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Abstract

Sparse learning is essential in mining high-dimensional data. Iterative hard thresholding (IHT) methods are effective
for optimizing nonconvex objectives for sparse learning. However, IHT methods are vulnerable to adversary attacks
that infer sensitive data. Although pioneering works attempted to relieve such vulnerability, they confront the issue of
high computational cost for large-scale problems. We propose two differentially private stochastic IHT: one based on
the stochastic gradient descent method (DP-SGD-HT) and the other based on the stochastically controlled stochastic
gradient method (DP-SCSG-HT). The DP-SGD-HT method perturbs stochastic gradients with small Gaussian noise
rather than full gradients, which are computationally expensive. As a result, computational complexity is reduced from
O(n log(n)) to a lower O(b log(n)), where n is the sample size and b is the mini-batch size used to compute stochastic
gradients. The DP-SCSG-HT method further perturbs the stochastic gradients controlled by large-batch snapshot
gradients to reduce stochastic gradient variance. We prove that both algorithms guarantee differential privacy and
have linear convergence rates with estimation bias. A utility analysis examines the relationship between convergence
rate and the level of perturbation, yielding the best-known utility bound for nonconvex sparse optimization. Extensive
experiments show that our algorithms outperform existing methods.

Keywords: Sparse learning, differential privacy, stochastic algorithm

1. Introduction

Sparse learning decreases the data dimension effectively in predictive modeling. It plays an important role in
various data mining fields, including bioinformatics, image analysis, and engineering. Numerous successful sparse
learning applications for high-dimensional problems depend on the cardinality constraint for sparsity which poses
difficulties for the statistical and computational analysis of such an approach. In this study, we investigate the following
cardinality-constrained nonconvex empirical risk minimization (ERM) problem:

min
x∈Rd

f (x) :=
1
n

n∑
z=1

fz(x) subject to ‖x‖0 ≤ k, (1)

where f (x) is a smooth function, fz(x) (z ∈ [n] := {1, 2, . . . , n}) is an individual loss associated with the zth sample, ‖x‖0
denotes the l0-norm of the vector x which computes the number of nonzero entries in x, and the integer k specifies the
required level of sparsity. Problem (1) appears in many statistical learning, machine learning, and signal processing
problems and is widely used in high-dimensional data analyses. Because the cardinality constraint, ‖x‖0 ≤ k, is5

nonconvex, Problem (1) is a nonconvex constrained optimization problem, and finding a global optimal solution x∗ to
Problem (1) is generally NP-hard.

Existing research for Problem (1) primarily falls within the regimes of either iterative hard thresholding (HT)
methods [6, 18] or matching pursuit methods [30, 34]. Even though matching pursuit methods achieve remarkable
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Table 1: Comparison of our approaches against the existing DP-GD-HT that is based on the regular gradient descent method. The DP-SGD-HT
computes stochastic gradients based on mini-batches of size b which is� n in practice, so it has less computational complexity than the DP-GD-HT
(see the last column). A necessary assumption used to prove the convergence of the DP-SGD-HT is that the variance of stochastic gradients is
upper bounded by σ2

0. This assumption is no longer enforced when full gradients are used to correct for the variance of stochastic gradients as in
the DP-SVRG-HT. The SCSG uses gradients computed on large data batches (size B) to correct for the variance of mini-batch-based gradients.
The parameter ψ � 1 is defined in Corollary 5.5.1, so the DP-SCSG-HT also has smaller complexity than the DP-GD-HT.

Algorithm Reference
Full

Gradient
Constraint
on variance σ2

0

Computational
Complexity

DP-GD-HT [42] Yes No O(n log( n2ε2

log(1/δ) ))
DP-SGD-HT This work No Yes O(b log( n2ε2

log(1/δ) ))
DP-SVRG-HT1 This work Yes No O(n log( n2ε2

log(1/δ) ))
DP-SCSG-HT This work No Yes O(min{1, ψ} · n log( n2ε2

log(1/δ) ))

1 A special case of DP-SCSG-HT, with batch size B = n.

success in quadratic loss functions (e.g., the l0-constrained linear regression problems), they are required to find an10

optimal solution to min f (x) on the identified support. The support is defined as the entries of x that are non-zero after
hard thresholding. This minimization problem has no analytical solution for arbitrary (non-quadratic) losses, making
its solution time-consuming [4]. Thus, iterative gradient-based HT methods have become popular for nonconvex
sparse learning.

In many sparse learning applications, the data is highly sensitive, e.g., genomic data, financial and electronic15

medical records. Without safeguards to protect privacy, adversaries may attack the deployed model in an attempt to
infer private information via a membership inference attack or through feature leakage. Therefore, ensuring sensitive
information is adequately protected from malicious parties is of critical importance. To address this, the machine
learning and deep learning communities have developed algorithms with differential privacy (DP) for unconstrained
optimization problems. These extensively studied methods include three common approaches: output perturbation20

[46], objective perturbation [7], and gradient perturbation [5, 2, 40]. Conceptually, in the output perturbation mecha-
nism, the learning algorithm runs the same as in its non-DP case, and then noise is added to the output parameter. The
objective perturbation includes a noise term to the objective function which is the empirical loss, then releases the min-
imizer of the perturbed objective. In contrast, the gradient perturbation is to inject noise at every iterative to gradient
updates. While these methods provide solutions when the problem is unconstrained, privacy-preserving guarantees in25

the sparse learning setting have been under-explored, especially in the context of stochastic optimization.
Several studies attempt to develop differentially private algorithms for sparse learning problems, such as the least

absolute shrinkage and selection operator (Lasso) problem [23, 36] or the cardinality constrained problem [42]. The
Lasso problem uses the l1-norm, i.e., ||x||1 =

∑
|x j| to regularize the model parameters x whereas the cardinality

constrained problem uses the l0-norm which counts the non-zero entries in the parameter vector x. The l1-norm is a30

convex surrogate of the l0-norm. Assuming a convex loss function is used [23, 36], the Lasso problem is a convex
relaxation of Problem (1) and is easily solved by gradient-based methods. However, this can result in large estimation
bias in the solution to Problem (1), and has been shown to have worse empirical performance [27]. Recent research
has focused directly on cardinality constrained problems, producing a differentially private, gradient based algorithm
which utilizes HT (DP-GD-HT) [42]. Although the DP-GD-HT algorithm has a competitive utility analysis, which35

investigates the trade-off between the convergence rate and level of perturbation, it is not a stochastic algorithm. As
DP-GD-HT requires computing the full gradient at each iteration, it is computationally expensive for high-dimensional
problems with large sample sizes.

In this paper, we propose and analyze two differentially private algorithms, DP-SGD-HT and DP-SCSG-HT,
to solve Problem (1). We prove their convergence rates, utility bounds, and computational complexities. Using40

benchmark financial and medical records, we also conduct an experimental validation of our theoretical analysis for
the proposed stochastic privacy-preserving methods. Our contributions are as follows.

• We design the first differentially private stochastic iterative HT method (DP-SGD-HT) that reduces the compu-
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tational cost while guaranteeing the DP. Then, to reduce the variance of stochastic gradients and further improve
learning accuracy, we develop a second DP algorithm called the Stochastically Controlled Stochastic Gradient45

HT method (DP-SCSG-HT). However, the privacy analysis of DP-SCSG-HT is difficult due to the random
number of iterations per epoch. We provide a refined and precise estimation of privacy loss for DP-SCSG-HT
using RDP by controlling the effect of random iteration numbers.

• We prove that the sequence {x0, x1, · · · , xT } generated by either DP-SGD-HT or DP-SCSG-HT satisfies E[‖xT −

x∗‖2] ≤ θT ‖x0 − x∗‖2 + e, where 0 < θ < 1 and e is the statistical bias due to the sparsity requirement and the50

injected Gaussian noise. It means that the two algorithms both enjoy a linear convergence rate with a linear
factor θ under a statistical bias e, and that their results match those of non-stochastic DP-GD-HT, which also
converges at a linear rate. Despite the stochastic manner of the proposed algorithms, we prove their utility is
preserved, matching the best-known utility bound obtained in the DP-GD-HT [42].

• We demonstrate that stochastic methods significantly lower the computational complexity of the DP-GD-HT,55

as shown in Table 1. The complexity of the DP-SGD-HT is linearly dependent on O(b log(n)) as compared to
O(n log(n)) for the DP-GD-HT, where b is the size of the mini-batch used to compute the stochastic gradients
and can be significantly less than n. The computational complexity of the DP-SCSG-HT is O(min{1, ψ} ·
n log(n)), where ψ � 1 in practice.

The sections of this paper are organized as follows. The second section introduces the related work. The third60

section gives preliminaries, including notations, definitions, lemmas and assumptions. Furthermore, Sections 4 and 5
provide a detailed study, privacy analysis, convergence analysis and utility analysis of the proposed methods. Section
6 introduces the experimental results and performance analyses. Finally, in Section 7, we present the conclusion.

2. Related work

2.1. Differential privacy65

To protect user privacy, a learning algorithm/mechanism can be designed to satisfy the (ε, δ)-Differential Privacy
(DP), which is a widely adopted mathematical definition of privacy-preserving and has become a standard in academic
and industrial fields due to its provable protection against adversaries [15, 32, 28, 19, 16, 41]. The formal definition
of DP is as follows:

Definition 1 ((ε, δ)-DP [10]). A randomized mechanismM : D → R satisfies the (ε, δ)-differential privacy ( (ε, δ)-70

DP) if for any two adjacent datasets D,D′ ∈ D, for any output set O ⊆ R, it holds that P[M(D) ∈ O] ≤ eε ·
P [M (D′) ∈ O] + δ, where R is the output space ofM and the adjacent sets mean that D and D′ differ by one entry.

When sharing individuals’ data with other organizations or the public, the (ε, δ)-DP is a measurement of how
much privacy one can withhold for an individual whose data is included in the dataset. Mathematically, the (ε, δ)-
DP implies that the mechanismM is ε-indistinguishable between two adjacent sets with probability 1 − δ. For any75

output set O, P[M(D)∈O]
P[M(D′)∈O] ∈ [e−ε , eε] with high probability 1 − δ and particularly, when ε is close to 0, eε ≈ 1 + ε, so

P[M(D)∈O]
P[M(D′)∈O] ∈ [1 − ε, 1 + ε].

Definition 1 of DP contributes to data privacy protection. For example, in the membership inference attack against
a machine learning model published on cloud platforms such as Amazon [8] and IBM [48], an attacker may be able to
infer, based on the model prediction of an example z, whether z belongs to the training data on which the model was80

trained. In this example, consider that a cancer treatment center has trained and provided z with a machine learning
model, and that z is a patient of the center. If a non-DP approach, such as stochastic gradient descent, is used to
train the model, his or her PHI (i.e. cancer diagnosis) may be disclosed. However, if the model is trained using a DP
technique, regardless of whether or not z belongs to the training data D (assuming the D′ differs from D by just z), the
model will have limited variation (by eε as defined in Definition 1) for the attacker to detect the membership [38].85

The parameter ε is commonly referred to as privacy budget and δ is considered as the exceptional probability. In
other words, with the probability δ, the model may vary beyond eε when training on adjacent training datasets. DP,
on the other hand, is equivalent to setting a constraint on the model so that it learns more from the training data as a
whole than from a single training example. Consequently, DP frequently results in a decline in prediction accuracy.
A smaller (restricted) privacy budget ε corresponds to lower prediction accuracy.90
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2.2. Optimization methods

For the unconstrained ERM problem of

min
x∈Rd

f (x) :=
1
n

n∑
z=1

fz(x), (2)

the stochastic gradient descent (SGD) method and its variants – variance reduced methods, such as the stochastic
variance reduced gradient (SVRG) [20] and stochastically controlled stochastic gradient (SCSG) [24] methods – have
been extensively studied. However, these methods are proposed for unconstrained optimization and are not directly
applicable to cardinality-constrained Problem (1). Due to the non-convexity of the cardinality constraint, Problem (1)95

is difficult to solve even without the privacy-preserving concern.
Iterative gradient-based HT methods, such as gradient descent HT (GD-HT) [18], stochastic gradient descent HT

(SGD-HT) [33], hybrid stochastic gradient HT (HSG-HT) [47], stochastic variance reduced gradient HT (SVRG-HT)
[27], and stochastically controlled stochastic gradient HT (SCSG-HT) [29] have emerged as the dominant force in
nonconvex sparse learning. These techniques use gradient descent or one of its variants to update the iterate xt before100

using the HT operator to enforce the xt’s sparsity. The computation can be concisely written as xt+1 = Hk(xt − ηvt),
where η is the learning rate, vt can be the full gradient, stochastic gradient or variance reduced gradient at the tth

iteration, and Hk(·) : Rd → Rd denotes the HT operator that preserves the largest k elements of x in magnitude and
sets other elements to 0. In a distributed computing setting, these iterative HT algorithms share gradients computed
on a local device to other devices or a central server, and the shared gradients may leak private data when training a105

machine learning model.

3. Preliminaries

Notations. We denote a vector by a lowercase letter, e.g. x, and the l0-norm and l2-norm of vector x by ‖x‖0 and
‖x‖ =

∑
x2

j respectively. For any vectors a, b ∈ Rd, we use 〈a, b〉 to denote the inner product of a and b. An identity
matrix is denoted by I. Let O(·), Ω(·) and Θ(·) represent the asymptotic upper, lower, and tight bounds, respectively,110

and E[·] represent taking expectation over all random variables. We denote the integer set {1, ..., n} by [n], and ∇ f (·),
∇ fI(·) and ∇ fz(·) are the full gradient, stochastic gradient over a mini-batch I ⊂ [n], and stochastic gradient over a
training example indexed by z ∈ [n], respectively. The symbol I(·) is an indicator function, and supp(x) means the
support of x or the index set of non-zero elements in x. Let x∗ be the optimal solution of Problem (1). The support
I

( j)
t+1 = supp(x∗) ∪ supp(x( j)

t ) ∪ supp(x( j)
t+1), is associated with the (t + 1)-th iteration at the j-th epoch (and I is used115

throughout the paper without ambiguity); Ĩ = supp (H2k (∇ f (x∗))) ∪ supp (x∗). The projector πI(x) gives a vector
of the same length as x but zeros out the elements of x not indexed in I. All parameters used in our analysis are listed
in Table 2 with parameter constraints for easy access.

3.1. Rényi differential privacy

To measure the distance between the model output distributions from two adjacent datasets, we introduce Rényi120

Divergence as a measure for distributions, which generalizes the Kullback-Leibler (KL) divergence with a parameter
α.

Definition 2 (Rényi Divergence [35]). Let P and Q be probability distributions on Ω. For α ∈ (1,∞), the Rényi
Divergence of order α between P and Q is defined as Dα(P‖Q) = 1

α−1 log
(∫

Ω
P(x)αQ(x)1−αdx

)
.

Even though (ε, δ)-DP has been a commonly used concept in privacy preserving research communities, it can be125

challenging to apply it to the study of iterative algorithms due to the randomized mechanism’s recursive repeating in
the iterations, which necessitates rule of composition. The (α, ρ)-Rényi differential privacy (RDP) is a generalization
of the (ε, δ)-DP that makes it simpler to read and combine rules over iterations. Our theoretical analyses are therefore
based on the (α, ρ)-RDP.
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Table 2: Definitions and constraints of the parameters used in our algorithms and analysis.

Notation Definition Constraint

z data sample z ∈ [n]

k number of nonzero entries

Hk(·) hard-thresholding operator

ε privacy budget

δ exceptional probability for
(ε, 0)-DP

(α, ρ) Rényi differential privacy (α, ρ)-RDP equals to (ρ +
log(1/δ)
α−1 , δ)-DP

S , S ′ adjacent datasets S , S ′ differs by one example

∆2(q) l2-sensitivity for query q ∆2(q) = supS ,S ′ ‖q(S ) − q(S ′)‖2

I identity matrix

ρs restricted strongly convex

Ls restricted strongly smooth

t iteration index for Alg.1 or in-
ner loop index for Alg.2

j outer loop index for Alg.2

T total number of iterations for
Alg.1

T = O(log( n2ε2

log(1/δ) ))

J total number of outer loop for
Alg.2

J = O(log( n2ε2

log(1/δ) ))

B/b number of inner loop’s itera-
tion in Alg. 2

B/b = Θ(
√

k)

e( j) bias of v( j)
t e( j) = ∇ fI( j) (x̃( j)) − ∇ f (x̃( j))

κs restricted condition number κs =
Ls
ρs

I or I( j)
t+1 Support I = supp(x∗) ∪ supp(x( j)

t ) ∪ supp(x( j)
t+1)

Ĩ Support Ĩ = supp(x∗) ∪ supp(H2k( f (x∗)))

πI(·) projection on support I

β parameter in truncation lemma β = 2
√

k∗
√

k−k∗
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Definition 3 ((α, ρ)-RDP [31]). We call a randomized mechanism M : S → R satisfies (α, ρ)-Rényi differential130

privacy, or shorten as (α, ρ)-RDP, if for any two adjacent datasets S , S ′ ∈ S , (i.e., differing by one example), the
inequality Dα (M(S )‖M (S ′)) ≤ ρ holds for α ∈ (1,∞) and ρ ∈ (0,∞), where Dα (M(S )‖M (S ′)) is the α-Rényi
divergence between two distributionsM(S ) andM(S ′), S is the space containing all possible sample sets that have
n samples from an underlying distribution.

Intuitively, to achieve DP, the algorithm needs to alleviate the influence of any single data point on the final model135

in such a way that the model derived from a training dataset that only lacks a single data example makes very similar
predictions to the model trained with that data example included. Formally, the magnitude with which a single data
point can alter the final model should be measured in the worst-case scenario. As a result, an algorithm’s sensitivity
is introduced to provide an upper bound on how much perturbation can be tolerated while still maintaining privacy.

Definition 4 (l2-sensitivity [11]). For any two adjacent datasets S , S ′ ∈ S, the l2-sensitivity ∆2(q) of a query q : S →140

R is defined as ∆2(q) = supS ,S ′ ‖q(S ) − q(S ′)‖2 where sup means taking the superior of the l2-norm over all possible
pairs of adjacent datasets.

Remark 3.1. In recent studies, the (α, ρ)-RDP has been used as an alternative of the (ε, δ)-DP. The (α, ρ)-RDP
corresponds to the (ρ +

log(1/δ)
α−1 , δ)-DP for any δ ∈ (0, 1), which allows us to convert from (α, ρ)-RDP to (ε, δ)-DP.

In machine learning, the widely used SGD algorithm subsamples mini-batches from the training dataset S . In145

a distributed computing environment, communicating stochastic gradients based on mini-batches rather than full
gradients helps to protect data privacy. However, it imposes challenges to the traditional DP analysis based on the
l2-sensitivity, which is defined over the whole dataset S . Recently, the privacy amplification theorem for DP [21]
shows that ifM is (ε,δ)-DP, thenM with the subsampling mechanism is (O(τε), τδ)-DP where τ is the subsampling
rate. We prefer the (α, ρ)-RDP because, as demonstrated in Lemma 3.2 [45, 44], RDP has an analytical and tighter150

bound for subsampling mechanism. Using the definition of the l2-sensitivity, the following lemmas have been proved
for the Gaussian mechanism and the composition rule of RDP.

Lemma 3.2 (Gaussian mechanism [44]). Given a function q : S → R, and u ∼ N(0, σ2I), the Gaussian mechanism
M = q(S ) + u satisfies (α, α∆2

2(q)
2σ2 )-RDP. If we applyM to subsamples that are uniformly sampled without replacement

from S ,M satisfies (α, 5τ2α∆2
2(q)

σ2 )-RDP, if α ≤ log( 1
τ(1+σ2/∆2

2(q)) ), where σ2 ≥ 1.5∆2
2(q) and τ is the subsampling rate.155

The privacy amplification theorem for RDP in [44] proves that the Gaussian perturbation parameter σ2 needs
to satisfy σ2 ≥ 1.5∆2

2(q) in order to derive an analytical formulation for ρ (in Lemma 3.2). It means that α ≤
log( 1

τ(1+σ2/∆2
2(q)) ) ≤ − log(2.5τ). From Definition 3, α > 1 is required in the (α, ρ)-RDP, hence the sampling rate τ

satisfies that τ < e−1/2.5 ≈ 0.147.

Lemma 3.3 (RDP composition [31]). For two randomized mechanismsM1 : S × R → R andM2 : S × R → R, if160

M1 satisfies (α, ρ1)-RDP andM2 satisfies (α, ρ2)-RDP, then the process ofM2(S ,M1(S ))) (as a joint random process
withM1(S , ·)) satisfies (α, ρ1 + ρ2)-RDP.

In this paper, a mechanism corresponds to a single SGD iteration with injected Gaussian noise. If our algorithm
runs T iterations in total, we can recursively use Lemma 3.3 , so if the t-th mechanism satisfies (α, ρt)-RDP, then the
composition of T mechanisms brings the entire algorithm to be (α,

∑T
t=1 ρt)-RDP.165

Lemma 3.4 (Invariant of post-processing [31]). For mechanismM and post-processing mapping g : R → R , ifM
satisfies (α, ρ)-RDP, then g(M(·)) is still (α, ρ)-RDP.

3.2. Assumptions
Throughout the theoretical analyses, we assume that the objective function f (x) in Problem (1) satisfies the fol-

lowing commonly used assumptions in the study of nonconvex optimization.170

Assumption 1. Assume that the function fz(x) is l-Lipschitz continuous for any z ∈ {1, · · · , n}. In other words, there
exists a constant l ≥ 0 such that | fz(x1) − fz(x2)| ≤ l‖x1 − x2‖,∀x1, x2 ∈ Rd, z ∈ [n].
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Remark 3.5. For a differentiable function, the l-Lipschitz continuity implies that the gradient of the function is upper
bounded, i.e., ∀x, ‖∇ fz(x)‖ ≤ l. Assumption 1 is commonly used for deriving the l2-sensitivity, such as in [40, 42].
In practice, instead of assuming the Lipschitz continuity of fz, the gradient clipping technique in [2] can be used to175

ensure ‖∇ fz(x)‖ is upper bounded by a pre-difined value l.

Assumption 2. Assume that the function f (x) hasσ2
0-bounded stochastic gradient variance, i.e., E[‖∇ fz(x)−∇ f (x)‖2] ≤

σ2
0,∀x ∈ Rd, z ∈ [n].

For fair comparison with prior works on the HT methods [18, 33, 47, 27], we also use the same assumption as
follows.180

Assumption 3. Assume that the function f (x) is:

(i) restricted ρs-strongly convex at the sparsity level s for a given s ∈ N+, i.e., there exists a constant ρs > 0 such
that ∀x1, x2 ∈ Rd that ‖x1 − x2‖0 ≤ s, we have f (x1) − f (x2) − 〈∇ f (x2), x1 − x2〉 ≥

ρs
2 ‖x1 − x2‖

2;

(ii) restricted Ls smooth at the sparsity level s for a given s ∈ N+, i.e., there exists a constant Ls > 0 such that
∀x1, x2 ∈ Rd with ‖x1 − x2‖0 ≤ s, we have f (x1) − f (x2) − 〈∇ f (x2), x1 − x2〉 ≤

Ls
2 ‖x1 − x2‖

2.185

4. The DP-SGD-HT

In this section, we propose a stochastic version of the DP HT algorithm to reduce the computation of full gradients.
We name the SGD-based HT algorithm DP-SGD-HT, as shown in Algorithm 1, because it can solve the sparsity
constrained optimization problem Eq.(1) in a stochastic privacy-preserving manner.

Algorithm 1 DP-SGD-HT

1: Input: The maximal number of iterations T , initial state x0, stepsize η, the mini-batch size {bt} at the t-th iteration,
privacy parameters ε, δ and α

2: for t = 1, 2, ..T do
3: Sample uniformly a batch of examples, It ⊂ {1, ..., n}, where |It | = bt

4: gt = ∇ fIt (xt)
5: ut ∼ N(0, σ2I) where σ2 = 40αl2T

n2ε
6: xt+1 = Hk(xt − η(gt + ut))
7: end for

At the core of Algorithm 1 is a stochastic gradient perturbation procedure at each iteration. Specifically, we perturb190

the stochastic gradient in an iteration with Gaussian noise N(0, σ2I), instead of perturbing computationally-expensive
full gradients used in DP-GD-HT algorithms [42, 43, 39]. We then make use of the composition rule and privacy-
amplification by subsampling of DP to prove an upper bound on the total privacy loss. Note that the DP-SGD-HT
is a special case of the original SGD-HT if the noise variance σ2 = 0, though we provide a suggested value of σ2

in Algorithm 1. In the following, we provide the privacy analysis, convergence guarantee, and utility bound of the195

proposed DP-SGD-HT algorithm.

4.1. Differential Privacy Guarantee of the DP-SGD-HT

We show that Algorithm 1 satisfies the DP. Specifically, we prove that it satisfies the (α, ρ)-RDP, and then we
convert it to the format of (ε, δ)-DP as discussed in Remark 3.1, so that it may be compared with previously published
results..200

Theorem 4.1. Algorithm 1 satisfies the (ε, δ)-DP, when bt = b, and σ2 = 40αl2T
n2ε

, where α = 1 +
2 log(1/δ)

ε
, and if

α ≤ log( n3ε
n2bε+10αTb3 ) and 10b2αT

n2ε
≥ 1.5.
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Proof. At the (t+1)-th iteration of Algorithm 1, we have the update rule: xt+1 = Hk(xt−η(gt +ut)),where gt = ∇ fIt (xt)
and ut ∼ N(0, σ2I).

We consider the following query function on a set S of n training examples, qt(S ) = 1
bt

∑n
i=1 ∇ fi(xt). For any two

adjacent datasets S and S ′, let us index the different examples in S and S ′ by z and z′. By Definition 4 and Remark
3.5, the l2-sensitivity ∆2(qt) of qt is:

∆2(qt) = sup
S ,S ′
‖qt(S ) − qt(S ′)‖ = sup

z,z′
‖

1
bt
∇ fz(xt) −

1
bt
∇ fz′ (xt)‖ ≤

2l
bt
.

By Lemma 3.2, the Gaussian mechanism M = qt(S ) + ut is (α, 2αl2

b2
t σ

2 )-RDP for the query function qt(S ). We

now consider q̃t(S ) calculated on a subsample It that is uniformly drawn from S , q̃t(S ) = 1
bt

∑
z∈It
∇ fz(xt). Because

the sampling rate τ = bt
n , substituting the formula of τ and ∆2(qt) into Lemma 3.2 yields that M̃ = q̃t(S ) + ut is

(α, 20αl2
n2σ2 )-RDP, if α ≤ log

 n

bt(1+
σ2b2

t
4l2

)

 and σ2 ≥ 6l2

b2
t

. Due to the invariant property of post-processing of RDP [31], we

know that the mechanism M̃′ = Hk(xt − ηM̃) is (α, 20αl2
n2σ2 )-RDP. By Lemma 3.3, after running T iterations, we obtain

that Algorithm 1 satisfies the (α, 20αl2T
n2σ2 )-RDP, and correspondingly ( 20αl2T

n2σ2 +
log(1/δ)
α−1 , δ)-DP for δ ∈ (0, 1) according to

Remark 3.1. Let
20αl2T
n2σ2 +

log(1/δ)
α − 1

= ε,

and α = 1 +
2 log(1/δ)

ε
, which implies that σ2 = 40αl2T

n2ε
. This σ2 formula gives us the suggested value for the injected205

Gaussian noise.
Therefore, Algorithm 1 satisfies the (ε, δ)−DP if we use bt = b, α = 1 +

2 log(1/δ)
ε

, and σ2 = 40αl2T
n2ε

in Algorithm 1,
and if α ≤ log( n3ε

n2bε+10αTb3 ) and 10b2αT
n2ε

≥ 1.5.

Theorem 4.1 guarantees that the DP-SGD-HT algorithm is (ε, δ)−DP, and derives an analytical formula for σ2,
the added Gaussian noise parameter. A constraint on α is introduced as a result of the subsampling technique used210

in Algorithm 1. This constraint is similar to the constraint introduced in [2] for deep learning applications with the
moments accountant technique, while our α has a closed-form solution. If we directly work on (ε, δ)-DP and apply
the strong composition theorem in [12], we can remove this constraint, but an extra log(T/δ) factor will be introduced
to σ2 and hence will worsen the utility bound derived in a later section.

4.2. Convergence Guarantee of the DP-SGD-HT215

In order to make the SGD-HT satisfy the (ε, δ)-DP, Algorithm 1 has included a randomized Gaussian process,
which may influence the convergence of the original SGD-HT technique and the convergence rate. We examine the
convergence of the DP-SGD-HT by developing an upper bound on the distance between the estimator xt and the
optimal x∗, i.e. E[‖xt − x∗‖2] in Theorem 4.2.

Theorem 4.2. Suppose that f (x) satisfies Assumptions 1 - 3, k∗ = ‖x∗‖0, k ≥ 4k∗(12κs − 1)2 + k∗ where κs =
Ls
ρs

is the
condition number of f (x). Define Ĩ = supp(x∗) ∪ supp(H2k(∇ f (x∗))), and let η = 1

6Ls
. If the variance of stochastic

gradients σ2
0 ≤ kbtσ

2, then we can get

E[‖xt − x∗‖2] ≤ θt
1 ‖x0 − x∗‖2 +

1
1 − θ1

1 + β

12L2
s

∥∥∥πĨ(∇ f (x∗))
∥∥∥2

+
1

1 − θ1

k(1 + β)
6L2

s
σ2, (3)

where β = 2
√

k∗
√

k−k∗
, θ1 = (1 + 2

√
k∗

√
k−k∗

)(1 − 1
12κs

) < 1.220

8



Proof. Assume that yt = xt − η(πI(gt + ut)), then

E[ ‖yt − x∗‖2] = E[‖xt − η(πI(gt + ut)) − x∗‖2]

1O
= E[‖xt − x∗‖2] + η2E[‖πI(gt)‖2] + η2E[‖πI(ut)‖2] − 2ηE[〈xt − x∗, πI(gt)〉]

2O
≤ E[‖xt − x∗‖2] + η2E[‖πI(gt)‖2] + η2E[‖πI(ut)‖2] − 2ηE[ f (xt) − f (x∗)]

3O
≤ E[‖xt − x∗‖2] + 2η(3ηLs − 1)E[ f (xt) − f (x∗)] + 6η2LsE[〈πI(∇ f (x∗)), xt − x∗〉]

+
3η2

bt
σ2

0 + 3η2E[‖πI(∇ f (x∗))‖2] + η2E[‖πI(ut)‖2],

where 1O holds because ut is independent of all other random variables, such as xt, and E[ut] = 0; 2O holds because
E[〈xt − x∗, πI(gt)〉] ≥ E[ f (xt) − f (x∗)], which is derived from restricted strong convexity, 3O holds by Lemma 4 in
[47] that

E[‖πI(gt)‖2] ≤ 6LsE[ f (xt) − f (x∗)] + 6LsE[〈πI(∇ f (x∗)), xt − x∗〉] +
3
bt
σ2

0 + 3 ‖πI(∇ f (x∗))‖2 ,

and σ2
0 is defined as in Assumption 2.

By the restricted ρs-strong convexity and setting η ≤ 1
3Ls

yields

E[‖yt − x∗‖2] ≤ (1 + ρsη(3ηLs − 1))E[‖xt − x∗‖2] + 2η(6ηLs − 1)E[〈∇I f (x∗), xt − x∗〉] +
3η2

bt
σ2

0

+ 3η2E[‖πI(∇ f (x∗))‖2] + η2E[‖πI(ut)‖2].

Here the operator πI(x), as defined in Section 3, zeros out the elements of x not indexed in I. Because the size of
support I is 3k and ut ∼ N(0, σ2I), we have E[||πI(ut)||2] ≤ 3kσ2. Then if η = 1

6Ls
, we get

E[‖yt − x∗‖2] ≤ (1 −
1

12κs
)E[‖xt − x∗‖2] +

1
12L2

s
E[‖πI(∇ f (x∗))‖2] +

1
bt

1
12L2

s
σ2

0 +
k

12L2
s
σ2.

The following result [26] shows that the HT operator is nearly non-expensive when k is much larger than optimal
sparsity k∗.

‖Hk(x) − x∗‖22 ≤ (1 + β)‖x − x∗‖22, (4)

for k > k∗ and for any parameter x ∈ Rd, where β = 2
√

k∗
√

k−k∗
and k∗ = ‖x∗‖0.

225

Then we can obtain

E[‖xt+1 − x∗‖2] ≤ (1 +
2
√

k∗
√

k − k∗
)E[‖yt − x∗‖2]

= θ1E ‖xt − x∗‖2 +
1 + β

12L2
s

E[‖πI(∇ f (x∗))‖2] +
1 + β

12L2
sbt

σ2
0 +

k(1 + β)
12L2

s
σ2,

where θ1 = (1 + 2
√

k∗
√

k−k∗
)(1 − 1

12κs
) and β = 2

√
k∗

√
k−k∗

. If we further require θ1 = (1 + 2
√

k∗
√

k−k∗
)(1 − 1

12κs
) < 1, and 1

bt

1+β

12L2
s
σ2

0 ≤

k(1+β)
12L2

s
σ2, i.e. k ≥ 4k∗(12κs − 1)2 + k∗, and σ2

0 ≤ kbtσ
2, we get

E[‖xT − x∗‖2]≤ θT
1 ‖x0 − x∗‖2 +

1 − θT−1
1

1 − θ1

1 + β

12L2
s

∥∥∥πĨ(∇ f (x∗))
∥∥∥2

+
1 − θT−1

1

1 − θ1

k(1 + β)
6L2

s
σ2.

≤ θT
1 ‖x0 − x∗‖2 +

1
1 − θ1

1 + β

12L2
s

∥∥∥πĨ(∇ f (x∗))
∥∥∥2

+
1

1 − θ1

k(1 + β)
6L2

s
σ2.

9



Theorem 4.2 shows that the DP-SGD-HT converges to x∗ with an estimation error bias in a linear convergence rate
and the convergence factor is specified by θ1. This result is consistent with the non-DP SGD-HT [33] and HSGD-HT230

[47], which both achieve a linear convergence rate. Precisely, the estimation error is upper bounded by the sum of
three terms in Eq.(3). The first term approaches 0 when the number of iterations t goes to infinity. The second term is
a statistical bias term due to the sparsity constraint on the solution x∗. If x∗ is sufficiently close to the unconstrained
minimizer of f when k is chosen to be large, then ||∇ f (x∗)|| becomes close to 0. The final term is a bias term generated
by the Gaussian mechanism’s perturbation noise, which ensures differential privacy. When this noise specified by σ2

235

approaches 0, the third term vanishes. The second and third terms together form an estimation error floor that does not
vanish with increasing iterations. Compared with the original SGD-HT algorithm [33], the upper bound Eq.(3) incurs
an additional term determined by σ2. However, our analysis no longer requires that the condition number κs ≤

4
3 in

[33], which is difficult to satisfy.

4.3. The Utility Bound of the DP-SGD-HT240

Designing algorithms that satisfy the DP requires a tradeoff between the utility of the algorithm and the level of
data privacy preservation. As a result, it is critical to investigate how privacy preservation and algorithm convergence
are related, or how the inclusion of a randomized process to the update rule of the algorithm affects the performance
of the optimization algorithm. To evaluate the utility of our DP-SGD-HT algorithm, we are interested in knowing how
closely the iterate of the algorithm xT approaches an optimal solution x∗, i.e., the quantity E[‖xT − x∗‖2]. The smaller245

this quantity is, the better. In our utility analysis - Theorem 4.3, we show that the utility of Algorithm 1 is reserved
because the convergence rate is bounded by the sum of two terms, the first of which is related to the bias due to the
original algorithm’s sparsity requirement, and the second to the DP parameters.

Theorem 4.3. Under the same setting of Theorem 4.2, if we let T = O(log( n2ε2

log(1/δ) )), the output of Algorithm 1, xT ,
satisfies

E[‖xT − x∗‖2] ≤
1

1 − θ1

(1 + β)
12L2

s

∥∥∥πĨ(∇ f (x∗))
∥∥∥2

+ O(
log(1/δ)

n2ε2 log(
n2ε2

log(1/δ)
)). (5)

Here the expectation is taken over all the randomness of the algorithm, including both the subsampling for com-
puting stochastic gradients and the random noise added for ensuring differential privacy.250

Proof. From Theorem 4.2, we have

E[‖xT − x∗‖2] ≤ θT
1 ‖x0 − x∗‖2︸          ︷︷          ︸

1O

+
1

1 − θ1

1 + β

12L2
s

∥∥∥πĨ(∇ f (x∗))
∥∥∥2

︸                              ︷︷                              ︸
2O

+
1

1 − θ1

k(1 + β)
6L2

s
σ2︸                 ︷︷                 ︸

3O

. (6)

The third term 3O is determined by the noise level σ2, which is fixed for a given noise level σ2. The first term 1O
is related to the number of iterations T and can decay to zero for large T . However, when the first term 1O is less than
the third term 3O, having more iterations may not improve the bound further. (Note that the second term is due to the
sparsity of the solution which is not an amenable algorithm parameter.) Therefore, let term 1O ≤ term 3O and we can255

obtain the optimal choice of T .
Setting θT

1 ‖x0 − x∗‖2 ≤ 1
1−θ1

k(1+β)
6L2

s
σ2 = 1

1−θ1

k(1+β)
6L2

s

40αl2
n2ε

yields

T = logθ1

(
1

‖x0 − x∗‖2
1

1 − θ1

k(1 + β)
6L2

s

40αl2

n2ε

)
= log

(
‖x0 − x∗‖2(1 − θ1)

6L2
s

k(1 + β)
n2ε

40αl2

)
/ log(1/θ1)

= log

‖x0 − x∗‖2(1 − θ1)
6L2

s

k(1 + β)
n2ε

40(1 +
2 log(1/δ)

ε
)l2

 / log(1/θ1)

= O(log(
n2ε2

log(1/δ)
)).
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where the second equation is by the change of base formula of logarithms: loga(b) = log(1/b)/ log(1/a) for 0 < a < 1
and 0 < θ1 < 1, the third equation is due to α = 1 +

2 log(1/δ)
ε

. Once we remove all constants, we get the final result.
Hence, when T = O(log( n2ε2

log(1/δ) )) we get the upper bound of E[‖xT − x∗‖2] in Eq. 5.

Remark 4.4. Theorem 4.3 implies that the DP-SGD-HT approximates a sparse optimal solution with an upper bound260

of O(
∥∥∥πĨ(∇ f (x∗))

∥∥∥2
+

log(1/δ)
n2ε2 ). The term O(‖πĨ(∇ f (x∗))‖2) specifies the sparsity-induced statistical error, which ap-

proaches 0 if x∗ is sufficiently close to an unconstrained minimizer of f (x), so it represents the sparsity-induced bias
to the solution of the unconstrained optimization problem. The second term O( log(1/δ)

n2ε2 ) is induced by the Gaussian
mechanism and will be large with small ε and δ, which is corresponding to the high privacy guarantee situation, and
hence plays the dominating role in high privacy regime.265

Based on the convergence analysis, we can further analyze the computational complexity of the DP-SGD-HT,
which specifies an upper bound on the total number of computations of pair ( fz(x), ∇ fz(x)) that Algorithm 1 needs to
calculate during the training process in Corollary 4.4.1.

Corollary 4.4.1 (Computational Complexity). Under the same conditions of Theorem 4.3, its computational com-
plexity is T × b = O(b log( n2ε2

log(1/δ) )).270

Note that early analysis of the DP-GD-HT shows that the computational complexity of the non-stochastic version
is in the order of O(n log(n)) [42]. Our stochastic version with a computational complexity of O(b log(n)) is better
because the size of mini-batch b is generally much smaller than the training sample size n.

5. The DP-SCSG-HT

Although the proposed DP-SGD-HT method significantly reduces the computational cost compared to full gradi-275

ent methods, the randomness in sampling the mini-batches introduces additional variance into gradient estimation. We
now perturb the stochastically controlled stochastic gradients in DP-SCSG-HT using variance reduction techniques,
which improves and accelerates convergence and utility over DP-SGD-HT. In particular, the variance of stochastic
gradients can be well controlled by full or large-batch gradients calculated at each snapshot in a variance reduction
technique. Because full gradients may waste computation, as discussed in [17], we calculate a batch gradient to280

correct the mini-batch stochastic gradients once in several iterations. The number of iterations in the inner loop is
determined by a geometric distribution because we use the stochastically controlled stochastic gradient method.

Definition 5 (Geometric Distribution). A random variable N follows a geometric distribution Geom(γ), denoted as
N ∼ Geom(γ), if N is a non-negative integer and the probability distribution is P(N = k) = (1 − γ)γk, ∀k = 0, 1, · · ·
Then, we have the expectation of N, E[N] =

γ
1−γ .285

The DP-SCSG-HT has two loops, as shown in Algorithm 2: the outer loop (Lines 2 - 16) and the inner loop
(Lines 9 - 14). To approximate the full gradient, a batch gradient is computed at each outer iteration (Line 5), so the
batch size B is set to be large. Stochastic gradients are calculated on mini-batches with a much smaller size b in an
inner loop. In contrast to the DP-SGD-HT algorithm, the number of iterations in the inner loop N( j) requires to be
determined, which we suggest two options: in option I, N( j) is randomly drawn from a geometric distribution, similar290

to the methods in [24, 14]; in option II, a deterministic constant B
b is used and B

b is the expectation of the geometric
distribution Geom (B/(B + b)). In practice, both options are applicable, and as observed in [24, 14], option II can be
more stable, because setting N( j) to a constant eliminates the variance of N( j) introduced in option I. However, with
option I, the property of geometric distribution makes the theoretical analysis of Algorithm 2 more concise. Thus,
we perform the theoretical analyses of the DP-SCSG-HT method based on both of the options, which provide a more295

general setting for both theoretical analyses and practical applications.

5.1. Differential Privacy Guarantee of the DP-SCSG-HT

DP analysis can be difficult for DP-SCSG-HT, because the number of inner iterations N is a random variable that
must be bound using the geometric distribution property. We first show that the proposed DP-SCSG-HT algorithm
satisfies the (α, ρ)-RDP, which is then converted into the (ε, δ)-DP as summarized in Theorem 5.1. Different from the300
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Algorithm 2 DP-SCSG-HT

1: Input: The maximal number of outer loops J , initial state x̃1, stepsize η, batch sizes B, and b, σ1, and σ2
2: for j = 1, 2, ..J do
3: Randomly pick I( j) ⊂ {1, ..., n}, where |I( j)| = B
4: u( j)

1 ∼ N(0, σ2
1I)

5: µ̃( j) = ∇ fI( j) (x̃( j)) + u( j)
1

6: x( j)
0 = x̃( j)

7: option I: Generate N( j) ∼ Geom (B/(B + b))
8: option II: N( j) = B

b
9: for t = 1, 2, . . . ,N( j) do

10: Randomly pick I( j)
t ⊂ {1, ..., n}, where |I( j)

t | = b
11: u( j)

t,2 ∼ N(0, σ2
2I)

12: v( j)
t = ∇ fI( j)

t
(x( j)

t ) − ∇ fI( j)
t

(x̃( j)) + µ̃( j) + u( j)
t,2

13: x( j)
t = Hk(x( j)

t−1 − ηv( j)
t )

14: end for
15: set x̃ j+1 = x( j)

N( j)

16: end for

analysis of the DP-SGD-HT, every updating iteration based on the stochastic variance reduced gradient deals with two
different subsampling: I( j) at a snapshot and I( j)

t at each iteration of the inner loop. A proof sketch is provided below
and more details are given in the Appendix.

Theorem 5.1. Let the maximal number of epochs be J , and σ2
1

160 =
σ2

2
40 = σ2 where σ2 = 2CBl2αJ

bn2ε
for a constant

C > 0, and α = 1 +
2 log(2/δ)

ε
. Algorithm 2 satisfies the (ε, δ)−DP if α ≤ log( bn3ε

Bbn2ε+20CB4αJ
), 20αCBbJ

n2ε
≥ 1.5 and305

1 − (1 − δ
2 )

1
J ≥ e−(C−1−ln(C)).

Proof Sketch: Let S be a set of n training examples. We consider the following two queries:

q̃( j)
t,1(S ) = ∇ fI( j) (x̃( j)),

q̃( j)
t,2(S ) = ∇ fI( j)

t
(x( j)

t−1) − ∇ fI( j)
t

(x̃( j)) + µ̃( j),

given µ̃( j).
Part I. For q̃( j)

t,1(S ), we consider the following query function: q( j)
t,1(S ) = 1

B
∑n

z=1 ∇ fz(x̃( j)). By Lemma 3.2, for query

function q( j)
1 (S ), the Gaussian mechanismM1 = q( j)

t,1(S ) + u( j)
1 , where u( j)

1 ∼ N(0, σ2
1I) is (α, α∆2

2(q( j)
1 )

2σ2
1

)-RDP, and is more

precisely (α, 4αl2

B2σ2
1
)-RDP.310

Then, let us examine the subsampling query q̃( j)
1 (S ). The mechanism M̃1

( j)
= q̃( j)

1 (S ) + u( j)
1 is (α, 20αl2

n2σ2
1

)-RDP, if

α ≤ log( n
B(1+σ2

1B2/4l2) ) and B2σ2
1

4l2 ≥ 1.5.

Part II. For q̃( j)
t,2(S ), we first examine the following query function: q( j)

t,2(S ) = 1
b
∑n

z=1 ∇ fz(x( j)
t−1)− 1

b
∑n

z=1 ∇ fz(x̃( j)) +

µ̃( j), conditioning on µ̃( j). By Lemma 3.2, for the query function q( j)
t,2(S ), the Gaussian mechanismM2 = q( j)

t,2(S ) + u( j)
t,2 ,

where u( j)
t,2 ∼ N(0, σ2

2I) is (α,
α∆2

2(q( j)
t,2 )

2σ2
2

)-RDP.315

Then, we examine the following query with the subsample I( j)
t , q̃( j)

t,2(S ) = ∇ fI( j)
t

(x( j)
t−1)−∇ fI( j)

t
(x̃( j))+µ̃( j) conditioning

on µ̃( j). The mechanism M̃2 = q̃( j)
t,2(S ) + u( j)

t,2 is (α, 80αl2

n2σ2
2

)-RDP, if α ≤ log( 16nl2

16l2b+σ2
2b3 ) and b2σ2

1
16l2 ≥ 1.5.

Combining the analyses of Part I and Part II, and setting σ2
1

160 =
σ2

2
40 = σ2, yield that (M̃1, M̃2) satisfies (α, l2α

n2σ2 )-
RDP, by the composition rule in Lemma 3.3.
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Because N( j) ∼ Geom(B/(B + b)) is a random variable, we need to bound N( j) in order to apply the composition
rule. Hence, we consider the event E = {N( j) ≤ CB

b for 1 ≤ j ≤ J} with the probability of E as P(E). We prove
that there exists a constant C satisfying e−(C−1−ln(C)) ≤ 1 − (1 − δ

2 )
1
J , such that the number of N( j) is upper bounded

by CB
b with at least the probability (1 − δ

2 )
1
J . Hence, P(E) = Π

J

j=1P(E j) ≥ 1 − δ
2 where E j is the event of N( j) ≤ CB

b

for ∀ j. Conditioning on event E, we can show that Algorithm 2 satisfies the (CBαl2J
bn2σ2 +

log(2/δ)
α−1 , δ/2)-DP, which is the

(ε, δ/2)-DP if α = 1 +
2 log(2/δ)

ε
and σ2 = 2CBαl2J

bn2ε
. By Definition 1, for adjacent datasets S , S ′ and any output O, we

obtain P[M(S ) ∈ O|E] ≤ eε · P[M(S ′) ∈ O|E] + δ/2. Therefore, we further obtain

P[M(S ) ∈ O]
= P[M(S ) ∈ O|E] · P(E) + P[M(S ) ∈ O|Ec] · P(Ec)

≤ (eε · P
[
M

(
S ′

)
∈ O

∣∣∣E] + δ/2)P(E) + δ/2

≤ eε · P
[
M

(
S ′

)
∈ O

∣∣∣E] · P(E) + δ

≤ eε · P
[
M

(
S ′

)
∈ O

]
+ δ,

where Ec is the complementary event of E. Therefore, Algorithm 2 satisfies the (ε, δ)-DP.320

For option II, analysis becomes easier because the number of iterations in an epoch (N( j)) is fixed and the compo-
sition rule for RDP can be directly applied. We can easily show that the DP-SCSG-HT with option II also satisfies the
DP with a constant C = 1, α = 1 +

2 log(1/δ)
ε

.

Remark 5.2. The variance of the injected Gaussian noise is required to be σ2 = 40αl2T
n2ε

for the DP-SGD-HT where
T is the total number of iterations. Compared with the DP-SGD-HT, the variances of Gaussian noises in the DP-325

SCSG-HT σ2
1 and σ2

2 satisfy σ2
1

160 =
σ2

2
40 = σ2, and the value of σ2 = 2CBl2αJ

bn2ε
can be much smaller. If C = 1 for option

II, the number of total inner iterations for the DP-SCSG-HT is BJ
b , which is usually smaller than T in practice for

large-scale problems. Therefore, practically, DP-SCSG-HT achieves better estimation, due to the lower bias derived
from the lower perturbation noise, as analyzed in Theorem 4.2 and empirically observed in the experiments section.

5.2. Convergence Guarantee of the DP-SCSG-HT330

We examine how adding Gaussian noises in Algorithm 2 to preserve data privacy can alter the convergence of the
algorithm. We develop an upper bound on the distance between the estimator xt and the optimal x∗.

Theorem 5.3. Suppose that f (x) satisfies Assumptions 1 and 3. Define Ĩ = supp(x∗) ∪ supp(H2k(∇ f (x∗))). Let
k∗ = ‖x∗‖0, the restricted condition number of f (x), κs =

Ls
ρs
≥ 1, and β = 2

√
k∗

√
k−k∗
≤ min{ b

B ,
1

64κ2
s−1 }. If the variance of

stochastic gradients I(B < n)σ2
0 ≤ kBσ2, then we can get,

E[‖x̃( j+1) − x∗‖2] ≤ θ j+1
2 ‖x̃

(0) − x∗‖2 +
1

128(1 − θ2)γL2
sκ

2
s
‖πĨ(∇ f (x∗))‖2 +

7k
1024(1 − θ2)γL2

sκ
2
s
σ2, (7)

where θ2 = 1 − 1
64κ2s
1+β

b
B + 13

8

< 1, γ =
b
B−β

1+β
+

14κs−1
512κ3

s
> 0 and I(·) is an indicator function.

Proof sketch: We first give some preparations and then show the line of main proof.
1) Preparations. In our analysis, we introduce an error term e( j) = ∇ fI( j) (x̃( j)) − ∇ f (x̃( j)), which plays an important
role in the flow of the derivation, and is one of the major differences from the analysis of the existing SVRG-HT
[27]. Because v( j)

t = ∇ fI( j)
t

(x( j)
t ) − ∇ fI( j)

t
(x̃( j)) + µ̃( j) + u( j)

t,2 is the updating direction at the tth iteration of the jth epoch in

Algorithm 2, e( j) is the bias of the updating direction v( j)
t , where EI( j)

t
[v( j)

t ] = ∇ f (x( j)
t ) + e( j) and EI( j)

t
is the expectation

over stochastic sampling I( j)
t . We show that the variance of the error term e( j) can be bounded as

E[‖πI(e( j))‖2] ≤ 2L2
s
I(B < n)

B
E[‖x̃( j) − x∗‖2] + 2

I(B < n)
B

σ2
0, (8)
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which will diminish to zero with an increasing batch size B. The above bound gives extra flexibility to adaptively
adjust the batch size B based on the variance of Gaussian perturbed noise.335

Before diving into the detailed proof, we also need to analyze the term for the variance of stochastic gradient
direction - EI( j)

t
[‖πI(v( j)

t )‖2] on πI(·) : Rd → Rd, which is a projection operator to support I. Then we have:

EI( j)
t

[‖πI(v( j)
t )‖2] ≤ 4Ls( f (x∗) − f (x( j)

t )) + 4Ls( f (x( j)
0 ) − f (x∗)) + 4Ls(〈πI(∇ f (x( j)

t )), x( j)
t − x∗〉)

+ 2‖πI(∇ f (x∗))‖2 + 2‖πI(∇ f (x( j)
t ))‖2 + 2L2

s‖x
( j)
0 − x∗‖2 + 2‖πI(e( j))‖2 + E[‖πI(u( j)

t )‖2], (9)

where e( j) is the bias of v( j)
t . The Eq.(9) indicates that the variance of stochastic gradient direction can diminish to zero,

when the model estimator x( j) is approaching to optimal x∗ and x∗ is close to solution of the unconstrained problem
(1), as long as both ‖πI(e( j))‖2 and E[‖πI(u( j)

t )‖2] are small.
2) Proof. With above preparations, we are ready to give the logic line of proof for main theorem. In order to analyze
the DP-SCSG-HT algorithm, we develop the following result,

EI( j)
t

[‖x̃( j)
t+1 − x∗‖2] = EI( j)

t
[‖x( j)

t − x∗‖2] + η2EI( j)
t

[‖πI(v( j)
t )‖2] − 2η〈πI(∇ f (x( j)

t )), x( j)
t − x∗〉 − 2η〈πI(e( j)), x( j)

t − x∗〉

where x̃( j)
t+1 = x( j)

t − ηπI(v( j)
t ) is an intermediate state of the estimator to bridge the analysis between the gradient-based

updating step and the hard thresholding step. Then the hard thresholding operation x( j)
t+1 = Hk(x̃( j)

t+1) immediately340

follows and we can get x( j)
t+1 = Hk(x( j)

t − ηv( j)
t ) due to I = supp(x∗) ∪ supp(x( j)

t ) ∪ supp(x( j)
t+1).

Next, we establish connections between the intermediate state x̃( j)
t+1 and the sparse estimator x( j)

t+1. By Eq.(4), we
get

E( j)[‖x( j)
t+1 − x∗‖2] ≤ (1 + β)E( j)[‖x̃( j)

t+1 − x∗‖2]

≤ (1 + β)E( j)[‖x( j)
t − x∗‖2] + (1 + β)η2E( j)[‖πI(v( j)

t )‖2] − 2(1 + β)ηE( j)[〈πI(∇ f (x( j)
t )), x( j)

t − x∗〉]. (10)

Until now, all the analyses are still based on iterations in one epoch. We need to use an important property of
the geometric distribution that we have used to set the number of inner iterations N( j) to turn previous iteration-
based analysis into the epoch-based analysis. Let N ∼ Geom(γ), for any sequence {DN}, we have E[DN − DN+1] =

( 1
γ
− 1)(D0 − E[DN]). Taking the expectation on both sides of Eq. (10) over N( j), and replacing x( j)

0 with x̃( j) and x( j)
N( j)

with x̃( j+1) yields the most important intermediate result:

2(1 + β)ηE[〈πI(∇ f (x̃( j+1))), x̃( j+1) − x∗〉]

≤ (β −
b
B

)E[‖x̃( j+1) − x∗‖2] +
b
B

E[‖x̃( j) − x∗‖2] + (1 + β)η2E[‖πI(v( j)
N( j) )‖

2]. (11)

After obtaining the above results, we put Eq. (9) for E[‖πI(v( j)
N( j) )‖2] into Eq. (11) and further using ρs-restricted

strongly convex and Ls-restricted strongly smooth, we obtain the desired result.

Remark 5.4. Due to the requirement on β that B
b ≤

1
β

=
√

k−k∗

2
√

k∗
= Θ(

√
k), B

b is independent of the sample size n.

Hence, B
b can be treated as a constant independent of ε and δ, and be omitted in the asymptotic utility bound in the345

next sections.

The implication of the main theorem is that the variance of stochastic gradients σ2
0 can be well-controlled by the

batch size B, and the requirement for the upper bound of the stochastic variance σ2
0 will be relaxed with the increase

of B and be removed when B = n. Therefore, unlike the DP-SGD-HT, there is no need to bound σ2
0 in Algorithm 2

with B = n. Nevertheless, a careful setup for B could save the computational cost. Even though setting B = n could350

fully remove σ2
0, it needs to be carefully designed to achieve the best of the two worlds, which means that the effect

of σ2
0 is minimized to the distance bound between estimator xT and optimal x∗, and the batch size B is also minimized

to achieve such goal to avoid the waste of computations.
Similar to the analysis of the DP-SGD-HT, the two bias terms in the parameter estimation of DP-SCSG-HT

are the second term and third term of Eq. (7): O(‖πĨ(∇ f (x∗))‖
2

κ2
s

+ σ2

κ2
s
). Compared to the bias of the DP-SGD-HT355
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O(
∥∥∥πĨ(∇ f (x∗))

∥∥∥2
+ σ2), the bias of the DP-SCSG-HT shrinks by a factor of κ2

s . The value of κ2
s is greater than 1 and

can be very large for ill-conditioned optimization problems. As discussed in Remark 5.2, the variance of Gaussian
noise is also smaller in the DP-SCSG-HT than in the DP-SGD-HT in practice. Hence, the DP-SCSG-HT tends to
have smaller bias in terms of parameter estimation.

5.3. The Utility Bound of the DP-SCSG-HT360

Using the upper bound on the distance between x̃(J) and the optimal x∗ in Theorem 5.3, and the determined
Gaussian variance σ2 in Theorem 5.1, we can obtain the utility bound as follows.

Theorem 5.5. Under the same setting of Theorem 5.3, and B = max{1,
√

2bεσ2
0

3kαCJ l2 }·n, if we chooseJ = O(log( n2ε2

log(1/δ) )),
we get

E[‖x̃(J) − x∗‖2] ≤
8η2

(1 − θ2)γ
‖πĨ(∇ f (x∗))‖2 + O(

log(1/δ)
n2ε2 log(

n2ε2

log(1/δ)
)). (12)

Proof. If we require that I(B < n)σ2
0 ≤ kBσ2 and σ2 = 2CBl2αJ

bn2ε
, we have B = min{1,

√
2bεσ2

0
3kαCJ l2 } ∗ n.

E[‖x̃(J) − x∗‖2] ≤ θJ2 E[‖x̃(0) − x∗‖2] +
8η2

(1 − θ2)γ
E[‖πĨ(∇ f (x∗))‖2] +

7kη2σ2

(1 − θ2)γ

= θJ2 ‖x̃
(0) − x∗‖2 +

8η2

(1 − θ2)γ
E[‖πĨ(∇ f (x∗))‖2] +

1
1 − θ2

7kη2

γ

2CBl2αJ
bn2ε

.

If we let θJ2 ‖x̃
(0) − x∗‖2 ≤ 1

1−θ2

7kη2

γ
2CBl2α

bn2ε
and B

b = Θ(
√

k), we get

J = logθ2
(

1
(1 − θ2)‖x̃(0) − x∗‖2

7kη2

γ

2CBl2α
bn2ε

) = O(log(
n2ε2

log(1/δ)
)).

Finally, we get

E[‖x̃(J) − x∗‖2] ≤
8η2

(1 − θ2)γ
‖πĨ(∇ f (x∗))‖2 + O(

log(1/δ)
n2ε2 log(

n2ε2

log(1/δ)
)).

Considering that ‖πĨ(∇ f (x∗))‖2 can be close to zero, when x∗ is close to its unconstrained optional for f (x),
Theorem 5.5 implies that the utility bound is determined by its dominant term in the order of O( log(1/δ)

n2ε2 ), which365

achieves the same utility guarantee with DP-GD-HT. Furthermore, the next corollary shows better computationally
complexity of our proposed practical stochastic variance reduced algorithm.

Corollary 5.5.1 (Computational Complexity). Under the same conditions of Theorem 5.5, its computational com-

plexity is O(min{1, ψ} · n log( n2ε2

log(1/δ) )), where ψ =

√
2bεσ2

0
3kαCJ l2 .

To obtain a given (ε, δ)−DP, the computational complexity of DP-SCSG-HT depends on O(min{1, ψ} · n log(n)).370

Because σ2
0 ≤ l2, α > 1 and C > 1, ψ can be much smaller than 1, if sparsity k and epoch size J are large, batch size

b is small (it is especially true for high dimensional data). Therefore, similar to DP-SGD-HT, DP-SCSG-HT can be
much more computationally efficient than DP-GD-HT, which means fewer number of epochs are used in Algorithm 2
to achieve the same (ε, δ)−DP.

In summary, our proposed algorithm provides a general framework, which covers the existing state-of-the-art375

non-DP hard thresholding method: SVRG-HT [27] (when B = n, b = 1, σ2 = 0 and option II is selected), which
corresponding to privacy-preserving version can be called as DP-SVRG-HT. Even though we only use option I to
theoretically analyze Algorithm 2 for clarity, our DP guarantee can be directly applied to option II and so is to DP-
SVRG-HT. Following the line of proof above, the convergence analysis for DP-SVRG-HT can be done, and then
utility bound can be built in the same way in section 5.3.380
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6. Empirical Evaluations

We implement the proposed stochastic privacy-preserving algorithms DP-SGD-HT and DP-SCSG-HT using py-
Torch, and compare them with the state-of-the-art DP methods - DP-GD-HT [42] - to evaluate the performance of
both accuracy and computational efficiency. The comparison algorithm DP-GD-HT has been implemented based on
the design in [42], and applied to our study datasets. Moreover, two widely used non-DP HT methods, SVRG-HT385

[27] and SCSG-HT [29] are also used to produce the non-DP baseline performance. Because SVRG-HT can be
treated as a special case of SCSG-HT (when the batch size B = n, and also discussed in Table 1), and SCSG-HT(with
B , n) outperforms SVRG-HT as discussed in [29] , we include SCSG-HT in our experiments. It should be noted
that non-DP methods are expected to produce higher accuracy because they are not constrained by the DP. Our DP
versions, on the other hand, must find a balance between model accuracy and the risk of data leakage. In recent years,390

federated learning has become a popular area to utilize edge computing devices to perform large scale decentralized
machine learning. However, when an analytic model is built during such a learning process, it may raise separate
concerns about data leakage. To further investigate the performance of our stochastic privacy-preserving algorithms,
we implement one of our proposed algorithms in the FL setting.

6.1. Experimental Setup395

Two benchmark datasets, E2006-tfidf and RCV1, are downloaded from the LibSVM website1, and used for eval-
uation. We also conduct experiments on the Chest X-ray [22] medical dataset.

• The E2006-tfidf dataset has 3,308 observations, each described by 150,360 features. The dataset is obtained from
Noah Smith and is uesd to predict the volatility of stock returns based on the mandated financial text report.
Data has been collected from thousands of publicly traded U.S. companies.400

• The RCV1 dataset contains 20,242 observations and 47,236 features. The RCV1 dataset is a benchmark dataset
on text categorization. It is a collection of newswire articles produced by Reuters in 1996-1997, and categorized
with respect to three controlled vocabularies: industries, topics and regions.

• The Chest X-ray dataset has 5232 records and is used to detect pneumonia from each record based on 784 im-
age features. In [22], a collection of 5232 chest X-ray images was gathered from children, including 3,883405

characterized as depicting pneumonia (2,538 bacterial and 1,345 viral) and 1,349 normal, from a total of 5,856
patients to train a predictive classifier. The model can then be tested with 234 normal images and 390 pneumonia
images(242 bacterial and 148 viral) from 624 patients.

In the experiments, the variance of the injected random noise is determined based on the values given by the algo-
rithms’ theoretical results. Other parameters, such as the batch size, the stepsize and the number of epochs, are deter-410

mined by five-fold cross validation. Particularly, the stepsize η for each algorithm is searched from {10, 1, 10−1, 10−2,
10−3, 10−4} and the number of epochs is searched from {10, 20, 50, 80, 100}. All the algorithms are initialized with
x(0) = 0. Following the convention in the stochastic optimization and sparse learning literature, we use the number of
epochs (or data passes) to measure the computational complexity. This enables the complexity study independent of
an actual implementation of the algorithm. All experiments are done on PC with i7-6700 CPU, 4 cores, 8GB RAM.415

6.2. Linear Regression

We first conduct experiments on the linear regression problem

min
x
{ f (x) =

1
n

n∑
i=1

‖yi − zT
i x‖2} subject to ‖x‖0 ≤ k,

to check the performance of the proposed DP-SGD-HT and DP-SCSG-HT algorithms. The dataset we use is the
E2006-tfidf dataset. In the experiments, we set the sparsity parameter k = 200, δ = 10−5 and ε ∈ [2, 10]. Table 3

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Table 3: Comparison of different algorithms given different privacy budgets ε in terms of MSE on the validation data of five-fold cross validation
and its corresponding standard deviation on the dataset E2006-tfidf. We use δ = 10−5 in the experiment. The non-DP Baseline is obtained by
SCSG-HT [29], which reflects the state-of-the-art of non-DP IHT algorithms. Each column represents one group of experiment for a fixed privacy
guarantee (ε, δ)-DP. The number of epochs (Epoch) is used to measure computational complexity. The results show that DP-SCSG-HT achieves
the lowest MSE among DP algorithms and is closer to the non-DP baseline.

Methods Epoch
Differential private budget ε

ε = 2 ε = 4 ε = 6 ε = 8 ε = 10

Non-DP Baseline
SCSG-HT [29] 10 0.1483 ± 0.013 0.1483 ± 0.013 0.1483 ± 0.013 0.1483 ± 0.013 0.1483 ± 0.013

DP-GD-HT[42] 100 0.1588 ± 0.025 0.1566 ± 0.015 0.1560 ± 0.009 0.1543 ± 0.01 0.1528 ± 0.012
DP-SGD-HT 20 0.1540 ± 0.005 0.1505 ± 0.009 0.1499 ± 0.013 0.1488 ± 0.011 0.1490 ± 0.013
DP-SCSG-HT 10 0.1516 ± 0.007 0.1494 ± 0.014 0.1488 ± 0.007 0.1487 ± 0.006 0.1486 ± 0.012

Table 4: Comparison of different algorithms given different privacy budgets ε in terms of the validation loss (13) on validation data of five-fold cross
validation and its corresponding standard deviation on dataset RCV1. Note that δ = 10−5 in the experiment. The results show that DP-SCSG-HT
achieves the lowest validation loss with the smallest number of epochs, among DP methods.

Methods Epoch
Differential private budget ε

ε = 2 ε = 4 ε = 6 ε = 8 ε = 10

Non-DP Baseline
SCSG-HT [29] 10 0.1603 ± 0.003 0.1603 ± 0.003 0.1603 ± 0.003 0.1603 ± 0.003 0.1603 ± 0.003

DP-GD-HT[42] 100 0.3811 ± 0.011 0.3469 ± 0.01 0.3139 ± 0.004 0.3063 ± 0.009 0.3001 ± 0.004
DP-SGD-HT 20 0.4100 ± 0.027 0.2914 ± 0.012 0.2594 ± 0.008 0.2615 ± 0.011 0.2491 ± 0.008
DP-SCSG-HT 10 0.2243 ± 0.012 0.1662 ± 0.022 0.1642 ± 0.007 0.1619 ± 0.002 0.1615 ± 0.005

compares the mean squared errors (MSE) of the different methods on validation data under different choices of privacy
budget ε. In a five-fold cross validation process, the MSE values are averaged across the five validation sets together420

with standard deviation. Precisely, MSE on a single validation set is defined as follows: 1
nval
‖ZT

val x̃ − yval‖
2, where

{Zval, yval} are the validation data, nval is the validation sample size and x̃ is the estimator learned from the training
data. The results in Table 3 show that under the same guarantee of (ε, δ)-DP, the proposed methods: DP-SGD-HT
and DP-SCSG-HT achieve lower MSE using a smaller number of epochs than the DP-GD-HT. Therefore, the utility
and computational complexity of our stochastic methods are better than that of the non-stochastic DP-GD-HT. DP425

algorithms take the balance between privacy-preserving degree and optimization accuracy, but our algorithms exhibit
better accuracy even under the DP requirement.

6.3. Logistic Regression
Then, we apply all methods to the logistic regression problem as follows

min
x
{ f (x) =

1
n

n∑
i=1

(log(1 + exp(yizT
i x)) +

λ

2
‖x‖2)} subject to ‖x‖0 ≤ k,

where zi ∈ Rd and yi is the corresponding label. The dataset we use are the RCV1 datasetand Chest X-ray. For
experiment with RCV1, the regularizer λ = 10−5 and the sparsity parameter k = 1000. For experiment with Chest
X-ray, the regularizer λ = 10−5 and the sparsity parameter k = 200. We use five-fold cross-validation to calculate the
value of loss function:

1
nval

nval∑
i=1

(log(1 + exp(yizT
i x)) (13)
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Table 5: Comparisons of different algorithms for various privacy budgets ε in terms of the validation loss (13) on validation data of five-fold
cross validation and its corresponding standard deviation on dataset Chest X-ray. Note that δ = 10−5 in the experiment. The results show that
DP-SCSG-HT achieves the lowest validation loss with the smallest number of epochs, among DP methods, except ε = 2.

Methods Epoch
Differential private budget ε

ε = 2 ε = 4 ε = 6 ε = 8 ε = 10

Non-DP Baseline
SCSG-HT [29] 10 0.6917 ± 0.007 0.6917 ± 0.007 0.6917 ± 0.007 0.6917 ± 0.007 0.6917 ± 0.007

DP-GD-HT[42] 100 0.6930 ± 0.003 0.6929 ± 0.001 0.6928 ± 0.004 0.6928 ± 0.002 0.6927 ± 0.002
DP-SGD-HT 20 0.6932 ± 0.007 0.6927 ± 0.002 0.6926 ± 0.003 0.6924 ± 0.001 0.6922 ± 0.004
DP-SCSG-HT 10 0.6940 ± 0.002 0.6928 ± 0.004 0.6919 ± 0.008 0.6918 ± 0.001 0.6918 ± 0.001

over validation data and our proposed algorithm DP-SCSG-HT could achieve the lowest loss value among all privacy-
preserving algorithms on the RCV1 data in Table 4.430

Figure 1: Experimental results for logistic regression with sparsity constraint on the RCV1 data. Figures (a-b) show results for the (4, 10−5)-DP
and (c-d) for the (6, 10−5)-DP. (a) and (c) show the objective value f (x) on the full dataset versus the number of epoch. (b), (d) the objective value
f (x) on the full dataset versus the number of HT operations.

Separate from the five-fold cross validation, we run all algorithms on the full dataset so to compare the compu-
tational efficiency of the different algorithms. We demonstrate the advantage of the stochastic algorithms by plotting
the objective function value f (x) versus the number of epochs and the number of hard thresholding operations of
different algorithms at the privacy budget ε ∈ {4, 6} on RCV1 in Figure 1 and Chest X-ray in Figure 2 . Our algorithms
outperform the deterministic DP-GD-HT in terms of the needed epochs by a large margin, which is consistent with435

our theoretical results. While DP-SCSG-HT and DP-SGD-HT achieve the best results within 20 epochs, DP-GD-HT
needs much more epochs. Therefore, the proposed algorithms could drop objective function value more rapidly, while
guaranteeing the (ε, δ)−DP.
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Figure 2: Experimental results for logistic regression with sparsity constraint on the Chest X-ray data. Figures (a-b) show results for the (4, 10−5)-
DP and (c-d) for the (6, 10−5)-DP. (a) and (c) show the objective value f (x) on the full dataset versus the number of epoch. (b), (d) the objective
value f (x) on the full dataset versus the number of HT operations.

6.4. Federated Learning Algorithms with DP
Federated learning (FL) is a privacy-preserving learning framework for large scale machine learning on edge

computing devices, and solves the data-decentralized distributed optimization problem:

min
x∈Rd

f (x) =

N∑
i=1

pi fi(x), (14)

where fi(x) = Ez∼Di [ f i
z (x)] is the loss function of the ith client (or device) with weight pi ∈ [0, 1),

∑N
i=1 pi = 1, f i

z (x)440

(for z ∼ Di) is an individual loss associated with the zth sample in ith client,Di is the distribution of data located locally
on the ith client, and N is the total number of clients. The weights pi can be necessary to balance the different clients if
the clients participating the FL vary significantly in terms of computing capability and carry different amounts of local
data. Nowadays, FL is getting more attention and it is an important question to ask if FL can also benefit from our DP
methods [13, 3]. We thus evaluate the performance of our DP method in the FL setting. We implement a federated445

learning version of DP-SGD-HT. (We leave the FL implementation of DP-SCSG-HT to future research because it
requires more careful design for the different FL schemes of SCSG which is outside of this paper’s scope.)

In this set of experiments, we compare three FL algorithms: the FL version of standard SGD (FedSGD-HT),
the FL version of our DP-SGD-HT (DP-FedSGD-HT), and a specific FL implementation of DP-GD-HT (DP-FedGD-
HT). The detailed steps of these FL algorithms are included in Appendix C. Our algorithm DP-FedSGD-HT randomly450

samples a mini-batch from the local dataset at each client and computes stochastic gradient directions using this local
mini-batch. Each client performs K consecutive SGD iterations with perturbed stochastic gradients for local update
before communicating with other clients. For DP-FedGD-HT, each client calculates local full gradients using all local
data and performs K consecutive local GD iterations. Again, we could remove the Gaussian noise perturbation in
DP-FedSGD-HT, which gives the non-DP method FedSGD-HT.455

The MNIST dataset [9] is used in this set of experiments because MNIST data have been decentralized with the
sort-and-partition procedure (SP) [25, 37]. Each device contains data on two digits. We use a convolutional neural
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Table 6: The architecture of CNN for the MNIST dataset.

layer layer setting
F.relu(self.conv1(x)) self.conv1 = nn.Conv2d(1, 6, 5)

F.max pool2d(x, 2, 2)
F.relu(self.conv2(x)) self.conv2 = nn.Conv2d(6, 16, 5)

x.view(-1, 16*4)
F.relu(self.fc1(x)) self.fc1 = nn.Linear(16*4*4, 120)

x= F.relu(self.fc2(x)) self.fc2 = nn.Linear(120, 84)
x = self.fc3(x) self.fc3 = nn.Linear(84, 10)

F.log softmax(x, dim=1)

network (CNN) with two convolutional layers and three fully connected layers (see Table 6). We set the number
of clients N = 10, the number of local updates K = 10 for each client, the sparsity parameter τ = 10, 000. The
Gaussian noises are generated according to moments accountant technique using TensorFlow-privacy [1] for local460

privacy budget ε = 4, 6.
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Figure 3: Experimental results for federated learning of CNN models with sparsity constraint on the MNIST data. Figure (a) shows results for the
(4, 10−5)-DP and (b) for the (6, 10−5)-DP. Both (a) and (b) show the accuracy on the MNIST dataset versus the number of rounds.

From Figure 3, we clearly observe that the stochastic DP algorithm DP-FedSGD-HT outperforms DP-FedGD-HT,
which is consistent with our experimental results for linear regression and logistic regression in the early sections.
The worse performance of DP-FedGD-HT might also be partially due to the nonconvexity of CNN model training, for
which deterministic GD algorithms could easily get stuck at bad local minimal. The DP version of the FedSGD-HT465

is slightly worse than the non-DP version as expected, and with larger privacy budget (ε = 6), the difference between
the two methods decreases.

Remark 6.1. The guarantee of (ε, δ)-DP adds an extra constraint to the optimization algorithm; Therefore, DP
algorithms preserve privacy at the cost of losing prediction accuracy (utility). Empirically, we did observe that our
algorithms slightly sacrifice prediction accuracy, and the performance gap with the non-DP baseline is reduced with470

larger privacy budget ε by using a smaller level of injected Gaussian noise. Hence, the algorithms play balance
between privacy preserving and utility. The observations are consistent with prior discussions in [42] .

7. Conclusions

In this paper, we propose two iterative hard thresholding algorithms for sparse learning that preserve privacy:
DP-SGD-HT and DP-SCSG-HT. To balance between DP and the algorithmic utility, the proposed algorithms play475
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trade-off between the magnitude of perturbation noise (the privacy budget) and the convergence rate. The greater
the perturbation noise, the greater the privacy preservation but the lower the algorithm utility (i.e., larger bound on
the convergence speed). Under certain biases introduced by sparsity and perturbation noise, we establish a linear
convergence rate for both algorithms. The best known utility bound is achieved by our algorithms. Meanwhile they
reduce the computational complexity of the GD-based algorithm significantly. We emphasize that, although the DP-480

SGD-HT convergence proof requires the variance of stochastic gradients to be bounded, this requirement is removed
in the DP-SCSG-HT convergence proof. Experiments on real-world financial and medical datasets demonstrate the
superiority of the proposed algorithms against the state-of-the-art baseline algorithms.
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