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11 Abstract

12 Modern high-throughput sequencing technologies provide low-cost microbiome sur-
13 vey data across all habitats of life at unprecedented scale. At the most granular level,
14 the primary data consist of sparse counts of amplicon sequence variants or operational
15 taxonomic units that are associated with taxonomic and phylogenetic group informa-
16 tion. In this contribution, we leverage the hierarchical structure of amplicon data and
17 propose a data-driven and scalable tree-guided aggregation framework to associate
18 microbial subcompositions with response variables of interest. The excess number of
19 zero or low count measurements at the read level forces traditional microbiome data
20 analysis workflows to remove rare sequencing variants or group them by a fixed taxo-
21 nomic rank, such as genus or phylum, or by phylogenetic similarity. By contrast, our
2 framework, which we call trac (tree-aggregation of compositional data), learns data-
23 adaptive taxon aggregation levels for predictive modeling, greatly reducing the need
2% for user-defined aggregation in preprocessing while simultaneously integrating seam-
25 lessly into the compositional data analysis framework. We illustrate the versatility of
26 our framework in the context of large-scale regression problems in human gut, soil,
27 and marine microbial ecosystems. We posit that the inferred aggregation levels pro-
28 vide highly interpretable taxon groupings that can help microbiome researchers gain
20 insights into the structure and functioning of the underlying ecosystem of interest.

» Introduction

1 Microbial communities populate all major environments on earth and significantly contribute
> to the total planetary biomass. Current estimates suggest that a typical human-associated
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13 microbiome consists of ~ 10'® bacteria [I] and that marine bacteria and protists contribute
1 to as much as 70% of the total marine biomass [2]. Recent advances in modern targeted
55 amplicon and metagenomic sequencing technologies provide a cost effective means to get
s a glimpse into the complexity of natural microbial communities, ranging from marine and
w soil to host-associated ecosystems [3, 4 [5]. However, relating these large-scale observational
;s microbial sequencing surveys to the structure and functioning of microbial ecosystems and
3 the environments they inhabit has remained a formidable scientific challenge.

40 Microbiome amplicon surveys typically comprise sparse read counts of marker gene se-
a quences, such as 16S rRNA, 185 rRNA, or internal transcribed spacer (ITS) regions. At
22 the most granular level, the data are summarized in count or relative abundance tables of
13 operational taxonomic units (OTUs) at a prescribed sequence similarity level or denoised
s« amplicon sequence variants (ASVs) [6]. The special nature of the marker genes enables taxo-
»s nomic classification [7, 8, (9] [10] and phylogenetic tree estimation [11], thus allowing a natural
s hierarchical grouping of taxa. This grouping information plays an essential role in standard
s microbiome analysis workflows. For example, a typical amplicon data preprocessing step
s uses the grouping information for count aggregation where OTU or ASV counts are pooled
» together at a higher taxonomic rank (e.g., the genus level) or according to phylogenetic sim-
so ilarity [12l [13] [14] [15], [16]. This approach reduces the dimensionality of the data set and
st avoids dealing with the excess number of zero or low count measurements at the OTU or
52 ASV level. In addition, rare sequence variants with incomplete taxonomic annotation are
53 often simply removed from the sample.

54 This common practice of aggregating to a fixed taxonomic or phylogenetic level and
ss then removing rare variants comes with several statistical and epistemological drawbacks.
ss A major limitation of the fixed-level approach to aggregation is that it forces a tradeoff
57 between, on the one hand, using low-level taxa that are too rare to be informative (requiring
s throwing out many of them) and, on the other hand, aggregating to taxa that are at such
so a high level in the tree that one has lost much of the granularity in the original data.
s Aggregation to a fixed level attempts to impose an unrealistic “one-size-fits-all” mentality
61 onto a complex, highly diverse system with dynamics that likely vary appreciably across
s2 the range of species represented. A fundamental premise of this work is that the decision
s of how to aggregate should not be made globally across an entire microbiome data set
s a priori but rather be integrated into the particular statistical analysis being performed.
ss Many factors, both biological and technical, contribute to the question of how one should
s aggregate: biological factors include the characteristics of the ecosystem under study and
e the nature of the scientific question; technical aspects include the abundance of different
¢ taxa, the available quality of the sequencing data—including sequencing technology, sample
s sequencing depth, and sample size—all of which may affect the ability to distinguish nearby
70 taxa.

7 Another important factor when considering the practice of aggregating counts is that
2 standard amplicon counts only carry relative (or “compositional”) information about the
73 microbial abundances and thus require dedicated statistical treatment. When working with
7+ relative abundance data, the authors in [17, [18] [19] posit that counts should be combined
s with geometric averages rather than arithmetic averages. The common practice of perform-
7 ing arithmetic aggregation of read counts to some fixed level before switching over to the
77 geometric-average-based compositional data analysis workflow is unsatisfactory since the
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7 “optimal” level for fixed aggregation is likely data-dependent, and the mixed use of different
70 averaging operations complicates interpretation of the results.

A
higher taxonomic levels B higher taxonomic levels
order order
family family
genus genus
species species
OTU/ASV OTU/ASV

B B2 B3 Bs O 7 s Bo P Bu P2 31 B ;B 39 Po Bu Pz Bz Bu Bis Pie

C: trac (a = 1) selected taxa

Data n p Kingdom Phylum Class Order Family Genus Species OTU
Gut (HIV): sCD14 152 539 0.6 1.0 0.0 0.5 2.8 1.9 0.1 0.0
Gut (AGP): BMI 6266 1387 0.9 2.2 1.2 4.1 13.3 14.6 54 726
Central Park Soil: pH 580 3379 1.0 2.0 3.2 2.1 1.8 0.1 0.0 0.0
Central Park Soil: Mois 580 3379 0.8 2.9 1.3 1.5 0.7 0.3 0.0 0.0
Fram Strait (PA): Leucine 26 3320 0.0 0.7 1.0 0.6 1.7 0.0 0.0 0.0
Fram Strait (FL): Leucine 25 4510 0.0 0.0 1.8 0.2 0.1 0.0 0.0 0.0
Ocean (TARA): Salinity 136 8916 0.9 14 2.6 0.8 0.9 0.3 0.0 0.0

Figure 1: Illustration of fixed level and trac-based taxon aggregation. The trees represent
the available taxonomic grouping of 16 base level taxa at the leaves (here OTU or ASV).
A: Arithmetic aggregation of OTUs/ASVs to a fixed level (genus rank). All taxon base
level counts are summed up to the respective parent genus. B: trac’s flexible tree-based
aggregation in which the choice of what level to aggregate to can vary across the tree (e.g.,
two OTUs/ASVs, two species, one genus, and one family). The aggregation is based on
the geometric mean of OTU/ASV counts and determined in a data-adaptive fashion with
the goal of optimizing to the particular prediction task. C: Summary statistics of standard
trac-inferred aggregation levels on all seven regression tasks. The Data column denotes
the respective regression scenario (study name and outcome of interest), n the number
of samples, and p the number of base level taxa (OTUs) in the data. The values in the
taxonomic rank columns (Kingdom, Phylum, etc.) indicate the average number of taxa
selected on that level by trac in the respective regression task. Averages are taken over ten
random training/out-of-sample test data splits.

80 To address these concerns, we propose a flexible, data-adaptive approach to tree-based
a1 aggregation that fully integrates aggregation into a statistical predictive model rather than
22 relegating aggregation to preprocessing. Given a user-defined taxon base level (by default,
&z the OTU/ASV level), our method trac (tree-aggregation of compositional data) learns
s dataset-specific taxon aggregation levels that are optimized for predictive regression model-
s ing, thus making user-defined aggregation obsolete. Using OTU/ASVs as base level, Figure
86 illustrates the typical aggregation-to-genus level approach whereas Figure shows the
s7  prediction-dependent trac approach. The trac method is designed to mesh seamlessly with
s the compositional data analysis framework by combining log-contrast regression [20] with
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s tree-guided regularization, recently put forward in [2I]. Thanks to the convexity of the un-
o derlying penalized estimation problem, trac can deliver interpretable aggregated solutions
a1 to large-scale microbiome regression problems in a fast and reproducible manner.

o We demonstrate the versatility of our framework by analyzing seven representative regres-
03 sion problems on five datasets covering human gut, soil, and marine microbial ecosystems.
u Figure summarizes the seven scenarios in terms of size of the microbial datasets and
s the average number of taxonomic aggregation levels selected by trac-inferred in the respec-
o tive regression tasks. For instance, for the prediction of sCD14 concentrations (an immune
o marker in HIV patients) from gut microbiome data, trac selects, on average (over ten ran-
¢ dom training/test experiments), more taxa at the family level than any other taxonomic
o level, while it selects no taxa at the class or OTU level. By contrast, for the prediction of pH
wo in the Central Park Soil data, class level taxa are selected more on average than any other
w1 level. This highlights the considerable departure from a typical fixed-level aggregation when
102 prediction is the goal. Furthermore, the variability across the seven scenarios suggests that
03 different amounts of aggregation may be warranted in different data sets.

104 Our trac framework complements other statistical approaches that make use of the
105 available taxonomic or phylogenetic structure in microbial data analysis. For example, [22]
ws uses phylogenetic information in the popular unifrac metric to measure distances between
107 microbial compositions. The authors in [23] 24, 25| 26] combine tree information with the
s idea of “balances” from compositional data analysis [I§] to perform phylogenetically-guided
w9 factorization of microbiome data. Others have included the tree structure in linear mixed
o models [27, 28], use phylogenetic-tree-based regression for detecting evolutionary shifts in
w trait evolution [29], and integrate tree-information into regression models for microbiome
12 data [30, 31].

13 Along with our novel statistical formulation, we offer an easy-to-use and highly scalable
us  software framework for simultaneous taxon aggregation and regression, available in the R
us package trac at https://github.com/jacobbien/trac. The R package trac also includes
us  a fast solver for standard sparse log-contrast regression [15] to facilitate comparative analyses
ur and a comprehensive documentation and workflow vignette. All data and scripts to fully
us reproduce the results in this manuscript are available on Zenodo at https://doi.org/10.
1o 5281/zenodo.4734527.

120 We next introduce trac’s mathematical formulation and discuss the key statistical and
21 computational components of the framework. We also give an overview of the microbial
122 data set collection and the comparative benchmark scenarios. To give a succinct summary
123 of the key aspects of trac modeling on microbiome data, we will present and discuss three
124 of the seven regression scenarios in detail. The other scenarios are available in the Sup-
s plementary Material. We conclude the study by highlighting key observations and provide
s recommendations and viable extensions of the trac framework.
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=~ Materials and methods

»s Modeling strategy

129 Let y € R™ be n observations of a variable we wish to predict and let X € R}”” be a matrix
o with Xj;; giving the number of (amplicon) reads assigned to taxon j in sample i. The total
13 number of reads ) ;Xij in sample 7 is a reflection of the sequencing process and therefore
12 should not be interpreted as providing meaningful information about the biological sample
133 itself. This observation has motivated the adoption of compositional data methods, which
134 ensure that analyses depend only on relative abundances. Following the foundational work
135 in [20], one appropriate model for regression with relative abundance data is the log-contrast
135 model where the outcome of interest is modeled as linear combinations of log-ratios (i.e.,
137 log-contrasts) of relative abundance features. For high-dimensional microbiome data, the
133 authors in [15] propose solving an ¢;-penalized regression estimator that includes a zero-sum
130 constraint on the coefficients, the so-called sparse log-contrast model. Writing log(X) for
wo the matrix with ijth entry log(.X;;), their estimator is of the form

minimizegepe L (y — log(X)B) + AP(8) s.t. 13 =0. (1)

Here, L(r) = (2n)7!|r||* is the squared error loss and P(3) = ||3||; is the ¢; penalty [32].
The zero-sum constraint ensures that this model is equivalent to a log-contrast model [33]
and invariant to sample-specific scaling. To understand the intuition behind the sparse log-
contrast model, imagine that 3; and 3} are the only two nonzero coefficients. In such a case,
the zero-sum constraint implies that predictions will be based on only the log-ratio of these
two taxa. This can be seen by noting that 5, = —f, and so our model’s prediction for
observation ¢ would be given by the following:

[log(X)B]; = B;log(Xy;) + By log(Xix) = Bjlog(Xij) — Bjlog(Xix) = B log(Xij/ Xix)-

Thus, using a log has the effect of turning differences into ratios. In addition, the zero-sum
constraint provides invariance to sample-specific scaling: Replacing X by DX, where D is
an arbitrary diagonal matrix, leaves Eq. unchanged:

p

log(DX)B); = > log(DiXij)B; = > [log(Dyi) B; + log(Xi;)B;] = 0 + [log(X)Bl:.

j=1 j=1

11 The choice of the ¢; penalty was motivated in [15] by the high dimensionality of microbiome
12 data and the desire for parsimonious predictive models. However, such a penalty is not
13 well-suited to situations in which large numbers of features are highly rare [21], a well-
e known feature of amplicon data. A common remedy, also adopted in [I5], is to aggregate
us taxa at the base level, e.g., OTUs or ASVs, to the genus level and then to screen out all
us but the most abundant genera. Figure depicts this standard practice: taxonomic (or
17 phylogenetic) information in the form of a tree 7 is used to aggregate data, usually in an
s arithmetic manner (i.e. by summing), to a fized level of the tree.
Our goal is to make aggregation more flexible (as illustrated in Figure ), to allow
the prediction task to inform the decision of how to aggregate, and to do so in a manner
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that is consistent with the log-contrast framework introduced above. A key insight is that
aggregating features can be equivalently expressed as setting elements of 5 equal to each
other. For example, suppose we partition the p base level taxa into K groups Gi,...,Gg
and demand that § be constant within each group. Doing so yields K aggregated features.
If all of the 8, in group Gy, are equal to some common value 7, then

Zﬁj log(Xi;) = Z’Yk (Z IOg(Xij)) = Z’yk‘Gﬂ - log [( H Xl.j)l/Gk] _

k=1 jeGy JEGK

Thus, we are left with a linear model with K aggregated features, each being proportional
to the log of the geometric mean of the base level taxa counts.

Associating the elements of § with the leaves of T, the above insight tells us that if
our estimate of 3 is constant within subtrees of 7, then that corresponds to a regression
model with tree-aggregated features. In particular, each subtree with constant [g-values
will correspond to a feature, which is the log of the geometric mean of the counts within
that subtree. The trac estimator uses a convex, tree-based penalty Pz () for the penalty
in Eq. that is specially designed to promote  to have this structure that is based on
subtrees of 7. The mathematical form of Pr(f) is given in Supplementary Material B.
There, we show that the trac estimator reduces to solving the optimization problem:

minimize,cgir-1 L (y — log(geom(X;T))a) + A Z walaw] st L Ta=0,  (2)
ueT —{r}

where geom(X;7) € R™ (7= is a matrix where each column corresponds to a non-root
node of 7 and consists of the geometric mean of all base level taxa counts within the subtree
rooted at u. Comparing this form of the trac optimization problem to Eq. reveals an
alternate perspective: trac can be interpreted as being like a sparse log-contrast model but
instead of the features corresponding to base level taxa, they correspond to the geometric
means of non-root taxa in T (i.e., X is replaced by geom(X;7)). This also facilitates model
interpretability since we can directly combine positive and negative predictors into pairs of
log-ratio predictors. For example, if taxa «,, > 0 and «,, < 0 are the only nonzero coefficients,
then our predictions would be based on

mtey]

The particular choice of penalty is a weighted ¢;-norm. While the trac package allows the
user to specify general choices of weights w, > 0, a convenient and interpretable strategy
is to set weights to be an inverse power of the number of leaves in the subtree rooted at u,
wy = |Ly,|™® The scalar parameter a € R controls the overall aggregation strength, with
a = 1 being the default setting in trac. If the user decreases a, trac favors aggregations at
a lower level of the tree. For a sufficiently negative, trac admits solutions equivalent to a
sparse log-contrast model without aggregation since only leaves (with |L,| = 1) will remain
unaffected by the weight scaling. The regularization parameter A\, on the other hand, is a
positive number determining the overall tradeoff between prediction error on the training
data and how much aggregation should occur. By varying A\, we can trace out an entire
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160 solution path &()), from highly sparse solutions (large A) to more dense solutions involving
o many taxa (small ). This “aggregation path” can itself be a useful exploratory tool in that
it provides an ordering of the taxa as they enter the model.

» Computation, model selection, and prediction

i3 Using trac in practice requires the efficient and accurate numerical solution of the convex
74 optimization problem, specified in Eq. , across the full aggregation path. We experimented
115 with several numerical schemes and found the path algorithm of [34] particularly well-suited
e for this task. The trac R package internally uses the path algorithm implementation from the
17 c-lasso Python package [35], efficiently solving even high-dimensional trac problems. The
s trac package also provides a fast implementation of sparse log-contrast regression [15] for
1o model comparison. The R package reticulate [36] is instrumental in connecting trac with
180 the underlying Python library. The R packages phyloseq [37], ggplot2 [38], ape [39], igraph
s [40], and ggtree [41] are used for operations on tree structures and visualization.

To find a suitable aggregation level along the solution path, we use cross validation (CV)
with mean squared error to select the regularization parameter A\ € [y, Amax] for all the
results presented in this paper. In particular, we perform 5-fold CV with the “one-standard-
error rule” (1SE) [42], which identifies the largest A whose CV error is within one standard
error of the minimum CV error. This heuristic purposely favors models that involve fewer
taxa and are therefore easier to interpret. (We also use the 1SE rule to select A for the sparse
log-contrast model.) The parameter a is a user-defined control parameter and not subject
to a model selection criterion. Having solved the trac optimization problem and chosen a
value of the tuning parameter (S\Chosen), we can predict the response value at a new sample.
Given a new vector of abundances Z € R’ , we predict the response to be

:g(ii’) = Z du(j\chosen) ’ 10g[geom(i‘a T)u]
ueT —{r}

1.2 Due to trac’s sparsity penalty, in general only a small number of coefficients will be non-zero,
183 and thus the predictions will depend on only a small number of taxas’ geometric means.

s Data collection

185 We assembled a collection of five publicly available and previously analyzed datasets, span-
15 ning human gut, soil, and marine ecosystems (see also Data column in Figure ) All
17 datasets, except for Tara, consist of 16S rRNA amplicon data of Bacteria and Archaea in
188 the form of OTU count tables, taxonomic classifications, and measured covariates, as pro-
189 vided in the original publications. For ease of interpretability, we leverage the taxonomic tree
1o information rather than phylogeny in our aggregation framework. To investigate potential
191 human host-microbiome interactions, we re-analyze two human gut datasets, one cohort of
102 HIV patients (Gut [HIV]), available in [43], comprising p = 539 OTUs and n = 152 samples,
103 and the other a subset of the American Gut Project data (Gut (AGP)) [5], provided in [44],
10 comprising p = 1387 OTUs present in at least 10% of the n = 6266 samples. To study niche
105 partitioning in terrestrial ecosystems, we use the Central Park soil dataset [45], as provided
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106 by [23], which consists of p = 3379 OTUs and n = 580 samples with a wide range of soil prop-
17 erty measurements. For marine microbial ecosystems, we consider a sample collection from
s the Fram Strait in the North Atlantic [46], available at https://github.com/edfadeev/
19 Bact-comm-PS85. The data set consists of n = 26 samples for p = 3320 OTUs in the particle-
200 associated size class, and n = 25 samples for p = 4510 OTUs in the free-living size class. The
21 second marine dataset is the Tara global surface ocean water sample collection [3], available
202 at http://ocean-microbiome.embl.de/companion.html, which comprises metagenome-
203 derived OTUs (mOTUs). In Tara, each of the p = 8916 mOTUs considered here is present
204 in at least 10% of the n = 136 samples. All data and analysis scripts are available in fully
205 reproducible R workflows at https://github.com/jacobbien/trac-reproducible. Since
26 trac can operate on any taxon base level, we provide all data sets both in the form of
20 the original (m)OTU base level as well as in arithmetically aggregated form on higher-order
28 ranks, i.e., species, genus, family, order, class, and phylum. This facilitates straightforward
200 method comparison across different base level aggregations.

20 Method comparison and model quality assessment

an To provide a comprehensive model performance evaluation and to highlight the flexibility
212 of the trac modeling framework, we consider the following benchmark scenarios. Firstly,
23 we consider three different regression models. We choose the sparse log-contrast regression
2. model [I5] as the standard baseline of performing regression on compositional data and can
215 be considered as a limiting case of trac. In addition, we consider trac with two different
26 aggregation parameters a. The setting a = 1 is referred to as standard trac. The setting
a7 a = 1/2 is referred to as weighted trac and tends to favor aggregations closer to the leaf
218 level. Secondly, to assess the influence of arithmetic aggregation to a fixed level, e.g., the
219 genus level, we compare the performance of all regression models for three different input
20 base levels: OTU, genus, and family level.

221 To assess how well a log-contrast or trac model generalizes to “unseen” data, we ran-
22 domly select 2/3 of the samples in each of the considered datasets for model training and
23 selection. On the remaining 1/3 of the samples, we compute out-of-sample test mean squared
24 error as well as the Pearson correlation between model predictions and actual measurements
25 on the test set. While the out-of-sample test error serves as a key quantity to assess model
26 generalizability, we also record overall model sparsity, measured in terms of number of ag-
27 gregations (or taxa for sparse log-contrast models) in the trained model. Model sparsity
28 serves as measure how “interpretable” a model is. Finally, we repeat all analysis on ten
20 random training/test splits of the data to measure average test error and model sparsity.
20 'To ease interpretability, we analyze the trained models derived from split 1 in greater detail
2 throughout the next section and detail the biological significance of the derived regression
232 models.

= Results and Discussion

2 We next highlight key results of the trac framework for three of the seven regression sce-
235 narios described above on three different microbiome datasets. The first scenario considers
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26 the prediction of an immune marker (soluble sCD14) in HIV patients from microbiome data.
237 In this scenario, we detail the behavior of a typical trac aggregation path and the model
2 selection process. Furthermore, we compare the performance of trac models at different
20 taxon base levels (OTU, genus, and family level) and aggregation weights (a = {1/2,1})
20 with standard sparse log-contrast models and analyze the resulting taxa aggregations. In
2 the second scenario, we apply trac to predict pH concentrations in Central Park soil from
22 microbial abundances and compare the resulting aggregations to known associations of pH
23 and microbial taxa. The last scenario considers salinity prediction in the global ocean from
aa Tara mOTU data. Further trac prediction scenarios are available in the Supplementary Ma-
25 terial, including Body Mass Index (BMI) predictions on the American Gut Project Data, soil
a6 moisture prediction in Central Park soil, and primary productivity prediction from marine
27 microbes in two different size fractions in the North Atlantic Fram Strait.

»s Immune marker sCD14 prediction in HIV patients

a9 Infection with HIV is often paired with additional acute or chronic inflammation events in
0 the epithelial barrier, leading to disruption of intestinal function and the microbiome. The
1 interplay between HIV infection and the gut microbiome has been posited to be a “two-
2 way street” [47]: HIV-associated mucosal pathogenesis potentially leads to perturbation of
3 the gut microbiome and, in turn, altered microbial compositions could result in ongoing
24 disruption in intestinal homeostasis as well as secondary HIV-associated immune activation
»5  and inflammation.

256 Here, we investigate one aspect of this complex relationship by learning predictive models
257 of immune markers from gut amplicon sequences. While [48] were among the first to provide
s evidence that gut microbial diversity is a predictor of HIV immune status (as measured by
250 CD4+ cell counts), we consider soluble CD14 (sCD14) measurements in HIV patients as the
x0 variable to predict and learn an interpretable regression model from gut microbial amplicon
1 data. sCD14 is a marker of microbial translocation and has been shown to be an independent
22 predictor of mortality in HIV infection [49)].

263 Following [43], we analyze a HIV cohort of n = 152 patients where sCD14 levels (in pg/ml
26 units) and fecal 16S rRNA amplicon data were measured. Using as base level all available
s p = 39 bacterial and archaeal OTUs, we first illustrate the typical trac prediction and
266 model selection outputs with default weight parameter a = 1 on the first (of overall ten)
27 training/test splits in Figure . In Figure , we visualize the solution of the a coefficients
xs  associated with each aggregation along the regularization path. The vertical lines indicate the
%0 aggregations that were selected via cross-validation (CV) with the Minimum Mean Squared
20 Error (MSE, dotted line) and one-standard-error rule (1SE, dashed line) (see Figure[2B). On
on the test data, we highlight the relationship between test prediction performance of the trac
2z models versus the number of inferred aggregations (Figure[2D). Models between five and 28
213 aggregations show excellent performance on the test set. trac with the 1SE rule identified a
2 parsimonious model with aggregation to five main taxa (Figure ): the kingdom Bacteria,
o5 phylum Actinobacteria and the family Lachnospiraceae are negatively associated, and the
s family Ruminococcaceae and the genus Bacteroides are positively associated with sCD14
o7 counts, thus resulting in a trac model with three log-contrasts.
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Figure 2: Overview of trac aggregation and model selection with standard weighting a = 1
on the sCD14 data. A: Varying the trac regularization parameter A produces a solution
(aggregation) path. Each colored line corresponds to a distinct taxon, showing its « coeffi-
cient value as the tuning parameter A increases. The larger A is, the more coefficients are
set to 0, leading to a more parsimonious model. The dotted and dashed vertical lines mark
the A-values selected by the CV best and 1SE rule, respectively. B: Illustration of the cross-
validation (CV) procedure. Mean (and standard error) CV error vs. A path with selected A
values at best CV error (dotted vertical line) or with the 1SE rule (dashed vertical line) C:
The actual vs. predicted values of sCD14 on the test set (1SE rule in red, CV best in blue).
The Pearson correlation of trac predictions on the test set is 0.37 with the CV best solution
and 0.23 with the CV 1SE rule, respectively. D: Error on the test set vs. number of selected
aggregations. E: The trac model selected with the 1SE rule comprises five taxa across four
levels, listed in the bottom table (see Figure for tree visualization of the aggregations).
The column labeled a gives the nonzero coefficient values, which are in the same units as
the sCD14 response variable.

278 From a biological perspective, this trac analysis suggests a strong role of the Ruminococ-
a9 caceae to Lachnospiraceae family ratio and, to a lesser extent, the Ruminococcaceae to
20 Actinobacteria ratio in predicting mucosal disruption (as measured by sCD14). This fol-
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21 lows from observing the large positive a coefficient associated with Ruminococcaceae and
22 the large negative « coefficients associated with Lachnospiraceae and Actinobacteria (and
23 recalling the interpretation of the trac output in terms of log-ratios). The protective or
2sa  disruptive roles of Ruminococci or Lachnospiraceae in HIV patients is typically considered
s to be highly species-specific. Moreover, few consistent microbial patterns are known that
26 generalize across studies [50]. For instance, [51] report high variability and diverging patterns
27 of the differential abundances of individual OTUs belonging to the Ruminococcaceae and
28 Lachnospiraceae family in HIV-negative and HIV-positive participants. Our model posits
280 that, on the family level, consistent effects of these two families are detectable in amplicon
200 data. This also suggests that, with the right aggregation level, a re-analysis of recent HIV-
201 related microbiome data may, indeed, reveal reproducible patterns of different taxon groups
202 in HIV infection.

203 To quantify the effect of taxon base level and aggregation weight scaling a, we re-analyze
24 the data at OTU, genus, and family base level and compare trac models to sparse log-
205 contrast models at the respective base level. The latter approach thus reflects the default
26 mode of analysis, proposed in [I5], where sparse log-contrast modeling on fixed genus aggre-
207 gations was performed. Figure [3| visualizes the estimated trac aggregations (a = {1,1/2})
20 and sparse taxa on the taxonomic tree of the sCD14 data.

299 Figure and B show the estimated models with OTUs as taxon base level, Figure
300 and D with family base level. Figure highlights the previously discussed five aggre-
s gations from Figure (Bacteria, Ruminococcaceae, Lachnospiraceae, Actinobacteria, and
32 Bacteroides), found with standard trac (a = 1), by coloring the respective branches of the
33 corresponding full taxonomic tree. We observe that the selected OTUs of the sparse log-
;¢ contrast model (highlighted as black dots) cover each of the trac aggregations, including
s two OTUs in the phylum Actinobacteria, two OTUs in the family Ruminococcaceae, and
w6 one OTU in Lachnospiraceae family (see Suppl. Table 7 for the selected coefficients). Figure
307 highlights how weighted trac with a = 1/2 results in predictive models that can repre-
w8 sent a sort of compromise between both standard trac and sparse log-contrast components.
30 For instance, weighted trac still comprises the Ruminococcaceae family, the Actinobacteria
s phylum, and the Bacteroides genus but also shares four OTUs with the sparse log-contrast
su model. This exemplifies the flexibility of the trac framework in fine-tuning predictive mod-
sz els to the “right” level of aggregation. We observe a similar but less pronounced effect of
a3 the weighting when using aggregated family counts as taxon base level (Figure and D).
su The trac models comprise three and five aggregations, respectively, with the Actinobacteria
a5 phylum common to both. The sparse log-contrast model comprises six families, three of
n6 which are covered by the weighted trac model (two families in the Actinobacteria phylum
sz and the Enterobacteriaceae family).
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Figure 3: Taxonomic tree visualization of trac aggregations in four selected scenarios using
sCD14 data (training/test split 1). Each tree represents the taxonomy of the p = 539 OTUs.
Colored branches highlight the estimated trac taxon aggregations. The black dots mark the
selected taxa of the respective sparse log-contrast model. The outer rim represents the value
of A coefficients in the trac model from Eq. (I)). A: Standard trac (a = 1) with OTUs
as taxon base level selects five aggregations. B: Weighted trac (a = 1/2) with OTU base
level selects eleven aggregations, including six on the OTU level. Four of these OTUs were
also selected by the sparse log-contrast model which comprises nine OTUs in total (black
dots) (see Suppl. Tables 6 and 7 for the selected coefficients). C: Standard trac (a = 1)
with family base level selects three aggregations. D: Weighted trac (a = 1/2) with family as
taxon base level selects five aggregations, including one family (Enterobacteriacaeae) shared
with the sparse log-contrast model when also applied at the family base level (see Suppl.
Tables 10 for the six selected families).

To compare the different statistical models in terms of interpretability and prediction
quality, we report the sparsity level and the out-of-sample prediction errors, averaged over
ten different training/test splits, in Table . We observe that for the sCD14 data set, standard
trac with OTU base levels delivers the sparsest (on average, seven aggregations) and most
predictive solution (average test error 6.3e+06), followed by standard trac on the family
level (average test error 6.5e+06). The sparse log-contrast model with genus base level has
considerably reduced prediction capability (average test error 7.1e+06). On this data set,
weighted trac (a = 1/2) models show the expected intermediate properties between sparse
log-contrast and standard trac solutions.
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Base Level p trac (a =1) trac (a = 1/2) Sparse Log-Contrast

OTU 539 6.3¢406 (7)  6.7e-06 (9) 6.8¢+06 (8)
Genus 282 6.8e406 (7) 7.1e+06 (8) 7.1e+06 (9)
Family 112 6.5¢4+06 (4)  6.5e+06 (5) 6.6e+06 (7)

Table 1: Average out-of-sample test errors (rounded average model sparsity in parenthesis)
for trac (a = {1,1/2}) and sparse log-contrast models, respectively. Each row considers a
different base level (OTU, genus, and family). Each number is averaged over ten different
training/test splits of the sCD14 data.

Predicting Central Park soil pH concentration from microbiome
data

We next perform trac prediction tasks on environmental rather than host-associated mi-
crobiome data. We first consider soil microbial compositions since they are known to vary
considerably across spatial scales and are shaped by myriads of biotic and abiotic factors.
Using univariate regression models, the authors in [52] found that soil habitat properties, in
particular pH and soil moisture deficit (SMD), can predict overall microbial “phylotype” di-
versity. For instance, using n = 88 soil samples from North and South America, the authors
in [53] showed that soil pH concentrations are strongly associated with amplicon sequence
compositions, as measured by pairwise unifrac distances. Moreover, they found that soil
pH correlated positively with the relative abundances of Actinobacteria and Bacteroidetes
phyla, negatively with Acidobacteria, and not at all with Beta/Gammaproteobacteria ratios.

Here, we use trac on the Central Park soil data collection comprising n = 580 samples
and p = 3379 bacterial and archaeal OTUs [45, 23] to provide a refined analysis of the
relationship between soil microbiome and habitat properties. Rather than looking at the
univariate correlative pattern between soil properties and phyla, we build multivariate models
that take soil pH as the response variable of interest and optimize taxa aggregations using
trac and sparse log-contrast models. The predictive analysis for soil moisture is relegated
to the Supplementary Materials.
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Figure 4: Taxonomic tree visualization of trac aggregations (a = {1,1/2} using the Central
Park soil data (training/test split 1). Each tree represents the taxonomy of the p = 3379
OTUs. Colored branches highlight the estimated trac taxon aggregations. The black dots
mark the selected taxa of the sparse log-contrast model. The outer rim represents the value
of 3 coefficients in the trac model from Eq. (). A: Standard trac (a = 1) with OTUs as
taxon base level selects six aggregations. B: Weighted trac (a = 1/2) with OTU base level
selects 28 aggregations, including 13 on the OTU level. Four of these OTUs are also selected
by the sparse log-contrast model which comprises 21 OTUs in total (black dots) (see Suppl.
Tables 15 and 16 for the selected coefficients). C: The table lists the « coefficients associated
with Eq. (2) for the trac (a = 1) model corresponding to the tree shown in A. These values
are in the same units as the pH response variable.

For pH prediction, standard trac gives an interpretable model with six aggregated tax-
onomic groups (see Figure ): the two phyla Bacteroidetes and Verrucomicrobia and the
class Acidobacteria-6 were positively associated, whereas the order Acidobacteriales, the
class Gammaproteobacteria, and the overall kingdom of Bacteria (compared to Archaea)
were negatively associated with pH (see bottom table in Figure . We can thus associate
a log-contrast model with three log-ratios of aggregated taxonomic groups with soil pH in
Central Park. The overall Pearson correlation between the trac predictive model and the
training data was 0.68. On the test data, the model still maintained a high correlation of
0.65. With the standard caveat that regression coefficients do not have the same interpre-
tation (or even necessarily have the same sign) as their univariate counterparts, our model
also supports a positive relationship between the Bacteroidetes phylum and pH and gives
refined insights into the role of the Acidobacteria phylum. The model posits that the class
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Base Level p trac (a=1) trac (a =1/2) Sparse Log-Contrast

OTU 3379 0.4 (10) 0.39 (18) 0.39 (33)
Genus 2779 0.4 (13) 0.38 (22) 0.39 (26)
Family 1492 0.39 (10) 0.39 (15) 0.4 (29)

Table 2: Average out-of-sample test errors (rounded average model sparsity in parenthesis)
for trac (a = {1,1/2}) and sparse log-contrast models, respectively. Each row represents
the results for base level OTU, genus, and family. Each value is averaged over ten different
training/test splits of the Central Park soil data.

Acidobacteria-6 is positively related and the order Acidobacteriales (in the Acidobacteriia
class) is negatively related with pH. The authors in [23] observed similar groupings in their
phylofactorization of the Central Park soil data. There, the classes Acidobacteria-6 and
Acidobacteriia belonged to different “binned phylogenetic units” whose relative abundances
increased and decreased along the pH gradient, respectively. Finally, the phylum Verrucomi-
crobia and the class Gammaproteobacteria, included in our model, have been reported to be
highly affected by pH with several species of Gammaproteobacteria particularly abundant
in low pH soil [54].

In contrast to the sCD14 data analysis, weighted trac (a = 1/2) delivers a considerably
more fine-grained model with 23 aggregations, including 13 on the OTU level. While the
Acidobacteria-6 class is still selected as a whole, weighted trac picks specific OTUs and fam-
ilies in the Gammaproteobacteria class. Similar behavior is observed for the Acidobacteriales
order and the Bacteroidetes phylum. Moreover, novel orders, families, genera, and OTUs
from the Bacteria kingdom are selected. Four OTUs are shared with the sparse log-contrast
model which selects 21 OTUs overall.

To compare the models in terms of interpretability and prediction quality, we report in
Table [2| average out-of-sample prediction errors and sparsity levels at three different base
levels using ten different training/test splits. We observe that for the Central Park soil data
set, standard trac with OTU base levels delivers the sparsest solutions (on average, ten
aggregations), followed by weighted trac on the family level (on average, 15 aggregations).
The sparse log-contrast models delivers the densest models (26-33, on average). All models
are comparable in terms of out-of-sample test error (0.38-0.4).

Global predictive model of ocean salinity from Tara data

Integrative marine data collection efforts such as Tara Oceans [55] or the Simons CMAP
(https://simonscmap.com) provide the means to investigate ocean ecosystems on a global
scale. Using Tara’s environmental and microbial survey of ocean surface water [3], we next
illustrate how trac can be used to globally connect environmental covariates and marine
microbiome data. As an example, we learn global predictive models of ocean salinity from
n = 136 samples and p = 8916 miTAG OTUs [56]. Even though salinity is thought to be
an important environmental factor in marine microbial ecosystems, existing studies have
investigated the connection between the microbiome and salinity gradients mainly on a local
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;0 marine scale, in particular estuaries.

390 Standard trac (a = 1) identifies four taxonomic aggregations (see Figure [pJA), the king-
s dom Bacteria and the phylum Bacteroidetes being negatively associated and the class Al-
32 phaproteobacteria being strongly positively and Gammaproteobacteria being moderately
33 positively associated with marine salinity.

A:trac (a=1) B:trac (a = 1/2)

beta
my 0.001

Selected Taxa

0.000

. -0.002

Selected Taxa

Other
== c__Alphaproteobacteria
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== k_ Bacteria

p__Bacteroidetes || 002
C: trac (a = 1) selected taxa
Kingdom Phylum Class Order Family Genus Species OTU @
Bacteria  Proteobacteria  Alphaproteobacteria 4.00
Bacteria -2.92
Bacteria  Bacteroidetes -1.38
Bacteria  Proteobacteria Gammaproteobacteria 0.30

Figure 5: Taxonomic tree visualization of trac aggregations (OTUs as taxon base level, a =
{1,1/2} for salinity prediction using Tara data (training/test split 1). Each tree represents
the taxonomy of the p = 8916 miTAG OTUs. Colored branches highlight the estimated
trac taxon aggregations. The black dots mark the selected taxa of the sparse log-contrast
model. The outer rim represents the value of 3 coefficients in the trac model from Eq. .
A: Standard trac (a = 1) selects four aggregations on the kingdom, phylum, and class
level. B: Weighted trac (a = 1/2) selects ten aggregations across all taxonomic ranks,
including a single OTU (OTU520). This OTU is also selected by the sparse log-contrast
model which comprises nine OTUs in total (black dots) (see Suppl. Table 18 for the selected
coefficients). Both trac models select the phylum Bacteroidetes and the Alphaproteobacteria
class. C: The table lists the a coefficients associated with Eq. for the trac (a = 1) model
corresponding to the tree shown in A. These values are in the same units as the salinity
response variable.

304 Consistent with this trac model, a marked increase of Alphaproteobacteria with increas-
5 ing salinity was observed in several estuary studies [57, 58]. In a global marine microbiome
26 meta-analysis [59], Spearman rank correlations between relative abundances of microbial
;07 clades and several physicochemical water properties, including salinity, were reported, show-
w8 ing four out of five orders in the Bacteroidetes phylum to be negatively correlated with
30 salinity. However, three out of four orders belonging to Gammaproteobacteria were nega-
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Base Level p trac (a=1) trac (a =1/2) Sparse Log-Contrast

OTU 8916 2.1 (7) 1.8 (14) 1.3 (24)
Genus 4220 2 (7) 1.5 (14) 1.4 (34)
Family 1869 2.1 (6) 1.7 (10) 1.6 (13)

Table 3: Average out-of-sample test errors (rounded average model sparsity in parenthesis)
for trac (a = {1,1/2}) and sparse log-contrast models, respectively. Each row represents
the results for base level OTU, genus, and family and the corresponding dimensionality of
the base level. Each value is averaged over ten different training/test splits of the Tara data.

tively correlated with salinity, suggesting that the standard trac model does not univer-
sally agree with standard univariate assessments. However, as shown in Figure B, weighted
trac (a = 1/2) reveals a more fine-grained taxon aggregation, selecting the Halomonadaceae
family and the Marinobacter genus in the phylum Gammaproteobacteria to with negative
a coefficients and a Gammaproteobacteria OTU (OTU 520, order E01-9C-26 marine group)
with positive a coefficients, respectively (see also Supplementary Table 23). Likewise, out of
the nine OTUs selected by the sparse log-contrast model (black dots in Figure ,B), four
out of six selected Gammaproteobacteria OTUs have negative coefficients (including OTU
520), and two OTUs have positive coefficients.

In terms of model performance, the standard trac model shows good global predictive
capabilities with an out-of-sample test error of 1.99 (on training/test split 1). We observe,
however, that high salinity outliers located in the Red Sea (Coastal Biome) and the Mediter-
ranean Sea (Westerlies Biome) and a low salinity outlier (far eastern Pacific fresh pool south
of Panama) are not well captured by the model (see Supplementary Figure 5 for a scatter plot
of measured vs. predicted salinity). Weighted trac (a = 1/2) and the sparse log-contrast
models outperform standard trac on the salinity prediction task with an out-of-sample test
error (on split 1) of 1.94 and 1.52, respectively.

This boost in prediction quality is further confirmed by the average out-of-sample pre-
diction errors across all ten training/test splits and three base levels (see Table [3). Sparse
log-contrast models on the OTU and Genus base level perform best (average test error 1.3
and 1.4, respectively), followed by weighted trac on Genus level (1.5). However, standard
trac models are considerably sparser (six to seven aggregations) compared to log-contrast
models (13-24 taxa). Weighted trac models represent a good trade-off between predictability
and interpretability, selecting ten to fourteen taxa, on average.

Conclusions
Finding predictive and interpretable relationships between microbial amplicon sequencing
data and ecological, environmental, or host-associated covariates of interest is a cornerstone

of exploratory data analysis in microbial biogeography and ecology. To this end, we have
introduced trac, a scalable tree-aggregation regression framework for compositional ampli-
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a0 con data. The framework leverages the hierarchical nature of microbial sequencing data to
a0 learn parsimonious log-ratios of microbial compositions along the taxonomic or phylogenetic
a1 tree that best predict continuous environmental or host-associated response variables. The
a2 trac method is applicable to any user-defined taxon base level as input, e.g., ASV/OTU,
a3 genus, or family level, and includes a scalar tuning parameter a that allows control of the
aa overall aggregation granularity. As shown above, this allows seamless testing of a continuum
a5 of models to a data set of interest, with prior approaches to sparse log-contrast modeling
s6 modeling as special limit cases [15, 60, 43]. The framework, available in the R package
s trac and Python [35], shares similarities with ideas from tree-guided, balance modeling of
18 compositional data [18] 24] 23], albeit with a stronger focus on finding predictive relation-
a0 ships and emphasis on fast computation thanks to the convexity of the formulation and the
w0 underlying efficient path algorithm.

aa1 Our comprehensive benchmarks and comparative analysis on host-associated and envi-
w2 ronmental microbiome data revealed several notable observations. Firstly, across almost all
w3 tested taxon base levels and methods, standard trac (a = 1) resulted in the most parsimo-
wa  nious models and revealed data-specific taxon aggregations comprising all taxonomic orders.
as  This facilitated straightforward model interpretability despite the high-dimensionality of the
as data. For instance, on the sCD14 data, the standard trac model with OTU base level
wr  asserted a particularly strong predictive role of the Ruminococcaceae/Lachnospiraceae fam-
ag ily ratio for sCD14, thus generating testable biological hypothesis. Likewise, trac analysis
wmo on environmental microbiomes in soil and marine habitats consistently provided parsimo-
w0 nious taxonomic aggregations for predicting covariates of interest. For instance, Alpha- and
s Gammaproteobacteria/Bacteroidetes ratios well-aligned with sea surface water salinity on a
2 global scale, reminiscent of the ubiquitous Firmicutes/Bacteroidetes ratio in the context of
53 the gut microbiome and obesity [61], 62].

454 Secondly, arithmetic aggregation of OTUs to a higher taxonomic base level prior to
w5 trac or sparse log-contrast modeling did not result in significant predictive performance
s6  gains. In fact, using OTUs as base level, at least one of the three statistical methods showed
w7 superior test error performance while maintaining a high level of sparsity. These results
s suggest that a user may safely choose the highest level of resolution of the data (e.g., mOTUs,
0 OTUs, or ASVs) in (weighted) trac models without sacrificing prediction performance.

460 Thirdly, while standard trac models always showed good predictive performance on out-
w1 of-sample test data, our comparative and average analysis indicated that weighted trac and
w2 sparse log-contrast models can outperform the parsimonious trac models in terms of test
w3 error, particularly on environmental microbiome data. For instance, on Central Park soil
ws  data, we observed moderate performance gains using weighted trac, and on marine data
w5 (see Extended Results in the Supplementary Material for the Fram Strait dataset), sparse
w6 log-contrast models showed, on average, the best predictive performance. These results add
w7 a valuable piece of information to the ongoing debate about the usefulness of incorporating
ws  phylogenetic or taxonomic information into statistical modeling. For example, the authors
w0 in [63] convincingly argue that incorporating such information provides no gains in microbial
a0 differential abundance testing scenarios.

ant We posit that, in the context of statistical regression, full comparative trac analyses like
a2 the ones presented here, can immediately determine in a concrete and objective way whether
a3 phylogenetic or taxonomic information is useful for a particular prediction task on the data
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an set of interest.

a7 The trac framework naturally lends itself to several methodological extensions that are
a6 easy to implement and may prove valuable in microbiome research. Firstly, as apparent in
a7 the gut microbiome context, inclusion of additional factors such as diet and life style would
as  likely improve prediction performance. This can be addressed by combining trac with stan-
a0 dard (sparse) linear regression to allow the incorporation of (non-compositional) covariates
0 into the statistical model (see, e.g., [64]). Secondly, while we focused on predictive regression
w1 modeling of continuous outcomes, it is straightforward to adopt our framework to classifi-
w2 cation tasks when binary outcomes, such as, e.g., case vs. control group, or healthy vs.
w3 sick participants, are to be predicted. For instance, using the (Huberized) square hinge loss
e (see, e.g., [65]) as objective function L(-) in Eq. (2) would provide an ideal means to handle
5 binary responses while simultaneously enabling the use of efficient path algorithms (see [35]
s and references therein). Thirdly, due to the compositional nature of current amplicon data,
w7 we presented trac in the common framework of log-contrast modeling. However, alternative
s forms of tree aggregations over compositions are possible, for instance, by directly using
w0 the relative abundances as features rather than log-transformed quantities. Tree aggrega-
w0 tions would then amount to grouped relative abundance differences and not log-ratios, thus
w1 resulting in a different interpretation of the estimated model features.

492 In summary, we believe that our methodology and its implementation in the R pack-
w3 age trac, together with the presented reproducible application workflows, provide a valu-
s able blueprint for future data-adaptive aggregation and regression modeling for microbial
w5 biomarker discovery, biogeography, and ecology research. This, in turn, may contribute to
w6 the generation of new interpretable and testable hypotheses about host-microbiome interac-
w7 tions and the general factors that shape microbial ecosystems in their natural habitats.
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A Data and Code availability

The data and code for fully reproducing all results presented in this manuscript are avail-
able at Zenodo at https://doi.org/10.5281/zenodo.4734527. The simulation code has
been tested on R version 4.0. The trac R package is available at https://github.com/
jacobbien/trac. A vignette describing key functionalities of the package and an archetypi-
cal workflow are available at https://jacobbien.github.io/trac/articles/trac-example.
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» B Derivation of Optimization Problem

We design a convex tree-based penalty Pz (/) that promotes 3 to be constant along branches
of T. We encode T through a binary matrix A € {0, 1}?*(71=Y indicating whether feature
J is a leaf of each non-root node u € T — {r}, that is A;, = 1{j € L£(u)} where L(u) is the
set of leaves that descend from u. In particular, we take

Pr(8)= min {[[v[, st. B=Ay}.

YERITI-1

higher taxonomic levels

family @ @
S © @ R 2
v @ DO B @ B & ®

01U () 09100 () X 9 X) 9 9 0 X 09 X &) X &I
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Figure 1: Schematic of the tree aggregation process.

21

2 Figure (1| shows a schematic of the tree aggregation idea. The vector v € R can be
3 thought of as a latent parameter vector with an entry associated with each node of the tree
2 (see Figure . We associate a f; to each leaf of 7, and the constraint 5 = A7y expresses
s a particular relationship between these, namely that each coefficient §; is the sum of the
% Y, for which j € L(u) (i.e., each f5; is the sum of its ancestor y-values in the tree). This
2 relationship implies that when all the ~-values in a subtree are zero (denoted by crossed
22 out nodes in the figure), then all the § coefficients within the subtree are equal. Thus, the
20 sparsity inducing ¢;-norm on 7 in Pz (/) induces S to tend to be constant within subtrees
s of 7. Using this penalty in Eq. (1) in the main paper leads to the trac method, which is
a1 computed by solving,

ITI-1

minimizegegy yegiri-1 L (y —log(X)B) + A|y[li s.t. 1.8=0, 5= Ay. (1)

This estimator is built on the tree-based aggregation penalty in [2], developed for general
situations in which features are rare and a tree relating the features is available. In their
setting, features are not compositional, so they do not introduce a sum-to-zero constraint
or take the log of the features. The trac problem can be written more simply, entirely in
terms of v, as

minimize cgiri-1 L (y — log(X)Ay) + Al[v]1 s.t. 1;A7 = 0.

2
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» The nx (|7]—1) matrix log(X)A has the sum of the log counts of each of the |T|—1 subtrees
13 of T (excluding 7T itself). Changing variables to a,, = 7, - |[£(u)| and using properties of
3 logarithms establishes the equivalence with problem Eq. (2) in the main paper.

s C Extended Results

s We provide extended results, including an in-depth analysis of trac prediction of BMI from
;7 American Gut Project data, moisture prediction in Central Park soil, and leucine prediction
s in the Fram Strait.

» Immune marker sCD14 prediction in HIV patients

w0 For the sCD14 data, we provide coefficient tables learned by trac (¢ = 1), trac (a = 1/2),
o and the sparse log-contrast model on the first random train-test data split (of ten) in Section
2 [D] This complements the tree visualizations shown in the main manuscript. We also include
13 the results on the family base level (corresponding to panels C and D of Figure 3 in the main

s paper).

s BMI prediction from American Gut microbiome profiles

s Finding consistent gut microbial signatures that are predictive of a person’s body mass
w index (BMI) remains a non-trivial problem. Several early studies argued that obesity is
s associated with phylum-level changes in the microbiome [3], including increased Firmicutes
» to Bacteroidetes phyla ratios [4], often referred to as a hallmark predictor of obesity. The
o authors in [5] and [6] were among the first to identify a small set of microbial genera that
st were (moderately) predictive of host BMI using sparse log-contrast models on the COMBO
2 microbiome dataset [7].

53 Using trac, we revisit BMI prediction from microbial abundance data using a subset
ss of the American Gut Project (AGP) data comprising p = 1387 OTUs across n = 6266
s participants in the lean to obese BMI range. The standard trac model (¢ = 1) with
s the 1SE rule identified a model with 132 predictors, consisting of aggregations across all
sz taxonomic levels. Table[l1/summarizes the 15 strongest predictors which include the kingdom
ss Bacteria (vs. Archaea) as negative baseline, the phylum Bacteroidetes and several families
so and genera in the class Clostridia (which belongs to the Firmicutes phylum) with positive
o associations. The strongest positive OTU level predictor is an unknown species belonging to
61 the Ruminococcaceae family. Figure [2|shows the corresponding trac model BMI predictions
2 (with 1SE rule) vs. measured BMI on the test set (split 1). The out-of-sample test error on
s3 this split is 15.31, and roughly 16 on average across all ten splits (see Table . Standard
& trac, weighted trac, and sparse log-contrast models show similar performance in terms of
es test error (16 — 17) across all taxon base levels, with sparsity levels between 73 and 122 on
oo OTU and genus level, and about 23-27 on the family level.

67 The standard trac model contains aggregations across all taxonomic levels. For instance,
s¢ on the genus level, trac selects Blautia, Dorea, and Ruminococcus as positive predictors.
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Figure 2: A scatter plot of measured BMI (y-axis) vs. trac model BMI predictions on a test
set of n = 2088 AGP participants shows that predicted BMIs largely cover the “normal”
BMI range between 20 and 28 with an overall test set correlation of 0.33. This model has 132

selected taxa, ranging from Kingdom to OTU levels. Table|11|shows the top 15 aggregations
with largest a-coefficients.
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Base Level p trac (a=1) trac (a =1/2) Sparse Log-Contrast

OTU 1387 16 (115) 16 (100) 16 (81)
Genus 824 16 (73) 16 (111) 16 (122)
Family 199 17 (27) 17 (23) 17 (24)

Table 1: Average out-of-sample test errors (model sparsity in parenthesis) for trac (a =
{1,1/2}) and sparse log-contrast models, respectively. Each row considers a different base

level (OTU, genus, and family). Each number is averaged over ten different training/test
splits of the Gut (AGP), BMI data.

s The strongest overall positive predictors are the Bacteroidetes phylum, and the Ruminococ-
70 caceae, Lachnospiraceae, and Clostridiales families. The Lachnospiraceae/Bacteria ratio
7 is also the first log-contrast to enter the trac aggregation path on the AGP data. The
22 HErysipelotrichaceae and the Mogibacteriaceae families are the strongest negative predictors.
73 Consistent with our model, Mogibacteriaceae were shown to be more abundant in lean indi-
7+ viduals [§], and Erysipelotrichaceae were recently reported to be more abundant in normal
75 compared to obese people or subjects with metabolic disorder [9]. However, the fact that
7 standard trac could not identify a simple sparse predictive aggregation model for BMI sug-
77 gests that more complex statistical models are required for predictive modeling, including
7 adjustment for available covariates such as diet, sex, and overall life style.
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Predicting Central Park pH and soil moisture from microbial com-
munities

Here, we complement the microbiome-pH analysis from the main text with an investigation of
the relationship between soil microbiome and gravimetric moisture (% water) measurements
in Central Park. Since pH and moisture measurements are uncorrelated in the Central Park
dataset, we also investigated the similarity between the predictive aggregations for pH and
moisture.

Standard trac inferred a predictive model of moisture consisting of 23 taxonomic aggre-
gations, including the phylum Proteobacteria and the classes Alpha- and Deltaproteobacteria
as strong positive predictors, and the phyla Verrucomicrobia, Actinobacteria, and the order
Sphingobacteriales as strong negative predictors (see Table 15). On the test data (split 1),
the correlation between model predictions and measurements was 0.42. Compared to pH,
the reduced predictive power is in agreement with [10]’s observation about the smaller in-
fluence of SMD compared to pH on microbial composition. Nonetheless, trac’s taxonomic
groupings provide meaningful information about the taxonomic structure of soil microbiota
along moisture gradients. For example, the model supports the positive association between
Proteobacteria and moisture, as previously observed in a study along a vegetation gradi-
ent on the Loess Plateau in China [I1], and the negative effect of moisture on the phylum
Verrucomicrobia and the positive effect on Deltaproteobacteria in the Giessen free-air CO2
enrichment (Gi-FACE) experiment [12]. The Gi-FACE study, however, also reported several
relationships between the microbiome and the soil moisture that are incongruent with our
model, including the role of Acidobacteria.

A:pH B: Moisture

Selected Taxa
Other
c__Acidobacteria-6
== ¢__Gammaproteobacteria
o 3 A == k__Bacteria
== o__Acidobacteriales
p__Bacteroidetes
e p__Verrucomicrobia

beta
yr 4 . 0.005

0.000

= 0,001

Figure 3: Taxonomic aggregations (as highlighted by branch colors) inferred by trac (a = 1),
that are predictive of Central Park soil pH and moisture, respectively. The color coding on
the outermost ring corresponds to the estimated leaf coefficients 5 and are in units of the
response (which differs in the two cases).

Figure |3| compares the aggregations across the taxonomic tree that were found by stan-
dard trac for soil pH and moisture prediction, respectively. We observe that only the
phyla Bacteroidetes and Verrucomicrobia, and the order Acidobacteriales are common in
both models, confirming that the relevant taxonomic aggregations depend on the response
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s variable being predicted.

106 Finally, we observe similar prediction performance in terms of test error (40 — 45), with
w7 standard trac being outperformed by the other methods across all base level aggregations.
s For moisture prediction, weighted trac provides an excellent trade-off between model inter-
w9 pretability and predictability.

Base Level p trac (a =1) trac (a = 1/2) Sparse Log-Contrast

OTU 3379 42 (8) 40 (13) 40 (23)
Genus 2779 42 (5) 40 (17) 41 (19)
Family 1492 45 (4) 42 (12) 41 (16)

Table 2: Average out-of-sample test errors (model sparsity in parenthesis) for trac (a =
{1,1/2}) and sparse log-contrast models, respectively. Each row considers a different base
level (OTU, genus, and family). Each number is averaged over ten different training/test
splits of the Central Park soil, Moisture data.
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1w Primary bacterial production in the Fram Strait

m  Current estimates suggest that the ocean microbiome could be responsible for about half of
12 all primary production occurring on Earth [13][14]. While net primary production is known to
usz  be highly influenced by a multitude of environmental drivers, including light, nutrients, and
us  temperature [15], it is not yet established whether amplicon sequencing data alone contain
us enough information to serve as a stable predictor of (regional) marine primary production.

116 To investigate this relationship we consider a marine dataset, put forward in [16], that
ur covers the Fram Strait, the main gateway between the North Atlantic and Arctic Oceans.
us  The Fram Strait comprises two distinct oceanic regions, the northward flowing West Spits-
ue  bergen Current (WSC), and the East Greenland Current (EGC) flowing southward along the
0 Greenland shelf. Recent ocean simulations, however, suggest substantial horizontal mixing
21 and exchange by eddies between the two regions. We thus trained regression models from
122 amplicon data across both regions and considered the available leucine incorporation (as
13 proxy to bacterial production) as the outcome [16]. We learned separate models for the two
e different size fractions: p = 4530 free-living (FL) taxa in the 0.22um fraction, and p = 3320
15 particle-associated (PA) taxa in 3um fraction.

All Samples
Free living Particle associated
60 - [ [
()
= Regi
§ 40 - o () egion
-l e (] EGC
S P ® Wwsc
© 20- ¢
) :
¢
&
O- 1 1 1 1 1 1
0O 10 20 0 10 20

Predicted Leucine

Figure 4: Predictions by trac (a = 1) of primary production (leucine) from free living (FL)
and particle associated (PA) taxa. The data points are colored by region in the Fram Strait:
West Spitsbergen Current (WSC), and the East Greenland Current (EGC). The correlation
between predicted and measured leucine (on the test set of split 1) is 0.57 for FL taxa and
0.90 and PA taxa, respectively. Tables [20| and [23|show the selected taxa for these models.

126 On the FL dataset, trac (a = 1) identifies a parsimonious model, comprising three ag-
17 gregated taxonomic groups, strongly associated with bacterial production. The two classes
s Gammaproteobacteria and Alphaproteobacteria are negatively associated, and the family
120 Flavobacteriaceae is positively associated with bacterial production, leading to a two-factor
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130 log-contrast model. On the PA dataset, standard trac infers a single predictive log-contrast
1 with the Flavobacteriaceae family being positively associated and the entire phylum Pro-
132 teobacteria negatively associated with primary production. On the test data (split 1), the PA
133 model predictions show a correlation of 0.90 with the measurements. Figure 4| summarizes
134 the scatter plots of leucine measurements vs. trac predictions for the two size fractions,
s colored by region WSC and EGC, respectively.

136 We observe that the PA model appears to serve as an implicit region classifier since
137 predicted leucine values of < 17 belong uniquely to samples in the low-productivity EGC
138 region (see top right panel in Figure. Our model suggests an important positive association
130 of the heterotrophic Flavobacteriaceae with primary production, independent of size class.
1 Flavobacteriaceae are known to strongly contribute to mineralization of primary-produced
11 organic matter (see [17] and references therein), thus suggesting an indirect relationship
12 between Flavobacteriaceae and primary production. However, previous studies in South
13 polar front and antarctic zone postulated a strong role of Flavobacteriaceae for polar primary
s production [18§].

145 As highlighted in Tables |3| and 4] weighted trac and log-contrast models lead to sparse
us models and outperform standard trac in terms of average test error. In the FL data set
17 (data split 1), weighted trac selects both higher order aggregations and two OTUs both of
us  which are also selected by the log-contrast models. For the PA dataset, all models result in
1o single log-ratio models, either on the phylum/family level or OTU level, respectively.

Base Level p trac (a=1) trac (a =1/2) Sparse Log-Contrast

OTU 3320 1.3e+02 (4)  1.2e402 (5) 84 (5)
Genus 1796 1.1e4+02 (5)  le+02 (4) 81 (4)
Family 597 1.2e+02 (3)  le+02 (4) 99 (6)

Table 3: Average out-of-sample test errors (model sparsity in parenthesis) for trac (a =
{1,1/2}) and sparse log-contrast models, respectively. Each row considers a different base
level (OTU, genus, and family). Each number is averaged over ten different training/test
splits of the Fram Strait (PA) data.

Base Level p trac (a =1) trac (a = 1/2) Sparse Log-Contrast

OTU 4510 1.9e+02 (2)  1.5e+02 (5) 1.7e+02 (4)
Genus 2930 1.9e+02 (3) 1.5e+02 (4) 1.4e+02 (6)
Family 1125 1.8e402 (4)  1.4e+02 (4) 1.5e+02 (4)

Table 4: Average out-of-sample test errors (model sparsity in parenthesis) for trac (a =
{1,1/2}) and sparse log-contrast models, respectively. Each row considers a different base
level (OTU, genus, and family). Each number is averaged over ten different training/test
splits of the Fram Strait (FL) data.
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50 (Global predictive model of ocean salinity from Tara data

151 We complement the Tara data set analysis from the main text with showing the scatter plot
152 of measured vs. predicted salinity for the standard trac model (trained on data split 1) in

153 Figure

All Samples
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©
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2 32-
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343536

Predicted Salinity

Figure 5: Measured salinity (y-axis) vs. standard trac (a = 1) model prediction (x-axis) on
the Tara data (model training performed on data split 1). Each sample is colored by one
of the four Longhurst Biome definitions. Outliers to the model are located in Coastal and
Westerlies Biomes.

10
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Table 5: Coefficients selected by trac (a = 1) for Gut (HIV): sCD14

Kingdom Phylum Class Order Family Genus Species OTU o
Bacteria Firmicutes Clostridia  Clostridiales Ruminococcaceae 2221.75
Bacteria Firmicutes Clostridia  Clostridiales  Lachnospiraceae -1644.86
Bacteria  Actinobacteria -501.43
Bacteria -362.27
Bacteria Bacteroidetes Bacteroidia Bacteroidales  Bacteroidaceae  Bacteroides 286.80

Table 6: Coefficients selected by trac (a = 1/2) for Gut (HIV): sCD14

Kingdom Phylum Class Order Family Genus Species OTU @
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 629.10
Bacteria  Actinobacteria -570.60
Bacteria Firmicutes Negativicutes  Selenomonadales  Veillonellaceae Mitsuokella - Otu000070 -128.83
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira -125.49
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae  Subdoligranulum 121.80
Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 82.62
Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides - Otu000014 51.81
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira - Otu000038  -49.69
Bacteria ~ Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Alloprevotella - Otu000011 41.31
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Incertae_Sedis - Otu000073  -39.42
Bacteria  Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae  Bifidobacterium - Otu000098  -12.61

= DD Additional Selected Coefficient Tables

Table 7: Coefficients selected by the sparse log-contrast method for Gut (HIV): sCD14

Kingdom Phylum Class Order Family Genus Species OTU 8
Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides - Otu000014  123.92
Bacteria Firmicutes Negativicutes Selenomonadales Veillonellaceae Mitsuokella - Otu000070 -105.59
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae - - Otu000048 83.15
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira - Otu000038  -79.26
Bacteria  Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella - Otu000230  -71.72
Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Alloprevotella - Otu000011 59.25
Bacteria  Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae  Bifidobacterium - Otu000098  -42.28
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae - - Otu000174 16.33
Bacteria  Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae  Desulfovibrio - Otu000143 16.21

11
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Table 8: Coefficients selected by trac on family level (a = 1) for Gut (HIV): sCD14

Kingdom Phylum Class Order Family Genus Species OTU «@
Bacteria  Actinobacteria -440.80
Bacteria 303.19
Bacteria ~ Cyanobacteria Melainabacteria Gastranaerophilales 137.61

Table 9: Coefficients selected by trac on family level (a = 1/2) for Gut (HIV): sCD14

Kingdom Phylum Class Order Family Genus Species OTU @
Bacteria  Actinobacteria -419.10
Bacteria 301.98
Bacteria  Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae 112.87
Bacteria ~ Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae 9.42
Bacteria  Proteobacteria Gammaproteobacteria ~ Aeromonadales  Succinivibrionaceae -5.18

Table 10: Coefficients selected by the sparse log-contrast method on family level for Gut
(HIV): sCD14

Kingdom Phylum Class Order Family Genus Species OTU Ié]
Life Bacteria  Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae -317.40
Life Bacteria Proteobacteria Gammaproteobacteria ~ Enterobacteriales — Enterobacteriaceae 177.47
Life Bacteria Cyanobacteria Melainabacteria Gastranaerophilales [Unclassified] 138.24
Life Bacteria  Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae -68.26
Life Bacteria Firmicutes Clostridia Clostridiales Defluviitaleaceae 44.07
Life Bacteria  Proteobacteria  Alphaproteobacteria [Unclassified] [Unclassified] 25.88

Table 11: Top 15 coefficients selected by trac (a = 1) for Gut (AGP): BMI

Kingdom Phylum Class Order Family Genus Species OTU @
Bacteria -11.95
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 2.86
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae 2.23
Bacteria  Bacteroidetes 1.45
Bacteria Firmicutes Clostridia Clostridiales 1.18
Bacteria  Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae 0.90
Bacteria Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae -0.80
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 0.73
Bacteria Firmicutes Bacilli Lactobacillales 0.72
Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae 0.71
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 0.51
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae  Ruminococcus 0.49
Bacteria Firmicutes Clostridia Clostridiales [Mogibacteriaceae] -0.36
Bacteria  Bacteroidetes Bacteroidia Bacteroidales [Barnesiellaceae] 0.32
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae - - 4356062 0.30

12
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Table 12: Top 15 coefficients selected by trac (a = 1/2) for Gut (AGP): BMI

Kingdom Phylum Class Order Family Genus Species OTU «
Bacteria Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae -0.30
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae - - 4356062  0.28
Bacteria ~ Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae -0.24
Bacteria Firmicutes Bacilli Lactobacillales 0.23
Bacteria  Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus parainfluenzae 4477696 -0.21
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea - 181871  0.19
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia - 4361189 0.19
Bacteria Firmicutes Clostridia Clostridiales [Tissierellaceae] Finegoldia - 1096610  0.17
Bacteria Firmicutes Erysipelotrichi Erysipelotrichales  Erysipelotrichaceae Catenibacterium - 4480861  0.16
Bacteria  Actinobacteria Actinobacteria -0.15
Bacteria Firmicutes Erysipelotrichi Erysipelotrichales  Erysipelotrichaceae - - 145801 -0.14
Bacteria Firmicutes Clostridia Clostridiales - - - 195004 0.14
Bacteria ~ Bacteroidetes Bacteroidia Bacteroidales [Barnesiellaceae] 0.13
Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae  Staphylococcus aureus 4446058 -0.13
Bacteria  Actinobacteria Coriobacteriia Coriobacteriales  Coriobacteriaceae Eggerthella lenta 4393532 -0.12

Table 13: Top 15 coefficients selected by the sparse log-contrast method for Gut (AGP):

BMI

Kingdom Phylum Class Order Family Genus Species OTU 16}
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae - - 4356062  0.29
Bacteria  Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus parainfluenzae 4477696 -0.19
Bacteria Firmicutes Erysipelotrichi Erysipelotrichales  Erysipelotrichaceae - - 145801 -0.16
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia - 4361189  0.16
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea - 181871  0.15
Bacteria Firmicutes Erysipelotrichi Erysipelotrichales  Erysipelotrichaceae Catenibacterium - 4480861 0.14
Bacteria Firmicutes Clostridia Clostridiales [Tissierellaceae] Finegoldia - 1096610  0.13
Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae  Staphylococcus aureus 4446058 -0.11
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae - - 4457438  0.11
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae - - 2018038  0.11
Bacteria  Actinobacteria Coriobacteriia Coriobacteriales  Coriobacteriaceae Eggerthella lenta 4393532 -0.10
Bacteria Firmicutes Erysipelotrichi Erysipelotrichales  Erysipelotrichaceae Clostridium saccharogumia 4379449 -0.10
Bacteria Firmicutes Clostridia Clostridiales - - - 340876  -0.10
Bacteria Firmicutes Clostridia Clostridiales - - - 173876 -0.09
Bacteria  Proteobacteria ~ Betaproteobacteria Burkholderiales  Oxalobacteraceae Oxalobacter formigenes 7366  -0.09

Table 14: Coefficients selected by trac (a = 1) for Central Park Soil: pH

Kingdom Phylum Class Order Family Genus Species OTU «
Bacteria -0.74
Bacteria Acidobacteria Acidobacteria-6 0.58
Bacteria Bacteroidetes 0.45
Bacteria ~ Proteobacteria ~ Gammaproteobacteria -0.19
Bacteria Acidobacteria Acidobacteriia Acidobacteriales -0.13
Bacteria ~ Verrucomicrobia 0.03
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Table 15: Top 15 coefficients selected by trac (a = 1/2) for Central Park Soil: pH

Kingdom Phylum Class Order Family Genus Species OTU «a
Bacteria Acidobacteria Acidobacteria-6 0.38
Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae -0.23
Bacteria WPS-2 -0.19
Bacteria ~ Gemmatimonadetes Gemm-1 -0.11
Bacteria Bacteroidetes Cytophagia Cytophagales Cytophagaceae 0.09
Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Rhodanobacter -0.05
Bacteria Bacteroidetes 0.05
Bacteria Acidobacteria Acidobacteria-6 iiil-15 RB40 - - OTU_444  0.05
Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae - - OTU_TT  0.04
Bacteria Proteobacteria Alphaproteobacteria Ellin329 -0.04
Bacteria Acidobacteria DA052 Ellin6513 -0.04
Bacteria Bacteroidetes [Saprospirae] [Saprospirales| Saprospiraceae 0.04
Bacteria Bacteroidetes Cytophagia Cytophagales Cytophagaceae - - OTU_176 -0.04
Bacteria Proteobacteria Gammaproteobacteria  Alteromonadales OM60 0.02
Bacteria Chloroflexi Ktedonobacteria Ktedonobacterales Ktedonobacteraceae 0.02

Table 16: Top 15 coefficients selected by the sparse log-contrast method for Central Park
Soil: pH

Kingdom Phylum Class Order Family Genus Species OTU 8
Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae - - OTU_77 0.08
Bacteria Acidobacteria Solibacteres Solibacterales Solibacteraceae Candidatus Solibacter - OTU_114  -0.06
Bacteria Acidobacteria Acidobacteria-6 iiil-15 RB40 - - OTU_444 0.05
Bacteria Acidobacteria [Chloracidobacteria] RB41 - - - OTU_129299  0.04
Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae - - OTU_124173 -0.04
Bacteria Actinobacteria Actinobacteria Actinomycetales - - - OTU7 -0.04
Bacteria  Verrucomicrobia [Spartobacteria] [Chthoniobacterales] ~[Chthoniobacteraceae] - - OTU_335 0.03
Bacteria Acidobacteria Solibacteres Solibacterales Solibacteraceae - - OTU_178  -0.02
Bacteria Acidobacteria DA052 Ellin6513 - - - OTU 432  -0.02
Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Saprospiraceae - - OTU_77144  0.02
Bacteria Proteobacteria Deltaproteobacteria  Syntrophobacterales ~Syntrophobacteraceae - - OTU407  -0.01
Bacteria Proteobacteria ~ Gammaproteobacteria ~ Enterobacteriales Enterobacteriaceae Klebsiella - OTU_62 -0.01
Bacteria ~ Planctomycetes Planctomycetia Pirellulales Pirellulaceae - - OTU_12778 -0.01
Bacteria Proteobacteria  Alphaproteobacteria Ellin329 - - - OTU_80 -0.01
Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae - - OTU_190  -0.01

Table 17: Top 15 coefficients selected by trac (a = 1) for Central Park Soil: Mois

Kingdom Phylum Class Order Family Genus Species OTU «
Bacteria -26.58
Bacteria Proteobacteria 13.68
Bacteria Proteobacteria  Deltaproteobacteria 9.71
Bacteria Proteobacteria  Alphaproteobacteria 6.77
Bacteria Bacteroidetes 4.89
Bacteria Acidobacteria 4.68
Bacteria Bacteroidetes Sphingobacteriia Sphingobacteriales -3.25
Bacteria Actinobacteria Thermoleophilia Gaiellales 3.01
Bacteria ~ Verrucomicrobia -2.66
Bacteria Proteobacteria ~ Alphaproteobacteria  Sphingomonadales Sphingomonadaceae -2.40
Bacteria Actinobacteria -2.38
Bacteria Proteobacteria ~ Betaproteobacteria -2.16
Bacteria Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae -1.99
Bacteria ~ Verrucomicrobia [Pedosphaerae] [Pedosphaerales] -1.37
Bacteria Actinobacteria Thermoleophilia Solirubrobacterales -1.24
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Table 18: Top 15 coefficients selected by trac (a = 1/2) for Central Park Soil: Mois

Kingdom Phylum Class Order Family Genus Species OTU @
Bacteria Proteobacteria 6.07
Bacteria ~ Verrucomicrobia -3.44
Bacteria Proteobacteria ~ Alphaproteobacteria  Sphingomonadales  Sphingomonadaceae Kaistobacter -2.02
Bacteria Proteobacteria  Deltaproteobacteria 1.83
Bacteria Actinobacteria -1.51
Bacteria Actinobacteria Thermoleophilia Solirubrobacterales -0.71
Bacteria Actinobacteria Thermoleophilia Solirubrobacterales  Conexibacteraceae -0.57
Bacteria Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae - - OTU_132332 -0.47
Archaea Crenarchaeota Thaumarchaeota Nitrososphaerales Nitrososphaeraceae ~ CandidatusNitrososphaera -0.30
Bacteria Proteobacteria  Alphaproteobacteria Ellin329 - - - OTU 2107 0.24
Bacteria Proteobacteria  Alphaproteobacteria Rickettsiales mitochondria - - OTU_504 0.17
Archaea Crenarchaeota Thaumarchaeota Cenarchaeales SAGMA-X 0.14
Bacteria Proteobacteria  Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Hyphomicrobium 0.14
Bacteria Proteobacteria  Deltaproteobacteria  Desulfuromonadales Geobacteraceae Geobacter 0.12
Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae - - OTU4903  0.09

Table 19:
Mois

Coefficients selected by the sparse log-contrast method for Central Park Soil:

Kingdom Phylum Class Order Family Genus Species OTU 8
Bacteria Acidobacteria Acidobacteriia Acidobacteriales Koribacteraceae - - OTU_132332 -0.77
Bacteria Bacteroidetes Cytophagia Cytophagales Cytophagaceae - - OTU_103638  0.46
Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae - - OTU 4903  0.33
Bacteria Proteobacteria Betaproteobacteria MND1 - - - OTU.811 0.27
Bacteria Actinobacteria Acidimicrobiia Acidimicrobiales - - - OTU_461 -0.20
Bacteria Proteobacteria ~ Gammaproteobacteria Xanthomonadales Sinobacteraceae - - OTU_1132 0.20
Bacteria ~ Planctomycetes Phycisphaerae WD2101 - - - OTU_132692 -0.16
Bacteria Proteobacteria  Alphaproteobacteria Ellin329 - - - OTU 2107 0.13
Bacteria Bacteroidetes [Saprospirae] [Saprospirales] Chitinophagaceae - - OTU 91357 -0.12
Bacteria Proteobacteria ~ Alphaproteobacteria Rickettsiales mitochondria - - OTU_504 0.11
Bacteria Actinobacteria Acidimicrobiia Acidimicrobiales - - - OTU669  -0.11
Bacteria Proteobacteria  Alphaproteobacteria ~ Sphingomonadales Sphingomonadaceae Kaistobacter - OTU_10329 -0.09
Bacteria Actinobacteria Acidimicrobiia Acidimicrobiales - - - OTU_1582  -0.08
Bacteria ~ Verrucomicrobia - - - - - OTU_1207 0.03
Archaea Crenarchaeota Thaumarchaeota Cenarchaeales SAGMA-X - - OTU_208 0.01

Table 20: Coefficients selected by trac (a = 1) for Fram Strait (FL): Leucine

Kingdom Phylum Class Order Family Genus Species OTU «
Bacteria ~ Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae 27.90
Bacteria  Proteobacteria  Alphaproteobacteria -23.40
Bacteria  Proteobacteria Gammaproteobacteria -4.49

Table 21: Coefficients selected by trac (a = 1/2) for Fram Strait (FL): Leucine

Kingdom Phylum Class Order Family Genus Species OTU el
Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae 14.30
Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales -8.99
Bacteria ~ Marinimicrobia(SAR406clade) -4.30
Bacteria Bacteroidetes Flavobacteriia Flavobacteriales NS9 marine group - - otull? -0.79
Bacteria Proteobacteria Deltaproteobacteria  SAR324 clade(Marine group B) - - - otuld -0.22

Table 22: Coefficients selected by the sparse log-contrast method for Fram Strait (FL):

Leucine
Kingdom Phylum Class Order Family Genus  Species OTU 8
Bacteria ~ Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae  Ulvibacter - otu9 1.44
Bacteria  Bacteroidetes Flavobacteriia Flavobacteriales NS9 marine group - - otull? -0.83
Bacteria  Proteobacteria Deltaproteobacteria SAR324 clade(Marine group B) - - - otuld -0.61
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Table 23: Coefficients selected by trac (a = 1) for Fram Strait (PA): Leucine

Kingdom Phylum Class Order Family Genus Species OTU @
Bacteria  Proteobacteria -13.93
Bacteria Bacteroidetes  Flavobacteriia Flavobacteriales Flavobacteriaceae 13.93

Table 24: Coefficients selected by trac (a = 1/2) for Fram Strait (PA): Leucine

Kingdom Phylum Class Order Family Genus Species OTU e
Bacteria ~ Planctomycetes -6.79
Bacteria ~ Proteobacteria  Alphaproteobacteria Rhodobacterales Rhodobacteraceae 6.79

Table 25: Coefficients selected by the sparse log-contrast method for Fram Strait (PA):

Leucine
Kingdom Phylum Class Order Family Genus Species OTU B8
Bacteria  Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae  Sulfitobacter - otull 1.41
Bacteria  Proteobacteria Deltaproteobacteria Bdellovibrionales Bdellovibrionaceae OMZ27 clade - otu93 -1.41

Table 26: Coefficients selected by trac (a = 1) for Ocean (TARA): Salinity

Kingdom Phylum Class Order Family Genus Species OTU Q
Bacteria  Proteobacteria  Alphaproteobacteria 4.00
Bacteria -2.92
Bacteria  Bacteroidetes -1.38
Bacteria  Proteobacteria Gammaproteobacteria 0.30

Table 27: Coefficients selected by trac (a = 1/2) for Ocean (TARA): Salinity

Kingdom Phylum Class Order Family Genus Species OTU @
Bacteria ~ Bacteroidetes Flavobacteria Flavobacteriales NS9marinegroup -0.96
Bacteria  Proteobacteria  Alphaproteobacteria SAR1lclade 0.55
Bacteria  Proteobacteria  Alphaproteobacteria 0.38
Bacteria  Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae -0.37
Bacteria ~ Cyanobacteria 0.25
Bacteria ~ Cyanobacteria Cyanobacteria Subsectionl Familyl Synechococcus 0.12
Bacteria ~ Proteobacteria Gammaproteobacteria E01-9C-26 marine group - - JF747664.1.1516 OTU520 0.09
Bacteria  Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae  Marinobacter -0.07
Bacteria  Cyanobacteria Cyanobacteria 0.02
Bacteria Bacteroidetes -0.02

Table 28: Coefficients selected by the sparse log-contrast method for Ocean (TARA): Salinity

Kingdom Phylum Class Order Family Genus Species OTU B
Bacteria ~ Proteobacteria ~ Gammaproteobacteria E01-9C-26 marine group - - JE747664.1.1516 OTU520 0.25
Bacteria Proteobacteria ~ Gammaproteobacteria Oceanospirillales JL-ETNP-Y6 - GQ347814.1.1378 OTU925 -0.11
Bacteria Proteobacteria ~ Gammaproteobacteria Oceanospirillales SARS6 clade - AACY020549891.3846.5359  OTU19 0.06
Bacteria ~ Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae  Roseibacillus GU062019.1.1504 OTU729 -0.05
Bacteria Proteobacteria ~ Gammaproteobacteria Alteromonadales Alteromonadaceae Melitea HQ326447.1.1497 OTU2376 -0.05
Bacteria  Proteobacteria ~ Gammaproteobacteria Salinisphaerales Salinisphacracecae Salinisphacra AB735546.1.1462 OTU1096 -0.04
Bacteria Bacteroidetes Flavobacteria Flavobacteriales NS9 marine group - HQ673682.1.1487 OTU1168 -0.04
Bacteria Proteobacteria ~ Gammaproteobacteria Alteromonadales Idiomarinaceae Idiomarina EU440983.1.1508 OTU2517 -0.02
Bacteria Actinobacteria Acidimicrobiia Acidimicrobiales OCS155 marine group - AACY020396101.1882.3388  OTU5S6 0.01
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