal for a high stock value (with probability 1 - §). The informed traders
enter the market when an information-revealing event happens and they are
assumed to place buy (sell) orders at a rate of p. Uninformed traders are
assumed to place buy orders at a rate of ¢, and sell orders at a rate of
€5, independent of the information event and the signal. The orders from
the informed and uninformed traders are both assumed to follow Poisson
processes.

For the ith trading day, the joint probability distribution of (B, S;),
given the parameter vector © = («, d, p, €, €5), 18

By s
€, s T ¢
F(Bi5i10) = adexp(—e) L exp(—(es + )Lt
B! S;!
(e + )P €5
+a(t = 0)expl—(eo + i) LT exp(-e) 2
eBt GSt
+(1 —9)exp(— eb)ﬁ exp(—eS)S—t!. (6.3)

Hence, by assuming the trading activity to be independent across 1" days,
the log-likelihood is given by

L(O|T) = Zlog f(Bi, Si|0)).

Using the maximum likelihood approach, along with the boundary conditions
a,d € [0,1] and p, €, €5 € [0,00), we obtain the estimates 6= (d,g,,&, €, €5).
The PIN estimate is then given by
PIN=_— H (6.4)
Qfl + €p + €
Thus PIN is the ratio of the expected number of trades per day initiated by
informed traders to the expected total number of trades per day.
Dollar-volume bars can be used to calculate an extension of PIN known as
the volume-synchronized probability of informed trading (VPIN), introduced
in Easley et al. (2012b). By comparing the amount of buyer- and seller-
initiated trades,? VPIN measures the extent to which there is information

2A number of approaches can be used to classify trades as buyer- or seller-initiated, in-
cluding the Lee-Ready algorithm, the tick rule, and bulk volume classification (see Easley
et al. 2016 and references therein).
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asymmetry in the market. (For example, if a group of traders knows that
a stock’s price is about to rise, we may observe a preponderance of buyer-
initiated trades.) The VPIN at bar i is given by

1 : VS — |
VPIN; = — Lk "k 6.5
% Z Vi (6.5)
k=i—W+1

where V}, is the total volume traded over bar k, VkB is the estimated total
buyer-initiated volume over bar k, Vks =V, - VkB is the estimated total
seller-initiated volume over bar k, and W is the length of a lookback win-
dow. Notice that VPIN can be calculated directly from trade data, whereas
computing PIN requires us to first estimate unobservable parameters of a
theoretical microstructure model: «, p, €, and ¢, in Eq. 6.3.

Estimating Intra-day Value-at-Risk (IVaR) Value at Risk (VaR) is a
popular risk management tool used by financial institutions to quantify the
level of financial risk within a firm, portfolio, or position, over a specific time
frame. It measures the worst expected loss of a risky asset over a certain
period of time and at a given confidence level. Formally, VaR can be defined
as the conditional quantile of the asset return distribution for a given horizon
and a given shortfall probability, o, whose value is typically between 1% and
5%.

Let r; denote the return of the asset over the time period ¢ — 1 to t. The
ex-ante VaR forecast with a target probability of a solves the following:

PM, (ry < =VaRy(a)) = a, (6.6)

where Pt]\ffl is the probability derived from model M using the information
up to time t — 1. The negative sign in the above equation is due to the
convention of reporting VaR as a positive number. Unlike the daily VaR, the
use of high-frequency data in computing intra-day VAR (IVaR) poses many
challenges, including irregular spacing and intra-day periodicity. Details of
the stylized facts of high-frequency data has been highlighted in Section 3
of this paper.

Giot (2005) considers the estimation of IVaR using equally spaced intra-
day returns, employing Normal GARCH, t~-GARCH, and RiskMetrics mod-
els for comparison. Using irregularly spaced tick-by-tick data, Dionne et al.
(2009) proposes a Monte Carlo simulation procedure to estimate IVaR. Coro-
neo and Veredas (2012) proposes quantile regression for regularly spaced
high-frequency data. The approaches in Giot (2005) and Dionne et al. (2009)
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have some important shortcomings. Giot’s method of calculating IVaR is
based on regularly spaced time series of returns and hence does not account
for the effect of durations. On the other hand, Dionne’s method is based on
irregularly spaced time series of returns and takes durations into account, but
the returns and durations are modeled separately. This imposes restrictions
on the behavioral assumption of traders. To overcome these limitations,
Liu and Tse (2015) proposes a simulation-based approach to estimate IVaR,
which assumes price movement and durations follow a two-state asymmetric
autoregressive conditional duration (AACD) model. In this framework, the
price movements and durations are modeled jointly. The AACD model has
been used to model stock price dynamics in Tay et al. (2011).

Let {t;}V, be a sequence of times in which ¢; is the time of occurrence of
the ith event, which occurs whenever the cumulative change in the logarith-
mic transaction price exceeds a threshold §, similar to the price threshold
discussed in Section 5.1. Let y; denote the direction of the price movement
of the ith event, such that y; € {—1,1}, representing downward and up-
ward price movement, respectively. Let x;;, j = —1,1, be the two latent
variables corresponding to the two possible states of y; = —1 or y; = 1, re-
spectively. With two possible states at the ith event, there can only be one
realized state, which is the shortest of the two latent durations. Let z; be
the observed duration, where x; = min(z_1;,21;). Let ¢;; = E(x;;|®i—1),
Jj = —1,1, be the conditional expected duration of the latent variable z; ;,
with ®; 1 being the information set up to time ¢;_1. The basic two state
AACD model specification is

Tji = Vi€,
log(¥:) = Y (vjk+ajrlog(@i1))Di(yi-1) + Bjlog(thi 1),
k=—1,1

(6.7)

where j = —1,1; ¢ = 1,...,N; and Dy(z) = 1 if z = k and 0 otherwise.
Assume that the innovations corresponding to each state (e_1,; and €;; for
i=1,...,N) are independently distributed with a Weibull distribution hav-
ing unit mean. The parameters of the AACD model can be estimated using
maximum likelihood estimation.

Suppose we have the estimated model and we want to compute, at time
Ty, the IVaR at time T, (75 > T3), using the simulation-based algorithm
presented in Liu and Tse (2015). We can do so by following these steps:

Step 0: Initialize xo,%—1,0,%1,0, and yo based on the information
prior to T7. Then begin the simulation.
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Step 1: Set ¢ = 1,9 = 0 and compute 11 1, 91,1 using Eq. 6.7.

Step 2: Randomly draw e_1; and L €1, from mdependent Weibull dis-

tributions with shape parameters qb 1 and (;51, respectively. Compute
xji = Vi€ and ;41 for j = —1,1. Set ; = min{z_1;,21,;} and
y; = J, corresponding to the shorter x;;, where j = —1,1.

Step 3: Collect the time, t; = t;_1+z;, and set log p; = log p;_1+70 for
the observed j value in the previous step. Note that § is the threshold
mentioned earlier in this subsection.

Step 4: Set i = ¢ + 1 and iterate the second and the third steps until
obtaining the first ¢; that exceeds T5 — T37. At this point we obtain a
simulated return over the interval (77, T%).

These simulation steps are repeated to obtain an empirical distribution of
returns over the interval (77,73). IVaR(§) is obtained by computing the
&-quantile of the empirical return distribution over the interval (77, 7%).

Expected Shortfall Using Intra-day Range FExpected Shortfall (ES)
is a popular market risk measure that conveys information about the possi-
ble exceedances beyond the VaR. Formally, ES can be defined for any loss
distribution as

ES(a) = M7 (6.8)

(%

which is the average of VaR(z) over all = that are less than or equal to a.
Both VaR and ES are popular and important market risk measures, but,
despite being widely used, VaR has some significant shortcomings. Firstly,
it does not take into account the magnitude of the potential losses beyond
VaR. Secondly, it lacks the sub-additive property, i.e., the risk measure for
a portfolio can be less than the sum of the risk measures of the components
of the portfolio (Gordy and Juneja, 2010). Estimating these risk measures
forms an integral part of portfolio optimization (Huang et al., 2010).

One of the fundamental problems of ES estimation is that it is not elic-
itable, meaning there do not exist scoring functions for its estimation and
evaluation. Fissler and Ziegel (2016) shows that VaR and ES are jointly
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elicitable and presents a set of consistent joint scoring functions for these
two risk measures:

1
hez(Ye, qi, €430, G1, Ga,a) =(L{y: < ¢} — 0) <G1(Qt) — Gi(ye) + §G2(et)%>

1
—Goaler) <5]1{yt < G}y — €t> — Ga(er) + a(ye), (6.9)

where 1 is the daily return, 6 is the probability level, and ¢; and e; are the
VaR and ES at the same probability level, 8. Moreover, G1,G2,Go, and a
are real-valued functions, G is weakly increasing, G5 is strictly increasing
and positive, and G5 = G2. These are referred to as FZ scores, which allow
the joint estimation of VaR and ES.

Most earlier methods for forecasting ES did not involve any intra-day
information. Recently, though, Gerlach and Chen (2015) and Meng and
Taylor (2020) incorporate such information in the form of intra-day range,
the difference between the highest and lowest intra-day log prices. One
desirable characteristic of the intra-day range is that it is a more efficient
volatility estimator than the daily returns (Parkinson, 1980).

Chen (2012) considers several non-linear threshold conditional autore-
gressive VaR (CAViaR) models that incorporate intra-day price ranges but
do not consider ES forecasting. Meng and Taylor (2020) rectifies that by
proposing a CAViaR-FZ-Range model for ES predictions, as described by
the following equations:

q(B) = b1 + B2qi—1(B) + B3Range; 1,
et(B) = Baar(B), (6.10)

where 3 is a vector of parameters and ¢; and e; represent the VaR and ES
at the same probability level. This model is estimated by minimizing FZ
scores, as in Eq. 6.9.

7 Discussion and Summary

Tick-by-tick, high-frequency data sets have become the new normal in
modern financial markets dominated by algorithmic trading. While these
data sets provide high-resolution information about the trading process, their
analysis poses unique challenges due to stylized features such as irregular
spacing. In this paper, we discussed examples of trading behaviors that give
rise to such irregular spacing and reviewed existing approaches to model
irregularly spaced HFT data. We focused primarily on models for inter-
event durations. In addition to reviewing their mathematical expositions
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and software implementations, we discussed two methods of defining events,
one based only on asset price and the other based on both asset price and
order volume. We illustrated duration models based on these two types of
events using real HF'T data sets. We also surveyed some applications of HF'T
data sets in economics and finance.

In this work, we mainly focused on irregularly spaced univariate HF'T
time series. There is an emerging body of work on analyzing asynchronous
multivariate HFT data that we have not discussed here. For instance, non-
parametric machine learning methods such as biclustering have been ex-
plored in the literature, complementing traditional model-based approaches
(Liu et al. 2018, 2021). Another important research direction is synchro-
nizing HF'T data on multiple assets to perform meaningful investigation of
lead-lag patterns. We expect that the vast body of existing work on univari-
ate HF'T models will provide a natural starting point to build informative
analytic approaches to tackle asynchronous multivariate HF'T data sets.
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