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Abstract

Hierarchical clustering is one of the standard methods taught for identifying and
exploring the underlying structures that may be present within a data set. Students
are shown examples in which the dendrogram, a visual representation of the hierarchi-
cal clustering, reveals a clear clustering structure. However, in practice, data analysts
today frequently encounter data sets whose large scale undermines the usefulness of
the dendrogram as a visualization tool. Densely packed branches obscure structure,
and overlapping labels are impossible to read. In this paper we present a new workflow
for performing hierarchical clustering via the R package called protoshiny that aims
to restore hierarchical clustering to its former role of being an effective and versatile
visualization tool. Our proposal leverages interactivity combined with the ability to
label internal nodes in a dendrogram with a representative data point (called a pro-
totype). After presenting the workflow, we provide three case studies to demonstrate
its utility.

Keywords: hierarchical clustering, interactive graphics, exploratory data analysis, dendro-
grams, overplotting



1 Introduction

Clustering is one of the principal tools used by data analysts for uncovering the structure
present within a data set. Hierarchical clustering is particularly popular since it can reveal
multiple scales of groupings at once without forcing the data analyst to commit to a certain
number of clusters. Hierarchical clustering has been used successfully in a wide range of
application domains, from biology (Ao et al. 2005, Serlie et al. 2003) to social sciences
(Kigerl 2020, Saint-Arnaud & Bernard 2003) to document recovery (Zhao et al. 2005,
Cutting et al. 2017) and beyond (Studdert-Kennedy & Davenport 1974).

The hierarchical clustering of a data set is represented by a dendrogram, which displays
the original observations as leaves of a tree, with interior nodes of the tree corresponding
to successive “mergings” of these observations into ever larger clusters. For example, the
dendrogram in Figure 1 shows a sample of 50 observations of penguin measurements (Horst
et al. 2020). According to the scatterplot showing bill size and flipper size, there appear
to be three primary clusters that roughly correspond to the species of penguin. This is

supported by the dendrogram presented.
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Figure 1: (Left) Fifty randomly selected observations of penguins’ flipper and bill lengths
colored by species. There appear to be three clusters that roughly correspond to the species.

(Right) A dendrogram of that same data reveals the clustering structure.

Such is the promise of hierarchical clustering as presented in most statistics classes.
Yet, despite the appeal of hierarchical clustering in such examples, its use in real appli-
cations can be hampered by practical challenges. First, its usefulness as a visualization

tool is severely degraded by increasing data set sizes. The top panel of Figure 2 shows a



dendrogram for a hierarchical clustering of about 15,000 of the most common words from
Grolier’s Encyclopedia (Roweis 2008). In this dendrogram, the branches are more tightly
packed, rendering the leaf labels useless due to overlap. This is a known challenge in the
visualization literature called overplotting (Swayne et al. 1998), where often the number of
elements to be plotted exceeds the number of pixels available to create plots. A number
of solutions have been proposed to address this limitation in different plot types, including
the introduction of transparency (Cottam et al. 2013), binning, stacking (Dang et al. 2010),
and interactivity (Swayne et al. 1998). Second, one must avoid uncritically accepting the
structure revealed by a hierarchical clustering since it has been suggested that when no
true clustering structure is present in a high-dimensional data set, the dendrogram can
still misleadingly indicate structure that is a reflection of the the clustering method rather
than the data set (Thrun 2021). This underscores the importance of being able to inspect
dendrograms to understand the reasonableness of the findings based on domain expertise.
Both of these practical challenges—the problem of overplotting and the need to carefully
probe the recovered structure—can be alleviated by the approach described in this work,
which adds interactivity into dendrograms.

Whiile still a developing field, interactive statistical graphics has been a topic of interest
since at least the late 1960s (ASA Sections on: Statistical Computing Statistical Graphics
2018, Friedman & Stuetzle 2002) and has seen emerging popularity and success in advancing
exploratory data analysis (e.g., Tukey et al. 1977, Unwin et al. 1996, Theus & Urbanek
2008, Young et al. 2011, Su et al. 2017). Recent development of JavaScript frameworks has
made it much easier for statisticians to incorporate interactivity into statistical graphics,
specifically for the web browser (e.g., Bostock et al. 2011, Sievert 2018, Chang & Wickham
2016, Hocking et al. 2017, Satyanarayan et al. 2016). While much of this work has focused
on the general interactivity tasks of linking plots, brushing, labeling, and scaling (Swayne
& Klinke 1999), other work has attempted to solve more specific problems through the use
of interactive statistical web graphics (e.g., Sievert & Shirley 2014, Kaplan & Hare 2019,
Kaplan et al. 2017, among others). In this paper we present an example of the latter goal—
solving the specific problem of exploring a large dendrogram through the use of interactive

statistical web graphics.



The use of interactivity to explore dendrograms has been seen in a limited number of
previous works. Seo & Shneiderman (2002) provide a desktop application for exploring
dendrograms of gene expression data that allows for interaction with clusters, but does
not allow one to explore portions of the dendrogram in isolation, which is necessary to
visualize and understand very large dendrograms. Sieger et al. (2017) is a more recent
example of an interactive dendrogram available in R that employs the canvas infrastructure
to provide interactivity to the user with features and limitations are very similar to Seo &
Shneiderman (2002). Conversely, Khan (2018) provides an interactive tree diagram in R
that allows for isolating pieces of the tree, but it is not specialized to hierarchical clustering
dendrograms and requires the user to manually reformat the clustering object as a tree
object. Additionally, this tool does not display the standard dendrogram feature of height,
which indicates how far apart two clusters are when they are merged.

Our approach to this problem is built on work by Bien & Tibshirani (2011), who
proposed adding the labels of prototypes (i.e., cluster representatives) to the interior nodes
of dendrograms and demonstrated through a series of static images how one could in
principle use these prototypes to explore a hierarchical clustering in a top-down manner
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in a process they called “drilling down.” As a demonstration, Figure 6 from their paper
(reproduced here as Figure 2) shows several of these static images. The upper panel of
the figure shows the full tree from the hierarchical clustering of about 15,000 of the most
common words from Grolier's Encyclopedia (Roweis 2008). It is clear that overplotting
obfuscates whatever structure might be present in this data. The bottom two portions of
the figure show how one can use prototypes to alleviate this problem. On the lower left
we see the “upper cut” view of the dendrogram, which is what one gets by only showing
the nodes that are above a certain cut height and then replacing any branch that has been
cut by a label of the prototype for that branch. Note that without having prototypes
assigned to each interior node, there would not be a natural way of removing branches
like this. We can “drill down” the tree by examining any of these branches. For example,
one of the branches is labeled by the prototype “music,” and on the lower right we see

the upper cut of the branch labeled by the “music” label. In this branch, “conductor”

is a prototype for two branches that are prototyped by “mahler” and “philharmonic.”



When this branch is merged with the branch prototyped by “quartets,” the new prototype
becomes “symphony.” Working one’s way down a dendrogram is referred to as “drilling
down.” Despite this demonstration and discussion in Bien & Tibshirani (2011), their
protoclust package (Bien & Tibshirani 2017) does not provide the ability to create such
images; furthermore, producing a series of static images does not lend itself well to data

exploration.

Cluster Dendrogram

w

'w ’ H""‘T]T]W i ‘W"‘""Vw

Uppercut (h = 0.9981) Uppercut (h = 0.9543)
music

|

1.0000

QnusicikmusicW

0.9995
1

opera

0.99
1
fiery

o
. & | symphony
" S
o2 r
S o ©
2 Q3 X
3 & 8 = i) S
£ L2 x @ £ s |o 2
g [0} Q 2 21¢ [S))
z £ a T © conductor
) >
P LB =g s |
8 | S5 | ‘ §3 _opera_
e S = x x opera
= © D 2 | e (3}
% x c o s oL E
=T = o .
L @ ] x
=2 £ music m
= g = g =« X
o €5 © ‘ © e
& ° < I s 5 @
& e ) = = 2 £
° e " i s & T
s S N % o 5§
S o o
% =
o E

Figure 2: Reproduction of Figure 6 from Bien & Tibshirani (2011) showing the process of

using static images to “drill down” into a dendrogram via the use of prototypes.

The goal of this present work is to render hierarchical clustering useful again for vi-
sualizing and exploring data sets at scales of interest by introducing interaction with the
dendrogram into a clustering workflow. Additionally, we provide a tool, which we call
protoshiny, that enables this workflow by leveraging three basic ideas beyond the stan-

dard hierarchical clustering dendrogram:

1) Use cluster prototypes to summarize branches of a dendrogram.



2) Make dendrograms interactive. Rather than attempting to show an entire dendro-
gram, allow the data analyst to navigate it interactively through subtrees that can
be expanded or contracted.

3) Enable the data analyst to quickly find clusters of interest via search functionality.

The protoshiny R package is a tool for facilitating interactive dendrograms that enable
fast finding of interesting clusters with large data sets (2-3) through the use of prototypes
(1). While minimax linkage is the most direct way to produce hierarchical clustering with
prototypes, protoshiny is designed to more generally accommodate any linkage so long as
the user also specifies a choice of prototypes.

In Section 2 we describe protoshiny, an R (R Core Team 2021) package and interac-
tive dendrogram application. We begin with providing background on hierarchical clus-
tering with prototypes and discuss the particular interactive elements incorporated into
protoshiny and comparing the features of protoshiny to three other methods for visual-
izing a dendrogram. Section 3 presents three case studies of using protoshiny to explore
large dendrograms with applications to movie clustering, flow cytometry, and studying pat-
terns of COVID-19 spread across the US. Each case study emphasizes a different strength
of protoshiny. We finish with a discussion of the current limitations of the tool, as well

as potential directions for expansion in Section 4.

2 Prototypes and Working with Interactivity

2.1 Hierarchical Clustering with Prototypes

Agglomerative hierarchical clustering requires the specification of what is known as a link-
age, which describes how one measures the dissimilarity between pairs of clusters. For
example, suppose G, H C {x1, ..., x,} are two disjoint sets of observations and d is a mea-
sure of dissimilarity between individual observations. One of the most common linkages is
complete linkage, which measures the separation between clusters G and H based on the
farthest between-cluster pair of observations:

dcomplete(G7 H) = max d(iB, w,).

xeG,x'cH
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Minimax linkage (Ao et al. 2005, Bien & Tibshirani 2011) is a newer linkage that measures
cluster separation based on how well the pair of clusters can be summarized by a single
observation from one of the two clusters. The key distinguishing property of minimax
linkage is that it provides a natural definition of “prototype” for each cluster produced in
the hierarchical clustering. A prototype is a representative element of the cluster that is
chosen from one of the original observations. Having the prototype be one of the original
observations is important for interpretability. For example, in Figure 2, the average of a
collection of vectors representing a word is far less useful than a single well-chosen word.
In non-hierarchical clustering settings, the k-medoids method is used for this same reason
(see, e.g., Hastie et al. (2009)).

To describe minimax linkage, one starts by defining the dissimilarity between an obser-

vation and a set:

o /
dmax (2, C) = max d(xz,z').

The minimaz radius of a set C' is then defined as the size of the smallest enclosing “ball”
of C that is centered at an element of C,

r(C) = min dyax(x, C).

xeC

The center of this ball,
p(C) = arg min dmax(x, C),

is defined as the minimax prototype for the set C'. Because the minimum is taken specifically
over z € C, by definition p(C') will always be one of the elements of C. If r(C) < h, then
all points in C' are within a dissimilarity of h of the prototype p(C'). The minimax linkage
between G and H is then defined as

dminimax(G7 H) = T(G U H)7

and if clusters G and H are merged together, the newly formed cluster GU H has prototype
p(G U H). A demonstration of the minimax linkage as used to merge two clusters in the
(centered and scaled) Palmer penguins data is given in Figure 3.

Bien & Tibshirani (2011) showed that minimax linkage has a number of desirable prop-

erties. For example, suppose one “cuts” a minimax linkage dendrogram at height h to
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Figure 3: Demonstration of minimax linkage on (centered and scaled) Palmer penguins
data. The solid black line represents the distance between the red and green clusters. The
dotted circle is of radius (G U H), where G and H denote the two clusters, and is centered

at the prototype for the cluster formed by merging G and H.

produce a set of clusters. In such a case, we are guaranteed that every point in the data set
is within a dissimilarity of A of its prototype. They also discussed its efficient implementa-

tion and described how °

“‘prototype-enhanced’ dendrograms” provide a convenient way of
“drilling down” a dendrogram (as we described in the discussion of Figure 2). The key idea
is that minimax linkage provides every interior node of a dendrogram with an associated
prototype that can be used as a label for summarizing the branch of observations beneath
it. This allows one to prune the dendrogram, replacing certain branches of the dendrogram

by their prototypes. While Bien & Tibshirani (2011) demonstrated how one might explore

a dendrogram in this fashion, a tool for facilitating such a process was not developed.

2.2 Data Exploration with Interactivity

We incorporate three tools of interactivity that allow the data analyst to take full advantage

of having a prototype-labeled dendrogram in their analysis of hierarchically clustered data:

1) expansion/contraction (drill down),
2) zooming and panning, and

3) search functionality.

Expansion and contraction of nodes in the dendrogram is key for carrying out the
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drilling down process described in the discussion of Figure 2. The data analyst can choose
which parts of the tree to see in detail and which to hide from view. A potential workflow is
as follows. One starts with an upper cut view (analogous to the lower left panel of Figure 2)
and uses the visible prototype labels as a high-level summary that suggests where to further
explore. The zooming and panning of the dendrogram can be used to focus attention on a
particular portion of the dendrogram that may have become crowded due to a large number
of expanded elements. In a second potential workflow, the search functionality allows a
data analyst to find the first (i.e., highest) instance of a label in the dendrogram. This
is useful for quickly locating a cluster with a label that is of interest a priori to the data

analyst.

2.3 Additional Details and Usage

The interactive browser-based application protoshiny is built using the Shiny framework
(Chang et al. 2017) and the JavaScript library D3 (Bostock et al. 2011). It is an open-source
application and available at https://github.com/andeek/protoshiny. In order to use
protoshiny, a user can install the R package and launch the application with the following

commands:

## install package

install.packages("protoshiny")

## launch application
library(protoshiny)

visualize hc()

The application is launched in a web browser window, and users can interact with
protoshiny by either uploading their own protoclust object (the result of running hier-
archical clustering with minimax linkage) or using one of the default test data sets that are
pre-loaded. The protoshiny package contains a convenience function (as.protoclust)
for converting general clustering objects to protoclust objects with the addition of a

user-specified vector of prototypes.



protoshiny is most useful in situations where the labels of clustered objects have in-
terpretable meaning. Here, “label” can be either some text or a thumbnail image. Table
1 provides a comparison of functionality between protoshiny and three other options —
two interactive and one static. The inclusion of interactivity, like collapsible nodes, zoom
and pan, and search functionality, in combination with labelled branches contribute to
the utility of protoshiny when compared to other options. Furthermore, the web-based
framework allows for a hosted version to remove any need for a user to install software.
Khan (2018) also provide a web-based interactive tree, however this package does not dis-
play the tree structure as a dendrogram, thus losing the visual representation of similarity
between elements through height of branches. Sieger et al. (2017) provides improvements
over a static dendrogram in situations where a heatmap is useful whereas protoshiny is
most useful when observation labels are informative (e.g., clustering words, movies, images,
counties). In some cases, a dissimilarity is all that can be computed (without observations

being points in a space) and in such a situation a heatmap is not even available.

3 Case Studies

We now demonstrate the workflow through three case studies. These examples highlight
various features of the protoshiny tool and convey how they can lead to greater insight

into a data set.

3.1 Movies

In this section, we explore a hierarchical clustering of 13,816 movies. We use the MovieLens
25M Data set (Harper & Konstan 2015), which is based on users’ ratings and taggings of
movies. Vig et al. (2012) show how movies can be embedded in a vector space in which
each dimension gives the relevance score of this movie to a particular tag. In the data we
use, there are 1,128 such tags. Each movie is represented by a 1,128-dimensional vector
of relevance scores. For example, the five tags with the highest relevance scores for the
1993 movie Groundhog Day are time loop, comedy, original, imdb top 250, and small

town.
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Table 1: Comparison of functionality between protoshiny and three other options — two

interactive and one static.

Functionality protoshiny Static idendr0 collapsibleTree

Dendrogram  (Sieger et al. (Khan 2018)
2017)

Interactivity v v v

Zoom and Pan v v v

Tree as Dendrogram v v v

Cluster Export v v

Large Data v v

Web-based v v

Labelled Branches v v

Collapsible Nodes v v

Thumbnail Images v

Search v

Heatmap v

Linked Brushing v
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Given this embedding, we perform hierarchical clustering with minimax linkage and
dissimilarities given by one minus the correlation between the movies’ relevance score vec-
tors. An example of creating and saving a protoclust object for this clustering is provided
below. In the following code snippet, D represents a matrix of the dissimilarities between
movie vector embeddings. After the cluster object is created, the protoshiny application

can be launched to visually explore the results.

library(protoclust) # clustering with minimaz linkage

## perform clustering on a distance matriz D

hc <- protoclust(D)

## save object in known location

save (hc, "directory/hc.Rdata")

Once the data is loaded into the application via the interface, the user can choose for
prototype labels to be either text (in which case labels come from the row names of D) or
thumbnail images. A screen capture of the option specification tab of the application is
shown in Figure 4. For the movie example, we will select text labels. There are also two
choices for the initial state of the dendrogram. The default is to show the top 10 nodes.
A second option, called “Dynamic Cut” is also included. In traditional usage, hierarchical
clustering yields a choice of n — 1 different clusterings, one clustering for each step of the
algorithm. Each interior node of a dendrogram represents the merging of a pair of clusters,
and the height of that node has meaning—-the height of the interior node corresponding
to the merging of clusters G and H is given by d(G, H), where d is the particular linkage
being used. Traditionally, to get a particular clustering, one “cuts” the dendrogram at a
chosen height h, returning the clustering given by the k branches resulting from the cut.

Langfelder et al. (2007) introduce an alternative to the fixed height cutting method
for dendrograms that is intended to have improved performance on complex dendrograms,
called “Dynamic Cut.” The proposed dynamic method is an adaptive approach that starts

with a fixed height cut and then iteratively splits and combines clusters until the number
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Figure 4: A screenshot of the initialization screen in protoshiny. A user has a choice of
labels used in the dendrogram (text or image) as well as an initial state of the dendrogram

(top 10 nodes or dynamic cut).

of clusters becomes stable. The joining heights of the initial clusters are used to detect sub-
cluster structure via a run-based calibration procedure. If sub-cluster structure is detected,
this cluster is split. Clusters are merged when their membership becomes too small. The
idea being that dynamic tree cutting may produce a more suitable starting view of the
dendrogram in an automated fashion. We have incorporated the dynamic tree cutting
methods in protoshiny by using the R package dynamicTreeCut (Langfelder et al. 2016).
In protoshiny, the user has the ability to specify the minimum size of the final clusters
resulting from dynamicTreeCut, which directly affects the number of nodes seen in the
initial view of the dendrogram. For visualization, we recommend choosing a minimum size
parameter that results in approximately 50 nodes to be displayed, however this choice can
be manually adjusted by the user.

Once all options have been set, the data analyst can view and interact with the den-
drogram by clicking the “Visualization” tab in the application. At this point an initial
dendrogram will be displayed and the data analyst can interact with the dendrogram in
the three ways described in Section 2.2: by clicking on nodes to expand/contract them;

by zooming and panning to particular portions of the dendrogram using the scroll or click
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and drag functionality of the analyst’s mouse; and lastly, by use of the search bar to reveal
the first instance of a particular prototype label. Prototype labels will be shown on each

branch of the dendrogram only when they differ from the parent branch prototype.

Home (2018 dning Your e (1991 O

Figure 5: (Left) A screenshot of the movies dendrogram after performing a search for the
movie Groundhog Day. (Right) A screenshot of the movies dendrogram after performing a

search for the movie Apollo 13

The left side of Figure 5 shows the result of using the search feature to find Groundhog
Day in the dendrogram. We see that its lowest prototypes in the tree are Defending
Your Life and Stranger than Fiction. These movies are natural choices as prototypes for
Groundhog Day since they all are a combination of comedy, drama, and fantasy. The
search feature finds the highest occurrence in the dendrogram of a movie. In the case of
Groundhog Day, it is not a prototype for any movie and therefore the search revealed the
movie as a leaf in the dendrogram, which is the highest occurrence of this movie in the
dendrogram. However, the right side of Figure 5 shows that when we search for the 1995
movie Apollo 13, this movie is a prototype for a branch of the tree, hence it shows up higher
in the dendrogram. Expanding this branch of the tree reveals that it is a prototype for four
historical space-related movies. The search feature returns only the highest occurrence of
a label in the dendrogram. For example, if the branch shown for Apollo 13 contained a
child branch for which Apollo 13 was also a prototype, it would not be displayed initially.

We provide a comparison of dendrograms resulting from a static plot, idendr0 (Sieger

et al. 2017), and collapsibleTree (Khan 2018) in the supplementary material for this
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case study.

3.2 Flow Cytometry in the Ocean

To study the time-changing biogeography of phytoplankton, oceanographers have devel-
oped the ability to perform continuous-time flow cytometry measurements on a ship as
it travels through the ocean (Swalwell et al. 2011). The output is a sequence of three-
dimensional scatterplots, in which points represent individual cells and a point’s location
in the scatterplot describes three optical properties of that cell. In this section, we use
protoshiny to explore the data collected from a cruise in the North Pacific over a two-
week period in Spring 2016 (Ribalet et al. 2019). The data set includes 6,336 scatterplots
(referred to as cytograms), each representing the cells measured during a three-minute time
interval. We note that clustering is commonly used to distinguish different cell types within
a cytogram; however, in this oceanographic setting, the goal is to understand the variability
in cytograms across different time points. Thus, we take as input in this example a 6,336-
by-6,336 dissimilarity matrix that was computed by Cape et al. (2020) based on the earth
mover’s distance (Rubner et al. (2000)) between cytograms, using an approach similar to
what was proposed in Orlova et al. (2016). Earth mover’s distance, which is also known
as Wasserstein’s distance, is a common approach to measuring the distance between two
distributions. It imagines these distributions as physical mounds of dirt and measures the
distance between these in terms of the minimum amount of dirt-moving needed to trans-
form one into the other. In this example, histogram-approximations of the scatterplots are
taken as the distributions on which earth mover’s distance is computed.

Figure 6 shows two screenshots of using protoshiny to explore the dendrogram. In
this example, every cytogram is visually labeled by a thumbnail image (showing a two-
dimensional projection of the cytogram), and a text label giving the timestamp of the
sample shows up on mouseover as a tooltip (not shown in figure). The color of the points
corresponds to a crude division (or “gating”) of the cells into three broad classes of cells.
The position of the vertical line represents the date of the measurement (from 2016-04-20 on
the far left to 2016-05-04 on the far right), and the position of the horizontal line represents

the time of day (from midnight on the bottom to 11:59pm on the top). In the left panel of
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Figure 6: (Left) Using protoshiny on the SeaFlow data allows one to get a simple high-
level view of the general types of structure present in the collection of over 6,000 cytograms

before (Right) drilling down into particular branches for more detailed examination.

Figure 6, one can discern in the three main branches of the dendrogram subtle differences in
the point cloud structure, providing a convenient, uncluttered high-level summary of over
6,000 cytograms. Unsurprisingly, exploration of the dendrogram reveals that cytograms
whose date-timestamps are close together tend to be clustered together. However, the right
panel of Figure 6 shows an exception. From comparing vertical bars in this branch, we
observe two cytograms from late in the cruise (2016-05-01) within a branch that otherwise
contains cytograms from a single day earlier in the cruise (2016-04-24). Interestingly, the
horizontal bar reveals that all cytograms from this branch (across both days) are from the
same time of day (10am—1lam). Further investigation reveals that the ship was in a very
similar latitude at these two dates. The cruise spanned over 16° of latitude in total while
the cytograms in this branch were all within 1.5° of each other.

The protoshiny package has now been integrated into the SeaFlow data curation
pipeline (Ribalet & Hynes 2020). In particular, it is used to rapidly check the consis-
tency and correctness of the cell population gating for cytograms by expanding prototype

nodes to examine clusters of similar cytograms.
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3.3 COVID-19

As of April 15, 2022, there have been 503,025,210 confirmed COVID-19 cases and 6,194,288
related deaths recorded worldwide, with 80,576,205 confirmed cases and 988,161 deaths
being attributed to the United States (Johns Hopkins University & Medicine 2022). A
positive relationship between human mobility and the spread of the COVID-19 virus has
been observed by multiple authors (Kraemer et al. 2020, Badr et al. 2020, Engle et al.
2020). Additionally, there is evidence that COVID-19 has been spread through the air
conditioning systems in restaurants (Lu et al. 2020). We are interested in investigating
the mobility patterns in counties in the US, with an additional focus of how this relates to
the spread of COVID-19 through the use of hierarchical clustering. We will consider the

following three questions:

1) Can we cluster US counties by residents’ behaviors—i.e., home mobility and restau-
rant mobility?

2) Are there any interesting patterns that emerge from a clustering of US counties by
residents’ behaviors?

3) Do those clustered US counties have similar trajectories of COVID cases?

To address these three questions, we use minimax linkage (as detailed in Section 2.1)
to obtain a dendrogram with prototypes and then use protoshiny to inspect the clusters
for interesting patterns. We use protoshiny’s image labels to address the second question,
and the application’s ability to quickly change image labels to address the third question
within a single session of protoshiny.

We use two data sources to perform this analysis—mobility data and case numbers.
The mobility data come from SafeGraph (2021) via the covidcast R package (Bien et al.
2021). We pull two mobility metrics from this data source—the fraction of mobile devices
that did not leave the immediate area of their home in each day per 100,000 population
(home mobility) and the number of daily visits made by those with SafeGraph’s apps to
restaurants in a certain region per 100,000 population (restaurant mobility). These two
mobility metrics are aggregated by county in the US by the CMU Delphi research group
as described in their documentation (CMU Delphi Research Group 2020), and we have
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pulled data from August 1, 2020 to Jan 15, 2021. The top of Figure 7 shows the mobility
data for one such county—Larimer County, CO—for the time period discussed. While
the home mobility measure has a slight increase over the winter months, there is a clear
drop in the restaurant mobility over the same time period. This can be explained by three
potential factors: (1) an increase in restrictions on restaurants limiting indoor dining in the
county that began on November 24, 2020 (O’Donnell 2020), (2) lower temperatures making
outdoor dining less pleasant, and (3) the suspension of on-campus learning at Colorado
State University on November 30, 2020 (Colorado State University 2020). It is of note that
indoor dining had an increase in Larimer County in late December, which preceded the
loosening of restrictions to allow for indoor dining on January 4, 2021 (Larimer County
2021) and may correspond to the return of students to the county.

In addition to clustering counties by mobility, we will also look at the COVID-19 case
numbers over time in each county. By looking at case numbers clustered by mobility trends,
we can hope to gain some insight into the relationship between them and address our third
question. The case numbers data is pulled from The New York Times, based on reports
from state and local health agencies (The New York Times 2021). The bottom of Figure
7 shows the case numbers for Larimer County, CO for the same date range (August 1,
2020 to Jan 15, 2021). There is a large spike in cases during the month of November,
corresponding to the weeks prior to the stricter county regulations.

In order to cluster the US counties by mobility, we create a dissimilarity matrix con-
sisting of one minus the correlation of the vectorized mobility data between counties after
centering and scaling the individual features, where the “vectorized” mobility data refers
to stacking the two sets of metrics on top of one another to create a vector of points. To
avoid issues with missing data values, we have removed counties that do not have complete
mobility data. This results in 2,428 counties to be clustered. Figure 8 shows the initial
overview of this clustering as seen within protoshiny. The thumbnails are scatterplots of
the two mobility metrics colored by region as defined by the 2010 U.S. Census (U.S. Census
Bureau 2010) with the increasing intensity of color to indicate time. Of the thumbnails
displayed in the initial screenshot of Figure 8, gray indicates U.S. territories, pink indi-

cates counties in the Midwest region, orange indicates counties in the South region, purple
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Figure 7: (Top) Mobility data with a seven-day moving average line for Larimer County,
CO from August 1, 2020 to January 15, 2021. While the home mobility measure has an
increasing trend over the winter months, there is a clear drop in the restaurant mobility
measure over the same time period. (Bottom) COVID-19 case numbers for Larimer County,
CO for thee same time period with seven-day moving average on top of the raw data. The
background of the plot is colored by trend as compared to two weeks prior. Light blue
indicates lower case numbers, yellow indicates unchanged numbers, and orange and red
shades indicate increasing levels of case numbers. There is a large spike in cases during the

month of November, corresponding to the weeks prior stricter county regulations.
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Figure 8: Using protoshiny on the COVID-19 mobility data before drilling down into
particular branches for more detailed examination. The thumbnails are scatterplots of the
two mobility metrics colored by region as defined by the 2010 U.S. Census — gray indicates
U.S. territories, pink indicates counties in the Midwest region, orange indicates counties
in the South region, purple indicates counties in the Northeast region, and teal indicates

counties in the West region — with the increasing intensity of color to indicate time.

indicates counties in the Northeast region, and teal indicates counties in the West region.

It is straightforward to drill down to the first instance of Larimer County, CO, as seen
in the top of Figure 9 by using the search functionality. Interestingly, Larimer County is a
prototype for the neighboring Weld County, CO. From this detailed view in protoshiny,
we are able to see clear geographic clusters have occurred even though geography was not
included in the dissimilarity matrix. Specifically, all of the counties colored in green are
in the west region of the US, and, further, they are all Colorado counties. This indicates
there are geographic patterns in mobility and distancing behavior, specifically with regards
to staying home and going to restaurants. This is not unexpected due to the state-wide
policies that have or have not been put in place in each state at different times.

By changing the labels in protoshiny to scatterplots of COVID-19 cases per day with-
out altering the dissimilarity matrix used for clustering (see bottom of Figure 9), we can
explore possible connections between mobility and the COVID-19 case numbers in these

counties. In this instance, we have updated the image labels for each prototype without
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Figure 9: (Top) Using protoshiny on the COVID-19 mobility data to examine the clus-
ters containing Larimer County, CO. (Bottom) By changing the labels to scatterplots
of COVID-19 cases per day, we can explore possible connections between mobility and

COVID-19 case numbers in these counties.

changing the underlying clustering. From this view, the clustered Colorado counties ap-
pear to all have a similar pattern, with a large spike in November. The exception to this is
Boulder County, which is shown as a prototype for a different cluster than Larimer County
containing Boulder and Denver counties. This suggests that the mobility and distancing
behavior in Boulder is slightly different than Larimer, which is captured by the clustering
based on mobility and distancing, and might explain a portion of the difference in case

numbers. This illustrates that a data analyst can change the thumbnails in protoshiny
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without having to reload the dendrogram, which allows this change to be quickly accom-

plished for the same clustering object and can lead to further insights into the data.

4 Discussion

In this paper, we have presented a workflow and accompanying tool that renders dendro-
grams from hierarchical clustering useful for exploring data sets at scales of interest. The
approach combines interactivity with the idea of using prototypes to summarize branches
of a dendrogram. The result is a novel way to gain insight from hierarchical clustering on
more realistically sized data sets. We have also presented three case studies to highlight
the multiple strengths of the approach in diverse domains.

In addition to the functionality presented in this paper, protoshiny also features the
ability to save and download the resulting clusters that result from a session. It is also
possible to load a clustering resulting from a previously saved session in protoshiny back
into the tool and display the dendrogram with expanded and contracted branches exactly
as before. This is a step towards more reproducible analyses resulting from an interactive
online application. The ability to export the current clusters allows for more natural
integration of protoshiny into users’ current analysis workflows. A related direction for
future work will be to add more features to the R API for fast loading of clustering objects
and labels into the browser tool.

While protoshiny does expand on the utility of dendrograms for larger data sets, a
current limitation of the tool is extreme scalability. One can imagine a massive dendrogram
that would not even be loadable into the tool due to the framework in place. Currently, the
entire tree is loaded from the server side into the client side of the application at one time
and different branches are hidden or shown to the user in their browser via clicks. In the
case of a massive tree, it may make sense to only load relevant parts of the tree as a user
clicks through and expands branches. While it is entirely possible to shift the framework
of protoshiny, a limitation remains in that the clustering must first be calculated on
the entire data set. Currently the authors have loaded data sets of size about 20,000
observations with no issue. Nonetheless, even in its current form protoshiny provides new

capabilities for practitioners to explore their data sets in a way that previously was not
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possible.
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